JP2006118865A - 原子炉構造物の溶接部強度予測方法ならびにそのシステムおよびプログラム - Google Patents

原子炉構造物の溶接部強度予測方法ならびにそのシステムおよびプログラム Download PDF

Info

Publication number
JP2006118865A
JP2006118865A JP2004303949A JP2004303949A JP2006118865A JP 2006118865 A JP2006118865 A JP 2006118865A JP 2004303949 A JP2004303949 A JP 2004303949A JP 2004303949 A JP2004303949 A JP 2004303949A JP 2006118865 A JP2006118865 A JP 2006118865A
Authority
JP
Japan
Prior art keywords
weld
vicinity
strength
index
time history
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004303949A
Other languages
English (en)
Inventor
Shohei Kawano
昌平 川野
Shigeaki Tanaka
重彰 田中
Hiroshi Sakamoto
博司 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004303949A priority Critical patent/JP2006118865A/ja
Publication of JP2006118865A publication Critical patent/JP2006118865A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

【課題】 中性子照射原子炉構造物を溶接した後の当該溶接部の強度を予測する。
【解決手段】 溶接部強度予測方法は、中性子照射を受けた原子炉構造物の形状1と溶接条件2とに基づいて溶接中の溶接金属近傍の任意点における温度、応力およびひずみの時刻歴を算出する時刻歴算出工程S1と、時刻歴算出工程S1で算出された温度よび応力の時刻歴と原子炉構造物のHe含有量4とに基づいて溶接金属近傍の複数の粒界上におけるHeバブル直径と密度とを算出するバブル直径および密度算出工程S2と、バブル直径および密度算出工程S2で算出されたHeバブル直径および密度と時刻歴算出工程S1で算出されたひずみの時刻歴とに基づいて、溶接金属近傍の複数の粒界上における割れ発生をそれぞれ判定する判定工程S3と、判定工程S3で判定された粒界割れ発生の有無に基づいて溶接金属近傍における割れ指標を算出する指標算出工程S4と、指標算出工程S4で算出された割れ指標に基づいて溶接部の強度を予測する予測工程S5と、を有する。
【選択図】 図1

Description

この発明は、中性子照射を受けた原子炉構造物の溶接部強度予測方法ならびにそのシステムおよびプログラムに関する。
中性子照射を受けたステンレス鋼は、鋼中の不純物として含有するB(ホウ素)、Niと中性子との核反応によりHeを生成し、鋼中に蓄積する。例えば、溶接時の入熱で鋼が高温に加熱されるとHeが粒界に集まりやすく、粒界上にバブルを形成して脆化させる結果、溶接時の冷却過程での引張応力/歪が負荷された時に割れ(He割れ)を生じることがあるということが知られている。
このHe割れ現象は、中性子照射を受けた原子炉構造物を補修、保全あるいは改良のため溶接を行なう場合に問題となる。そこで、健全な溶接部を得るためには、予め、このHe割れが生じるか否かを予測しておく必要がある。
このHe割れの予測方法が、たとえば特許文献1に開示されている。この方法は、被診断材料のHe含有量を求める工程と、溶接による溶融金属近傍の温度履歴および応力履歴を予測する工程と、溶融金属近傍の粒界Heバブルの成長を推測する工程と、このHeバブルの成長挙動から被診断材料の溶接の可否を診断する工程と、からなる原子炉内構造物の診断方法である。
また、Heバブルの成長挙動から溶接可否を診断する方法として、バブルを有する粒界が延性破壊に至る限界歪と、溶接中に評価点に加わる歪とを比較し、後者の歪が前者のそれを上回った時に「割れを発生する」と診断する方法が知られている。
さらに、He割れの大きさを予測する方法が、特許文献2に開示されている。これは、溶接部の任意の点における溶接中の温度、応力および歪の時刻歴を計算し、金属中のHe濃度と前記温度および応力時刻歴から、結晶粒界上に生成するHeバブルの直径および密度の計算を行なう中性子照射材のHeバブル挙動予測方法である。ここでは、溶接部を2次元又は3次元の結晶粒界モデルとしたときの任意の粒界又は粒界面に垂直な方向における応力成分又は歪成分の時刻歴を、前記任意の点における溶接中の応力成分又は歪成分の時刻歴計算結果を用いて計算し、その結果を用いて粒界上に生成するHeバブルの直径および密度の計算を行なう。
従来は、溶接部近傍の特定の点がHe割れを生じるか否かの予測ができるのに対して、上記の予測方法によれば、溶接部近傍における特定の長さまたは面積を持った粒界がHe割れを生じるか否かを予測することができるようになる。
特開平10−111380号公報 特開2004−144657号公報
しかしながら、中性子照射原子炉構造物を溶接した後の当該溶接部の強度を予測する具体的方法については知られていない。
本発明は、中性子照射原子炉構造物を溶接した後の当該溶接部の強度を予測する具体的方法ならびにそのためのシステムおよびコンピュータプログラムを提供することを目的とする。
上記目的を達成するために、本発明の原子炉構造物の溶接部強度予測方法は、中性子照射を受けた原子炉構造物の形状と溶接条件とに基づいて溶接中の溶接金属近傍の任意点における温度、応力およびひずみの時刻歴を算出する時刻歴算出工程と、前記時刻歴算出工程で算出された温度よび応力の時刻歴と前記原子炉構造物のHe含有量とに基づいて前記溶接金属近傍の複数の粒界上におけるHeバブル直径と密度とを算出するバブル直径および密度算出工程と、前記バブル直径および密度算出工程で算出されたHeバブル直径および密度と前記時刻歴算出工程で算出されたひずみの時刻歴とに基づいて、前記溶接金属近傍の複数の粒界上における割れ発生をそれぞれ判定する判定工程と、前記判定工程で判定された粒界割れ発生の有無に基づいて前記溶接金属近傍における割れ指標を算出する指標算出工程と、前記指標算出工程で算出された割れ指標に基づいて溶接部の強度を予測する予測工程と、を有することを特徴とする。
また、本発明の原子炉構造物の溶接部強度予測システムは、中性子照射を受けた原子炉構造物の形状と溶接条件とに基づいて溶接中の溶接金属近傍の任意点における温度、応力およびひずみの時刻歴を算出する時刻歴算出手段と、前記時刻歴算出手段によって算出された温度よび応力の時刻歴と前記原子炉構造物のHe含有量とに基づいて前記溶接金属近傍の複数の粒界上におけるHeバブル直径と密度とを算出するバブル直径および密度算出手段と、前記バブル直径および密度算出手段によって算出されたHeバブル直径および密度と前記時刻歴算出手段によって算出されたひずみの時刻歴とに基づいて、前記溶接金属近傍の複数の粒界上における割れ発生をそれぞれ判定する判定手段と、前記判定手段によって判定された粒界割れ発生の有無に基づいて前記溶接金属近傍における割れ指標を算出する指標算出手段と、前記指標算出手段によって算出された割れ指標に基づいて溶接部の強度を予測する予測手段と、を有することを特徴とする。
さらに、本発明の原子炉構造物の溶接部強度予測プログラムは、電子計算機に、中性子照射を受けた原子炉構造物の形状と溶接条件とに基づいて溶接中の溶接金属近傍の任意点における温度、応力およびひずみの時刻歴を算出する時刻歴算出機能と、前記時刻歴算出機能によって算出された温度よび応力の時刻歴と前記原子炉構造物のHe含有量とに基づいて前記溶接金属近傍の複数の粒界上におけるHeバブル直径と密度とを算出するバブル直径および密度算出機能と、前記バブル直径および密度算出機能によって算出されたHeバブル直径および密度と前記時刻歴算出機能によって算出されたひずみの時刻歴とに基づいて、前記溶接金属近傍の複数の粒界上における割れ発生をそれぞれ判定する判定機能と、前記判定機能によって判定された粒界割れ発生の有無に基づいて前記溶接金属近傍における割れ指標を算出する指標算出機能と、前記指標算出機能によって算出された割れ指標に基づいて溶接部の強度を予測する予測機能と、を発揮させることを特徴とする。
本発明によれば、中性子照射原子炉構造物を溶接した後の当該溶接部の強度を評価することができる。
以下、本発明に係る原子炉構造物の溶接部強度予測方法の実施形態について、図面を参照して説明する。
図1は本発明に係る原子炉構造物の溶接部強度予測方法の一実施形態の手順を示す流れ図である。図1において、まず原子炉構造物の形状1と溶接条件2から溶接中の溶接金属近傍の任意点における温度・応力・ひずみの時刻歴を計算する(工程S1)。温度・応力・ひずみの時刻歴計算は、例えば有限要素法による熱弾塑性解析を用いる。
次に、解析した温度・応力・ひずみの時刻歴と原子炉構造物のHe含有量4から溶接金属近傍の複数の粒界上におけるHeバブル直径と密度を計算する(工程S2)。そして溶接金属近傍の複数の粒界上における割れ発生を、任意点におけるひずみの時刻歴から判定する(工程S3)。溶接金属近傍の複数の粒界上における割れ発生を、任意点におけるひずみの時刻歴から判定する方法として、例えば特許文献2に記載の方法がある。次に溶接金属近傍における割れ指標を算出する(工程S4)。
溶接金属近傍における割れ指標の一算出例を、図2で説明する。図2(a)は、中性子照射を受けた材料9の開先を、溶接金属10で肉盛溶接した補修溶接部の模式図である。この溶接部には図面の水平方向に荷重11が加わっている。荷重方向に垂直な断面の原子炉構造物の厚さがTで表される。図2(a)のA部を拡大した図2(b)は、溶接金属近傍の粒界12、および、溶接により生じたHeに起因する粒界割れ13を模式的に示す。この場合、荷重方向に垂直な断面に投影した5本の粒界割れ長さは、L1〜L5で表される。荷重方向に垂直な断面の原子炉構造物の厚さTと、荷重方向に垂直な断面に投影した粒界割れ長さの合計ΣLとの割合を計算することにより、割れ指標を算出することができる。
次に、溶接金属近傍における割れ指標と溶接部強度の関係から溶接部強度を定式化したマスターカーブ14を用いて、溶接部強度を予測する(工程S5)。
図3は、溶接金属近傍における割れ指標(ΣL/T)と、溶接部強度の関係を示すマスターカーブ14の一例であり、横軸には、荷重方向に垂直な断面に粒界割れ長さを投影した長さの合計ΣLと、溶接部に加わる荷重方向に垂直な断面の構造物厚さTとの比(ΣL/T)を、縦軸には、溶接部の引張強さσBを、無欠陥溶接部の引張強さσB0で規格化した値(σB/σB0)を示す。ΣL/Tがゼロの場合、溶接部の引張強さσB=σB0であるため、σB/σB0=1である。粒界割れが生じてΣL/Tが増加するのに伴い、溶接部の引張強さσBが低下して次第にゼロに近づくため、σB/σB0も低下して0に近づく。
図3に示すマスターカーブ14を実験的もしくは理論的に求めて定式化し、
σB/σB0=f(ΣL/T)
の関数で表すことにより、溶接部の引張強さσBを割れ指標ΣL/Tから以下の式で計算することができる。
σB=f(ΣL/T)・σB0
割れ指標としては、上記のΣL/Tのほかに、荷重方向に垂直な断面に粒界割れを投影した面積の合計Σaと、溶接部に加わる荷重方向に垂直な断面の構造物断面積Sとの比Σa/Sを用いることもできる。
図4は、Σa/SとσB/σB0の関係を規定するマスターカーブ14の例を示す。このマスターカーブ14を実験的もしくは理論的に求めて定式化し、
σB/σB0=g(Σa/S)
の関数で表せば、溶接部の引張強さσBを、割れ指標Σa/Sから以下の式で計算することができる。
σB=g(Σa/S)・σB0
その他の割れ指標として、(1)複数の粒界割れの面積の合計と溶接部近傍の全ての粒界面積との比、(2)複数の粒界割れ長さの合計と溶接部近傍の全ての粒界長さとの比、(3)複数の粒界割れ数の合計と溶接部近傍の全ての粒界数との比のいずれかを用いてもよい。さらに、対象となる溶接部の強度としては、引張強さ、降伏応力、一様伸び、破断伸び、疲労強度が予測可能である。
以上に述べたように、本実施形態によれば、中性子照射を受けた原子炉構造物を溶接した際に溶接部近傍の強度を精度良く予測することができる。
以上、本発明に係る原子炉構造物の溶接部強度予測方法の実施形態を説明した。この方法は、コンピュータを実行させることによって実現することが望ましい。
本発明に係る原子炉構造物の溶接部強度予測方法の一実施の形態の手順を示す流れ図。 本発明に係る原子炉構造物の溶接部近傍の粒界割れを示す縦断面図であって、(b)は(a)のA部拡大縦断面図。 本発明に係る原子炉構造物の溶接部強度予測方法で使用される割れ指標と溶接部強度との関係を示すマスターカーブの一例を示すグラフであって、縦軸を、溶接部の引張強さσBを無欠陥溶接部の引張強さσB0で規格化した値σB/σB0とし、横軸を、荷重方向に垂直な断面に粒界割れ長さを投影した長さの合計ΣLと、溶接部に加わる荷重方向に垂直な断面の構造物厚さTとの比ΣL/Tとするグラフ。 本発明に係る原子炉構造物の溶接部強度予測方法で使用される割れ指標と溶接部強度との関係を示すマスターカーブの他の例を示すグラフであって、縦軸を、溶接部の引張強さσBを無欠陥溶接部の引張強さσB0で規格化した値σB/σB0とし、横軸を、荷重方向に垂直な断面に粒界割れを投影した面積の合計Σaと、溶接部に加わる荷重方向に垂直な断面の構造物断面積Sとの比Σa/Sとするグラフ。
符号の説明
1…原子炉構造物の形状、2…溶接条件、4…原子炉構造物のHe含有量、9…中性子照射を受けた材料、10…溶接金属、11…荷重、12…粒界、13…粒界割れ、14…マスターカーブ

Claims (10)

  1. 中性子照射を受けた原子炉構造物の形状と溶接条件とに基づいて溶接中の溶接金属近傍の任意点における温度、応力およびひずみの時刻歴を算出する時刻歴算出工程と、
    前記時刻歴算出工程で算出された温度よび応力の時刻歴と前記原子炉構造物のHe含有量とに基づいて前記溶接金属近傍の複数の粒界上におけるHeバブル直径と密度とを算出するバブル直径および密度算出工程と、
    前記バブル直径および密度算出工程で算出されたHeバブル直径および密度と前記時刻歴算出工程で算出されたひずみの時刻歴とに基づいて、前記溶接金属近傍の複数の粒界上における割れ発生をそれぞれ判定する判定工程と、
    前記判定工程で判定された粒界割れ発生の有無に基づいて前記溶接金属近傍における割れ指標を算出する指標算出工程と、
    前記指標算出工程で算出された割れ指標に基づいて溶接部の強度を予測する予測工程と、
    を有することを特徴とする原子炉構造物の溶接部強度予測方法。
  2. 前記指標算出工程は、前記割れ指標として、前記溶接部に加わる荷重方向に垂直な断面に複数の粒界割れ長さを投影したそれぞれの長さの合計と、荷重方向に垂直な断面の前記原子炉構造物の厚さとの比を算出すること、特徴とする請求項1記載の原子炉構造物の溶接部強度予測方法。
  3. 前記指標算出工程は、前記割れ指標として、前記溶接部に加わる荷重方向に垂直な断面に複数の粒界割れを投影したそれぞれの面積の合計と、荷重方向に垂直な断面の前記原子炉構造物の断面積との比を算出すること、特徴とする請求項1記載の原子炉構造物の溶接部強度予測方法。
  4. 前記指標算出工程は、前記割れ指標として、前記溶接部近傍の複数の粒界割れそれぞれの長さの合計と、前記溶接部近傍のすべての粒界長さとの比を算出すること、特徴とする請求項1記載の原子炉構造物の溶接部強度予測方法。
  5. 前記指標算出工程は、前記割れ指標として、前記溶接部近傍の複数の粒界割れそれぞれの面積の合計と、前記溶接部近傍のすべての粒界面積との比を算出すること、特徴とする請求項1記載の原子炉構造物の溶接部強度予測方法。
  6. 前記指標算出工程は、前記割れ指標として、前記溶接部近傍の粒界割れ数と、前記溶接部近傍のすべての粒界数との比を算出すること、特徴とする請求項1記載の原子炉構造物の溶接部強度予測方法。
  7. 前記予測工程は、溶接金属近傍における割れ指標と溶接部強度との関係から溶接部強度を定式化したマスターカーブを用いて予測すること、特徴とする請求項1ないし6のいずれか1項記載の原子炉構造物の溶接部強度予測方法。
  8. 前記溶接部強度は、引張強さ、降伏応力、一様伸び、破断伸び、疲労強度の内の少なくとも一つであること、特徴とする請求項7記載の原子炉構造物の溶接部強度予測方法。
  9. 中性子照射を受けた原子炉構造物の形状と溶接条件とに基づいて溶接中の溶接金属近傍の任意点における温度、応力およびひずみの時刻歴を算出する時刻歴算出手段と、
    前記時刻歴算出手段によって算出された温度よび応力の時刻歴と前記原子炉構造物のHe含有量とに基づいて前記溶接金属近傍の複数の粒界上におけるHeバブル直径と密度とを算出するバブル直径および密度算出手段と、
    前記バブル直径および密度算出手段によって算出されたHeバブル直径および密度と前記時刻歴算出手段によって算出されたひずみの時刻歴とに基づいて、前記溶接金属近傍の複数の粒界上における割れ発生をそれぞれ判定する判定手段と、
    前記判定手段によって判定された粒界割れ発生の有無に基づいて前記溶接金属近傍における割れ指標を算出する指標算出手段と、
    前記指標算出手段によって算出された割れ指標に基づいて溶接部の強度を予測する予測手段と、
    を有することを特徴とする原子炉構造物の溶接部強度予測システム。
  10. 電子計算機に、
    中性子照射を受けた原子炉構造物の形状と溶接条件とに基づいて溶接中の溶接金属近傍の任意点における温度、応力およびひずみの時刻歴を算出する時刻歴算出機能と、
    前記時刻歴算出機能によって算出された温度よび応力の時刻歴と前記原子炉構造物のHe含有量とに基づいて前記溶接金属近傍の複数の粒界上におけるHeバブル直径と密度とを算出するバブル直径および密度算出機能と、
    前記バブル直径および密度算出機能によって算出されたHeバブル直径および密度と前記時刻歴算出機能によって算出されたひずみの時刻歴とに基づいて、前記溶接金属近傍の複数の粒界上における割れ発生をそれぞれ判定する判定機能と、
    前記判定機能によって判定された粒界割れ発生の有無に基づいて前記溶接金属近傍における割れ指標を算出する指標算出機能と、
    前記指標算出機能によって算出された割れ指標に基づいて溶接部の強度を予測する予測機能と、
    を発揮させることを特徴とする原子炉構造物の溶接部強度予測プログラム。
JP2004303949A 2004-10-19 2004-10-19 原子炉構造物の溶接部強度予測方法ならびにそのシステムおよびプログラム Withdrawn JP2006118865A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303949A JP2006118865A (ja) 2004-10-19 2004-10-19 原子炉構造物の溶接部強度予測方法ならびにそのシステムおよびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303949A JP2006118865A (ja) 2004-10-19 2004-10-19 原子炉構造物の溶接部強度予測方法ならびにそのシステムおよびプログラム

Publications (1)

Publication Number Publication Date
JP2006118865A true JP2006118865A (ja) 2006-05-11

Family

ID=36536905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303949A Withdrawn JP2006118865A (ja) 2004-10-19 2004-10-19 原子炉構造物の溶接部強度予測方法ならびにそのシステムおよびプログラム

Country Status (1)

Country Link
JP (1) JP2006118865A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5635975B2 (ja) * 2009-03-25 2014-12-03 ローム株式会社 照度センサと、それを用いた電子機器および半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5635975B2 (ja) * 2009-03-25 2014-12-03 ローム株式会社 照度センサと、それを用いた電子機器および半導体装置

Similar Documents

Publication Publication Date Title
Abson et al. Review of type IV cracking of weldments in 9–12% Cr creep strength enhanced ferritic steels
CN110362926B (zh) 一种基于ansys的铜合金平板对接焊热裂纹预测方法
Dyson Use of CDM in materials modeling and component creep life prediction
Siefert et al. Evaluation of the creep cavitation behavior in Grade 91 steels
Meneghetti et al. Fatigue strength assessment of partial and full‐penetration steel and aluminium butt‐welded joints according to the peak stress method
Yaghi et al. A comparison between measured and modeled residual stresses in a circumferentially butt-welded P91 steel pipe
JP5276723B2 (ja) 原子力発電プラントの健全性評価システム
JP5742755B2 (ja) 溶接部の破断ひずみの予測方法、予測システム、及び溶接部を備えた部材の製造方法
Wu et al. Influence of extra coarse grains on the creep properties of 9 percent CrMoV (P91) steel weldment
Vemanaboina et al. Effect of heat input on distortions and residual stresses induced by gas tungsten arc welding in SS 316L to INCONEL625 multipass dissimilar welded joints
Zondi Factors that affect welding-induced residual stress and distortions in pressure vessel steels and their mitigation techniques: a review
Qian et al. Probabilistic assessment of a reactor pressure vessel subjected to pressurized thermal shocks by using crack distributions
Gbagba et al. Advances in machine learning techniques used in fatigue life prediction of welded structures
JP2007225387A (ja) 原子炉構造物の溶接部における疲労特性予測の方法、そのシステムおよびそのプログラム
Li et al. Investigation on size tolerance of pore defect of girth weld pipe
JP2006118865A (ja) 原子炉構造物の溶接部強度予測方法ならびにそのシステムおよびプログラム
JP2009030991A (ja) 溶接割れ評価方法、溶接割れ評価システムおよび溶接割れ評価プログラム
JP2009048361A (ja) 溶接構造物の残留応力解析方法
Mullins et al. Influence of hardening model on weld residual stress distribution
Zang et al. Improvement and validation of weld residual stress modelling procedure
Henrysson Effects of mean stress and crack closure on fatigue life of spot welds
JP2010003217A (ja) プレス加工金型寿命予測プログラムおよび金型材料設計支援プログラム
Ohms Residual stresses in thick bi-metallic fusion welds: a neutron diffraction study
JP2007232463A (ja) 原子炉構造物の溶接部評価システムおよびその評価方法ならびにプログラム
Katsuyama et al. Effect of partial welding on the residual stress and structural integrity of piping welds

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108