JP2006118810A - Heat storage type air conditioner - Google Patents

Heat storage type air conditioner Download PDF

Info

Publication number
JP2006118810A
JP2006118810A JP2004307998A JP2004307998A JP2006118810A JP 2006118810 A JP2006118810 A JP 2006118810A JP 2004307998 A JP2004307998 A JP 2004307998A JP 2004307998 A JP2004307998 A JP 2004307998A JP 2006118810 A JP2006118810 A JP 2006118810A
Authority
JP
Japan
Prior art keywords
heat storage
heat
heat exchanger
refrigerant
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004307998A
Other languages
Japanese (ja)
Inventor
Koji Taki
幸司 滝
Jiro Okajima
次郎 岡島
Osamu Morimoto
修 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004307998A priority Critical patent/JP2006118810A/en
Publication of JP2006118810A publication Critical patent/JP2006118810A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform a cooling operation that suppresses power consumption in the daytime and has high energy consumption efficiency. <P>SOLUTION: This heat storage type air conditioner has a circuit where a compressor 1, an indoor heat exchanger 3, a regenerative heat exchanger 11 that is disposed in a heat storage tank having a regenerative medium and exchanges heat between it and the regenerative medium in the heat storage tank, a second throttling device 12, and indoor heat exchangers 30a and 30b are sequentially connected. In a cooling operation utilizing the heat storage, an operation that does not impart an excessive cooling temperature to an outlet of the outdoor heat exchanger 3 is performed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、蓄熱利用冷房運転を行う蓄熱式空気調和装置に関するものである。   The present invention relates to a regenerative air conditioner that performs a regenerative cooling operation.

従来の蓄熱式空気調和装置は、昼間の蓄熱利用冷房運転時に熱源側熱交換器(凝縮器)の出口冷媒状態が液状態である運転を行う。(例えば、特許文献1参照)   The conventional heat storage type air conditioner performs an operation in which the outlet refrigerant state of the heat source side heat exchanger (condenser) is in a liquid state during daytime heat storage use cooling operation. (For example, see Patent Document 1)

特開平5−133635号公報(第2図)JP-A-5-133635 (FIG. 2)

従来の蓄熱式空気調和装置は、試運転時の一般的な冷媒充填方法として、昼間の蓄熱利用冷房運転時に熱源側熱交換器(凝縮器)の出口冷媒状態が、過冷却液状態になるような冷媒量を設定する。つまり、冷媒不足運転にならない様にするためである。
ところで、熱源側熱交換器の熱交換能力により、冷媒の凝縮温度と圧縮機の吐出圧力が決まるが、室外熱交換器の出口冷媒過冷却度が増えることにより、熱源側熱交換器の熱交換効率が落ちることから冷媒の凝縮温度が上昇し、圧縮機吐出圧力が高くなる。よって、圧縮機の消費電力が大きくなり、結果として空気調和装置のエネルギ消費効率が低くなり電気料金が高くなるという問題点があった。
As a general refrigerant charging method during a test operation, a conventional heat storage type air conditioner is configured such that the outlet refrigerant state of the heat source side heat exchanger (condenser) becomes a supercooled liquid state during daytime heat storage-based cooling operation. Set the amount of refrigerant. In other words, this is to prevent the refrigerant shortage operation.
By the way, the heat exchange capacity of the heat source side heat exchanger determines the refrigerant condensing temperature and the compressor discharge pressure, but the heat exchange of the heat source side heat exchanger is increased by increasing the outlet refrigerant subcooling degree of the outdoor heat exchanger. Since the efficiency decreases, the condensation temperature of the refrigerant rises and the compressor discharge pressure increases. Therefore, there is a problem that the power consumption of the compressor is increased, and as a result, the energy consumption efficiency of the air conditioner is lowered and the electricity bill is increased.

この発明は上記のような課題を解決するためになされたもので、第1の目的は昼間の消費電力を抑え、エネルギ消費効率の高い冷房運転を行うことを目的とする。つまり、昼間の消費電力を低減した分、昼間の電気料金が抑えられるとともに蓄熱利用量が増え、すなわち、夜間の蓄熱量が増え、安価な深夜電力を有効に活用できる経済性の高い蓄熱式空気調和装置を得ようとするものである。   The present invention has been made to solve the above-described problems, and a first object of the invention is to suppress power consumption in the daytime and perform a cooling operation with high energy consumption efficiency. In other words, by reducing the amount of power consumed in the daytime, the electricity charge during the daytime is reduced and the amount of heat storage is increased. It seeks to obtain a harmony device.

一方、従来通り昼間の蓄熱利用冷房運転時に、熱源側熱交換器(凝縮器)の出口冷媒状態が過冷却液状態になる場合、昼間の消費電力は上昇して電気料金は高くなるが、夜間の消費電力は減らせるので、1日を通してのエネルギー消費効率(日量蓄熱利用冷房効率)は高くなり、年間の消費電力量の低減や二酸化炭素の排出量の抑制の場合には有効である。   On the other hand, if the outlet refrigerant state of the heat source side heat exchanger (condenser) is in the supercooled liquid state during the daytime heat storage cooling operation as usual, the daytime power consumption increases and the electricity bill increases. The energy consumption efficiency throughout the day (cooling efficiency using daily heat storage) is high, and is effective in reducing annual power consumption and carbon dioxide emissions.

よって、第2の目的は、昼間の蓄熱利用冷房運転時において、エネルギー消費効率が高く、安価な深夜電力を有効に活用できる経済性の高い運転モードと、1日を通してのエネルギー消費効率(日量蓄熱利用冷房効率)が高くなる運転モードを用意し、ユーザーのニーズにより、これらのモードを切り替え可能にする蓄熱式空気調和装置を得ようとするものである。   Therefore, the second purpose is to provide an economical mode of operation that can effectively use low-cost late-night electricity with high energy consumption efficiency during daytime regenerative cooling operation, and energy consumption efficiency throughout the day (daily volume) An operation mode in which the heat storage utilization cooling efficiency) is increased, and a heat storage type air conditioner that can switch between these modes according to user needs is obtained.

この発明に係る蓄熱式空気調和装置は、圧縮機、室内熱交換器、蓄熱媒体を有する蓄熱槽内に設けられ該蓄熱槽内の蓄熱媒体との熱交換を行う蓄熱熱交換器、絞り装置、室内熱交換器を順次接続した冷媒回路を備え、冷媒充填量を調整して、昼間の蓄熱利用冷房運転時に室外熱交換器出口冷媒状態を気液二相状態になるようにしたものである。   A heat storage type air conditioner according to the present invention includes a compressor, an indoor heat exchanger, a heat storage heat exchanger that is provided in a heat storage tank having a heat storage medium and performs heat exchange with the heat storage medium in the heat storage tank, an expansion device, A refrigerant circuit in which indoor heat exchangers are sequentially connected is provided, and the refrigerant charging amount is adjusted so that the refrigerant state at the outlet of the outdoor heat exchanger becomes a gas-liquid two-phase state during daytime heat storage-based cooling operation.

また、前記冷媒回路において、または冷媒回路の循環冷媒量の調整手段により、昼間の蓄熱利用冷房運転時に室外熱交換器出口冷媒状態を過冷却液状態、または気液二相状態にする運転モードを有し、これらのモードを切り替え可能にしたものである。   In the refrigerant circuit, or by adjusting the circulating refrigerant amount of the refrigerant circuit, an operation mode in which the refrigerant state at the outlet of the outdoor heat exchanger is changed to a supercooled liquid state or a gas-liquid two-phase state during daytime heat storage-based cooling operation. It is possible to switch between these modes.

この発明に係る蓄熱式空気調和装置は、昼間の蓄熱利用冷房運転時に室外熱交換器(凝縮器)出口冷媒状態が気液二相状態になる運転を行うため、室外交換器の熱交換効率が高くなることにより冷媒の凝縮温度が低くなり、圧縮機吐出圧力もまた低くなるため、圧縮機の消費電力が小さくなり、結果としてエネルギ消費効率の高い蓄熱利用冷房運転を行うようになる。つまり、昼間の消費電力を低減した分、昼間の電気料金が抑えられるとともに蓄熱利用量が増え、すなわち、夜間の蓄熱量が増え、安価な深夜電力を有効に活用できる経済性の高い運転ができる、という効果を有する。   Since the regenerative air conditioner according to the present invention performs an operation in which the refrigerant state at the outlet of the outdoor heat exchanger (condenser) becomes a gas-liquid two-phase state during daytime regenerative cooling operation, the heat exchange efficiency of the outdoor exchanger is high. By increasing the temperature, the refrigerant condensing temperature is lowered, and the compressor discharge pressure is also lowered. Therefore, the power consumption of the compressor is reduced, and as a result, the regenerative cooling operation with high energy consumption efficiency is performed. In other words, the amount of electricity consumed during the daytime can be reduced and the amount of heat stored can be increased, that is, the amount of stored heat can be increased at night. Has the effect.

また、前記冷媒回路において、または冷媒回路の循環冷媒量の調整手段により、昼間の蓄熱利用冷房運転時に室外熱交換器出口冷媒状態を過冷却液状態、または気液二相状態に切り替え可能にしたので、経済性の高い運転モードと日量蓄熱利用冷房効率の高くなる運転モードを設定でき、ユーザーのニーズに合わせて切り替えることができる、という効果を有する。   Also, in the refrigerant circuit or by adjusting the circulating refrigerant amount of the refrigerant circuit, the refrigerant state at the outlet of the outdoor heat exchanger can be switched between the supercooled liquid state or the gas-liquid two-phase state during daytime heat storage cooling operation. Therefore, it is possible to set an operation mode with high economic efficiency and an operation mode with high cooling efficiency using daily heat storage and can be switched according to the user's needs.

実施の形態1.
図1はこの発明の実施の形態1における冷媒回路図を示すものである。図において、室外ユニットA、蓄熱ユニットB、各室内ユニットC1、C2は、ガス管P1、液管P2の冷媒配管で順次接続されている。
室外ユニットAは、圧縮機1、四方弁2、室外熱交換器3、過冷却熱交換器4、過冷却熱交換器4の出口から分岐し、第1の絞り機構5を経て、過冷却熱交換器4の他方側を流れ、圧縮機1の吸入側に接続されたアキュームレータ7の一次側に接続される第1のバイパス管6、からなる。
蓄熱ユニットBは以下の構成である。過冷却熱交換器4の出口から分岐したもう一方が液管P2と接続され、液管P2から分岐した冷媒配管は、第2の絞り機構12を経て、蓄熱媒体を有する蓄熱槽10の内部に設けられ蓄熱槽10内の蓄熱媒体との熱交換を行う蓄熱熱交換器11と接続される。更に、蓄熱熱交換器11の出口から分岐して第2の開閉弁15を介して液管P2に戻る回路と、蓄熱熱交換器11の出口から分岐するもう一方は、第1の開閉弁14を介してガス管P1に接続される。第2の絞り機構12への分岐点と、第2の開閉弁15からの合流点の間の液管P2上には、第3の開閉弁16、を備えている。
液管P2から分岐して複数台接続する各室内ユニットC1、C2は、室内絞り機構31a、31bと室内熱交換器30a、30bがそれぞれ接続され、ガス管P1に合流する。
また、室外熱交換器3には、室外熱交換器冷媒温度検出手段40、室外熱交換器冷媒出口温度検出手段41が設けられている。
Embodiment 1 FIG.
FIG. 1 shows a refrigerant circuit diagram according to Embodiment 1 of the present invention. In the figure, the outdoor unit A, the heat storage unit B, and the indoor units C1 and C2 are sequentially connected by refrigerant pipes of a gas pipe P1 and a liquid pipe P2.
The outdoor unit A branches from the outlet of the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the supercooling heat exchanger 4, and the supercooling heat exchanger 4, and passes through the first throttle mechanism 5 to generate supercooling heat. It consists of a first bypass pipe 6 that flows through the other side of the exchanger 4 and is connected to the primary side of the accumulator 7 that is connected to the suction side of the compressor 1.
The heat storage unit B has the following configuration. The other branched from the outlet of the supercooling heat exchanger 4 is connected to the liquid pipe P2, and the refrigerant pipe branched from the liquid pipe P2 passes through the second throttle mechanism 12 and enters the heat storage tank 10 having the heat storage medium. It is provided and connected to a heat storage heat exchanger 11 that exchanges heat with the heat storage medium in the heat storage tank 10. Further, a circuit branching from the outlet of the heat storage heat exchanger 11 and returning to the liquid pipe P2 via the second on-off valve 15 and the other branching from the outlet of the heat storage heat exchanger 11 are the first on-off valve 14. Is connected to the gas pipe P1. A third on-off valve 16 is provided on the liquid pipe P <b> 2 between the branch point to the second throttle mechanism 12 and the junction point from the second on-off valve 15.
The indoor units C1 and C2 branched from the liquid pipe P2 and connected to each other are connected to the indoor throttle mechanisms 31a and 31b and the indoor heat exchangers 30a and 30b, respectively, and merge with the gas pipe P1.
The outdoor heat exchanger 3 is provided with an outdoor heat exchanger refrigerant temperature detection means 40 and an outdoor heat exchanger refrigerant outlet temperature detection means 41.

次に動作について説明する。まず、夜間の蓄冷運転時には、四方弁2が室外熱交換器3側に連通する。よって、圧縮機1より吐出した冷媒ガスは、室外熱交換器3にて凝縮し、過冷却熱交換器4で過冷却状態になる。次に、蓄冷運転時は第3の開閉弁16は閉状態のため、第2の絞り機構12側に流れ、第2の絞り機構12で減圧され、蓄熱槽10の蓄熱媒体と蓄熱熱交換器11にて熱交換され冷熱を蓄える。このとき蓄熱媒体は水などで顕熱分、潜熱分を利用して冷熱を蓄える。蓄熱熱交換器11から出た冷媒は、第2の開閉弁15が閉止状態で第1の開閉弁14が開状態のためガス管P1側に流れ、アキュームレータ7、圧縮機1に吸入される経路をたどる。
また、過冷却熱交換器4の出口から分岐したもう一方の冷媒は、第1の絞り機構5で減圧され、過冷却熱交換器4にて他方の冷媒を過冷却させた後、アキュームレータ7の1次側に流入する。
Next, the operation will be described. First, at the time of cold storage operation at night, the four-way valve 2 communicates with the outdoor heat exchanger 3 side. Therefore, the refrigerant gas discharged from the compressor 1 is condensed in the outdoor heat exchanger 3 and is supercooled in the supercooling heat exchanger 4. Next, since the 3rd on-off valve 16 is a closed state at the time of a cool storage operation, it flows into the 2nd expansion mechanism 12 side, and is decompressed by the 2nd expansion mechanism 12, and the thermal storage medium of the thermal storage tank 10 and a thermal storage heat exchanger Heat is exchanged at 11, and cold energy is stored. At this time, the heat storage medium uses water or the like to store cold heat using sensible heat and latent heat. The refrigerant flowing out of the heat storage heat exchanger 11 flows to the gas pipe P1 side because the second on-off valve 15 is closed and the first on-off valve 14 is open, and is taken into the accumulator 7 and the compressor 1 Follow.
The other refrigerant branched from the outlet of the supercooling heat exchanger 4 is depressurized by the first throttle mechanism 5, and after the other refrigerant is supercooled by the supercooling heat exchanger 4, It flows into the primary side.

次に蓄熱利用冷房運転時は、圧縮機1より吐出した冷媒ガスは四方弁2が室外熱交換器3側に連通しているので、室外熱交換器3にて凝縮して液状態となる。この室外熱交換器3出口の冷媒液状態の過冷却度は、室外熱交換器冷媒温度検出手段40と室外熱交換器冷媒出口温度検出手段41の両者の検出値の差分として検知することができる。
その後冷媒は過冷却熱交換器4から液管P2を通り、第3の開閉弁16は閉状態のため、第2の絞り機構12側に分岐し、第2の絞り機構12を通過し、蓄熱槽10の蓄熱媒体と蓄熱熱交換器11にて熱交換され冷媒の過冷却度が増す。そして蓄熱熱交換器11から、第1の開閉弁14が閉止状態で第2の開閉弁15が開状態のため、液管P2側から室内ユニットC1、C2に流れ、室内絞り機構31a、32bで減圧され、室内熱交換器30a、30bにて蒸発し冷房運転を行い、ガス管P1に流入し、アキュームレータ7、圧縮機1に吸入される経路をたどる。
Next, during the cooling operation using heat storage, the refrigerant gas discharged from the compressor 1 is condensed in the outdoor heat exchanger 3 to be in a liquid state because the four-way valve 2 communicates with the outdoor heat exchanger 3 side. The degree of supercooling in the refrigerant liquid state at the outlet of the outdoor heat exchanger 3 can be detected as a difference between detection values of both the outdoor heat exchanger refrigerant temperature detection means 40 and the outdoor heat exchanger refrigerant outlet temperature detection means 41. .
Thereafter, the refrigerant passes from the supercooling heat exchanger 4 through the liquid pipe P2, and the third on-off valve 16 is closed, so that the refrigerant branches to the second throttle mechanism 12 side, passes through the second throttle mechanism 12, and stores heat. Heat is exchanged between the heat storage medium of the tank 10 and the heat storage heat exchanger 11 to increase the degree of supercooling of the refrigerant. And since the 1st on-off valve 14 is a closed state and the 2nd on-off valve 15 is in an open state from the heat storage heat exchanger 11, it flows into the indoor units C1 and C2 from the liquid pipe P2 side, and the indoor throttling mechanisms 31a and 32b The pressure is reduced and evaporated in the indoor heat exchangers 30a and 30b, cooling operation is performed, flows into the gas pipe P1, and follows the path taken into the accumulator 7 and the compressor 1.

また、図2はこの発明の実施の形態1における冷凍サイクルの状態をp−h線図上に示したものである。図2に沿って動作を説明する。
通常、蓄熱利用冷房運転時の熱源側熱交換器の出口冷媒状態は液状態である。これは、冷媒を充填する際に、蓄熱利用冷房時の冷媒不足を恐れ、室外側熱交換器3の過冷却度が少々付く程度に冷媒封入量を設定するからである。このとき図2の点線で示すように、圧縮機1より吐出された高温高圧ガス冷媒(図2内点A)が、室外側熱交換器3(凝縮器)において空気や水などの媒体と熱交換を行い(図2内点B)、さらに蓄熱槽内の熱交換器11にて蓄熱媒体(例えば氷やブラインなど)と熱交換を行い、冷媒を過冷却させて高圧液冷媒(図2内点C)になる。この高圧液冷媒を絞り装置4にて減圧することにより、低温低圧ガス冷媒(図2内点D)とし、利用側熱交換器5(蒸発器)に供給することにより、利用側空間の冷却を行う。利用側熱交換器5において熱交換を行った低圧ガス冷媒(図2内点E)は、圧縮機1に再び吸入・吐出される。
FIG. 2 shows the state of the refrigeration cycle in Embodiment 1 of the present invention on a ph diagram. The operation will be described with reference to FIG.
Normally, the outlet refrigerant state of the heat source side heat exchanger during the heat storage-based cooling operation is a liquid state. This is because when charging the refrigerant, the refrigerant filling amount is set so that the degree of supercooling of the outdoor heat exchanger 3 is slightly increased due to fear of insufficient refrigerant during cooling using the heat storage. At this time, as indicated by a dotted line in FIG. 2, the high-temperature and high-pressure gas refrigerant (point A in FIG. 2) discharged from the compressor 1 is heated with a medium such as air or water in the outdoor heat exchanger 3 (condenser). 2 is exchanged (point B in FIG. 2), and heat exchange is performed with a heat storage medium (for example, ice or brine) in the heat exchanger 11 in the heat storage tank, and the refrigerant is supercooled to cause high-pressure liquid refrigerant (in FIG. 2). Point C). This high-pressure liquid refrigerant is decompressed by the expansion device 4 to form a low-temperature low-pressure gas refrigerant (point D in FIG. 2) and supplied to the use-side heat exchanger 5 (evaporator), thereby cooling the use-side space. Do. The low-pressure gas refrigerant (point E in FIG. 2) that has exchanged heat in the use-side heat exchanger 5 is again sucked and discharged into the compressor 1.

次に、蓄熱利用冷房運転、主に昼間の消費電力量を低減する場合には、図2の実線で示すように、冷媒充填の際に、室外熱交換器3出口の冷媒の状態(図2内点B)を気液二相状態(たとえば乾き度0〜0.5)となるように冷媒充填量を設定する。すなわち室外熱交換器3出口の冷媒の状態が、前者の液状態の場合の冷媒充填量より少なく充填する。これにより、室外熱交換器3での熱交換量が減り、蓄熱槽10内の蓄熱熱交換器11での熱交換量が増える。これら凝縮熱伝達過程における熱交換効率が向上することにより、冷凍サイクル上での冷媒の凝縮温度が下がり、圧縮機1の吐出圧力は下がる方向となる。この結果、圧縮機1はエネルギ消費量の少ない高効率な運転を行い、蓄熱式空気調和装置としても蓄熱利用冷房運転におけるエネルギ消費効率の小さい運転を行うことが可能となる。   Next, in the case of cooling operation using heat storage, mainly reducing the amount of power consumed in the daytime, as shown by the solid line in FIG. 2, the state of the refrigerant at the outlet of the outdoor heat exchanger 3 (FIG. The refrigerant charging amount is set so that the inner point B) is in a gas-liquid two-phase state (for example, a dryness of 0 to 0.5). In other words, the refrigerant at the outlet of the outdoor heat exchanger 3 is charged less than the refrigerant charging amount in the former liquid state. Thereby, the heat exchange amount in the outdoor heat exchanger 3 decreases, and the heat exchange amount in the heat storage heat exchanger 11 in the heat storage tank 10 increases. By improving the heat exchange efficiency in these condensation heat transfer processes, the condensation temperature of the refrigerant on the refrigeration cycle decreases, and the discharge pressure of the compressor 1 decreases. As a result, the compressor 1 performs high-efficiency operation with low energy consumption, and the heat storage type air conditioner can perform operation with low energy consumption efficiency in the regenerative cooling operation.

さらに、図1の第2の絞り機構12は、絞ると圧力損失になるので容量可変のものを備え、なるべく全開、もしくは冷媒の流路抵抗が、ほぼ変わらない位まで開放することにより、無駄な圧力損失を抑えるのがよい。そうすれば、蓄熱利用冷房運転としてエネルギ消費効率の小さい運転を行うことが可能となる。   Further, the second throttle mechanism 12 in FIG. 1 has a variable capacity because pressure loss occurs when throttled, and is wasted by opening it as much as possible or opening the refrigerant flow resistance to almost the same level. It is good to suppress pressure loss. If it does so, it will become possible to perform the operation | movement with small energy consumption efficiency as heat storage utilization cooling operation.

また、図2に見られるように、蓄熱利用冷房運転時に室外熱交換器3の出口冷媒状態が液状態である運転の場合に比べて、室外熱交換器3出口の冷媒の状態が二相冷媒となる運転の場合では、蓄熱利用量としては多めとなる。よって、同じ蓄熱利用冷房運転時間とするばあいには、蓄冷量を多めにしておけばよい。
蓄冷量を多くしておけば、昼間の蓄熱利用冷房運転時のエネルギ消費量が少ない効率的な運転を行い、夜間移行率が高まり、安価な深夜電力を有効に活用でき経済的な運転が可能となる。
In addition, as shown in FIG. 2, the state of the refrigerant at the outlet of the outdoor heat exchanger 3 is a two-phase refrigerant as compared with the operation in which the outlet refrigerant state of the outdoor heat exchanger 3 is in the liquid state during the heat storage-based cooling operation. In the case of driving, the amount of heat storage usage is rather large. Therefore, when it is set as the same heat storage utilization cooling operation time, it is sufficient to increase the amount of cold storage.
If the amount of cold storage is increased, efficient operation with less energy consumption during cooling operation using heat storage during the daytime is performed, the night shift rate is increased, and inexpensive midnight power can be used effectively and economical operation is possible. It becomes.

図3は以上の運転を1日の移り変わりで示したものである。つまり、夜間電力時間帯に蓄冷運転を行い、昼間に蓄熱利用冷房を行う。そうすれば非蓄熱機器に対して消費電力を低減出来る。そして、蓄熱分を使いきったあとは深夜電力時間帯まで非蓄熱利用の圧縮機冷房運転をおこない、ふたたび蓄冷運転に至る。
図3(a)は蓄熱利用冷房運転時に室外熱交換器3の出口冷媒状態が液状態である運転であり、図3(b)は室外熱交換器3出口の冷媒の状態を気液二相冷媒となる運転である。後者の場合、夜間の蓄冷運転消費電力は大きくなるが、昼間の蓄熱利用冷房運転では消費電力を低減でき、非蓄熱機器との消費電力差、いわゆるピークシフト消費電力量が大きくできる。ここで、蓄熱利用冷房運転時に室外熱交換器3の出口冷媒状態が液状態である運転モード(図3(a))と、室外熱交換器3出口の冷媒の状態を二相冷媒となる運転モード(図3(b))を設定し、選択できるようにすると、前者の運転モードの場合、1日のエネルギー消費効率(日量蓄熱利用冷房効率)の高い運転ができ、炭酸ガスの排出量を減らし、地球環境にやさしい運転が実現できる。後者の運転モードの場合、昼間の蓄熱利用冷房運転時のエネルギ消費量が少ない効率的な運転を行い、夜間移行率が高まり、安価な深夜電力を有効に活用でき経済的な運転が可能となる。つまり、両者の運転モードが冷媒充填量を増減することによりニーズに合わせて選択することが可能となる。
FIG. 3 shows the above operation with a change of one day. That is, the cold storage operation is performed during the nighttime electric power hours, and the heat storage utilization cooling is performed in the daytime. If it does so, power consumption can be reduced with respect to a non-heat storage apparatus. After the heat storage is used up, the compressor cooling operation using non-heat storage is performed until the late-night power hours, and the cold storage operation is resumed.
FIG. 3A shows an operation in which the outlet refrigerant state of the outdoor heat exchanger 3 is in the liquid state during the cooling operation using the heat storage, and FIG. 3B shows the refrigerant state at the outlet of the outdoor heat exchanger 3 in the gas-liquid two-phase state. This is an operation that becomes a refrigerant. In the latter case, the power consumption during cold storage operation at night increases, but the power consumption can be reduced in the daytime heat storage cooling operation, and the difference in power consumption from the non-heat storage device, the so-called peak shift power consumption can be increased. Here, an operation mode (FIG. 3A) in which the outlet refrigerant state of the outdoor heat exchanger 3 is in a liquid state during cooling operation using heat storage and an operation in which the refrigerant state at the outlet of the outdoor heat exchanger 3 is a two-phase refrigerant. If the mode (Fig. 3 (b)) is set and can be selected, in the former operation mode, operation with high daily energy consumption efficiency (cooling efficiency using daily heat storage) can be performed, and carbon dioxide emissions And driving that is friendly to the global environment. In the case of the latter operation mode, efficient operation with less energy consumption during daytime heat storage cooling operation is performed, the night shift rate is increased, and inexpensive midnight power can be used effectively and economical operation is possible. . That is, the operation modes of both can be selected according to needs by increasing or decreasing the refrigerant charging amount.

実施の形態2.
図4はこの発明の実施の形態2における冷媒回路図を示すものである。図において、室外ユニットA、蓄熱ユニットB、各室内ユニットC1、C2は、ガス管P1、液管P2の冷媒配管で順次接続されている。
室外ユニットAは、圧縮機1、四方弁2、室外熱交換器3、過冷却熱交換器4、過冷却熱交換器4の出口から分岐し、第1の絞り機構5を経て、過冷却熱交換器4の他方側を流れ、圧縮機1の吸入側に接続されたアキュームレータ7の一次側に接続される第1のバイパス管6、からなる。
蓄熱ユニットBは以下の構成である。過冷却熱交換器4の出口から分岐したもう一方が液管P2と接続され、液管P2から分岐した冷媒配管は、第2の絞り機構12を経て、蓄熱媒体を有する蓄熱槽10の内部に設けられ蓄熱槽10内の蓄熱媒体との熱交換を行う蓄熱熱交換器11と接続される。また、第2の絞り機構12をバイパスし第4の開閉弁18を備えたバイパス回路P21が設けられている。更に、蓄熱熱交換器11の出口から分岐して第2の開閉弁15を介して液管P2に戻る回路と、蓄熱熱交換器11の出口から分岐するもう一方は、第1の開閉弁14を介してガス管P1に接続される。第2の絞り機構12への分岐点と、第2の開閉弁15からの合流点の間の液管P2上には、第3の開閉弁16、を備えている。
液管P2から分岐して複数台接続する各室内ユニットC1、C2は、室内絞り機構31a、31bと室内熱交換器30a、30bがそれぞれ接続され、ガス管P1に合流する。
Embodiment 2. FIG.
FIG. 4 is a refrigerant circuit diagram according to Embodiment 2 of the present invention. In the figure, the outdoor unit A, the heat storage unit B, and the indoor units C1 and C2 are sequentially connected by refrigerant pipes of a gas pipe P1 and a liquid pipe P2.
The outdoor unit A branches from the outlet of the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the supercooling heat exchanger 4, and the supercooling heat exchanger 4, and passes through the first throttle mechanism 5 to generate supercooling heat. It consists of a first bypass pipe 6 that flows through the other side of the exchanger 4 and is connected to the primary side of the accumulator 7 that is connected to the suction side of the compressor 1.
The heat storage unit B has the following configuration. The other branched from the outlet of the supercooling heat exchanger 4 is connected to the liquid pipe P2, and the refrigerant pipe branched from the liquid pipe P2 passes through the second throttle mechanism 12 and enters the heat storage tank 10 having the heat storage medium. It is provided and connected to a heat storage heat exchanger 11 that exchanges heat with the heat storage medium in the heat storage tank 10. Further, a bypass circuit P21 that bypasses the second throttle mechanism 12 and includes the fourth on-off valve 18 is provided. Further, a circuit branching from the outlet of the heat storage heat exchanger 11 and returning to the liquid pipe P2 via the second on-off valve 15 and the other branching from the outlet of the heat storage heat exchanger 11 are the first on-off valve 14. Is connected to the gas pipe P1. A third on-off valve 16 is provided on the liquid pipe P <b> 2 between the branch point to the second throttle mechanism 12 and the junction point from the second on-off valve 15.
The indoor units C1 and C2 branched from the liquid pipe P2 and connected to each other are connected to the indoor throttle mechanisms 31a and 31b and the indoor heat exchangers 30a and 30b, respectively, and merge with the gas pipe P1.

次に動作について説明する。夜間の蓄冷運転時には、実施の形態1と同じであるので説明は省略する。次に蓄熱利用冷房運転は、第3の開閉弁16と第2の絞り機構12が閉止状態で第4の開閉弁18を開にすると、蓄熱熱交換器11と接続されるバイパス回路P21を冷媒が通過する。これにより第2の絞り機構12を全開とするより、さらに冷媒の流路抵抗が減るため、無駄な圧力損失を抑え蓄熱利用冷房運転としてエネルギ消費効率の小さい運転を行うことが可能となる。   Next, the operation will be described. Since it is the same as Embodiment 1 at the time of the cold storage operation at night, description is abbreviate | omitted. Next, in the regenerative cooling operation, when the fourth open / close valve 18 is opened while the third on-off valve 16 and the second throttle mechanism 12 are closed, the bypass circuit P21 connected to the heat storage heat exchanger 11 is used as a refrigerant. Pass through. As a result, the flow path resistance of the refrigerant is further reduced than when the second throttling mechanism 12 is fully opened, so that useless pressure loss can be suppressed and an operation with low energy consumption efficiency can be performed as a heat storage cooling operation.

実施の形態1に記載した、冷媒量と蓄熱利用量、蓄冷量の関係と、運転モードの定義は同様に本実施の形態にも適用可能である。   The relationship between the refrigerant amount, the heat storage use amount, the cold storage amount, and the definition of the operation mode described in the first embodiment are also applicable to the present embodiment.

実施の形態3.
図5はこの発明の実施の形態3における冷媒回路図を示すものである。図において、室外ユニットA、蓄熱ユニットB、各室内ユニットC1、C2は、ガス管P1、液管P2の冷媒配管で順次接続されている。
室外ユニットAは、圧縮機1、四方弁2、室外熱交換器3、過冷却熱交換器4、過冷却熱交換器4の出口から分岐し、第1の絞り機構5を経て、過冷却熱交換器4の他方側を流れ、圧縮機1の吸入側に接続されたアキュームレータ7の一次側に接続される第1のバイパス管6、からなる。
蓄熱ユニットBは以下の構成である。過冷却熱交換器4の出口から分岐したもう一方が液管P2と接続され、液管P2から分岐した冷媒配管は、第2の絞り機構12を経て、蓄熱媒体を有する蓄熱槽10の内部に設けられ蓄熱槽10内の蓄熱媒体との熱交換を行う蓄熱熱交換器11と接続される。また、第2の絞り機構12をバイパスし液溜19と第4の開閉弁18を備えたバイパス回路P21が設けられている。更に、蓄熱熱交換器11の出口から分岐して第2の開閉弁15を介して液管P2に戻る回路と、蓄熱熱交換器11の出口から分岐するもう一方は、第1の開閉弁14を介してガス管P1に接続される。第2の絞り機構12への分岐点と、第2の開閉弁15からの合流点の間の液管P2上には、第3の開閉弁16、を備えている。
液管P2から分岐して複数台接続する各室内ユニットC1、C2は、室内絞り機構31a、31bと室内熱交換器30a、30bがそれぞれ接続され、ガス管P1に合流する。
Embodiment 3 FIG.
FIG. 5 shows a refrigerant circuit diagram according to Embodiment 3 of the present invention. In the figure, the outdoor unit A, the heat storage unit B, and the indoor units C1 and C2 are sequentially connected by refrigerant pipes of a gas pipe P1 and a liquid pipe P2.
The outdoor unit A branches from the outlet of the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the supercooling heat exchanger 4, and the supercooling heat exchanger 4, and passes through the first throttle mechanism 5 to generate supercooling heat. It consists of a first bypass pipe 6 that flows through the other side of the exchanger 4 and is connected to the primary side of the accumulator 7 that is connected to the suction side of the compressor 1.
The heat storage unit B has the following configuration. The other branched from the outlet of the supercooling heat exchanger 4 is connected to the liquid pipe P2, and the refrigerant pipe branched from the liquid pipe P2 passes through the second throttle mechanism 12 and enters the heat storage tank 10 having the heat storage medium. It is provided and connected to a heat storage heat exchanger 11 that exchanges heat with the heat storage medium in the heat storage tank 10. Further, a bypass circuit P21 that bypasses the second throttle mechanism 12 and includes a liquid reservoir 19 and a fourth on-off valve 18 is provided. Further, a circuit branching from the outlet of the heat storage heat exchanger 11 and returning to the liquid pipe P2 via the second on-off valve 15 and the other branching from the outlet of the heat storage heat exchanger 11 are the first on-off valve 14. Is connected to the gas pipe P1. A third on-off valve 16 is provided on the liquid pipe P <b> 2 between the branch point to the second throttle mechanism 12 and the junction point from the second on-off valve 15.
The indoor units C1 and C2 branched from the liquid pipe P2 and connected to each other are connected to the indoor throttle mechanisms 31a and 31b and the indoor heat exchangers 30a and 30b, respectively, and merge with the gas pipe P1.

次に動作について説明する。夜間の蓄冷運転時には、実施の形態1、2と同じであるので説明は省略する。次に蓄熱利用冷房運転時は、実施の形態1で定義した蓄熱利用冷房運転時に室外熱交換器3の出口冷媒状態が液状態である運転モードと、室外熱交換器3の出口冷媒状態が二相冷媒となる運転モードの2モードそれぞれで、冷媒の循環する経路が異なる。
まず、前者の運転モードでは、室外熱交換器3の出口冷媒に過冷却度が付くように冷媒充填量を設定する。この室外熱交換器3出口の冷媒液状態の過冷却度は、室外熱交換器冷媒温度検出手段40と室外熱交換器冷媒出口温度検出手段41の両者の検出値の差分として検知することができる。この状態で前者の運転モードでは、液管P2から分岐して第4の開閉弁18と第3の開閉弁16が閉止状態で第2の絞り機構12を全開とし、蓄熱熱交換器11と接続される回路を冷媒が通過する構成とする。
一方、後者の運転モードでは、冷媒充填方法は前者の運転モードを同じの状態で、第3の開閉弁16と第2の絞り機構12が閉止状態で第4の開閉弁18を開とし、液溜19、第4の開閉弁18と蓄熱熱交換器11と接続されるバイパス回路P21を冷媒が通過する構成とする。
Next, the operation will be described. Since it is the same as Embodiments 1 and 2 at the time of the cold storage operation at night, the description is omitted. Next, during the regenerative cooling operation, the operation mode in which the outlet refrigerant state of the outdoor heat exchanger 3 is in the liquid state during the regenerative cooling operation defined in Embodiment 1 and the outlet refrigerant state of the outdoor heat exchanger 3 are two. In each of the two modes of the operation mode to be a phase refrigerant, the refrigerant circulation path is different.
First, in the former operation mode, the refrigerant charging amount is set so that the degree of supercooling is given to the outlet refrigerant of the outdoor heat exchanger 3. The degree of supercooling in the refrigerant liquid state at the outlet of the outdoor heat exchanger 3 can be detected as a difference between detection values of both the outdoor heat exchanger refrigerant temperature detection means 40 and the outdoor heat exchanger refrigerant outlet temperature detection means 41. . In this state, in the former operation mode, the second on-off valve 18 and the third on-off valve 16 branch off from the liquid pipe P2, and the second throttling mechanism 12 is fully opened to connect to the heat storage heat exchanger 11. The circuit is configured to allow the refrigerant to pass through.
On the other hand, in the latter operation mode, the refrigerant charging method is the same as the former operation mode, the third on-off valve 16 and the second throttle mechanism 12 are closed, the fourth on-off valve 18 is opened, and the liquid is filled. The refrigerant passes through a bypass circuit P21 connected to the reservoir 19, the fourth on-off valve 18, and the heat storage heat exchanger 11.

前者の運転モードではバイパス回路P21の第4の開閉弁18が閉止状態であり、第2の絞り機構12側を冷媒が通過するので、液溜19には冷媒が溜まらず空の状態になる。一方、後者の運転モードになると、第2の絞り機構12が閉止状態で、第4の開閉弁18が開放状態のためバイパス回路P21に冷媒は流れ、液溜19に冷媒液が溜まってくる状態となる。ここで運転モードによらず冷媒量は同一なため、後者の運転モードでは液溜に溜まった冷媒量分、室外熱交換器3に存在する冷媒量が減ることに相当する。つまり液溜19の容量を決める際、室外熱交換器3出口冷媒状態を二相冷媒(湿り度0〜0.5)となるように設定しておけば、冷媒充填量を増減させなくても運転モードの設定が可能となり、実施の形態1で示した同様の効果が得られる。   In the former operation mode, the fourth on-off valve 18 of the bypass circuit P21 is in the closed state, and the refrigerant passes through the second throttle mechanism 12 side, so that the refrigerant does not accumulate in the liquid reservoir 19 and becomes empty. On the other hand, in the latter operation mode, the second throttle mechanism 12 is closed and the fourth on-off valve 18 is open, so that the refrigerant flows into the bypass circuit P21 and the refrigerant liquid is accumulated in the liquid reservoir 19. It becomes. Here, since the refrigerant amount is the same regardless of the operation mode, the latter operation mode corresponds to a reduction in the refrigerant amount existing in the outdoor heat exchanger 3 by the amount of refrigerant accumulated in the liquid reservoir. In other words, when the capacity of the liquid reservoir 19 is determined, if the refrigerant state at the outlet of the outdoor heat exchanger 3 is set to be a two-phase refrigerant (wetness 0 to 0.5), it is not necessary to increase or decrease the refrigerant charging amount. The operation mode can be set, and the same effect as shown in the first embodiment can be obtained.

図6は液溜19近傍の冷媒配管構成の模式図である。ここで液溜19は、液管P21の上方に配置している。
蓄熱利用冷房運転時において、図6(a)は室外熱交換器3の出口冷媒状態が液状態である運転モードの状態、図6(b)は室外熱交換器3の出口冷媒状態が二相冷媒となる運転モードの状態、を示す。運転モードが切り替わる場合を考える。前者の図6(a)から後者の図6(b)に切り替わる場合には、液溜19に冷媒が空の状態(図6(a))から、二層冷媒が流入し大部分が液で満たされる状態(図6(b))には容易に運転モードが切り替わる。逆の後者の図6(b)から前者の図6(a)に切り替わる場合には、後者の運転モードでは二相冷媒が流入し大部分が液で満たされる状態(図6(b))から、前者の運転モードに切り替わる際に、液溜19が液管の上方にあるので、残っていた液は液ヘッドにより液溜19の下方より抜けて液管P21に流出する。よって、前者の運転モード(図6(a))の状態に容易に切り替えることが可能となる。
なお、上記事例では構成部品として液溜を取り上げたが、冷媒を一時収容出来るもの、たとえば太径の配管、その他の部品であっても構わない。
FIG. 6 is a schematic view of the refrigerant piping configuration in the vicinity of the liquid reservoir 19. Here, the liquid reservoir 19 is disposed above the liquid pipe P21.
FIG. 6A shows a state of operation mode in which the outlet refrigerant state of the outdoor heat exchanger 3 is in a liquid state, and FIG. 6B shows a two-phase outlet refrigerant state of the outdoor heat exchanger 3 during the heat storage cooling operation. The state of the operation mode used as a refrigerant | coolant is shown. Consider the case where the operation mode is switched. When the former Fig. 6 (a) is switched to the latter Fig. 6 (b), the two-layer refrigerant flows into the liquid reservoir 19 from the empty state (Fig. 6 (a)) and most of the liquid is liquid. The operation mode is easily switched to the satisfied state (FIG. 6B). Conversely, when switching from the latter FIG. 6 (b) to the former FIG. 6 (a), in the latter operation mode, the two-phase refrigerant flows in and the most part is filled with liquid (FIG. 6 (b)). When switching to the former operation mode, since the liquid reservoir 19 is above the liquid pipe, the remaining liquid is discharged from below the liquid reservoir 19 by the liquid head and flows out to the liquid pipe P21. Therefore, it becomes possible to easily switch to the state of the former operation mode (FIG. 6A).
In addition, although the liquid reservoir was taken up as a component part in the said example, what can temporarily accommodate a refrigerant | coolant, for example, large diameter piping, and other parts, may be sufficient.

実施の形態4.
図5はこの発明の実施の形態4における冷媒回路図を示すものである。構成は実施の形態3と同様であるので省略する。次に動作について説明する。冷媒回路の冷媒充填量は蓄熱利用冷房運転時で決めるため、蓄冷運転時は冷媒が余り気味になり余剰冷媒は室外熱交換器3に溜まる。結果として過冷却度が増加し、液部分の無効伝熱面積が増えるため高圧が上昇し、蓄冷運転時のエネルギ消費量が増加するという問題がある。
ここで蓄冷運転の動作は、圧縮機1より吐出した冷媒ガスは、四方弁2が室外熱交換器3側に連通しているため室外熱交換器3にて凝縮し、過冷却熱交換器4からガス管P2に至るが、第3の開閉弁16は閉状態のため、第2の絞り機構12側に分岐し、第2の絞り機構12で減圧され、蓄熱槽10の蓄熱媒体と蓄熱熱交換器11にて熱交換され冷熱を蓄える。このとき蓄熱媒体は水などで顕熱分、潜熱分を利用して冷熱を蓄える。更に冷媒は、蓄熱熱交換器11から、第2の開閉弁15が閉止状態で第1の開閉弁14が開状態のためガス管P1側に流れ、アキュームレータ7、圧縮機1に吸入される経路をたどる。このとき室外熱交換器3出口の冷媒液状態の過冷却度を、室外熱交換器冷媒温度検出手段40と室外熱交換器冷媒出口温度検出手段41の両者の検出値の差分として検知して、この過冷却度が所定の値以上(たとえば5〜20℃)になったときに開閉弁18を開放し、過冷却度が所定の値以下(たとえば0〜5℃)になったのち閉止する。すると液溜19に液冷媒が溜まり室外熱交換器3の過冷却度が低下する。すなわち液部分の有効伝熱面積が増え高圧が低下し、蓄冷運転時のエネルギ消費量が低下することが可能となる。
ここで液溜19が液管P21の上方に配置している場合、液ヘッドにより液溜19に溜まっていた液が液管P21に流出してしまうので、室外熱交換器3出口の過冷却度に応じて上記動作を繰り返すことにより、液溜19に液冷媒を溜めるようにすると、蓄冷運転の間、エネルギ効率の高い運転が可能となる。
Embodiment 4 FIG.
FIG. 5 shows a refrigerant circuit diagram according to Embodiment 4 of the present invention. Since the configuration is the same as that of the third embodiment, a description thereof will be omitted. Next, the operation will be described. Since the refrigerant charge amount of the refrigerant circuit is determined at the time of the regenerative cooling operation, the refrigerant becomes too sloppy and the surplus refrigerant is accumulated in the outdoor heat exchanger 3 during the cold storage operation. As a result, there is a problem that the degree of supercooling increases, the reactive heat transfer area of the liquid portion increases, the high pressure rises, and the energy consumption during cold storage operation increases.
Here, in the cold storage operation, the refrigerant gas discharged from the compressor 1 condenses in the outdoor heat exchanger 3 because the four-way valve 2 communicates with the outdoor heat exchanger 3 side, and the supercooling heat exchanger 4 To the gas pipe P2, but since the third on-off valve 16 is in a closed state, it branches to the second throttle mechanism 12 and is depressurized by the second throttle mechanism 12, and the heat storage medium and heat storage heat in the heat storage tank 10 Heat is exchanged in the exchanger 11 to store cold energy. At this time, the heat storage medium uses water or the like to store cold heat using sensible heat and latent heat. Further, the refrigerant flows from the heat storage heat exchanger 11 to the gas pipe P1 side because the second on-off valve 15 is closed and the first on-off valve 14 is open, and is taken into the accumulator 7 and the compressor 1 Follow. At this time, the degree of supercooling in the refrigerant liquid state at the outlet of the outdoor heat exchanger 3 is detected as the difference between the detection values of both the outdoor heat exchanger refrigerant temperature detecting means 40 and the outdoor heat exchanger refrigerant outlet temperature detecting means 41, The on-off valve 18 is opened when the degree of supercooling is equal to or higher than a predetermined value (for example, 5 to 20 ° C.) and is closed after the degree of supercooling is equal to or lower than a predetermined value (for example, 0 to 5 ° C.). Then, liquid refrigerant accumulates in the liquid reservoir 19 and the degree of supercooling of the outdoor heat exchanger 3 decreases. That is, the effective heat transfer area of the liquid portion is increased, the high pressure is reduced, and the energy consumption during the cold storage operation can be reduced.
Here, when the liquid reservoir 19 is disposed above the liquid pipe P21, the liquid accumulated in the liquid reservoir 19 by the liquid head flows out to the liquid pipe P21, so that the degree of supercooling at the outlet of the outdoor heat exchanger 3 is increased. If the liquid refrigerant is stored in the liquid reservoir 19 by repeating the above operation according to the above, an energy-efficient operation is possible during the cold storage operation.

実施の形態5.
この発明の実施の形態5を図1について説明する。蓄熱利用冷房運転において、複数台接続する各室内ユニットC1、C2は、室内絞り機構31a、31bと室内熱交換器30a、30bとがそれぞれ接続され、ガス管P1に合流し、アキュームレータ7より圧縮機1に吸入される工程をたどる。通常の動作では、室内絞り機構31a、31bの開度は、室内熱交換器30a、30bの出口冷媒過熱度が所定の値たとえば0℃〜20℃になるように制御される。ここで、室内絞り機構31a、31bの開度を過熱度がつかないように一定開度開ける。すると室内熱交換器30a、30bの出口冷媒は気液二相状態となり、余剰液冷媒はアキュームレータ7に溜まるため室外熱交換器3の出口冷媒状態を二相状態にすることができる。すると実施の形態3と同様の効果が得られ冷媒充填量を調整することなくエネルギ効率の高い運転が可能となる。また図4、図5の冷媒回路でも効果は同様である。
Embodiment 5. FIG.
A fifth embodiment of the present invention will be described with reference to FIG. In the regenerative cooling operation, the indoor units C1 and C2 connected to each other are connected to the indoor throttling mechanisms 31a and 31b and the indoor heat exchangers 30a and 30b, respectively, and merge with the gas pipe P1, and the compressor from the accumulator 7 Follow the inhalation process to 1. In normal operation, the opening degree of the indoor throttle mechanisms 31a and 31b is controlled so that the degree of superheat of the outlet refrigerant of the indoor heat exchangers 30a and 30b becomes a predetermined value, for example, 0 ° C to 20 ° C. Here, the opening degree of the indoor throttle mechanisms 31a and 31b is opened by a certain degree so that the degree of superheat does not occur. Then, the outlet refrigerant of the indoor heat exchangers 30a and 30b is in a gas-liquid two-phase state, and excess liquid refrigerant is accumulated in the accumulator 7, so that the outlet refrigerant state of the outdoor heat exchanger 3 can be in a two-phase state. Then, an effect similar to that of the third embodiment is obtained, and an operation with high energy efficiency is possible without adjusting the refrigerant charging amount. The effects are the same in the refrigerant circuits of FIGS.

実施の形態6.
この発明の実施の形態6を図1について説明する。蓄熱利用冷房運転において第1の開閉弁14は通常閉止状態であるが、室外熱交換器3の過冷却度が所定の値以上(たとえば0〜10℃)になったときに開閉弁14を一定時間開放したのち閉止する。すると開閉弁14から流出した液冷媒はアキュームレータ7に溜まり室外熱交換器3の出口冷媒状態が二相状態にすることができる。すると実施の形態3と同様の効果が得られ冷媒充填量を調整することなくエネルギ効率の高い運転が可能となる。また図4、図5の冷媒回路でも効果は同様である。
Embodiment 6 FIG.
A sixth embodiment of the present invention will be described with reference to FIG. The first on-off valve 14 is normally closed in the regenerative cooling operation, but the on-off valve 14 is kept constant when the degree of supercooling of the outdoor heat exchanger 3 exceeds a predetermined value (for example, 0 to 10 ° C.). Close after opening for a while. Then, the liquid refrigerant that has flowed out of the on-off valve 14 is accumulated in the accumulator 7, and the outlet refrigerant state of the outdoor heat exchanger 3 can be brought into a two-phase state. Then, an effect similar to that of the third embodiment is obtained, and an operation with high energy efficiency is possible without adjusting the refrigerant charging amount. The effects are the same in the refrigerant circuits of FIGS.

この発明の実施の形態1、5、6における冷媒回路図である。It is a refrigerant circuit figure in Embodiment 1, 5, 6 of this invention. この発明の実施の形態1〜6における冷凍サイクルの状態を示すp−h線図である。It is a ph diagram which shows the state of the refrigerating cycle in Embodiments 1-6 of this invention. この発明の実施の形態1〜6における1日の消費電力推移を運転モードごとに示したものである。The power consumption transition of the day in Embodiment 1-6 of this invention is shown for every operation mode. この発明の実施の形態2、5、6における冷媒回路図である。It is a refrigerant circuit figure in Embodiment 2, 5, 6 of this invention. この発明の実施の形態3、4、5、6における冷媒回路図である。It is a refrigerant circuit figure in Embodiment 3, 4, 5, 6 of this invention. この発明の実施の形態3における冷媒回路図である。It is a refrigerant circuit figure in Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 圧縮機
2 四方弁
3 室外熱交換器
4 過冷却熱交換器
5 第1の絞り装置
6 第1のバイパス管
7 アキュームレータ
10 蓄熱槽
11 蓄熱槽内熱交換器
12 第2の絞り装置
14 第1の開閉弁
15 第2の開閉弁
16 第3の開閉弁
18 第4の開閉弁
19 液溜
30a、b 室内熱交換器
31a、b 室内側絞り装置
40 室外熱交換器冷媒温度検出手段
41 室外熱交換器冷媒出口温度検出手段
P1 ガス管
P2 液管
P21 バイパス管
A 室外ユニット
B 蓄熱槽ユニット
C1、C2 室内ユニット
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Supercooling heat exchanger 5 1st expansion device 6 1st bypass pipe 7 Accumulator 10 Heat storage tank 11 Heat storage tank 11 Heat exchanger 12 Second expansion device 14 1st On-off valve 15 Second on-off valve 16 Third on-off valve 18 Fourth on-off valve 19 Liquid reservoirs 30a, b Indoor heat exchanger 31a, b Indoor side expansion device 40 Outdoor heat exchanger refrigerant temperature detecting means 41 Outdoor heat Exchanger refrigerant outlet temperature detection means P1 Gas pipe P2 Liquid pipe P21 Bypass pipe A Outdoor unit B Heat storage tank unit C1, C2 Indoor unit

Claims (10)

圧縮機、熱源側熱交換器、蓄熱媒体を有する蓄熱槽内に設けられ該蓄熱槽内の蓄熱媒体との熱交換を行う熱交換器、絞り装置、利用側熱交換器を順次接続した冷媒回路を備え、蓄熱利用冷房運転時に前記蓄熱槽に蓄えた冷熱との熱交換により冷媒の過冷却を行う蓄熱式空気調和装置において、前記熱源側熱交換器の出口冷媒状態が気液二相状態になるように前記冷媒回路の封入冷媒量を調整したことを特徴とする蓄熱式空気調和装置。 A refrigerant circuit in which a compressor, a heat source side heat exchanger, a heat exchanger that is provided in a heat storage tank having a heat storage medium and performs heat exchange with the heat storage medium in the heat storage tank, an expansion device, and a use side heat exchanger are sequentially connected A heat storage type air conditioner that supercools the refrigerant by heat exchange with the cold stored in the heat storage tank during the heat storage cooling operation, wherein the outlet refrigerant state of the heat source side heat exchanger is in a gas-liquid two-phase state The regenerative air conditioner is characterized in that the amount of refrigerant enclosed in the refrigerant circuit is adjusted. 熱源側熱交換器と、蓄熱媒体を有する蓄熱槽内に設けられ該蓄熱槽内の蓄熱媒体との熱交換を行う熱交換器との間に第2の絞り装置を備え、蓄熱利用冷房運転時に前記第2の絞り装置の絞り機構を、全開、もしくは冷媒の流路抵抗がほぼ変わらない位まで開放して運転を行うことを特徴とする、第1項記載の蓄熱式空気調和装置。 A second expansion device is provided between the heat source side heat exchanger and the heat exchanger provided in the heat storage tank having the heat storage medium and performing heat exchange with the heat storage medium in the heat storage tank, and at the time of cooling operation using the heat storage The regenerative air conditioner according to claim 1, wherein the operation is performed with the throttle mechanism of the second throttle device fully opened or opened to a position where the refrigerant flow resistance does not substantially change. 熱源側熱交換器と、蓄熱媒体を有する蓄熱槽内に設けられ該蓄熱槽内の蓄熱媒体との熱交換を行う熱交換器との間に第2の絞り装置を備え、前記第2の絞り装置をバイパスするバイパス回路を設け、前記バイパス回路中に開閉弁を備えることを特徴とする、第1項または第2項に記載の蓄熱式空気調和装置。 A second expansion device is provided between the heat source side heat exchanger and a heat exchanger provided in a heat storage tank having a heat storage medium and performing heat exchange with the heat storage medium in the heat storage tank, and the second throttle The regenerative air conditioning apparatus according to claim 1 or 2, wherein a bypass circuit for bypassing the apparatus is provided, and an on-off valve is provided in the bypass circuit. 圧縮機、熱源側熱交換器、蓄熱媒体を有する蓄熱槽内に設けられ該蓄熱槽内の蓄熱媒体との熱交換を行う熱交換器、絞り装置、利用側熱交換器を順次接続した冷媒回路を備え、蓄熱利用冷房運転時に前記蓄熱槽に蓄えた冷熱との熱交換により冷媒の過冷却を行う蓄熱式空気調和装置において、前記絞り装置をバイパスするバイパス回路を設け、前記バイパス回路中に冷媒収容手段と開閉弁とを備えたことを特徴とする蓄熱式空気調和装置。 A refrigerant circuit in which a compressor, a heat source side heat exchanger, a heat exchanger that is provided in a heat storage tank having a heat storage medium and performs heat exchange with the heat storage medium in the heat storage tank, an expansion device, and a use side heat exchanger are sequentially connected A heat storage type air conditioner that performs supercooling of the refrigerant by heat exchange with the cold stored in the heat storage tank during the heat storage cooling operation, provided with a bypass circuit that bypasses the expansion device, and the refrigerant in the bypass circuit A heat storage type air conditioner comprising a housing means and an on-off valve. 冷媒収容手段は液管よりも上方にあることを特徴とする、第4項記載の蓄熱式空気調和装置。 The regenerative air conditioner according to claim 4, wherein the refrigerant containing means is located above the liquid pipe. 蓄冷運転時は、熱源側熱交換器の過冷却度に応じて開閉弁を開閉することを特徴とする、第4項または第5項記載の蓄熱式空気調和装置。 The regenerative air conditioner according to claim 4 or 5, wherein, during the cold storage operation, the on-off valve is opened and closed according to the degree of supercooling of the heat source side heat exchanger. 圧縮機、熱源側熱交換器、蓄熱媒体を有する蓄熱槽内に設けられ該蓄熱槽内の蓄熱媒体との熱交換を行う熱交換器、絞り装置、利用側熱交換器を順次接続した冷媒回路を備え、蓄熱利用冷房運転時に前記蓄熱槽に蓄えた冷熱との熱交換により冷媒の過冷却を行う蓄熱式空気調和装置において、前記利用側熱交換器と前記圧縮機の間にアキュムレータを備え、前記利用側熱交換器一次側の絞り装置に容量制御可能な絞り装置を設け、前記容量制御可能な絞り装置の容量を所定の値まで大きくする制御を行うことを特徴とする蓄熱式空気調和装置。 A refrigerant circuit in which a compressor, a heat source side heat exchanger, a heat exchanger that is provided in a heat storage tank having a heat storage medium and performs heat exchange with the heat storage medium in the heat storage tank, an expansion device, and a use side heat exchanger are sequentially connected In a regenerative air conditioner that performs supercooling of the refrigerant by heat exchange with the cold energy stored in the heat storage tank during the heat storage utilization cooling operation, an accumulator is provided between the use side heat exchanger and the compressor, A heat storage air conditioner characterized in that a capacity-controllable expansion device is provided in the use-side heat exchanger primary-side expansion device, and control is performed to increase the capacity of the capacity-controllable expansion device to a predetermined value. . 圧縮機、熱源側熱交換器、蓄熱媒体を有する蓄熱槽内に設けられ該蓄熱槽内の蓄熱媒体との熱交換を行う熱交換器、絞り装置、利用側熱交換器を順次接続した冷媒回路を備え、蓄熱利用冷房運転時に前記蓄熱槽に蓄えた冷熱との熱交換により冷媒の過冷却を行う蓄熱式空気調和装置において、前記利用側熱交換器と前記圧縮機の間にアキュムレータを備え、前記蓄熱媒体を有する蓄熱槽内に設けられ該蓄熱槽内の蓄熱媒体との熱交換を行う熱交換器と、前記アキュムレータとの間に第1の開閉弁を設け、前記第1の開閉弁を一定時間開放したのち閉止する制御を行うことを特徴とする蓄熱式空気調和装置。 A refrigerant circuit in which a compressor, a heat source side heat exchanger, a heat exchanger that is provided in a heat storage tank having a heat storage medium and performs heat exchange with the heat storage medium in the heat storage tank, an expansion device, and a use side heat exchanger are sequentially connected In a regenerative air conditioner that performs supercooling of the refrigerant by heat exchange with the cold energy stored in the heat storage tank during the heat storage utilization cooling operation, an accumulator is provided between the use side heat exchanger and the compressor, A first open / close valve is provided between the heat exchanger provided in the heat storage tank having the heat storage medium and performing heat exchange with the heat storage medium in the heat storage tank, and the accumulator. A regenerative air conditioner that performs control of opening after a certain time and then closing. 熱源側熱交換器の出口冷媒冷媒状態が液状態である運転モードと、前記熱源側熱交換器の出口冷媒状態が気液二相状態である運転モードとを備えたことを特徴とする、第1項から第8項記載の蓄熱式空気調和装置。 An operation mode in which the outlet refrigerant state of the heat source side heat exchanger is in a liquid state and an operation mode in which the outlet refrigerant state of the heat source side heat exchanger is in a gas-liquid two-phase state are provided. The regenerative air conditioner according to any one of Items 1 to 8. 熱源側熱交換器の出口冷媒状態が気液二相状態である運転モードの蓄熱量を、前記熱源側熱交換器の出口冷媒状態が液状態である運転モードの蓄熱量より、増やしたことを特徴とする第9項記載の蓄熱式空気調和装置。 The heat storage amount in the operation mode in which the outlet refrigerant state of the heat source side heat exchanger is in the gas-liquid two-phase state is increased from the heat storage amount in the operation mode in which the outlet refrigerant state of the heat source side heat exchanger is in the liquid state. The heat storage type air conditioner according to claim 9,
JP2004307998A 2004-10-22 2004-10-22 Heat storage type air conditioner Pending JP2006118810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004307998A JP2006118810A (en) 2004-10-22 2004-10-22 Heat storage type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004307998A JP2006118810A (en) 2004-10-22 2004-10-22 Heat storage type air conditioner

Publications (1)

Publication Number Publication Date
JP2006118810A true JP2006118810A (en) 2006-05-11

Family

ID=36536857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004307998A Pending JP2006118810A (en) 2004-10-22 2004-10-22 Heat storage type air conditioner

Country Status (1)

Country Link
JP (1) JP2006118810A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104279657A (en) * 2013-07-11 2015-01-14 东莞市微电环保科技有限公司 Ice storage air-conditioning system
CN104864624A (en) * 2015-05-11 2015-08-26 西安交通大学 Two-phase refrigeration and gas compression integrated cooling system for electronic equipment
CN108269774A (en) * 2018-01-18 2018-07-10 西安交通大学 A kind of Multifunctional carbon dioxide system and its operating method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104279657A (en) * 2013-07-11 2015-01-14 东莞市微电环保科技有限公司 Ice storage air-conditioning system
CN104279657B (en) * 2013-07-11 2017-05-17 东莞市微电环保科技有限公司 Ice storage air-conditioning system
CN104864624A (en) * 2015-05-11 2015-08-26 西安交通大学 Two-phase refrigeration and gas compression integrated cooling system for electronic equipment
CN108269774A (en) * 2018-01-18 2018-07-10 西安交通大学 A kind of Multifunctional carbon dioxide system and its operating method
CN108269774B (en) * 2018-01-18 2019-05-24 西安交通大学 A kind of Multifunctional carbon dioxide system and its operating method

Similar Documents

Publication Publication Date Title
JP5327308B2 (en) Hot water supply air conditioning system
CN112665220B (en) Air source heat pump system based on refrigerant supercooling heat recovery efficiency improvement and control method
US5381671A (en) Air conditioning apparatus with improved ice storage therein
JP2007010288A (en) Cooling and heating capacity enhancement method of existing heat pump type air conditioner, thermal storage unit device and heat pump type air conditioner using the device
JP5842310B2 (en) Refrigeration apparatus and defrost method for load cooler
CN107178924A (en) A kind of accumulation of heat is not shut down except defrosting system and air-conditioning
CN104673191A (en) Tetrabutylammonium bromide aqueous solution
JP2013083439A (en) Hot water supply air conditioning system
JP2003279079A (en) Ice thermal accumulating system and heating method of ice thermal accumulating system
JP2006242506A (en) Thermal storage type air conditioner
JP2002061992A (en) Air conditioner
JP2014016057A (en) Air conditioner
JP2003185287A (en) Manufacturing system for supercooled water and hot water
JP2006118810A (en) Heat storage type air conditioner
JP3499171B2 (en) Thermal storage cooling system
JP4909663B2 (en) Air conditioner
JP4996974B2 (en) Refrigeration apparatus, air conditioner and control method thereof
JP2757660B2 (en) Thermal storage type air conditioner
JP3896705B2 (en) Refrigeration cycle and refrigeration cycle control method
JPH06147677A (en) Air conditioner
CN218523697U (en) Air conditioning system
JPH05133635A (en) Cold accumulation type air conditioning apparatus
JPH1130450A (en) Air conditioner
JP2001033076A (en) Heat storage air conditioner
JP6119804B2 (en) Defrosting method of load cooler