JP2006117493A - Joined structure of ceramic member and metallic member - Google Patents

Joined structure of ceramic member and metallic member Download PDF

Info

Publication number
JP2006117493A
JP2006117493A JP2004309305A JP2004309305A JP2006117493A JP 2006117493 A JP2006117493 A JP 2006117493A JP 2004309305 A JP2004309305 A JP 2004309305A JP 2004309305 A JP2004309305 A JP 2004309305A JP 2006117493 A JP2006117493 A JP 2006117493A
Authority
JP
Japan
Prior art keywords
ceramic member
ceramic
metal member
metal
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004309305A
Other languages
Japanese (ja)
Other versions
JP4671659B2 (en
Inventor
Atsushi Sasagawa
敦司 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004309305A priority Critical patent/JP4671659B2/en
Publication of JP2006117493A publication Critical patent/JP2006117493A/en
Application granted granted Critical
Publication of JP4671659B2 publication Critical patent/JP4671659B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a good joined body of a ceramic member and a metallic member where a porous ceramic member functions as a porous body and where cracks are not caused at the joined part of the ceramic member and the metallic member. <P>SOLUTION: In the joined structure of the ceramic member 1 and the metallic member 2, an annular spot facing part 2a is formed on the inner peripheral surface of at least one side of the cylindrical metallic member 2 and an annular grooved part 2b communicating to the annular spot facing part 2a along the outer periphery at one end surface of the ceramic member 1 is formed on the inner surface of the metallic member 2. One side of the cylindrical ceramic member 1 is inserted in the annular spot facing part 2a and the outer peripheral surface of the ceramic member 1 and the inner surface of the metallic member 2 are brazed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、セラミック部材と金属部材との接合構造に関し、特にセラミック部材が多孔質セラミックスから成る場合の接合構造に関するものである。   The present invention relates to a joint structure between a ceramic member and a metal member, and more particularly to a joint structure when the ceramic member is made of porous ceramics.

多孔質セラミックは、優れた耐熱性を有し、またその化学的安定性故に、有機膜の適用できない工程への膜、例えば、分離膜やフィルターとしての利用が期待されている。これらは、セラミック部材単独で使用されることは少なく、ほとんどは取付金具等の金属部材との接合体として用いられるため、金属部材との接合が必要となる。このような接合技術としては、圧入、焼き嵌め、ロウ付け等の接合方法が用いられているが、気密性に優れた接合を必要とする場合、ロウ付けによる接合方法が多用されてきた。   Porous ceramics have excellent heat resistance, and because of their chemical stability, they are expected to be used as membranes, for example, separation membranes and filters, in processes where organic membranes cannot be applied. These are rarely used alone as a ceramic member, and most of them are used as a joined body with a metal member such as a mounting bracket. Therefore, it is necessary to join the metal member. As such a joining technique, a joining method such as press fitting, shrink fitting, brazing, or the like is used. However, when joining with excellent airtightness is required, a joining method by brazing has been frequently used.

セラミック部材のロウ付けによる接合方法としては、活性金属ロウ付け法とメタライズロウ付け法とが主に用いられており、特に活性金属ロウ付け法はメタライズロウ付け法に比べ、煩雑な前処理工程を必要としないため、注目されている。   The active metal brazing method and the metallized brazing method are mainly used as the joining method by brazing of the ceramic member. In particular, the active metal brazing method is more complicated than the metallized brazing method. Because it is not necessary, it is attracting attention.

活性金属ロウ付け法は、チタン(Ti)、ジルコニウム(Zr)等の活性金属を含むロウ材を介在させてロウ材が溶融する温度に加熱することによって、活性金属がセラミックスと反応し、強固な反応層を形成する。その結果、セラミック部材と金属部材とをロウ材を介して強固に結合した接合体が得られる。   In the active metal brazing method, a brazing material containing an active metal such as titanium (Ti) or zirconium (Zr) is interposed and heated to a temperature at which the brazing material melts, so that the active metal reacts with the ceramic and becomes strong. A reaction layer is formed. As a result, a joined body is obtained in which the ceramic member and the metal member are firmly bonded via the brazing material.

しかしながら、気孔率の大きな多孔質セラミックスでは、無孔質セラミックスに比べ機械的強度が小さいため、無孔質セラミックスと同様の接合構造では、ロウ付け時に割れが発生することが多く、良好な接合体を得ることが難しいという問題点があった。   However, porous ceramics with high porosity have lower mechanical strength than non-porous ceramics, so cracks often occur during brazing with joint structures similar to non-porous ceramics. There was a problem that it was difficult to get.

そこで、多孔質のセラミック部材としてその細孔部がセラミックスによって充填されたものを使用することが提案されている(例えば、下記の特許文献1参照)。これにより、セラミック部材の金属部材との接合部に割れなどを発生させないものを提供することが可能となる。
特開2001−220252号公報
Therefore, it has been proposed to use a porous ceramic member whose pores are filled with ceramics (see, for example, Patent Document 1 below). As a result, it is possible to provide a ceramic member that does not cause cracks or the like at the joint portion between the ceramic member and the metal member.
JP 2001-220252 A

しかしながら、多孔質のセラミック部材としてその細孔部がセラミックスによって充填されたものを用いると、細孔部が埋まって多孔体としての機能がなくなってしまい、セラミック部材の細孔部を介して液体や気体を透過させることが不可能となってしまう。そのため、セラミック部材を液体や気体を透過させる用途で用いる場合においては、この接合構造を採用することは不可能であった。   However, if a porous ceramic member whose pores are filled with ceramics is used, the pores are buried and the function as a porous body is lost, and liquid or liquid is lost via the pores of the ceramic member. It becomes impossible to transmit gas. Therefore, in the case where the ceramic member is used for the purpose of allowing liquid or gas to permeate, it is impossible to employ this joining structure.

また、セラミック部材の金属部材との接合部のみにおいて細孔部をセラミックスで充填させることが考えられるが、セラミック部材の一部分だけをセラミックスで充填させるのは極めて困難であった。   In addition, it is conceivable to fill the pores with ceramics only at the joint between the ceramic member and the metal member, but it is extremely difficult to fill only a portion of the ceramic member with ceramics.

従って、本発明は上記問題点に鑑み完成されたものであり、その目的は、多孔質のセラミック部材を多孔体として機能させるとともに、セラミック部材の金属部材との接合部に割れなどを発生させないセラミック部材と金属部材との良好な接合体を提供することにある。   Accordingly, the present invention has been completed in view of the above-described problems, and an object of the present invention is to make a porous ceramic member function as a porous body and to prevent cracks and the like from being generated at the joint portion between the ceramic member and the metal member. The object is to provide a good joined body of a member and a metal member.

本発明のセラミック部材と金属部材との接合構造は、筒状を成す金属部材の少なくとも一端側内周面に環状の座繰部を形成するとともに、該座繰部に筒状を成すセラミック部材の一端部を挿入し、前記セラミック部材の外周面と前記金属部材の内周面とをロウ付けしてなるセラミック部材と金属部材との接合構造であって、前記金属部材の内面に、前記セラミック部材の一端面の外周に沿って前記座繰部に連通する環状の溝部を形成したことを特徴とする。   The joining structure of the ceramic member and the metal member according to the present invention is such that an annular countersunk portion is formed on at least one inner peripheral surface of the cylindrical metal member, and the cylindrical member is formed on the countersunk portion. A ceramic member and metal member joining structure in which one end is inserted and the outer peripheral surface of the ceramic member and the inner peripheral surface of the metal member are brazed, and the ceramic member is formed on the inner surface of the metal member. An annular groove portion that communicates with the counterbore portion is formed along the outer periphery of the one end face of the head.

また、本発明のセラミック部材と金属部材との接合構造は、上記構成において好ましくは、前記セラミック部材の一端面が、前記溝部の内方で前記金属部材に当接されていることを特徴とする。   In the above structure, the ceramic member and metal member joining structure according to the present invention is preferably such that one end surface of the ceramic member is in contact with the metal member inside the groove. .

本発明のセラミック部材と金属部材の接合構造は、筒状を成す金属部材の少なくとも一端側内周面に環状の座繰部を形成するとともに、座繰部に筒状を成すセラミック部材の一端部を挿入し、セラミック部材の外周面と金属部材の内周面とをロウ付けしてなるセラミック部材と金属部材との接合構造であって、金属部材の内面に、セラミック部材の外周にそって座繰部に連通する環状の溝部を形成したことにより、金属部材の外周面と座繰部内周面との間は薄肉となり、さらに溝部によりセラミック部材と金属部材との接合部が金属部材の肉厚部より軸方向において隔てられるので、多孔質のセラミック部材にセラミック部材と肉厚の金属部材との熱膨張差による応力が大きく作用し難くなるとともに、溝部が形成されていることによってセラミック部材と金属部材とを接合するロウ材がセラミック部材の端面外周の角部に溜まることがないので、セラミック部材の金属部材との接合部に割れなどを発生させないセラミック部材と金属部材との良好な接合体を提供することが可能になる。   In the joining structure of the ceramic member and the metal member according to the present invention, an annular countersunk portion is formed on the inner peripheral surface of at least one end of the cylindrical metal member, and one end of the cylindrical ceramic member is formed on the countersunk portion. The ceramic member and the metal member are joined to each other by brazing the outer peripheral surface of the ceramic member and the inner peripheral surface of the metal member, and are seated along the outer periphery of the ceramic member on the inner surface of the metal member. By forming the annular groove portion communicating with the feeding portion, the space between the outer peripheral surface of the metal member and the inner circumferential surface of the seat feeding portion becomes thin, and the joint portion between the ceramic member and the metal member is further thickened by the groove portion. As a result, the stress due to the difference in thermal expansion between the ceramic member and the thick metal member hardly acts on the porous ceramic member, and the groove is formed. Since the brazing material that joins the Mick member and the metal member does not collect at the corners on the outer periphery of the end surface of the ceramic member, the ceramic member and the metal member that do not generate cracks at the joint portion of the ceramic member with the metal member are good. Can be provided.

また、本発明のセラミック部材と金属部材との接合構造は、上記構成において好ましくは、セラミック部材の一端面が、溝部の内方で金属部材に当接されていることから、金属部材とセラミック部材との接合部の長さを正確かつ容易に管理することができる。   In the above structure, the ceramic member and the metal member according to the present invention preferably have a structure in which one end surface of the ceramic member is in contact with the metal member inside the groove. It is possible to accurately and easily manage the length of the joint portion.

次に、本発明のセラミック部材と金属部材との接合構造を添付図面に基づき詳細に説明する。
図1は本発明のセラミック部材と金属部材との接合構造の実施の形態の一例を示す断面図、図2は本発明のセラミック部材と金属部材との接合構造の実施の形態の他の例を示す断面図であり、1は多孔質のセラミックスから成る筒状を成すセラミック部材、2は少なくとも一端側内周面に環状の座繰部2aが形成された筒状を成す金属部材、3はメタライズ層である。
Next, the joining structure between the ceramic member and the metal member of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a sectional view showing an example of an embodiment of a bonding structure between a ceramic member and a metal member of the present invention, and FIG. 2 is another example of an embodiment of a bonding structure between a ceramic member and a metal member of the present invention. 1 is a ceramic member having a cylindrical shape made of porous ceramics, 2 is a metal member having a cylindrical shape in which an annular counter-sink portion 2a is formed on at least one inner circumferential surface, and 3 is a metallization. Is a layer.

そして、本発明のセラミック部材と金属部材との接合構造は、セラミック部材1の一端部を金属部材2の座繰部2aに挿入し、セラミック部材1の外周面と金属部材2の内周面とをロウ付けしてなるものであり、セラミック部材1の外周にそって座繰部2aに連通する環状の溝部2bが形成されているものである。   And the joining structure of the ceramic member and metal member of this invention inserts the one end part of the ceramic member 1 in the countersink part 2a of the metal member 2, and the outer peripheral surface of the ceramic member 1, the inner peripheral surface of the metal member 2, and And an annular groove portion 2b communicating with the countersink portion 2a along the outer periphery of the ceramic member 1 is formed.

具体的に、図1はセラミック部材1の両端に金属部材2が活性金属製分を含有するロウ材層3を介してロウ付けされており、金属部材2の接合部には座繰部2aが設けられ、さらにこのセラミック部材1の端面の外周部が座繰部2aに対向する座繰部2aの部分に沿って溝部2bが形成されているものである。   Specifically, in FIG. 1, a metal member 2 is brazed to both ends of a ceramic member 1 via a brazing material layer 3 containing an active metal component. Further, a groove portion 2b is formed along the portion of the countersink portion 2a where the outer peripheral portion of the end surface of the ceramic member 1 faces the countersink portion 2a.

図2は、図1の金属部材2を分割した構造になっており、セラミック部材1の端面と接する筒状の金属部材2の内周側端面に突出部2dを形成するとともに、金属部材2の外周面を延長するように筒状の支持部材2cがロウ付けや溶接等によって金属部材2に接合されたものである。図2の構造においても支持部材2cと突出部2dとの間に溝部2bが形成される。   2 has a structure in which the metal member 2 of FIG. 1 is divided, and a protrusion 2d is formed on the inner peripheral side end surface of the cylindrical metal member 2 in contact with the end surface of the ceramic member 1, and the metal member 2 of FIG. A cylindrical support member 2c is joined to the metal member 2 by brazing or welding so as to extend the outer peripheral surface. In the structure of FIG. 2 as well, a groove 2b is formed between the support member 2c and the protrusion 2d.

セラミック部材1は、アルミナ(Al)質セラミックス、ムライト(3Al・2SiO)質セラミックス、窒化アルミニウム(AlN)質セラミックス、コージェライト(2MgO・2Al・5SiO)質セラミックス、ジルコニア(Zr)質セラミックス等のセラミックスの多孔質のものから成る筒状体または管状体である。なお、筒の形状は、円筒状、多角形の筒状等、用途に応じて適宜選択可能である。 The ceramic member 1 is made of alumina (Al 2 O 3 ) ceramics, mullite (3Al 2 O 3 .2SiO 2 ) ceramics, aluminum nitride (AlN) ceramics, cordierite (2MgO · 2Al 2 O 3 · 5SiO 2 ). It is a cylindrical body or a tubular body made of a porous ceramic such as ceramics or zirconia (Zr) ceramics. In addition, the shape of the cylinder can be appropriately selected according to the application, such as a cylindrical shape or a polygonal cylindrical shape.

多孔質セラミック部材1の平均細孔径は、約0.1μm〜100μm程度、また気孔率が約20〜60%程度のものが用いられる。このセラミック部材1は金型を用いて粉末プレス成形し、しかる後焼成することによって所定の形状、寸法に形成される。なお、気孔率とは、セラミック部材1の全体積に対するセラミック部材1中に含まれる気孔の体積の比率のことである。   The porous ceramic member 1 has an average pore diameter of about 0.1 to 100 μm and a porosity of about 20 to 60%. The ceramic member 1 is formed into a predetermined shape and size by powder press molding using a mold and then firing. The porosity is the ratio of the volume of the pores contained in the ceramic member 1 to the entire volume of the ceramic member 1.

金属部材2は、セラミック部材1を外部装置等へ取り付けるために必要なものである。この金属部材2は、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金,Fe−Ni合金,ステンレス鋼(SUS)等の金属から成る筒状体または管状体である。接合されるセラミック部材1と熱膨張係数の近いものが好ましく、Fe−Ni−Co合金、Fe−Ni合金などが好適に用いられる。   The metal member 2 is necessary for attaching the ceramic member 1 to an external device or the like. The metal member 2 is a cylindrical body or a tubular body made of a metal such as iron (Fe) -nickel (Ni) -cobalt (Co) alloy, Fe-Ni alloy, stainless steel (SUS). Those having a thermal expansion coefficient close to that of the ceramic member 1 to be joined are preferable, and an Fe—Ni—Co alloy, an Fe—Ni alloy, or the like is preferably used.

金属部材2は、例えば、Fe−Ni−Co合金等から成るインゴット(塊)に圧延加工法や打ち抜き加工法等の従来周知の金属加工法を施すことによって所定の形状、寸法に形成される。なお、筒の形状は、セラミック部材1と同様に円筒状、多角形の筒状等、用途に応じ適宜選択可能である。   The metal member 2 is formed in a predetermined shape and size by, for example, applying a conventionally known metal processing method such as a rolling method or a punching method to an ingot (lumb) made of, for example, an Fe—Ni—Co alloy. In addition, the shape of the cylinder can be appropriately selected according to the use, such as a cylindrical shape or a polygonal cylindrical shape, like the ceramic member 1.

そして、セラミック部材1との接合部には、セラミック部材1の端部が嵌るように座繰部2aを設ける。座繰部2aを設けることで、筒状のセラミック部材1と筒状の金属部材2とが同軸になるように周方向の位置決めができる。さらに、座繰部2aをセラミック部材1の端面と当接させると、セラミック部材1の挿入長の位置決めができる。また、金属部材2に座繰部2aを設けることによって、金属部材2の接合部はセラミック部材1の外周面の外側に配置されることになるので、セラミック部材1と金属部材2とをロウ付けした後に、セラミック部材1に加わる金属部材2との熱膨張差による応力は、圧縮応力となって作用するようになる。セラミック部材1は圧縮応力には強いことから、セラミック部材1にクラック等の破損が生じ難くなる。   Then, at the joint portion with the ceramic member 1, a countersink portion 2 a is provided so that the end portion of the ceramic member 1 is fitted. By providing the countersunk portion 2a, circumferential positioning can be performed so that the cylindrical ceramic member 1 and the cylindrical metal member 2 are coaxial. Furthermore, when the countersink part 2a is brought into contact with the end surface of the ceramic member 1, the insertion length of the ceramic member 1 can be positioned. Moreover, since the joint part of the metal member 2 is arrange | positioned on the outer side of the outer peripheral surface of the ceramic member 1 by providing the countersunk part 2a in the metal member 2, the ceramic member 1 and the metal member 2 are brazed. After that, the stress due to the difference in thermal expansion from the metal member 2 applied to the ceramic member 1 acts as a compressive stress. Since the ceramic member 1 is resistant to compressive stress, the ceramic member 1 is unlikely to be damaged such as cracks.

また、金属部材2の座繰部2aによって、セラミック部材1の外周面に接合される金属部材2の部位の肉厚が薄くなり、セラミック部材1に加わる熱膨張差による応力を低減できるという効果もある。   In addition, the countersunk portion 2 a of the metal member 2 reduces the thickness of the portion of the metal member 2 joined to the outer peripheral surface of the ceramic member 1, thereby reducing the stress due to the difference in thermal expansion applied to the ceramic member 1. is there.

セラミック部材1の端面内周側に座繰部を設けるということも考えられるが、この場合、金属部材2の外側にセラミック部材1が配置される構造となるので、セラミック部材1に加わるロウ付け後の熱膨張差による応力が引っ張り応力となってセラミック部材1の周方向に加わり、セラミック部材1にクラック等の破損が生じやすくなるとともに、座繰部2aが形成された金属部材2に比べ、金属部材2の肉厚が大きくなる分、セラミック部材1に作用する金属部材2との熱膨張差による応力が大きくなるという不都合があるため不適である。   Although it is conceivable that the countersunk portion is provided on the inner peripheral side of the end face of the ceramic member 1, in this case, the ceramic member 1 is arranged outside the metal member 2, and therefore, after brazing applied to the ceramic member 1. The stress due to the difference in thermal expansion is applied as a tensile stress in the circumferential direction of the ceramic member 1, and the ceramic member 1 is likely to be damaged such as cracks. Since the thickness of the member 2 increases, the stress due to the difference in thermal expansion from the metal member 2 acting on the ceramic member 1 increases, which is not suitable.

金属部材2の座繰部2aを設けても、多孔質のセラミック部材1の気孔率によっては、セラミック部材1が破損する場合が考えられる。しかしながら、本発明においては座繰部2aの底面のセラミック部材1の端面が対向する面に、セラミック部材1の端面の外周に沿って座繰部2aに連接した溝部2bが形成され、この溝部2bによって、セラミック部材1の外周を支持する肉厚の薄い座繰部2aの周囲(図2においては支持部材2c)が軸方向に長くなることになる。座繰部2aの周囲が軸方向に長くなることで、セラミック部材1の接合部と金属部材2の肉厚の厚い部分との距離が大きくなり、セラミック部材1に加わる金属部材2との熱膨張差による応力を緩和できるとともに、金属部材2との熱膨張差による応力が大きく発生したとしても、溝部2bの外周側に位置する肉厚の薄い座繰部2aの周囲が応力緩和の緩衝材として機能し、セラミック部材1に加わる金属部材2との熱膨張差による応力を大幅に緩和することが可能となる。   Even if the countersunk portion 2 a of the metal member 2 is provided, the ceramic member 1 may be damaged depending on the porosity of the porous ceramic member 1. However, in the present invention, a groove portion 2b connected to the countersink portion 2a is formed along the outer periphery of the end surface of the ceramic member 1 on the surface of the bottom surface of the countersink portion 2a facing the end surface of the ceramic member 1, and this groove portion 2b. As a result, the periphery (the support member 2c in FIG. 2) of the thin countersunk portion 2a that supports the outer periphery of the ceramic member 1 becomes longer in the axial direction. The distance between the joint portion of the ceramic member 1 and the thick portion of the metal member 2 is increased because the periphery of the countersunk portion 2a is elongated in the axial direction, and thermal expansion between the metal member 2 and the ceramic member 1 is increased. The stress due to the difference can be alleviated, and even if a large stress due to the difference in thermal expansion with the metal member 2 is generated, the periphery of the thin countersunk portion 2a located on the outer peripheral side of the groove 2b serves as a buffer for stress relaxation. It functions, and it becomes possible to relieve | moderate the stress by the thermal expansion difference with the metal member 2 added to the ceramic member 1 significantly.

さらに、溝部2bの内方で金属部材2の突出部2dに当接されていると、セラミック部材1の軸方向の挿入長の位置決めが容易となり、金属部材2とセラミック部材1との接合部の長さを正確に管理することができるので好ましい。   Furthermore, if the protrusion 2d of the metal member 2 is in contact with the inside of the groove 2b, the axial insertion length of the ceramic member 1 can be easily positioned, and the joining portion between the metal member 2 and the ceramic member 1 can be easily positioned. This is preferable because the length can be accurately controlled.

また、セラミック部材1と金属部材2との接合の際に余ったロウ材は溝部2bに流れることとなり、セラミック部材1と金属部材2とを接合するロウ材がセラミック部材1の端面外周の角部に溜まることはない。従って、セラミック部材1にロウ材との熱膨張差による応力が作用することがなくなり、ロウ材溜まりによるセラミック部材1の破損を確実に防止できる。   Further, the surplus brazing material when the ceramic member 1 and the metal member 2 are joined flows into the groove portion 2 b, and the brazing material joining the ceramic member 1 and the metal member 2 is a corner portion on the outer periphery of the end face of the ceramic member 1. Don't get stuck in. Therefore, stress due to a difference in thermal expansion from the brazing material does not act on the ceramic member 1, and damage to the ceramic member 1 due to brazing material accumulation can be reliably prevented.

また、金属部材2の径が小さく、座繰部2aの底面に溝部2bを施す加工が困難である場合、図2に示すように、金属部材2は、セラミック部材1の端面に当接する一端面の内周側に突出部2dを形成するとともに、金属部材2の外周面を延長するように筒状の支持部材2cがロウ付けや溶接等によって金属部材2の一端面の外周部に接合され、支持部材2cによって座繰部2aを形成するとともに、支持部材2cと突出部2dとの間に溝部2bを形成する。   Moreover, when the diameter of the metal member 2 is small and it is difficult to process the groove portion 2b on the bottom surface of the countersink portion 2a, the metal member 2 has one end surface that contacts the end surface of the ceramic member 1, as shown in FIG. The cylindrical support member 2c is joined to the outer peripheral portion of one end surface of the metal member 2 by brazing, welding or the like so as to extend the outer peripheral surface of the metal member 2 while forming the protruding portion 2d on the inner peripheral side of The countersink portion 2a is formed by the support member 2c, and the groove portion 2b is formed between the support member 2c and the protruding portion 2d.

ロウ材層3は活性金属ロウから成り、これら両部材間の接合は、活性金属ロウ付け法によって行われる。この接合に用いられる活性金属ロウ材としては、銀(Ag)−銅(Cu)共晶組成中にTiやZrを添加したペースト状、板状のものなどが用いられる。ロウ材中に含まれる活性金属成分の割合は、通常約1〜10重量%のものが用いられる。   The brazing material layer 3 is made of active metal brazing, and the joining between these two members is performed by an active metal brazing method. As the active metal brazing material used for this joining, a paste or plate-like material in which Ti or Zr is added to a silver (Ag) -copper (Cu) eutectic composition is used. The ratio of the active metal component contained in the brazing material is usually about 1 to 10% by weight.

このようなロウ材層3をセラミック部材1の金属部材2との接合部に形成して、約800℃〜900℃の温度でロウ付けが行われる。各部材の熱膨張係数が異なるためロウ付けにより、各部材に応力が生じる。特にセラミック部材1に生じる応力はその値がセラミック部材1の強度を超えると、セラミック部材1の破壊につながるので、接合される金属部材2はセラミック部材1より熱膨張係数の値の大きなものとするのがよい。これにより、セラミック部材1は引っ張り強度よりも圧縮強度の方が強いので、筒状の金属部材2とセラミック部材1をロウ付けした際、セラミック部材1に圧縮応力が生じるように、セラミック部材1の外周に金属部材2の内周が接する構造となる。   Such a brazing material layer 3 is formed at the joint between the ceramic member 1 and the metal member 2, and brazing is performed at a temperature of about 800 ° C to 900 ° C. Since each member has a different coefficient of thermal expansion, stress is generated in each member by brazing. In particular, when the stress generated in the ceramic member 1 exceeds the strength of the ceramic member 1, the ceramic member 1 is destroyed. Therefore, the metal member 2 to be joined has a larger coefficient of thermal expansion than the ceramic member 1. It is good. Thereby, since the compressive strength of the ceramic member 1 is stronger than the tensile strength, when the cylindrical metal member 2 and the ceramic member 1 are brazed, a compressive stress is generated in the ceramic member 1. The inner periphery of the metal member 2 is in contact with the outer periphery.

以上により、多孔質のセラミックス部材を多孔体として機能させつつ、セラミック部材の金属部材との接合部に割れなどが発生しにくいセラミック部材1と金属部材2との良好な接合体を提供することができる。   As described above, it is possible to provide a good joined body of the ceramic member 1 and the metal member 2 in which the porous ceramic member functions as a porous body and the ceramic member 1 and the metal member 2 are less likely to crack. it can.

なお、本発明は上記の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更が可能である。例えば、上記の実施の形態においては、ロウ材層3は活性金属ロウから成る場合について説明したが、セラミック部材1の接合部にタングステン(W),モリブデン(Mo),マンガン(Mn)等のメタライズ層を形成し、このメタライズ層と金属部材2とをAgロウやAg−Cuロウ等のロウ材を用いて接合する所謂メタライズロウ付け法によってもよい。   It should be noted that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. For example, in the above embodiment, the case where the brazing material layer 3 is made of active metal brazing has been described. However, metallization of tungsten (W), molybdenum (Mo), manganese (Mn), or the like is made at the joint portion of the ceramic member 1. A so-called metallized brazing method may be used in which a layer is formed and the metallized layer and the metal member 2 are joined using a brazing material such as Ag brazing or Ag-Cu brazing.

また、セラミック部材1の筒の外径が小さくなるようにセラミック部材1の端面外周側を切り欠いて、金属部材2の座繰部2aに挿入して接合してもよい。この場合、金属部材2の外周面とセラミック部材1の外周面とを同じ外径にすることもできる。   Further, the outer peripheral side of the end surface of the ceramic member 1 may be cut out so as to reduce the outer diameter of the cylinder of the ceramic member 1, and may be inserted and joined to the countersunk portion 2 a of the metal member 2. In this case, the outer peripheral surface of the metal member 2 and the outer peripheral surface of the ceramic member 1 can have the same outer diameter.

本発明のセラミック部材と金属部材との接合構造の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the joining structure of the ceramic member and metal member of this invention. 本発明のセラミック部材と金属部材との接合構造の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the joining structure of the ceramic member and metal member of this invention.

符号の説明Explanation of symbols

1:セラミック部材
2:金属部材
2a:座繰部
2b:溝部
3:ロウ材層
1: Ceramic member 2: Metal member 2a: Countersink part 2b: Groove part 3: Brazing material layer

Claims (2)

筒状を成す金属部材の少なくとも一端側内周面に環状の座繰部を形成するとともに、該座繰部に筒状を成すセラミック部材の一端部を挿入し、前記セラミック部材の外周面と前記金属部材の内面とをロウ付けしてなるセラミック部材と金属部材との接合構造であって、
前記金属部材の内面に、前記セラミック部材の一端面の外周に沿って前記座繰部に連通する環状の溝部を形成したことを特徴とするセラミック部材と金属部材との接合構造。
An annular countersunk portion is formed on the inner peripheral surface of at least one end of the cylindrical metal member, and one end of the cylindrical ceramic member is inserted into the countersunk portion, and the outer peripheral surface of the ceramic member and the A joining structure of a ceramic member and a metal member formed by brazing the inner surface of the metal member,
A joining structure between a ceramic member and a metal member, wherein an annular groove portion communicating with the counter-sink portion is formed on an inner surface of the metal member along an outer periphery of one end surface of the ceramic member.
前記セラミック部材の一端面が、前記溝部の内方で前記金属部材に当接されていることを特徴とする請求項1に記載のセラミック部材と金属部材との接合構造。 The joining structure of a ceramic member and a metal member according to claim 1, wherein one end surface of the ceramic member is in contact with the metal member inside the groove.
JP2004309305A 2004-10-25 2004-10-25 Bonding structure of ceramic member and metal member Expired - Fee Related JP4671659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309305A JP4671659B2 (en) 2004-10-25 2004-10-25 Bonding structure of ceramic member and metal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309305A JP4671659B2 (en) 2004-10-25 2004-10-25 Bonding structure of ceramic member and metal member

Publications (2)

Publication Number Publication Date
JP2006117493A true JP2006117493A (en) 2006-05-11
JP4671659B2 JP4671659B2 (en) 2011-04-20

Family

ID=36535745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309305A Expired - Fee Related JP4671659B2 (en) 2004-10-25 2004-10-25 Bonding structure of ceramic member and metal member

Country Status (1)

Country Link
JP (1) JP4671659B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082267A (en) * 1983-10-06 1985-05-10 Nissan Motor Co Ltd Joint structure between ceramic shaft and metallic shaft
JPS62132140U (en) * 1986-02-14 1987-08-20
JPH07172948A (en) * 1993-12-14 1995-07-11 Ngk Spark Plug Co Ltd Adhesion of metallic material to ceramic material
JP2000123863A (en) * 1998-10-14 2000-04-28 Ngk Insulators Ltd Stainless steel cap for thermal pressure joining
JP2001093628A (en) * 1999-09-27 2001-04-06 Kyocera Corp Ceramic coaxial terminal
JP2001220254A (en) * 2000-02-14 2001-08-14 Ngk Spark Plug Co Ltd Metal-ceramic bonded material
JP2002164109A (en) * 2000-11-28 2002-06-07 Sumitomo Wiring Syst Ltd Connector
JP2002254166A (en) * 2001-02-28 2002-09-10 Kyocera Corp Brazing structure
JP2003133403A (en) * 2001-10-29 2003-05-09 Kyocera Corp Wafer holder
JP2003277158A (en) * 2002-03-27 2003-10-02 Petroleum Energy Center Joining structure of ceramic material
JP2004149827A (en) * 2002-10-29 2004-05-27 Kyocera Corp Peephole of vacuum vessel, and vacuum vessel

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082267A (en) * 1983-10-06 1985-05-10 Nissan Motor Co Ltd Joint structure between ceramic shaft and metallic shaft
JPS62132140U (en) * 1986-02-14 1987-08-20
JPH07172948A (en) * 1993-12-14 1995-07-11 Ngk Spark Plug Co Ltd Adhesion of metallic material to ceramic material
JP2000123863A (en) * 1998-10-14 2000-04-28 Ngk Insulators Ltd Stainless steel cap for thermal pressure joining
JP2001093628A (en) * 1999-09-27 2001-04-06 Kyocera Corp Ceramic coaxial terminal
JP2001220254A (en) * 2000-02-14 2001-08-14 Ngk Spark Plug Co Ltd Metal-ceramic bonded material
JP2002164109A (en) * 2000-11-28 2002-06-07 Sumitomo Wiring Syst Ltd Connector
JP2002254166A (en) * 2001-02-28 2002-09-10 Kyocera Corp Brazing structure
JP2003133403A (en) * 2001-10-29 2003-05-09 Kyocera Corp Wafer holder
JP2003277158A (en) * 2002-03-27 2003-10-02 Petroleum Energy Center Joining structure of ceramic material
JP2004149827A (en) * 2002-10-29 2004-05-27 Kyocera Corp Peephole of vacuum vessel, and vacuum vessel

Also Published As

Publication number Publication date
JP4671659B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP3967278B2 (en) Joining member and electrostatic chuck
JP5008875B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
JP4008401B2 (en) Manufacturing method of substrate mounting table
TWI689038B (en) Brazed joint and semiconductor processing chamber component having the same
KR102396988B1 (en) Metal-ceramic substrate and method of manufacturing metal-ceramic substrate
JP4005268B2 (en) Bonding structure of ceramics and metal and intermediate insert used for this
US7843137B2 (en) Luminous vessels
US20060222878A1 (en) Composite bodies
JP2008024561A (en) Ceramic-metal joined component and its producing method
JP5331490B2 (en) Junction structure and semiconductor manufacturing apparatus
JP4671659B2 (en) Bonding structure of ceramic member and metal member
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
JP4735061B2 (en) Brazing method for metal porous body and brazing structure
JPS6081071A (en) Metal sheet material for ceramic bonding
JP2007295540A (en) Ultrasonic device, manufacturing method thereof and bonding method
JP7014651B2 (en) Ceramic substrate structure and its manufacturing method
JPH08206875A (en) Joined body
JP2003245792A (en) Connection structure
JP6108734B2 (en) Electronic component element storage package
JP2006165181A (en) Structure for mounting feeding terminal of ceramic base with metal members embedded therein
JP4468338B2 (en) Manufacturing method of ceramic circuit board
JP4071647B2 (en) Ceramic joined body and method for producing ceramic joined body
JP2003100421A (en) Ceramic heater
JP3388617B2 (en) Thyristor container manufacturing method
JP2009054967A (en) Package for electronic component storage, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Ref document number: 4671659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees