JP2006116438A - Dehydrogenation catalyst of ethylbenzene in coexistence of carbon dioxide and method for producing styrene by using the catalyst - Google Patents

Dehydrogenation catalyst of ethylbenzene in coexistence of carbon dioxide and method for producing styrene by using the catalyst Download PDF

Info

Publication number
JP2006116438A
JP2006116438A JP2004307368A JP2004307368A JP2006116438A JP 2006116438 A JP2006116438 A JP 2006116438A JP 2004307368 A JP2004307368 A JP 2004307368A JP 2004307368 A JP2004307368 A JP 2004307368A JP 2006116438 A JP2006116438 A JP 2006116438A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
ethylbenzene
weight
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004307368A
Other languages
Japanese (ja)
Other versions
JP4696295B2 (en
Inventor
Isao Takahara
功 高原
Masahiro Saito
昌弘 斉藤
Kazuhisa Murata
和久 村田
Hitoshi Inaba
仁 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004307368A priority Critical patent/JP4696295B2/en
Publication of JP2006116438A publication Critical patent/JP2006116438A/en
Application granted granted Critical
Publication of JP4696295B2 publication Critical patent/JP4696295B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst having the performance higher than conventional one when a styrene monomer is produced by dehydrogenating ethylbenzen in the coexistence of carbon dioxide by using the catalyst. <P>SOLUTION: This dehydrogenation catalyst of ethylbenzene in the coexistence of carbon dioxide is obtained by incorporating potassium in a catalyst precursor based on iron oxide and aluminum oxide. The potassium content is preferably 1-15 wt.% when the total weight of the catalyst is 100 wt.%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エチルベンゼンを二酸化炭素共存下で脱水素反応させることによりスチレンモノマーを製造するために使用する触媒およびこの触媒を用いたスチレンの製造方法に関するものである。   The present invention relates to a catalyst used for producing a styrene monomer by dehydrogenating ethylbenzene in the presence of carbon dioxide and a method for producing styrene using this catalyst.

従来、スチレンモノマーを工業的に製造するには、エチルベンゼンを、大量の水蒸気共存下に、酸化鉄とカリウムを主成分とする触媒上に600℃程度の温度で接触させる方法が採用されている(非特許文献1)。   Conventionally, in order to industrially produce a styrene monomer, a method in which ethylbenzene is brought into contact with a catalyst mainly composed of iron oxide and potassium in the presence of a large amount of water vapor at a temperature of about 600 ° C. is employed ( Non-patent document 1).

しかしながら、この方法は、(i)大量の水蒸気を共存させるために、エネルギー消費量が大きいこと、(ii)スチレンモノマーの単通収率を高くするために、反応を減圧下で行う必要があること、(iii)反応中に触媒中のカリウムの揮散がおこることなど、改善すべき点も指摘されている。   However, in this method, (i) a large amount of water vapor coexists, the energy consumption is large, and (ii) the reaction must be performed under reduced pressure in order to increase the single yield of styrene monomer. In addition, it is pointed out that (iii) volatilization of potassium in the catalyst occurs during the reaction.

これらの問題点を解決するために、本発明者らは、先に水蒸気の代わりに、二酸化炭素を共存ガスに用いることにより、(イ)従来のプロセスよりエネルギー消費量が低くなる、(ロ)スチレンモノマーの単通収率が高くなる可能性を報告している(非特許文献2)。   In order to solve these problems, the present inventors previously used carbon dioxide as a coexisting gas instead of water vapor, so that (b) energy consumption is lower than that of conventional processes. It has been reported that the single yield of styrene monomer may increase (Non-patent Document 2).

しかしながら、この二酸化炭素を用いる新しい方法においても、優れた触媒が必要とされており、本発明者らは、既に、酸化鉄、酸化カルシウムおよび酸化アルミニウムからなる触媒(特許文献1)、酸化鉄、酸化アルミニウムおよび酸化セリウムを必須成分とする触媒(特許文献2)および酸化鉄、酸化アルミニウムおよび酸化イットリウムを必須成分とする触媒(特許文献3)を開発した。   However, even in this new method using carbon dioxide, an excellent catalyst is required, and the present inventors have already proposed a catalyst comprising iron oxide, calcium oxide and aluminum oxide (Patent Document 1), iron oxide, A catalyst having aluminum oxide and cerium oxide as essential components (Patent Document 2) and a catalyst having iron oxide, aluminum oxide and yttrium oxide as essential components have been developed (Patent Document 3).

触媒、38巻、7号、572〜579(1996)Catalyst, Vol.38, No.7, 572-579 (1996) Catalysis Today, 55(2000)173-178Catalysis Today, 55 (2000) 173-178 特許第3032816号公報Japanese Patent No. 3032816 特開2003−117394号公報JP 2003-117394 A 特開2004−50111号公報JP 2004-50111 A

本発明は、かかる特許発明を更に発展・飛躍させたものであり、エチルベンゼンを二酸化炭素共存下で脱水素反応させることによりスチレンモノマーを製造する方法において、更に高性能な触媒を提供することを目的とする。   The present invention is a further development and leap of the patented invention, and an object of the present invention is to provide a catalyst having higher performance in a method for producing a styrene monomer by dehydrogenating ethylbenzene in the presence of carbon dioxide. And

本発明者は、酸化鉄および酸化アルミニウムを主成分とする触媒の性能に及ぼす種々の添加物の影響を検討した結果、意外にもカリウムを添加することにより、触媒の活性を向上できることを見い出した。   As a result of examining the influence of various additives on the performance of a catalyst mainly composed of iron oxide and aluminum oxide, the present inventor has unexpectedly found that the activity of the catalyst can be improved by adding potassium. .

即ち、本発明によれば、第一に、酸化鉄および酸化アルミニウムを主成分とし更にカリウムを含有することを特徴とする二酸化炭素共存下でのエチルベンゼン脱水素反応用触媒が提供される。
第二に、酸化鉄および酸化アルミニウムを主成分とする触媒全体を100重量%とするとき、含有されるカリウムが1〜15重量%であることを特徴とする上記第一に記載のエチルベンゼンベンゼン脱水素反応用触媒が提供される。
第三に、エチルベンゼンを二酸化炭素共存下で脱水素反応させることによりスチレンを製造する方法において、触媒として上記第一又は第二に記載の触媒を用いることを特徴とするスチレンの製造方法が提供される。
That is, according to the present invention, firstly, there is provided a catalyst for dehydrogenation of ethylbenzene in the coexistence of carbon dioxide, characterized by containing iron oxide and aluminum oxide as main components and further containing potassium.
Second, the ethylbenzenebenzene dehydration according to the first aspect, wherein the content of potassium is 1 to 15% by weight when the total amount of the catalyst mainly composed of iron oxide and aluminum oxide is 100% by weight. A catalyst for elementary reactions is provided.
Third, in a method for producing styrene by dehydrogenating ethylbenzene in the presence of carbon dioxide, a method for producing styrene is provided, wherein the catalyst described in the first or second is used as a catalyst. The

本発明の触媒は、酸化鉄および酸化アルミニウムを主成分とし、更にカリウムを含有することから、二酸化炭素共存下でのエチルベンゼン脱水素反応を著しく高めることができる。従って、エチルベンゼンからスチレンモノマーを工業的有利に製造することができる。   Since the catalyst of the present invention contains iron oxide and aluminum oxide as main components and further contains potassium, the ethylbenzene dehydrogenation reaction in the presence of carbon dioxide can be remarkably enhanced. Therefore, a styrene monomer can be produced industrially advantageously from ethylbenzene.

本発明の触媒は、酸化鉄および酸化アルミニウムを主成分とする触媒に、更にカリウムが含有されていることを特徴とする。   The catalyst of the present invention is characterized in that potassium is further contained in a catalyst mainly composed of iron oxide and aluminum oxide.

補助成分として含有させたカリウムの作用の内容は現時点では完全には明らかになっているわけではないが、カリウムが塩基性を示すことにより、反応中の触媒表面に二酸化炭素を吸着し、脱水素反応により生成する水素と二酸化炭素との反応を促進するものと推察している。   The details of the action of potassium contained as an auxiliary component are not completely clarified at the present time. However, when potassium is basic, carbon dioxide is adsorbed on the surface of the catalyst during the reaction, and dehydrogenation occurs. It is assumed that the reaction between hydrogen produced by the reaction and carbon dioxide is promoted.

カリウムの添加量は、特に限定されないが、酸化鉄および酸化アルミニウムを主成分とする触媒全体を100重量%とするとき、1〜15重量%とされる。このような量的範囲において、組成を反応条件に応じて適切に定めることにより、その反応条件に適した触媒性能を得ることができる。   The amount of potassium added is not particularly limited, but is 1 to 15% by weight when the total amount of the catalyst mainly composed of iron oxide and aluminum oxide is 100% by weight. In such a quantitative range, by appropriately determining the composition according to the reaction conditions, catalyst performance suitable for the reaction conditions can be obtained.

添加するカリウムの原料としては、水酸化物、炭酸塩、炭酸水素塩、硝酸塩、有機酸塩等を用いることができる。触媒へのカリウムの添加は、含浸法などの公知の方法により行なうことができる。カリウムを含有する触媒前駆体を調製し、次いで、触媒前駆体を空気中で焼成することによりカリウム添加触媒が製造できる。触媒前駆体の焼成温度は、特に限定しないが、300〜1000℃の範囲が好ましく、400〜800℃が特に好ましい。   As the raw material of potassium to be added, hydroxides, carbonates, hydrogen carbonates, nitrates, organic acid salts and the like can be used. The addition of potassium to the catalyst can be performed by a known method such as an impregnation method. A potassium-added catalyst can be produced by preparing a catalyst precursor containing potassium and then calcining the catalyst precursor in air. Although the calcination temperature of a catalyst precursor is not specifically limited, The range of 300-1000 degreeC is preferable and 400-800 degreeC is especially preferable.

このようにして製造されたカリウム添加触媒は、そのままで、あるいは適当な方法により造粒または打錠成型して用いる。触媒の粒子径や形状は、反応方式、反応器の形状によって任意に選択できる。すなわち、本発明による触媒は、固定床、流動床等いずれの反応方式においても用いることができる。   The potassium addition catalyst thus produced is used as it is or after being granulated or tableted by an appropriate method. The particle diameter and shape of the catalyst can be arbitrarily selected depending on the reaction system and the shape of the reactor. That is, the catalyst according to the present invention can be used in any reaction system such as a fixed bed and a fluidized bed.

また、本発明の触媒は、主成分として酸化鉄および酸化アルミニウムを補助成分としてカリウムが含有するものであるが、他の添加成分として発明者らが、既に開発した酸化カルシウム、酸化セリウム、酸化イットリウムを含むことができる。また、本発明の反応を損なわない範囲で、他の物質を含有させてもよい。このような物質としては、たとえば、酸化マグネシウム、酸化マンガン、酸化珪素、酸化ランタンなどが挙げられる。   Further, the catalyst of the present invention contains iron oxide and aluminum oxide as main components and potassium as auxiliary components. However, as other additive components, the inventors have already developed calcium oxide, cerium oxide, yttrium oxide. Can be included. Moreover, you may contain another substance in the range which does not impair the reaction of this invention. Examples of such substances include magnesium oxide, manganese oxide, silicon oxide, lanthanum oxide, and the like.

本発明によるカリウム添加触媒を用いて、エチルベンゼンの脱水素反応によりスチレンを製造する際の反応条件は、特許第3032816号公報あるいは特開2003−117394号公報に記載された反応条件と同様であるが、二酸化炭素のエチルベンゼンに対する割合は、エチルベンゼン1モルあたり、0.1〜100モル、好ましくは1〜50モル、反応温度は500〜650℃の範囲、好ましくは、530〜630℃、反応圧力は、加圧、常圧、減圧のいずれでも良く、好ましくは0.2〜1.5気圧(絶対圧力)である。また、本発明の触媒は、一定時間使用後に活性が低下した場合には、空気中で再度焼成することによりその性能を回復させることができる。   The reaction conditions for producing styrene by dehydrogenation of ethylbenzene using the potassium addition catalyst according to the present invention are the same as those described in Japanese Patent No. 3032816 or Japanese Patent Application Laid-Open No. 2003-117394. The ratio of carbon dioxide to ethylbenzene is 0.1 to 100 mol, preferably 1 to 50 mol, and the reaction temperature is in the range of 500 to 650 ° C, preferably 530 to 630 ° C, and the reaction pressure is 1 mol of ethylbenzene. Any of pressurization, normal pressure, and reduced pressure may be used, and preferably 0.2 to 1.5 atmospheres (absolute pressure). Further, when the activity of the catalyst of the present invention decreases after use for a certain period of time, its performance can be recovered by firing again in air.

以下、実施例をあげて本発明の特徴とするところをより一層明確にする。   Hereinafter, the features of the present invention will be further clarified by giving examples.

実施例1
硝酸鉄九水和物8.0g、硝酸アルミニウム九水和物105.1gを蒸留水に溶解し、300mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム52.5gを蒸留水に溶解し、300mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した800mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、750℃で2時間焼成した。この焼成後の酸化物の組成は、酸化鉄10重量%、酸化アルミニウム90重量%であった。次に、焼成後の酸化物2.5gに、0.845重量%の水酸化カリウム水溶液15.6gを添加し、110℃で乾燥し、250〜600μmに粒度調製して、触媒とした。この触媒の組成は、酸化鉄9.5重量%、酸化アルミニウム85.5重量%、水酸化カリウム5重量%であった。
Example 1
Iron nitrate nonahydrate (8.0 g) and aluminum nitrate nonahydrate (105.1 g) were dissolved in distilled water to prepare a 300 ml aqueous solution. On the other hand, 52.5 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 800 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 750 ° C. for 2 hours. The composition of the oxide after firing was 10% by weight of iron oxide and 90% by weight of aluminum oxide. Next, 15.6 g of 0.845% by weight potassium hydroxide aqueous solution was added to 2.5 g of the calcined oxide, dried at 110 ° C., and the particle size was adjusted to 250 to 600 μm to prepare a catalyst. The composition of this catalyst was 9.5% by weight of iron oxide, 85.5% by weight of aluminum oxide, and 5% by weight of potassium hydroxide.

得られた触媒2gを反応管に充填し、二酸化炭素中で反応温度に昇温した後、20容量%のエチルベンゼン蒸気および80容量%の二酸化炭素からなる混合ガスを触媒層に通して、圧力0.1MPa、混合ガス流量28ml/分、温度580℃の条件下に上記混合ガスを反応させた。反応生成ガスを−1℃で冷却して得られた液体成分をガスクロマトグラフで分析した。その結果、反応経過時間5時間後において、スチレン収率62%、スチレン選択率94%であった(表1参照)。   2 g of the catalyst thus obtained was charged into a reaction tube and heated to the reaction temperature in carbon dioxide, and then a mixed gas composed of 20% by volume of ethylbenzene vapor and 80% by volume of carbon dioxide was passed through the catalyst layer so that the pressure was 0. The mixed gas was reacted under the conditions of 1 MPa, a mixed gas flow rate of 28 ml / min, and a temperature of 580 ° C. The liquid component obtained by cooling the reaction product gas at -1 ° C was analyzed by gas chromatography. As a result, after 5 hours of reaction elapsed time, the styrene yield was 62% and the styrene selectivity was 94% (see Table 1).

実施例2
硝酸鉄九水和物3.9g、硝酸アルミニウム九水和物108.9gを蒸留水に溶解し、300mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム52.5gを蒸留水に溶解し、300mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した800mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、750℃で2時間焼成した。この焼成後の酸化物の組成は、酸化鉄5重量%、酸化アルミニウム95重量%であった。次に、焼成後の酸化物2.5gに、0.845重量%の水酸化カリウム水溶液15.6gを添加し、110℃で乾燥し、250〜600μmに粒度調製して、触媒とした。この触媒の組成は、酸化鉄4.8重量%、酸化アルミニウム90.2重量%、水酸化カリウム5重量%であった。
Example 2
Iron nitrate nonahydrate (3.9 g) and aluminum nitrate nonahydrate (108.9 g) were dissolved in distilled water to prepare a 300 ml aqueous solution. On the other hand, 52.5 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 800 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 750 ° C. for 2 hours. The composition of the oxide after firing was 5% by weight of iron oxide and 95% by weight of aluminum oxide. Next, 15.6 g of 0.845% by weight potassium hydroxide aqueous solution was added to 2.5 g of the calcined oxide, dried at 110 ° C., and the particle size was adjusted to 250 to 600 μm to prepare a catalyst. The composition of this catalyst was 4.8% by weight of iron oxide, 90.2% by weight of aluminum oxide, and 5% by weight of potassium hydroxide.

得られた触媒2gを反応管に充填し、実施例1と同様にエチルベンゼンの脱水素反応を行った。その結果、反応経過時間5時間後において、スチレン収率51%、スチレン選択率94%であった(表1参照)。   2 g of the obtained catalyst was filled in a reaction tube, and ethylbenzene was dehydrogenated in the same manner as in Example 1. As a result, after 5 hours of reaction elapsed time, the styrene yield was 51% and the styrene selectivity was 94% (see Table 1).

実施例3
実施例2で調製した焼成後の酸化物2.5gに、0.845重量%の水酸化カリウム水溶液32.9gを添加し、110℃で乾燥し、250〜600μmに粒度調製して、触媒とした。この触媒の組成は、酸化鉄4.5重量%、酸化アルミニウム85.5重量%、水酸化カリウム10重量%であった。
Example 3
To 2.5 g of the calcined oxide prepared in Example 2, 32.9 g of 0.845 wt% potassium hydroxide aqueous solution was added, dried at 110 ° C., and the particle size was adjusted to 250 to 600 μm. did. The composition of this catalyst was 4.5% by weight of iron oxide, 85.5% by weight of aluminum oxide, and 10% by weight of potassium hydroxide.

得られた触媒2gを反応管に充填し、実施例1と同様にエチルベンゼンの脱水素反応を行った。その結果、反応経過時間5時間後において、スチレン収率66%、スチレン選択率94%であった(表1参照)。   2 g of the obtained catalyst was filled in a reaction tube, and ethylbenzene was dehydrogenated in the same manner as in Example 1. As a result, after 5 hours of reaction elapsed time, the styrene yield was 66% and the styrene selectivity was 94% (see Table 1).

実施例4
硝酸鉄九水和物2.3g、硝酸アルミニウム九水和物110.4gを蒸留水に溶解し、300mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム52.5gを蒸留水に溶解し、300mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した800mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、750℃で2時間焼成した。この焼成後の酸化物の組成は、酸化鉄3重量%、酸化アルミニウム97重量%であった。次に、焼成後の酸化物2.5gに、0.845重量%の水酸化カリウム水溶液15.6gを添加し、110℃で乾燥し、250〜600μmに粒度調製して、触媒とした。この触媒の組成は、酸化鉄2.9重量%、酸化アルミニウム92.1重量%、水酸化カリウム5重量%であった。
Example 4
Iron nitrate nonahydrate 2.3 g and aluminum nitrate nonahydrate 110.4 g were dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution A. On the other hand, 52.5 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 800 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 750 ° C. for 2 hours. The composition of the oxide after firing was 3% by weight of iron oxide and 97% by weight of aluminum oxide. Next, 15.6 g of 0.845% by weight potassium hydroxide aqueous solution was added to 2.5 g of the calcined oxide, dried at 110 ° C., and the particle size was adjusted to 250 to 600 μm to prepare a catalyst. The composition of this catalyst was 2.9% by weight of iron oxide, 92.1% by weight of aluminum oxide, and 5% by weight of potassium hydroxide.

得られた触媒2gを反応管に充填し、実施例1と同様にエチルベンゼンの脱水素反応を行った。その結果、反応経過時間5時間後において、スチレン収率35%、スチレン選択率94%であった(表1参照)。   2 g of the obtained catalyst was filled in a reaction tube, and ethylbenzene was dehydrogenated in the same manner as in Example 1. As a result, after 5 hours of reaction elapsed time, the styrene yield was 35% and the styrene selectivity was 94% (see Table 1).

実施例5
硝酸鉄九水和物8.1g、硝酸アルミニウム九水和物94.3g、硝酸カルシウム6.7gを蒸留水に溶解し、300mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム50.8gを蒸留水に溶解し、300mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した800mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、750℃で2時間焼成した。この焼成後の酸化物の組成は、酸化鉄10重量%、酸化アルミニウム80重量%、酸化カルシウム10重量%であった。次に、焼成後の酸化物2.5gに、0.845重量%の水酸化カリウム水溶液15.6gを添加し、110℃で乾燥し、250〜600μmに粒度調製して、触媒とした。この触媒の組成は、酸化鉄9.5重量%、酸化アルミニウム76重量%、酸化カルシウム9.5重量%、水酸化カリウム5重量%であった。
Example 5
Iron nitrate nonahydrate 8.1 g, aluminum nitrate nonahydrate 94.3 g, and calcium nitrate 6.7 g were dissolved in distilled water to prepare a 300 ml aqueous solution. On the other hand, 50.8 g of anhydrous sodium carbonate was dissolved in distilled water to prepare 300 ml of an aqueous solution. Liquid A and liquid B were each added dropwise simultaneously to 800 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 750 ° C. for 2 hours. The composition of the oxide after firing was 10% by weight of iron oxide, 80% by weight of aluminum oxide, and 10% by weight of calcium oxide. Next, 15.6 g of 0.845% by weight potassium hydroxide aqueous solution was added to 2.5 g of the calcined oxide, dried at 110 ° C., and the particle size was adjusted to 250 to 600 μm to prepare a catalyst. The composition of this catalyst was 9.5% by weight of iron oxide, 76% by weight of aluminum oxide, 9.5% by weight of calcium oxide, and 5% by weight of potassium hydroxide.

得られた触媒2gを反応管に充填し、実施例1と同様にエチルベンゼンの脱水素反応を行った。その結果、反応経過時間10時間後において、スチレン収率59%、スチレン選択率94%であった(表1参照)。   2 g of the obtained catalyst was filled in a reaction tube, and ethylbenzene was dehydrogenated in the same manner as in Example 1. As a result, after 10 hours of reaction elapsed time, the styrene yield was 59% and the styrene selectivity was 94% (see Table 1).

比較例1
実施例4で調製した水酸化カリウムを添加する以前の焼成後の酸化物を触媒として(この触媒の組成は、実施例4に記載したように、酸化鉄3重量%、酸化アルミニウム97重量%であった)、この触媒2gを反応管に充填し、実施例1と同様にエチルベンゼンの脱水素反応を行った。その結果、反応経過時間5時間後において、スチレン収率12%、スチレン選択率90%であった(表1参照)。
Comparative Example 1
The oxide after calcining before adding potassium hydroxide prepared in Example 4 was used as a catalyst (the composition of this catalyst was 3% by weight of iron oxide and 97% by weight of aluminum oxide as described in Example 4). The catalyst was charged into a reaction tube and ethylbenzene was dehydrogenated in the same manner as in Example 1. As a result, after 5 hours of reaction elapsed time, the styrene yield was 12% and the styrene selectivity was 90% (see Table 1).

Figure 2006116438
Figure 2006116438

Claims (3)

酸化鉄および酸化アルミニウムを主成分とし更にカリウムを含有することを特徴とする二酸化炭素共存下でのエチルベンゼン脱水素反応用触媒。 A catalyst for ethylbenzene dehydrogenation reaction in the presence of carbon dioxide, characterized by containing iron oxide and aluminum oxide as main components and further containing potassium. 酸化鉄および酸化アルミニウムを主成分とする触媒全体を100重量%とするとき、含有されるカリウムが1〜15重量%であることを特徴とする請求項1に記載のエチルベンゼンベンゼン脱水素反応用触媒。 2. The ethylbenzenebenzene dehydrogenation catalyst according to claim 1, wherein the content of potassium is 1 to 15 wt% when the total amount of the catalyst mainly composed of iron oxide and aluminum oxide is 100 wt%. . エチルベンゼンを二酸化炭素共存下で脱水素反応させることによりスチレンを製造する方法において、触媒として請求項1又は2に記載の触媒を用いることを特徴とするスチレンの製造方法。
A method for producing styrene by dehydrogenating ethylbenzene in the presence of carbon dioxide, wherein the catalyst according to claim 1 or 2 is used as a catalyst.
JP2004307368A 2004-10-21 2004-10-21 Catalyst for ethylbenzene dehydrogenation reaction in the presence of carbon dioxide and method for producing styrene using the same Expired - Fee Related JP4696295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004307368A JP4696295B2 (en) 2004-10-21 2004-10-21 Catalyst for ethylbenzene dehydrogenation reaction in the presence of carbon dioxide and method for producing styrene using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004307368A JP4696295B2 (en) 2004-10-21 2004-10-21 Catalyst for ethylbenzene dehydrogenation reaction in the presence of carbon dioxide and method for producing styrene using the same

Publications (2)

Publication Number Publication Date
JP2006116438A true JP2006116438A (en) 2006-05-11
JP4696295B2 JP4696295B2 (en) 2011-06-08

Family

ID=36534823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004307368A Expired - Fee Related JP4696295B2 (en) 2004-10-21 2004-10-21 Catalyst for ethylbenzene dehydrogenation reaction in the presence of carbon dioxide and method for producing styrene using the same

Country Status (1)

Country Link
JP (1) JP4696295B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103121918A (en) * 2011-11-18 2013-05-29 中国石油化工股份有限公司 Method for ethylbenzene dehydrogenation reaction in CO2 atmosphere

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146347A (en) * 1984-12-14 1986-07-04 モ−ビル オイル コ−ポレ−ション Iron oxide catalyst containing compounds of copper and zinc and dehydrogenation of ethyltoluene using said catalyst
JPH07328439A (en) * 1994-06-06 1995-12-19 Nissan Gaadoraa Shokubai Kk Ethylbenzene dehydrogenation catalyst and its production
JPH11165069A (en) * 1997-09-30 1999-06-22 Korea Res Inst Chem Technol Dehydrogenation catalyst of aromatic hydrocarbon using carbon dioxide
JP2002265396A (en) * 2001-03-08 2002-09-18 National Institute Of Advanced Industrial & Technology Method for manufacturing styrene monomer
JP2003277299A (en) * 2002-03-04 2003-10-02 Korea Inst Of Chemical Technology Catalytic dehydrogenation method of alkyl aromatic hydrocarbon by using carbon dioxide oxidizing agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146347A (en) * 1984-12-14 1986-07-04 モ−ビル オイル コ−ポレ−ション Iron oxide catalyst containing compounds of copper and zinc and dehydrogenation of ethyltoluene using said catalyst
JPH07328439A (en) * 1994-06-06 1995-12-19 Nissan Gaadoraa Shokubai Kk Ethylbenzene dehydrogenation catalyst and its production
JPH11165069A (en) * 1997-09-30 1999-06-22 Korea Res Inst Chem Technol Dehydrogenation catalyst of aromatic hydrocarbon using carbon dioxide
JP2002265396A (en) * 2001-03-08 2002-09-18 National Institute Of Advanced Industrial & Technology Method for manufacturing styrene monomer
JP2003277299A (en) * 2002-03-04 2003-10-02 Korea Inst Of Chemical Technology Catalytic dehydrogenation method of alkyl aromatic hydrocarbon by using carbon dioxide oxidizing agent

Also Published As

Publication number Publication date
JP4696295B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
RU2385313C2 (en) Improved method of producing alkenyl aromatic compound at low vapour/hydrocarbon ratio
JP5096751B2 (en) Alkyl aromatic compound dehydrogenation catalyst with improved physical strength, method for producing the same, and dehydrogenation method
RU1836141C (en) Catalyst for dehydrogenating ethyl-benzene to styrene
EA023714B1 (en) Zinc and manganese aluminate catalyst useful for alkane dehdyrogenation
JPS6332769B2 (en)
KR102208674B1 (en) Alkyl aromatic compound dehydrogenation catalyst and process for preparing same, and dehydrogenation process using same
CA2283137A1 (en) Use of ce/zr mixed oxide phase for the manufacture of styrene by dehydrogenation of ethylbenzene
TWI549749B (en) A catalyst composition for preparing o-phenylphenol and a process for preparing o-phenylphenol using the catalyst composition
JP4119980B2 (en) Catalyst for propane dehydrogenation reaction
JP2006219375A (en) Method for producing propylene
JP5693963B2 (en) High-performance alkyl aromatic compound dehydrogenation catalyst in the presence of high concentration of CO2, method for producing the same, and dehydrogenation method using the same
JP4512748B2 (en) Catalyst for water gas conversion reaction
JP3837520B2 (en) Catalyst for CO shift reaction
JP4696295B2 (en) Catalyst for ethylbenzene dehydrogenation reaction in the presence of carbon dioxide and method for producing styrene using the same
JP3530937B2 (en) Catalyst for methanol synthesis
JP2007313487A (en) Catalyst for water gas shift reaction, and method for water gas shift reaction using the same
JPS63501566A (en) Method for producing tertiary olefin by decomposition of alkyl-tertiary alkyl ether
JP3752531B2 (en) Catalyst for ethylbenzene dehydrogenation in the presence of carbon dioxide
JP4012965B2 (en) Catalyst for high temperature CO shift reaction
JP3837512B2 (en) Catalyst for ethylbenzene dehydrogenation in the presence of carbon dioxide
JP7029346B2 (en) Indene manufacturing method
JP2010194419A (en) Method of producing copper-based catalyst
CN112823883B (en) Alpha, alpha-dimethyl benzyl alcohol hydrogenolysis catalyst and preparation method and application thereof
JP2012223768A (en) Catalyst and method for decomposing ammonia
JP2000327596A (en) Dehydrogenation of diisopropylbenzene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees