JP2006115274A - Slight time difference circuit using two plls and time measurement circuit - Google Patents

Slight time difference circuit using two plls and time measurement circuit Download PDF

Info

Publication number
JP2006115274A
JP2006115274A JP2004301234A JP2004301234A JP2006115274A JP 2006115274 A JP2006115274 A JP 2006115274A JP 2004301234 A JP2004301234 A JP 2004301234A JP 2004301234 A JP2004301234 A JP 2004301234A JP 2006115274 A JP2006115274 A JP 2006115274A
Authority
JP
Japan
Prior art keywords
circuit
phase
delay
locked loop
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004301234A
Other languages
Japanese (ja)
Inventor
Yasuo Arai
康夫 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
High Energy Accelerator Research Organization
Original Assignee
High Energy Accelerator Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by High Energy Accelerator Research Organization filed Critical High Energy Accelerator Research Organization
Priority to JP2004301234A priority Critical patent/JP2006115274A/en
Priority to PCT/JP2005/018973 priority patent/WO2006041162A1/en
Publication of JP2006115274A publication Critical patent/JP2006115274A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F10/00Apparatus for measuring unknown time intervals by electric means
    • G04F10/06Apparatus for measuring unknown time intervals by electric means by measuring phase

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Unknown Time Intervals (AREA)
  • Pulse Circuits (AREA)
  • Manipulation Of Pulses (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a slight time difference circuit and a time measurement circuit, which are capable of improving time resolution by one digit or more. <P>SOLUTION: The slight time difference circuit includes a first phase synchronizing loop circuit provided with a voltage controlled oscillation circuit which receives a prescribed reference clock signal to generate a first oscillation frequency, and a second phase synchronizing loop circuit provided with a voltage controlled oscillation circuit which receives the same reference clock signals as the first phase synchronizing loop circuit to generate a second oscillation frequency different from the first oscillation frequency, and a slight time is obtained from a delay time difference between output signals of the first phase synchronizing loop circuit and the second phase synchronizing loop circuit. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高精度時間計測に関し、特に微小時間差回路と、これを使用する時間測定回路に関する。   The present invention relates to high-precision time measurement, and more particularly, to a minute time difference circuit and a time measurement circuit using the same.

科学計測機器、自動車や航空機等の距離測定装置、TOF(Time Of Flight)による元素分析器等におけるデジタル回路においては、入力信号の時間を高精度に測定する必要がある。   In a digital circuit in a scientific measuring instrument, a distance measuring device such as an automobile or an aircraft, an element analyzer using TOF (Time Of Flight), etc., it is necessary to measure the time of the input signal with high accuracy.

一般に、デジタル回路において時間を測定する最も簡単な方法は、図1に示すようにクロックを用いてカウンタを動作させ、測定したい信号が到達したときにその時のカウンタの値をレジスタに取り込む方法である。しかしながら、この場合の時間分解能(最小時間単位)は、クロックの周期で決まってしまい、例えば100MHzのクロックを使用した場合では10nsとなる。   In general, the simplest method of measuring time in a digital circuit is a method of operating a counter using a clock as shown in FIG. 1, and taking the value of the counter at that time into a register when a signal to be measured arrives. . However, the time resolution (minimum time unit) in this case is determined by the clock cycle, and is 10 ns when a 100 MHz clock is used, for example.

基準クロック周期よりも短い時間単位の時間測定を行うために、例えば、特開平7−283697号「電圧制御発振回路及びこれを用いた信号検出器」明細書に記載されているような、PLL(Phase Locked Loop:位相同期ループ)回路内の電圧制御発振回路を用い、発振周期の整数N分の1の遅延信号を得る回路が開発されている。図2は、このような回路の回路図である。この図に示す例は、16段の遅延回路であり、反転回路U1〜U16及びUSにより電圧制御発振回路を構成し、PLL回路から得られる制御電圧(vgn)により発振周波数が可変できるようになっている。また、この回路は、通常奇数段の位相反転回路を用いなければ発振を起こせないところを、偶数段で発振が起こるように工夫したもので、信号の立ち上がりがf1→f2→f3→...→f16→f1の順番で変化し、基準クロックの16分の1の時間間隔を持った立ち上がり信号を得ることができる。この場合、時間分解能は発振周期のN分の1とすることができるが、反転回路2段の遅延時間よりも分解能を上げることはできない。通常のCMOS回路では、1段の反転回路の遅延時間は0.2ns程度なので、2段の反転回路(=1段の遅延回路)の遅延時間は0.4ns程度となる。
特許第2663397号公報
In order to perform time measurement in units of time shorter than the reference clock period, for example, a PLL (described in Japanese Patent Application Laid-Open No. 7-283697 “Voltage Controlled Oscillation Circuit and Signal Detector Using the Same” is used. A circuit has been developed that uses a voltage-controlled oscillation circuit in a Phase Locked Loop (phase-locked loop) circuit to obtain a delay signal that is 1 / N of the oscillation period. FIG. 2 is a circuit diagram of such a circuit. The example shown in this figure is a 16-stage delay circuit, and a voltage-controlled oscillation circuit is constituted by the inverting circuits U1 to U16 and US, and the oscillation frequency can be varied by the control voltage (vgn) obtained from the PLL circuit. ing. Further, this circuit is devised so that oscillation can be generated in an even number of stages where oscillation cannot be generated unless an odd number of phase inverting circuits are used, and the rise of the signal is f1 → f2 → f3 →. . . It changes in the order of f16 → f1, and a rising signal having a time interval of 1/16 of the reference clock can be obtained. In this case, the time resolution can be set to 1 / N of the oscillation period, but the resolution cannot be increased more than the delay time of the two inverting circuits. In a normal CMOS circuit, the delay time of the one-stage inverting circuit is about 0.2 ns, so the delay time of the two-stage inverting circuit (= one-stage delay circuit) is about 0.4 ns.
Japanese Patent No. 2666397

上述したような従来技術の回路でさらに時間分解法を上げるためには、より高速の集積回路プロセス技術を用い、クロック周波数を上げること等が必要となる。しかしながら、ゲートの遅延時間の減少には当然ながら限界があり、消費電力が増えたり、製造コストが高額になってしまうといった問題があった。   In order to further improve the time resolution method in the conventional circuit as described above, it is necessary to use a higher-speed integrated circuit process technique and increase the clock frequency. However, there is a limit in reducing the delay time of the gate, and there are problems that the power consumption increases and the manufacturing cost becomes high.

本発明の目的は、上述したような従来技術の問題を克服し、1桁以上時間分解能を向上させることができる微小時間差回路及び時間測定回路を提供することである。   An object of the present invention is to provide a minute time difference circuit and a time measurement circuit capable of overcoming the problems of the prior art as described above and improving the time resolution by one digit or more.

本発明による微小時間差回路は、所定の基準クロック信号を受け、第1発振周波数を発生する電圧制御発振回路を具える第1位相同期ループ回路と、前記第1位相同期ループ回路と同じ基準クロック信号を受け、前記第1発振周波数と異なる第2発振周波数を発生する電圧制御発振回路を具える第2位相同期ループ回路とを具え、前記第1位相同期ループ回路と前記第2位相同期ループ回路の出力信号の遅延時間差から微小時間を得ることを特徴とする。   The minute time difference circuit according to the present invention includes a first phase-locked loop circuit including a voltage-controlled oscillator circuit that receives a predetermined reference clock signal and generates a first oscillation frequency, and the same reference clock signal as the first phase-locked loop circuit And a second phase-locked loop circuit comprising a voltage-controlled oscillation circuit that generates a second oscillation frequency different from the first oscillation frequency, and the first phase-locked loop circuit and the second phase-locked loop circuit A minute time is obtained from the delay time difference between the output signals.

本発明による時間測定回路は、第1発振周波数を発生する電圧制御発振回路を具える第1位相同期ループ回路と、前記第1位相同期ループ回路と同じ基準クロック信号を受け、前記第1発振周波数と異なる第2発振周波数を発生する電圧制御発振回路を具える第2位相同期ループ回路とを具え、前記第1位相同期ループ回路及び前記第2位相同期ループ回路の各々に関して、出力信号が各々次に入力されるように直列に接続された複数の可変遅延回路から成る遅延線を具え、各遅延線における各々の可変遅延回路は、関係する位相同期ループ回路の出力信号によって遅延時間を制御され、各遅延線における最初の可変遅延回路は、時間差を得ようとする2つの信号のうち一方を受け、各々の遅延線において同時に変化する可変遅延回路の出力を見つけることにより、前記2つの信号の時間差を決定することを特徴とする。   A time measuring circuit according to the present invention receives a first phase-locked loop circuit including a voltage-controlled oscillator circuit that generates a first oscillation frequency, and the same reference clock signal as the first phase-locked loop circuit, and receives the first oscillation frequency. And a second phase-locked loop circuit including a voltage-controlled oscillator circuit that generates a second oscillation frequency different from the output phase of each of the first phase-locked loop circuit and the second phase-locked loop circuit. A delay line composed of a plurality of variable delay circuits connected in series so that the delay time is controlled by an output signal of an associated phase-locked loop circuit, The first variable delay circuit in each delay line receives one of two signals to obtain a time difference, and the output of the variable delay circuit that changes simultaneously in each delay line By finding, and determining the time difference between the two signals.

本発明による他の時間測定回路は、複数N1段の遅延回路から成る第1電圧制御発振回路と、前記第1電圧制御発振回路の出力を受け、その周波数を複数M1倍する第1分周回路と、前記第1分周回路の出力と基準クロックとを受け、これらの信号の位相差を前記第1電圧制御発振回路に帰還する位相周波数検出器とを具える第1位相同期ループ回路と、複数N2段の遅延回路から成る第2電圧制御発振回路と、前記第2電圧制御発振回路の出力を受け、その周波数を複数M2倍する第2分周回路と、前記第2分周回路の出力と基準クロックとを受け、これらの信号の位相差を前記第2電圧制御発振回路に帰還する位相周波数検出器とを具える第2位相同期ループ回路と、外部信号を受けると共に、前記第1分周回路の出力をクロック入力信号として受け、粗時間測定を行うカウンタ回路と、前記外部信号を受けると共に、前記第1電圧制御発振回路における遅延回路の各段の出力信号を受け、微細時間測定を行うラッチ及び位相選択回路とを具え、前記第1位相同期ループ回路及び前記第2位相同期ループ回路の各々に関して、出力信号が各々次に入力されるように直列に接続された複数の可変遅延回路から成る第1及び第2遅延線を具え、関係する位相同期ループ回路の出力信号によって遅延時間を制御され、前記第1遅延線における最初の可変遅延回路は、前記ラッチ及び位相選択回路により決定された、前記外部信号に立ち上がりに最も近いタイミングの前記第1電圧制御発振回路における遅延回路の段の出力信号を受け、前記第2遅延線における最初の可変遅延回路は、前記ラッチ及び位相選択回路により、前記第1及び第2遅延線内で前記第1遅延線が受けた信号を追い抜けるように遅延を調整された前記外部信号を受け、前記第1及び第2遅延線内のどの遅延回路の出力において信号の到着時間が逆転したかを調べることによって超微細時間測定を行うことを特徴とする。   Another time measuring circuit according to the present invention includes a first voltage controlled oscillation circuit comprising a plurality of N1 stage delay circuits, and a first frequency dividing circuit for receiving the output of the first voltage controlled oscillation circuit and multiplying the frequency by a plurality of M1. A first phase-locked loop circuit comprising a phase frequency detector that receives the output of the first frequency divider and the reference clock and feeds back a phase difference between these signals to the first voltage-controlled oscillation circuit; A second voltage controlled oscillation circuit comprising a plurality of N2 stage delay circuits; a second frequency dividing circuit for receiving the output of the second voltage controlled oscillation circuit and multiplying the frequency by a plurality of M2; and an output of the second frequency dividing circuit. And a reference clock, and a second phase-locked loop circuit including a phase frequency detector that feeds back a phase difference between these signals to the second voltage-controlled oscillation circuit; The output of the peripheral circuit is the clock input signal. A latch circuit and a phase selection circuit that receives the external signal and receives an output signal of each stage of the delay circuit in the first voltage controlled oscillation circuit and performs a fine time measurement. First and second delays comprising a plurality of variable delay circuits connected in series so that an output signal is next input for each of the first phase locked loop circuit and the second phase locked loop circuit The delay time is controlled by the output signal of the related phase-locked loop circuit, and the first variable delay circuit in the first delay line rises to the external signal determined by the latch and phase selection circuit. In response to the output signal of the stage of the delay circuit in the first voltage controlled oscillation circuit at the closest timing, the first variable delay circuit in the second delay line is: The latch and phase selection circuit receives the external signal adjusted in delay so as to pass through the signal received by the first delay line in the first and second delay lines, and receives the first and second delays. It is characterized in that the ultrafine time measurement is performed by checking which delay circuit output in the line the signal arrival time is reversed.

従来の集積回路中のPLL素子を使用した時間測定回路では、遅延回路の遅延時間以下の時間精度を得ることはできなかった。本発明によれば、2つの電圧制御発振回路で使用される遅延回路のそれぞれの遅延時間は従来技術と同程度のものであっても、その時間差は、遅延時間のさらに整数N分の1にすることができる。これにより、より微小な時間差の信号発生や時間測定を行うことができるようになる。   In a conventional time measuring circuit using a PLL element in an integrated circuit, it has not been possible to obtain time accuracy equal to or less than the delay time of the delay circuit. According to the present invention, even if the delay times of the delay circuits used in the two voltage controlled oscillation circuits are similar to those of the prior art, the time difference is further reduced to an integer N / N of the delay time. can do. As a result, it is possible to generate a signal with a smaller time difference and perform time measurement.

図3は、本発明による微小時間差回路の構成の一例を示すブロック図である。微小時間差回路1は、第1位相同期ループ(PLL)回路2と、第2PLL回路3と、二重遅延ライン部4とを具える。   FIG. 3 is a block diagram showing an example of the configuration of the minute time difference circuit according to the present invention. The minute time difference circuit 1 includes a first phase-locked loop (PLL) circuit 2, a second PLL circuit 3, and a double delay line unit 4.

第1PLL回路2は、電圧制御発振回路(VCO)21と、分周回路22と、位相周波数検出器(PFD)23とを具える。VCO21は、N1段の遅延回路で構成され、その発振出力信号は分周回路22によりM1分の1の周波数に分周され、PFD23に入力される。PFD23には周期T0の基準クロックも入力され、PFD23はこれら2つの入力信号の位相差を検出し、位相差電圧信号vgn1をVCO21に帰還する。vgn1を変化させることにより、分周回路22の出力信号を基準クロックに周波数位相同期させる。このときのVCO21の出力の周期をT1とすると、

T1=T0/M1 (1)

となる。また、VCO21の1段あたりの遅延時間TD1は、VCO21がN1段の遅延回路から成ることから、

TD1=T1/N1 (2)

となる。
The first PLL circuit 2 includes a voltage controlled oscillation circuit (VCO) 21, a frequency dividing circuit 22, and a phase frequency detector (PFD) 23. The VCO 21 is composed of an N1 stage delay circuit, and the oscillation output signal is frequency-divided by a frequency dividing circuit 22 to a frequency of 1 / M1 and input to the PFD 23. A reference clock having a period T0 is also input to the PFD 23. The PFD 23 detects a phase difference between these two input signals and feeds back the phase difference voltage signal vgn1 to the VCO 21. By changing vgn1, the output signal of the frequency dividing circuit 22 is frequency-phase synchronized with the reference clock. If the output period of the VCO 21 at this time is T1,

T1 = T0 / M1 (1)

It becomes. Further, the delay time TD1 per stage of the VCO 21 is that the VCO 21 is composed of an N1 stage delay circuit.

TD1 = T1 / N1 (2)

It becomes.

第2PLL回路3は、第1PLL回路2と同様の構成で、電圧制御発振回路(VCO)31と、分周回路32と、位相周波数検出器(PFD)33とを具える。VCO31は、N2段の遅延回路で構成され、その出力は分周回路32によりM2分の1の周波数に分周され、PFD33に入力される。PFD33には第1PLL回路2のPFD23に入力されるのと同じ周期T0の基準クロックも入力され、PFD33はこれら2つの入力信号の位相差を検出し、位相差電圧信号vgn2をVCO31に帰還する。vgn2を変化させることにより、分周回路32の出力信号を基準クロックに周波数位相同期させる。このときのVCO31の出力の周期をT2とすると、

T2=T0/M2 (3)

となる。また、VCO31の1段あたりの遅延時間TD2は、VCO31がN2段の遅延回路から成ることから、

TD2=T2/N2 (4)

となる。
The second PLL circuit 3 has the same configuration as the first PLL circuit 2, and includes a voltage controlled oscillation circuit (VCO) 31, a frequency divider circuit 32, and a phase frequency detector (PFD) 33. The VCO 31 is composed of an N2 stage delay circuit, and its output is frequency-divided by a frequency dividing circuit 32 to a frequency of M1 / 2 and input to the PFD 33. A reference clock having the same cycle T0 as that input to the PFD 23 of the first PLL circuit 2 is also input to the PFD 33. The PFD 33 detects a phase difference between these two input signals and feeds back the phase difference voltage signal vgn2 to the VCO 31. By changing vgn2, the output signal of the frequency dividing circuit 32 is frequency-phase synchronized with the reference clock. If the output period of the VCO 31 at this time is T2,

T2 = T0 / M2 (3)

It becomes. Also, the delay time TD2 per stage of the VCO 31 is that the VCO 31 is composed of an N2 stage delay circuit.

TD2 = T2 / N2 (4)

It becomes.

TD2とTD1の時間差ΔTは、式(2)及び(4)より、

ΔT=TD2−TD1
=T2/N2−T1/N1

となる。これに式(1)、(2)及び(3)を代入すると、

ΔT=T0/(M2・N2)−T1/N1
=(T1・M1)/(M2・N2)−T1/N1
=(T1/N1)((N1・M1)/(M2・N2)−1)

となる。ここで簡単のためN1=N2=M2=N、M1=N+1とすると、

ΔT=T1/(N・N)=TD1(1/N) (5)

となり、VCO21の発振周期T1のNの二乗分の1、遅延回路の遅延時間TD1のN分の1の時間差が得られる。
The time difference ΔT between TD2 and TD1 is obtained from the equations (2) and (4).

ΔT = TD2-TD1
= T2 / N2-T1 / N1

It becomes. Substituting equations (1), (2) and (3) into this,

ΔT = T0 / (M2 · N2) −T1 / N1
= (T1 / M1) / (M2 / N2) -T1 / N1
= (T1 / N1) ((N1 · M1) / (M2 · N2) -1)

It becomes. For simplicity, assuming that N1 = N2 = M2 = N and M1 = N + 1,

ΔT = T1 / (N · N) = TD1 (1 / N) (5)

Thus, a time difference of 1 / N of the oscillation period T1 of the VCO 21 and 1 / N of the delay time TD1 of the delay circuit is obtained.

同様に、N1=N2=M2=N、M1=N+2とすると、

ΔT=TD1(2/N)

となり、TD1のN分の2の時間差が得られる。他に、N1、N2、M1、M2の値を適当に選ぶことで、任意のΔTを実現することも可能である。
Similarly, if N1 = N2 = M2 = N and M1 = N + 2,

ΔT = TD1 (2 / N)

Thus, a time difference of 2 / N of TD1 is obtained. In addition, it is possible to realize an arbitrary ΔT by appropriately selecting values of N1, N2, M1, and M2.

このように従来の回路ではTD1の遅延しか得られなかったものが、本発明による微小時間差回路により、その値のさらに整数N分の1の遅延が得られる。特に、Nを2の累乗に選べば、後段のデジタル処理を非常に容易にすることができる。例えば式(5)で、N=16とすると、T1、TD1、ΔTがそれぞれ16倍ずつ違う値を持つことになる。   As described above, the conventional circuit can obtain only a delay of TD1, but the minute time difference circuit according to the present invention can obtain a delay of an integer N / N of the value. In particular, if N is selected to be a power of 2, the subsequent digital processing can be made very easy. For example, in equation (5), if N = 16, T1, TD1, and ΔT each have a value that is 16 times different.

このようにして得られた時間差を実際に利用するために、二重遅延ライン部4が使用される。DAx、DBx(x=1,2,3...)は、VCO21、VCO31で使用される可変遅延回路と同じもので、反転素子2段より成る。このとき、信号s1_xとs2_xが同時に変化する(T1x=T2x)タップxを見いだす回路を用いれば、s1_0とs2_0の時間差をΔTの精度で知ることができる。   In order to actually use the time difference obtained in this way, the double delay line unit 4 is used. DAx and DBx (x = 1, 2, 3,...) Are the same as the variable delay circuits used in the VCO 21 and VCO 31, and are composed of two inverting elements. At this time, if a circuit that finds the tap x in which the signals s1_x and s2_x change simultaneously (T1x = T2x) is used, the time difference between s1_0 and s2_0 can be known with ΔT accuracy.

図3に示したような微小時間差回路によって得られる微小時間差信号を用いて超微細な時間測定を行うことができるが、この回路だけで広い時間範囲をカバーすると、回路規模が大きくなりすぎ、また時間精度も悪くなるので、通常は、図1及び図2において示した従来例のように、カウンタや電圧制御発振回路と組み合わせた回路構成を取るのが好適である。図4は、このような本発明による時間測定回路の構成の一例を示すブロック図である。本時間測定回路は、第1PLL回路41と、第2PLL回路42と、二重遅延ライン部43と、ラッチ及び位相選択回路44と、カウンタ回路45とを具える。   Although a very fine time measurement can be performed using a minute time difference signal obtained by a minute time difference circuit as shown in FIG. 3, if this circuit alone covers a wide time range, the circuit scale becomes too large. Since the time accuracy also deteriorates, it is usually preferable to adopt a circuit configuration combined with a counter and a voltage controlled oscillation circuit as in the conventional example shown in FIGS. FIG. 4 is a block diagram showing an example of the configuration of such a time measuring circuit according to the present invention. This time measuring circuit includes a first PLL circuit 41, a second PLL circuit 42, a double delay line unit 43, a latch and phase selection circuit 44, and a counter circuit 45.

第1PLL回路41及び第2PLL回路42は、図3に示す第1PLL回路2及び第2PLL回路3と同様の構成であってもよく、これらが具えるVCO46、分周回路47、PFD48、VCO49、分周回路50及びPFD51は、図3に示すVCO21、分周回路22、PFD23、VCO21、分周回路22及びPFD23と同様のものであってもよい。   The first PLL circuit 41 and the second PLL circuit 42 may have the same configuration as that of the first PLL circuit 2 and the second PLL circuit 3 shown in FIG. 3. The frequency circuit 50 and the PFD 51 may be the same as the VCO 21, the frequency divider circuit 22, the PFD 23, the VCO 21, the frequency divider circuit 22, and the PFD 23 shown in FIG. 3.

本実施例においては、例として、第1PLL回路41及び第2PLL回路42に用いる基準クロックとして10MHzのクロックを使用する。この周波数を第1PLL回路41によりまず17倍の170MHzに上げる。この170MHzのクロックを使用して、カウンタ回路45で、分解能5.9ns(=1/170MHz)の粗時間測定を行う。   In this embodiment, as an example, a 10 MHz clock is used as a reference clock used for the first PLL circuit 41 and the second PLL circuit 42. This frequency is first raised to 170 MHz, 17 times, by the first PLL circuit 41. Using this 170 MHz clock, the counter circuit 45 performs coarse time measurement with a resolution of 5.9 ns (= 1/170 MHz).

次に、第1PLL回路41を構成する16段より成るVCO46から得られる遅延信号出力f1〜f16を用いて、ラッチ及び位相選択回路44において、分解能368ps(=5.9ns/16)の微細時間測定を行う。   Next, using the delayed signal outputs f1 to f16 obtained from the 16-stage VCO 46 constituting the first PLL circuit 41, the latch and phase selection circuit 44 performs fine time measurement with a resolution of 368 ps (= 5.9 ns / 16). I do.

一方、第2PLL回路42では、分周が16分の1に設定されているので、160MHzで発振し、1段あたりの遅延時間は391ps(=1/160MHz/16)となる。したがって、二重遅延ライン部43では、ΔT=391ps−368ps=23psの時間単位での測定が行われる。このように、粗時間測定、微細時間測定、超微細時間測定と、それぞれ、5.9ns/bit、368ps/bit、23ps/bitと16倍ずつ分解能の違う測定が行われる。   On the other hand, in the second PLL circuit 42, since the frequency division is set to 1/16, it oscillates at 160 MHz and the delay time per stage is 391 ps (= 1/160 MHz / 16). Therefore, the double delay line unit 43 performs measurement in units of time of ΔT = 391 ps-368 ps = 23 ps. As described above, the coarse time measurement, the fine time measurement, and the ultrafine time measurement are performed with different resolutions of 5.9 ns / bit, 368 ps / bit, and 23 ps / bit, respectively, by 16 times.

次に、微細時間のラッチと、二重遅延ライン部43に供給するための信号を第1VCO41の出力信号から取り出すための位相選択とを行う、ラッチ及び位相選択回路44を説明する。図5は、ラッチ及び位相選択回路の構成の一例を示す回路図である。まず、外部信号を第1VCO46からのf1〜f16信号によりフリップフロップにラッチする。1段目のフリップフロップの出力は、外部信号の変化のタイミングにより、短時間不安定になることがあるので、1段目のクロックと位相を180度ずらした2段目のフリップフロップにより安定にラッチさせる。この出力が微細時間データとなり、この論理和をとることにより、外部信号の立ち上がり後の最も近いタイミング(から180度遅れた)の信号をf1〜f16の中から選択することができる(cout)。また、外部信号は、遅延を調整された後、houtとして出力される。この遅延調整は、cout信号がhout信号を二重遅延ライン部43内で追い抜けるように調整する。この遅延調整では、図3のDAx、DBxと同様の遅延回路を用いることができる。   Next, a latch and phase selection circuit 44 that performs fine time latching and phase selection for extracting a signal to be supplied to the double delay line unit 43 from the output signal of the first VCO 41 will be described. FIG. 5 is a circuit diagram showing an example of the configuration of the latch and phase selection circuit. First, an external signal is latched in the flip-flop by the f1 to f16 signals from the first VCO 46. The output of the first stage flip-flop may become unstable for a short time depending on the timing of the change of the external signal, so it can be stabilized by the second stage flip-flop whose phase is shifted by 180 degrees from the first stage clock. Latch. This output becomes minute time data, and by taking this logical sum, the signal at the closest timing (after 180 degrees from the rise of the external signal) can be selected from f1 to f16 (cout). The external signal is output as hout after the delay is adjusted. In this delay adjustment, the cout signal is adjusted so as to pass the hout signal within the double delay line unit 43. In this delay adjustment, a delay circuit similar to DAx and DBx in FIG. 3 can be used.

最後に、二重遅延ライン部43内のフリップフロップ出力をラッチし、どのタップ位置において信号の到着時刻が逆転したかを調べることにより、超微細時間測定が行われる。   Finally, the output of the flip-flop in the double delay line unit 43 is latched, and an ultrafine time measurement is performed by checking at which tap position the signal arrival time is reversed.

上記実施例において示した数値は説明を明瞭にするための単なる例であり、本発明はこれらに限定されないことは当然である。   The numerical values shown in the above embodiments are merely examples for clarifying the explanation, and the present invention is naturally not limited thereto.

従来のカウンタによる時間測定例を説明する図である。It is a figure explaining the example of a time measurement by the conventional counter. 従来のPLLを用いた時間測定回路を説明する図である。It is a figure explaining the time measuring circuit using the conventional PLL. 本発明による微小時間差回路の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the micro time difference circuit by this invention. 本発明による時間測定回路の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the time measurement circuit by this invention. ラッチ及び位相選択回路の構成の一例を示す回路図である。It is a circuit diagram which shows an example of a structure of a latch and a phase selection circuit.

符号の説明Explanation of symbols

1 微小時間差回路
2、41 第1PLL回路
3、42 第2PLL回路
4、43 二重遅延ライン部
21、31、46、49 VCO
22、32、47、50 分周回路
23、33、48、51 PFD
44 ラッチ及び位相選択回路
45 カウンタ回路
DESCRIPTION OF SYMBOLS 1 Minute time difference circuit 2, 41 1st PLL circuit 3, 42 2nd PLL circuit 4, 43 Double delay line part 21, 31, 46, 49 VCO
22, 32, 47, 50 Frequency divider 23, 33, 48, 51 PFD
44 Latch and phase selection circuit 45 Counter circuit

Claims (3)

所定の基準クロック信号を受け、第1発振周波数を発生する電圧制御発振回路を具える第1位相同期ループ回路と、前記第1位相同期ループ回路と同じ基準クロック信号を受け、前記第1発振周波数と異なる第2発振周波数を発生する電圧制御発振回路を具える第2位相同期ループ回路とを具え、前記第1位相同期ループ回路と前記第2位相同期ループ回路の出力信号の遅延時間差から微小時間を得ることを特徴とする微小時間差回路。   A first phase-locked loop circuit including a voltage-controlled oscillator circuit that receives a predetermined reference clock signal and generates a first oscillation frequency; receives the same reference clock signal as the first phase-locked loop circuit; A second phase-locked loop circuit including a voltage-controlled oscillation circuit that generates a second oscillation frequency different from the first phase-locked loop circuit, and a minute time from a delay time difference between output signals of the first phase-locked loop circuit and the second phase-locked loop circuit A minute time difference circuit characterized by obtaining. 第1発振周波数を発生する電圧制御発振回路を具える第1位相同期ループ回路と、前記第1位相同期ループ回路と同じ基準クロック信号を受け、前記第1発振周波数と異なる第2発振周波数を発生する電圧制御発振回路を具える第2位相同期ループ回路とを具え、前記第1位相同期ループ回路及び前記第2位相同期ループ回路の各々に関して、出力信号が各々次に入力されるように直列に接続された複数の可変遅延回路から成る遅延線を具え、各遅延線における各々の可変遅延回路は、関係する位相同期ループ回路の出力信号によって遅延時間を制御され、各遅延線における最初の可変遅延回路は、時間差を得ようとする2つの信号のうち一方を受け、各々の遅延線において同時に変化する可変遅延回路の出力を見つけることにより、前記2つの信号の時間差を決定することを特徴とする時間測定回路。   A first phase-locked loop circuit including a voltage-controlled oscillator circuit that generates a first oscillation frequency, and a reference clock signal that is the same as that of the first phase-locked loop circuit, and generates a second oscillation frequency that is different from the first oscillation frequency A second phase-locked loop circuit including a voltage-controlled oscillation circuit, wherein the output signal is input in series with respect to each of the first phase-locked loop circuit and the second phase-locked loop circuit. A delay line comprising a plurality of connected variable delay circuits, each variable delay circuit in each delay line being controlled in delay time by the output signal of the associated phase locked loop circuit, the first variable delay in each delay line; The circuit receives one of the two signals to be timed and finds the output of the variable delay circuit changing simultaneously in each delay line, thereby Time measuring circuit, characterized in that to determine the time difference between the signals. 複数N1段の遅延回路から成る第1電圧制御発振回路と、前記第1電圧制御発振回路の出力を受け、その周波数を複数M1倍する第1分周回路と、前記第1分周回路の出力と基準クロックとを受け、これらの信号の位相差を前記第1電圧制御発振回路に帰還する位相周波数検出器とを具える第1位相同期ループ回路と、複数N2段の遅延回路から成る第2電圧制御発振回路と、前記第2電圧制御発振回路の出力を受け、その周波数を複数M2倍する第2分周回路と、前記第2分周回路の出力と基準クロックとを受け、これらの信号の位相差を前記第2電圧制御発振回路に帰還する位相周波数検出器とを具える第2位相同期ループ回路と、外部信号を受けると共に、前記第1分周回路の出力をクロック入力信号として受け、粗時間測定を行うカウンタ回路と、前記外部信号を受けると共に、前記第1電圧制御発振回路における遅延回路の各段の出力信号を受け、微細時間測定を行うラッチ及び位相選択回路とを具え、前記第1位相同期ループ回路及び前記第2位相同期ループ回路の各々に関して、出力信号が各々次に入力されるように直列に接続された複数の可変遅延回路から成る第1及び第2遅延線を具え、関係する位相同期ループ回路の出力信号によって遅延時間を制御され、前記第1遅延線における最初の可変遅延回路は、前記ラッチ及び位相選択回路により決定された、前記外部信号に立ち上がりに最も近いタイミングの前記第1電圧制御発振回路における遅延回路の段の出力信号を受け、前記第2遅延線における最初の可変遅延回路は、前記ラッチ及び位相選択回路により、前記第1及び第2遅延線内で前記第1遅延線が受けた信号を追い抜けるように遅延を調整された前記外部信号を受け、前記第1及び第2遅延線内のどの遅延回路の出力において信号の到着時間が逆転したかを調べることによって超微細時間測定を行うことを特徴とする時間測定回路。   A first voltage controlled oscillation circuit comprising a plurality of N1 stage delay circuits; a first frequency dividing circuit for receiving the output of the first voltage controlled oscillation circuit and multiplying the frequency by a plurality of M1; and an output of the first frequency dividing circuit. And a reference clock, and a first phase-locked loop circuit including a phase frequency detector that feeds back a phase difference between these signals to the first voltage-controlled oscillation circuit, and a second circuit comprising a plurality of N2 stage delay circuits. A voltage-controlled oscillation circuit; a second frequency-dividing circuit that receives the output of the second voltage-controlled oscillation circuit and multiplying the frequency thereof by a plurality of M2; an output of the second frequency-dividing circuit and a reference clock; And a second phase locked loop circuit including a phase frequency detector that feeds back the phase difference to the second voltage controlled oscillation circuit, and an external signal, and an output of the first frequency divider circuit as a clock input signal. Perform rough time measurement And a latch and a phase selection circuit for receiving an output signal of each stage of the delay circuit in the first voltage controlled oscillation circuit and performing a fine time measurement. Each of the circuit and the second phase-locked loop circuit comprises first and second delay lines comprising a plurality of variable delay circuits connected in series such that an output signal is next input, respectively, and related phase lock The delay time is controlled by the output signal of the loop circuit, and the first variable delay circuit in the first delay line is determined by the latch and phase selection circuit, and the first voltage at the timing closest to the rising edge of the external signal. The first variable delay circuit in the second delay line is received by the latch and the phase selection circuit in response to the output signal of the delay circuit stage in the control oscillation circuit. An output of which delay circuit in the first and second delay lines is received by receiving the external signal whose delay is adjusted so as to pass through the signal received by the first delay line in the first and second delay lines. A time measuring circuit which performs ultrafine time measurement by checking whether the arrival time of the signal is reversed in FIG.
JP2004301234A 2004-10-15 2004-10-15 Slight time difference circuit using two plls and time measurement circuit Pending JP2006115274A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004301234A JP2006115274A (en) 2004-10-15 2004-10-15 Slight time difference circuit using two plls and time measurement circuit
PCT/JP2005/018973 WO2006041162A1 (en) 2004-10-15 2005-10-14 Microtime difference circuit and time measuring circuit using two plls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004301234A JP2006115274A (en) 2004-10-15 2004-10-15 Slight time difference circuit using two plls and time measurement circuit

Publications (1)

Publication Number Publication Date
JP2006115274A true JP2006115274A (en) 2006-04-27

Family

ID=36148448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004301234A Pending JP2006115274A (en) 2004-10-15 2004-10-15 Slight time difference circuit using two plls and time measurement circuit

Country Status (2)

Country Link
JP (1) JP2006115274A (en)
WO (1) WO2006041162A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7450049B2 (en) 2006-05-15 2008-11-11 Denso Corporation Digitization apparatus
US7525878B2 (en) 2006-05-31 2009-04-28 Denso Corporation Time measuring circuit with pulse delay circuit
JP2009246484A (en) * 2008-03-28 2009-10-22 Advantest Corp Vernier delay circuit, time digital converter using the same, and test device
CN102236917A (en) * 2010-04-27 2011-11-09 瑞士时序有限公司 System for timing a sports competition with two timing devices
JP2013195307A (en) * 2012-03-21 2013-09-30 Honda Motor Co Ltd Range measurement system
JP2018054352A (en) * 2016-09-27 2018-04-05 セイコーエプソン株式会社 Circuit device, physical quantity measuring device, electronic apparatus, and mobile body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150304A1 (en) * 2009-06-22 2010-12-29 株式会社アドバンテスト Phase detection device, test device, and adjustment method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109096U (en) * 1990-02-19 1991-11-08
JP3355894B2 (en) * 1995-09-27 2002-12-09 安藤電気株式会社 Variable delay circuit
JP2002118449A (en) * 1999-07-07 2002-04-19 Advantest Corp Variable delay circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7450049B2 (en) 2006-05-15 2008-11-11 Denso Corporation Digitization apparatus
US7525878B2 (en) 2006-05-31 2009-04-28 Denso Corporation Time measuring circuit with pulse delay circuit
JP2009246484A (en) * 2008-03-28 2009-10-22 Advantest Corp Vernier delay circuit, time digital converter using the same, and test device
CN102236917A (en) * 2010-04-27 2011-11-09 瑞士时序有限公司 System for timing a sports competition with two timing devices
JP2013195307A (en) * 2012-03-21 2013-09-30 Honda Motor Co Ltd Range measurement system
JP2018054352A (en) * 2016-09-27 2018-04-05 セイコーエプソン株式会社 Circuit device, physical quantity measuring device, electronic apparatus, and mobile body

Also Published As

Publication number Publication date
WO2006041162A1 (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP4850473B2 (en) Digital phase detector
US8174300B2 (en) Clock generator, pulse generator utilizing the clock generator, and methods thereof
KR101750414B1 (en) Digital phase frequency detector, digital phase locked loop including the same and method of detecting digital phase frequency
Chiang et al. The design of an all-digital phase-locked loop with small DCO hardware and fast phase lock
US8779816B2 (en) Low area all digital delay-locked loop insensitive to reference clock duty cycle and jitter
Shin et al. A 7 ps jitter 0.053 mm $^{2} $ fast lock all-digital DLL with a wide range and high resolution DCC
US7804925B2 (en) Detection arrangement, counter unit, phase locked loop, detection method and method for generating an oscillator signal
US11342925B2 (en) Signal generation circuit and method, and digit-to-time conversion circuit and method
US20090079479A1 (en) Adjustable digital lock detector
WO2006041162A1 (en) Microtime difference circuit and time measuring circuit using two plls
US8981824B2 (en) Phase-locked loop, method of operating the same, and devices having the same
Kang et al. Process Variation Tolerant All-Digital 90$^{\circ} $ Phase Shift DLL for DDR3 Interface
Hsieh et al. A 6.7 MHz to 1.24 GHz $\text {0.0318}\;{\text {mm}^{\text {2}}} $ Fast-Locking All-Digital DLL Using Phase-Tracing Delay Unit in 90 nm CMOS
US6636979B1 (en) System for measuring phase error between two clocks by using a plurality of phase latches with different respective delays
WO2021036775A1 (en) Signal generation circuit and method, and digital-to-time conversion circuit and method
JP2003008414A (en) Clock edge detection circuit
Jung et al. All-digital process-variation-calibrated timing generator for ATE with 1.95-ps resolution and maximum 1.2-GHz test rate
JP2008172574A (en) Clock phase shift circuit
Polzer et al. A programmable delay line for metastability characterization in FPGAs
Angeli et al. A scalable fully synthesized phase-to-digital converter for phase and duty-cycle measurement of high-speed clocks
US6995590B1 (en) Hybrid phase/delay locked loop circuits and methods
JP2010273185A (en) Digital phase locked loop circuit
Huang et al. A time-to-digital converter based AFC for wideband frequency synthesizer
JP5307532B2 (en) Frequency change measurement method and apparatus
US7253674B1 (en) Output clock phase-alignment circuit

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

RD03 Notification of appointment of power of attorney

Effective date: 20070626

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A131 Notification of reasons for refusal

Effective date: 20100112

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100511

Free format text: JAPANESE INTERMEDIATE CODE: A02