JP2006114815A - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
JP2006114815A
JP2006114815A JP2004302705A JP2004302705A JP2006114815A JP 2006114815 A JP2006114815 A JP 2006114815A JP 2004302705 A JP2004302705 A JP 2004302705A JP 2004302705 A JP2004302705 A JP 2004302705A JP 2006114815 A JP2006114815 A JP 2006114815A
Authority
JP
Japan
Prior art keywords
layer
solar cell
quantum
quantum dot
energy band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004302705A
Other languages
Japanese (ja)
Other versions
JP4905623B2 (en
Inventor
Koji Ebe
広治 江部
Yoshiaki Nakada
義昭 中田
Yasuhiko Arakawa
泰彦 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
University of Tokyo NUC
Original Assignee
Fujitsu Ltd
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, University of Tokyo NUC filed Critical Fujitsu Ltd
Priority to JP2004302705A priority Critical patent/JP4905623B2/en
Publication of JP2006114815A publication Critical patent/JP2006114815A/en
Application granted granted Critical
Publication of JP4905623B2 publication Critical patent/JP4905623B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To increase the amount of formation of carrier which contributes to a photovoltaic power in such a manner that a photodetecting layer in a solar cell can absorb a light of energy smaller than an energy band gap E0, or namely, to improve conversion efficiency. <P>SOLUTION: The solar cell is configured by a pin structure, includes a quantum dot D having a three-dimensional quantum closing action in the i layer 3 of the photodetecting layer so that the energy band structure of the quantum dot D and the barrier layer surrounding it form a type II. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光検知層中に量子ドットを形成することで高効率化した太陽電池に関する。   The present invention relates to a solar cell that is highly efficient by forming quantum dots in a light detection layer.

現在、半導体太陽電池としては、Si、GaAsなどのバルク或いは量子井戸が用いられ、その変換効率の理想限界は30〔%〕程度であって、所要の電力を得る為には、大面積にしなければならず、高コストにならざるを得ない。   Currently, bulk or quantum wells such as Si and GaAs are used as semiconductor solar cells, and the ideal limit of conversion efficiency is about 30 [%]. In order to obtain the required power, the area must be large. It must be expensive.

そこで、従来から太陽電池の効率を向上する為に種々な努力がなされていて、例えば、光検知層、即ち、活性層中に量子ドットを導入した構造のものが知られている。   Thus, various efforts have been made to improve the efficiency of solar cells. For example, a structure in which quantum dots are introduced into a light detection layer, that is, an active layer is known.

例えば、特許文献1には、pin太陽電池の活性層であるi層に於ける量子井戸中に量子ドットを形成した構造に関する発明が開示されていて、量子井戸が感応する波長光以外の波長光にも感応するようになっている。   For example, Patent Document 1 discloses an invention relating to a structure in which quantum dots are formed in a quantum well in an i layer that is an active layer of a pin solar cell, and wavelength light other than the wavelength light to which the quantum well is sensitive. It comes to be sensitive to.

然しながら、特許文献1の発明に於ける量子ドットは通常のtype I であり、量子ドットの周囲には阻止層が存在していないので、このような構成からすれば、高効率化について、さほどの期待はできないと思われる。   However, the quantum dot in the invention of Patent Document 1 is a normal type I, and there is no blocking layer around the quantum dot. Expectation is not expected.

また、特許文献2には、pin太陽電池の活性層であるi層に於ける量子ドット層を複数層にした構造に関する発明が開示されていて、量子ドット層の総数を増すことで感度を向上できるようになっている。   Patent Document 2 discloses an invention related to a structure in which a plurality of quantum dot layers in the i layer, which is an active layer of a pin solar cell, is provided, and the sensitivity is improved by increasing the total number of quantum dot layers. It can be done.

然しながら、特許文献2の発明に於ける量子ドットも通常のtype I であり、量子ドットの周囲には阻止層も存在していないので、このような構成からすれば、高効率化について、さほどの期待はできないと思われる。   However, the quantum dot in the invention of Patent Document 2 is also a normal type I, and there is no blocking layer around the quantum dot. Expectation is not expected.

更にまた、量子ドットを形成する方法や量子ドットの構造についても種々な開発がなされていて、例えば特許文献3には、高さ1〔nm〕程度の極めて薄い島を複数層重ねることで高さ5〔nm〕〜30〔nm〕程度の1個の量子ドットを形成し、その量子ドット内の組成は、薄い島自体の組成を変えたり、異種の薄い島の積層数比を変えたりして制御する発明が開示されている。   Furthermore, various developments have been made on the method of forming quantum dots and the structure of the quantum dots. For example, Patent Document 3 discloses that a plurality of extremely thin islands having a height of about 1 [nm] are stacked to form a height. One quantum dot of about 5 [nm] to 30 [nm] is formed, and the composition in the quantum dot is changed by changing the composition of the thin island itself or by changing the stacking number ratio of different thin islands. An invention to control is disclosed.

特許文献3に開示された発明に依れば、量子ドットの組成、即ち、エネルギ・バンド・ギャップを自在に制御することができ、そして、薄い島の組成や異種の薄い島の積層数比を変えることで必要とする阻止層も形成することができる。
特開2002−141531号公報 特開平8−264825号公報 特許第26969206号明細書
According to the invention disclosed in Patent Document 3, the composition of quantum dots, that is, the energy band gap can be controlled freely, and the composition of thin islands and the number ratio of different thin islands can be controlled. The required blocking layer can also be formed by changing.
JP 2002-141531 A JP-A-8-264825 Japanese Patent No. 26969206

本発明では、太陽電池に於ける光検知層がエネルギ・バンド・ギャップE0よりも小さいエネルギの光も吸収できるようにして、光起電力に寄与するキャリアの生成量を大きくする、即ち、変換効率を向上しようとする。   In the present invention, the photodetection layer in the solar cell can absorb light having energy smaller than the energy band gap E0 to increase the generation amount of carriers contributing to the photovoltaic power, that is, conversion efficiency. Try to improve.

本発明に依る太陽電池に於いては、pin構造で構成され、光検知層であるi層に3次元量子閉じ込め作用をもつ量子ドットを含み、量子ドット及びそれを囲むバリア層のエネルギ・バンド構造がtype II を成すことが基本になっている。   In the solar cell according to the present invention, an energy band structure of a quantum dot and a barrier layer surrounding the quantum dot, including a quantum dot having a pin structure and including a quantum dot having a three-dimensional quantum confinement action in an i layer as a light detection layer. Is basically type II.

前記手段を採ることに依り、pin構造の太陽電池に於ける光検知層であるi層は、エネルギ・バンド・ギャップE0よりも小さいエネルギの光も吸収することができ、光起電力に寄与するキャリアの生成量は大きくなり、変換効率は向上する。   By adopting the above means, the i layer, which is a light detection layer in a solar cell having a pin structure, can absorb light having energy smaller than the energy band gap E0, and contributes to photovoltaic power. The amount of carriers generated increases and the conversion efficiency improves.

pin構造の太陽電池に於ける光検知層、即ち、i層に量子ドットで代表される3次元量子閉じ込め効果を奏する微細構造を設ける。   A light detection layer in a pin-structure solar cell, that is, an i layer is provided with a fine structure exhibiting a three-dimensional quantum confinement effect represented by quantum dots.

図1は本発明に於ける実施例1である太陽電池の動作例を説明する為のエネルギ・バンド・ダイヤグラムを表し、D1は量子ドット領域、EV は価電子帯の上端、EC は伝導帯の下端、E0はエネルギ・バンド・ギャップ、E1 並びにE2 はエネルギ・バンド・ギャップE0よりも小さいエネルギをもつ光をそれぞれ示している。尚、エネルギE1 或いはE2 をもつ光はバルクのみでは吸収されない波長の光である。 Figure 1 represents the energy band diagrams for explaining an operation example of the solar cell is in Embodiment 1 of the present invention, D1 is the quantum dot region, E V is the upper end of the valence band, E C is conducted the lower end of the band, E0 denotes the energy band gap, E 1 and E 2 is the light with smaller energy than the energy band gap E0, respectively. The light having energy E 1 or E 2 is light having a wavelength that is not absorbed only by the bulk.

本発明の太陽電池では、光検知層中に形成する量子ドットはtype II であり、この構成にすることで変換効率は向上する。因に、従来の量子ドットをもつ太陽電池では、量子ドットは全てtype I のものを用いている。   In the solar cell of the present invention, the quantum dots formed in the light detection layer are type II, and conversion efficiency is improved by using this configuration. Incidentally, in a conventional solar cell having quantum dots, all quantum dots are of type I.

図1(A)参照
図示のエネルギ・バンド構造を示す太陽電池にエネルギE1 の光が入射して吸収され たとする。
See FIG. 1 (A). Assume that light of energy E 1 is incident on and absorbed by the solar cell having the illustrated energy band structure.

図1(B)参照
前記状態になると、正孔が量子ドット外に移動してしまうので、電子は量子ドット内 に長時間滞在することになる。
See FIG. 1B. In this state, the holes move out of the quantum dot, so that the electrons stay in the quantum dot for a long time.

図1(C)参照
量子ドット内の電子がエネルギE2 の光を吸収し、量子ドットの周囲に在るバリア層 の伝導帯に励起される結果、光起電力が発生する。
See FIG. 1C. Electrons in the quantum dot absorb light of energy E 2 and are excited by the conduction band of the barrier layer around the quantum dot, resulting in generation of photovoltaic power.

一般に、キャリアを単なる量子井戸に閉じ込める場合、即ち、1次元閉じ込めの場合には、伝導帯に在るキャリアが量子井戸中に落ち込むことが知られ、これが変換効率を低下させる一因になっている。   In general, when carriers are confined in a simple quantum well, that is, in the case of one-dimensional confinement, it is known that carriers in the conduction band fall into the quantum well, which contributes to a decrease in conversion efficiency. .

然しながら、量子ドットのような3次元閉じ込め構造の場合、フォノンボトルネックと呼ばれる量子ドット固有の現象に依って、バリア層から量子ドットに落ち込むキャリアは少なくなるので変換効率の低下は抑止される。   However, in the case of a three-dimensional confinement structure such as a quantum dot, the number of carriers that fall from the barrier layer to the quantum dot is reduced due to a phenomenon inherent to the quantum dot called a phonon bottleneck, so that a decrease in conversion efficiency is suppressed.

type II の量子ドットを用いる本発明の太陽電池の場合にも、前記フォノンボトルネックに起因する効果を享受することが可能であり、バリア層から量子ドットに落ち込むキャリアは少なく、従って、光励起されたキャリアを有効に利用することができる。   Even in the case of the solar cell of the present invention using type II quantum dots, it is possible to enjoy the effect due to the phonon bottleneck, and there are few carriers that fall into the quantum dots from the barrier layer, and thus the photoexcited The carrier can be used effectively.

図2は本発明に於ける実施例2である太陽電池の動作例を説明する為のエネルギ・バンド・ダイヤグラムを表し、図1に於いて用いた記号と同記号は同部分を示すか或いは同じ意味を持つものとし、また、(A)は本発明の場合を、そして、(B)は参考に挙げた量子井戸の場合をそれぞれ示している。   FIG. 2 shows an energy band diagram for explaining an example of the operation of the solar cell according to the second embodiment of the present invention. The same symbols as those used in FIG. It has meaning, (A) shows the case of the present invention, and (B) shows the case of the quantum well mentioned for reference.

図2(A)から明らかなように、伝導帯に在る励起キャリアは、type II の量子ドット領域D1に落下することなく飛び越えてゆくが、図2(B)の単なる量子井戸ではキャリアが落ち込んでしまう。   As is clear from FIG. 2 (A), the excited carriers in the conduction band jump over without falling into the type II quantum dot region D1, but the carrier falls in the simple quantum well of FIG. 2 (B). End up.

ところで、ひとたび励起されて伝導帯の下端、或いは、価電子帯の上端に在るキャリアは量子ドット内に落ち込まないようにすることが好ましいので、量子ドットの周辺一部にキャリア注入阻止層を形成しておくことは有効である。   By the way, it is preferable to prevent the carriers at the lower end of the conduction band or the upper end of the valence band from being excited and fall into the quantum dot, so that a carrier injection blocking layer is formed in a part of the periphery of the quantum dot. It is effective to keep it.

図3は本発明に於ける実施例3である太陽電池を説明する為のエネルギ・バンド・ダイヤグラムを表し、また、理解を容易にする為、平面で見たキャリア注入阻止層をもつ量子ドットを付記してある。尚、図1に於いて用いた記号と同記号は同部分を示すか或いは同じ意味を持つものとする。   FIG. 3 shows an energy band diagram for explaining a solar cell which is a third embodiment of the present invention, and in order to facilitate understanding, a quantum dot having a carrier injection blocking layer viewed in a plane is shown. It is added. The same symbols used in FIG. 1 indicate the same parts or have the same meaning.

図に於いて、Dは量子ドット、B1 はキャリア(この場合電子)注入阻止層、B2 はキャリア(この場合正孔)注入阻止層、Bc はキャリア注入阻止層B1 に起因する伝導帯の下端に於けるバリア、BV はキャリア注入阻止層B2 に起因する価電子帯の上端に於けるバリアをそれぞれ示している。尚、量子ドットDはp層とn層とに挟まれたi層中に存在している。 In the figure, D is a quantum dot, B 1 is a carrier (in this case, electron) injection blocking layer, B 2 is a carrier (in this case, hole) injection blocking layer, and B c is conduction caused by the carrier injection blocking layer B 1. A barrier at the lower end of the band and B V indicate a barrier at the upper end of the valence band due to the carrier injection blocking layer B 2 . The quantum dot D exists in the i layer sandwiched between the p layer and the n layer.

図から容易に知得できることであるが、キャリア注入阻止層B1 及びB2 は、量子ドットDの片側にのみ形成すれば良く、その形成方法としては、例えばGaAsx Sb1-x からなる量子ドットDの場合では、特許文献3に開示されている方法、即ち、組成を徐々に変化させつつ積層することで達成される。 As it will be readily Chitoku from the figure, the carrier injection blocking layers B 1 and B 2 may be formed on only one side of the quantum dot D, as the method of forming the same, for example, a GaAs x Sb 1-x Quantum In the case of the dot D, it is achieved by the method disclosed in Patent Document 3, that is, by laminating while gradually changing the composition.

その場合の組成例としては、
ドット組成:GaAsx Sb1-x (x=0)
母組成:GaAsx Sb1-x (x=0.5)
阻止層組成:GaAsx Sb1-x (x=1)
である。
As an example of the composition in that case,
Dot composition: GaAs x Sb 1-x (x = 0)
Mother composition: GaAs x Sb 1-x (x = 0.5)
Stopping layer composition: GaAs x Sb 1-x (x = 1)
It is.

図4は実施例3である太陽電池を動作させた場合について説明する為のエネルギ・バンド・ダイヤグラムを表し、図3に於いて用いた記号と同記号は同部分を示すか或いは同じ意味を持つものとする。   FIG. 4 shows an energy band diagram for explaining the case where the solar cell of Example 3 is operated, and the same symbols as those used in FIG. 3 indicate the same parts or have the same meanings. Shall.

図示したエネルギ・バンド・ダイヤグラムは、i層がp層とn層に挟まれていることに依って生じる電界が加わっている状態を表しているので、エネルギ・バンドは傾斜していて、量子ドットDに入り込もうとするキャリアがキャリア注入阻止層B1 或いはB2 に依るバリアBc やBV に依って跳ね返される様子が表されている。 The energy band diagram shown represents a state in which an electric field generated by the i layer sandwiched between the p layer and the n layer is applied, so that the energy band is inclined and the quantum dot A state is shown in which carriers that try to enter D are bounced back by the barriers B c and B V depending on the carrier injection blocking layer B 1 or B 2 .

図5は本発明に依る太陽電池の具体的構造を表す要部切断側面図であり、図に於いて、1は基板、2はn層、3はi層(光検知層)、Dは量子ドット、4はp層、5はp側電極、6はn側電極をそれぞれ示している。   FIG. 5 is a cutaway side view showing a specific structure of a solar cell according to the present invention. In the figure, 1 is a substrate, 2 is an n layer, 3 is an i layer (photodetection layer), and D is a quantum. Dots, 4 indicate a p-layer, 5 indicates a p-side electrode, and 6 indicates an n-side electrode.

図示の太陽電池に於ける各部分の主要データを例示すると、
(1) 基板1
材料:n−GaAs
不純物濃度:1×1018〔cm-3
(2) n層2
材料:n−GaAs
不純物濃度:1×1018〔cm-3
厚さ:100〔nm〕
(3) i層(光検知層)3
母体材料:GaAs
量子ドット:GaSb
母体材料(GaAsバリア層)の厚さ:20〔nm〕〜50〔nm〕
積層数:50層
(4) p層4
材料:p−GaAs
不純物濃度:1×1018〔cm-3
厚さ:100〔nm〕
である。
The main data of each part in the illustrated solar cell is illustrated as follows:
(1) Substrate 1
Material: n-GaAs
Impurity concentration: 1 × 10 18 [cm −3 ]
(2) n layer 2
Material: n-GaAs
Impurity concentration: 1 × 10 18 [cm −3 ]
Thickness: 100 [nm]
(3) i layer (light detection layer) 3
Base material: GaAs
Quantum dot: GaSb
Base material (GaAs barrier layer) thickness: 20 [nm] to 50 [nm]
Number of layers: 50 layers (4) p layer 4
Material: p-GaAs
Impurity concentration: 1 × 10 18 [cm −3 ]
Thickness: 100 [nm]
It is.

各層を成長させる際、固体ソースを用いたMBE(molecular beam epitaxy)法を適用し、量子ドット層であるi層3を成長させた際の成長温度は450〔℃〕〜550〔℃〕、そして、他の層の成長温度は550〔℃〕〜650〔℃〕とした。   When growing each layer, the MBE (molecular beam epitaxy) method using a solid source is applied, and the growth temperature when growing the i layer 3 which is a quantum dot layer is 450 [° C.] to 550 [° C.], and The growth temperature of the other layers was 550 [° C.] to 650 [° C.].

前記太陽電池に於ける変換効率をAM1.5の場合について計算した。この場合、GaSbからなる量子ドットDをサイズが不均一になるように成長させ、そのばらつきを波長0.94〔μm〕〜1.12〔μm〕、i層3の母体材料は前記した通りのGaAsであり、母体材料と量子ドットDとの吸収係数は充分に大きいとした。   The conversion efficiency in the solar cell was calculated for AM1.5. In this case, quantum dots D made of GaSb are grown so as to be non-uniform in size, the variation is 0.94 [μm] to 1.12 [μm], and the base material of the i layer 3 is as described above. It is assumed that the absorption coefficient of the base material and the quantum dots D is sufficiently large.

量子ドットDに於ける吸収で生成されたキャリアが他の赤外光の吸収で全てバリアの外に出たとした場合の変換効率は46〔%〕、そして、GaAsバルクでの太陽電池の変換効率は36〔%〕と計算されるので、10〔%〕の効率改善となる。   The conversion efficiency is 46 [%] when all the carriers generated by the absorption in the quantum dot D go out of the barrier due to the absorption of other infrared light, and the conversion efficiency of the solar cell in the GaAs bulk Is calculated as 36 [%], so that the efficiency is improved by 10 [%].

前記説明した各実施の形態では、太陽電池の構成材料に化合物半導体を用いたが、Si半導体に代替することも可能であり、その場合、
(1) 基板1
材料:n−Si
不純物濃度:1×1018〔cm-3
(2) n層2
材料:n−Si
不純物濃度:1×1018〔cm-3
厚さ:100〔nm〕
(3) i層(光検知層)3
量子ドット:SiGe
Siバリア層の厚さ:20〔nm〕〜50〔nm〕
積層数:50層
(4) p層4
材料:p−Si
不純物濃度:1×1018〔cm-3
厚さ:100〔nm〕
にすることができる。
In each of the embodiments described above, a compound semiconductor is used as a constituent material of the solar cell, but it can be replaced with a Si semiconductor.
(1) Substrate 1
Material: n-Si
Impurity concentration: 1 × 10 18 [cm −3 ]
(2) n layer 2
Material: n-Si
Impurity concentration: 1 × 10 18 [cm −3 ]
Thickness: 100 [nm]
(3) i layer (light detection layer) 3
Quantum dot: SiGe
Si barrier layer thickness: 20 [nm] to 50 [nm]
Number of layers: 50 layers (4) p layer 4
Material: p-Si
Impurity concentration: 1 × 10 18 [cm −3 ]
Thickness: 100 [nm]
Can be.

本発明に於いては、前記説明した実施例を含め、多くの形態で実施することができ、以下、それを付記として例示する。   In the present invention, the present invention can be implemented in many forms including the above-described embodiment, which will be exemplified below as supplementary notes.

(付記1)
pin構造で構成され、光検知層であるi層に3次元量子閉じ込め作用をもつ量子ドットを含み、量子ドット及びそれを囲むバリア層のエネルギ・バンド構造がtype II を成すこと
を特徴とする太陽電池。
(Appendix 1)
A solar cell comprising a pin structure and including a quantum dot having a three-dimensional quantum confinement action in an i layer as a light detection layer, and an energy band structure of the quantum dot and a barrier layer surrounding the quantum dot forming type II battery.

(付記2)
光検知層であるi層は、
エネルギ・バンド構造が伝導帯の下端で不連続が無いか或いは僅かであって且つ価電子帯の上端で深い量子井戸を生成し、
正孔に対しのみ3次元量子閉じ込めを行うものであること
を特徴とする(付記1)記載の太陽電池。
(Appendix 2)
The i layer, which is a light detection layer,
The energy band structure has no or few discontinuities at the bottom of the conduction band and produces a deep quantum well at the top of the valence band;
The solar cell according to (Appendix 1), which performs three-dimensional quantum confinement only for holes.

(付記3)
光検知層であるi層は、
エネルギ・バンド構造が価電子帯の上端で不連続が無いか或いは僅かであって且つ伝導帯の下端で深い量子井戸を生成し、
電子に対しのみ3次元量子閉じ込めを行うものであること
を特徴とする(付記1)記載の太陽電池。
(Appendix 3)
The i layer, which is a light detection layer,
The energy band structure is either discontinuous or slightly discontinuous at the top of the valence band and produces a deep quantum well at the bottom of the conduction band;
The solar cell according to (Appendix 1), which performs three-dimensional quantum confinement only for electrons.

(付記4)
光検知層であるi層に於ける量子ドット材料とバリア層材料とが GaAsx Sb1-x /GaAsy Sb1-y (x≠y)
の組み合わせからなること
を特徴とする(付記2)記載の太陽電池。
(Appendix 4)
The quantum dot material and the barrier layer material in the i layer which is the light detection layer are GaAs x Sb 1 -x / GaAs y Sb 1 -y (x ≠ y)
The solar cell according to (Appendix 2), characterized by comprising a combination of the following.

(付記5)
光検知層であるi層に於ける量子ドット材料とバリア層材料とが Six Ge1-x /Siy Ge1-y (x≠y)
の組み合わせからなること
を特徴とする(付記2)記載の太陽電池。
(Appendix 5)
The quantum dot material and the barrier layer material in the i layer which is the light detection layer are Si x Ge 1-x / Si y Ge 1-y (x ≠ y)
The solar cell according to (Appendix 2), characterized by comprising a combination of the following.

(付記6)
量子ドットのn層側に量子ドットへの正孔の注入を阻止するバリアとなるキャリア注入阻止層が形成されてなること
を特徴とする(付記2)記載の太陽電池。
(Appendix 6)
The solar cell according to (Appendix 2), wherein a carrier injection blocking layer serving as a barrier for blocking the injection of holes into the quantum dots is formed on the n layer side of the quantum dots.

(付記7)
量子ドットのp層側に量子ドットへの電子の注入を阻止するバリアとなるキャリア注入阻止層が形成されてなること
を特徴とする(付記3)記載の太陽電池。
(Appendix 7)
The solar cell according to (Appendix 3), wherein a carrier injection blocking layer serving as a barrier for blocking injection of electrons into the quantum dots is formed on the p layer side of the quantum dots.

(付記8)
量子ドットのサイズが不均一であること
を特徴とする(付記1)乃至(付記7)の何れか1記載の太陽電池。
(Appendix 8)
The solar cell according to any one of (Appendix 1) to (Appendix 7), wherein the size of the quantum dots is non-uniform.

本発明に於ける実施例1である太陽電池の動作例を説明する為のエネルギ・バンド・ダイヤグラムである。It is an energy band diagram for demonstrating the operation example of the solar cell which is Example 1 in this invention. 本発明に於ける実施例2である太陽電池の動作例を説明する為のエネルギ・バンド・ダイヤグラムである。It is an energy band diagram for demonstrating the operation example of the solar cell which is Example 2 in this invention. 本発明に於ける実施例3である太陽電池を説明する為のエネルギ・バンド・ダイヤグラムである。It is an energy band diagram for demonstrating the solar cell which is Example 3 in this invention. 実施例3である太陽電池を動作させた場合について説明する為のエネルギ・バンド・ダイヤグラムである。It is an energy band diagram for demonstrating the case where the solar cell which is Example 3 is operated. 本発明に依る太陽電池の具体的構造を表す要部切断側面図である。It is a principal part cutting side view showing the specific structure of the solar cell by this invention.

符号の説明Explanation of symbols

1 基板
2 n層
3 i層(光検知層)
D 量子ドット
4 p層
5 p側電極
6 n側電極
1 substrate 2 n layer 3 i layer (light detection layer)
D quantum dot 4 p layer 5 p side electrode 6 n side electrode

Claims (5)

pin構造で構成され、光検知層であるi層に3次元量子閉じ込め作用をもつ量子ドットを含み、量子ドット及びそれを囲むバリア層のエネルギ・バンド構造がtypeIIを成すこと
を特徴とする太陽電池。
A solar cell comprising a pin structure and including a quantum dot having a three-dimensional quantum confinement action in an i layer as a light detection layer, wherein the energy band structure of the quantum dot and the barrier layer surrounding the quantum dot constitutes type II .
光検知層であるi層は、
エネルギ・バンド構造が伝導帯の下端で不連続が無いか或いは僅かであって且つ価電子帯の上端で深い量子井戸を生成し、
正孔に対してのみ3次元量子閉じ込めを行うものであること
を特徴とする請求項1記載の太陽電池。
The i layer, which is a light detection layer,
The energy band structure has no or few discontinuities at the bottom of the conduction band and produces a deep quantum well at the top of the valence band;
The solar cell according to claim 1, wherein the solar cell performs three-dimensional quantum confinement only for holes.
光検知層であるi層は、
エネルギ・バンド構造が価電子帯の上端で不連続が無いか或いは僅かであって且つ伝導帯の下端で深い量子井戸を生成し、
電子に対しのみ3次元量子閉じ込めを行うものであること
を特徴とする請求項1記載の太陽電池。
The i layer, which is a light detection layer,
The energy band structure is either discontinuous or slightly discontinuous at the top of the valence band and produces a deep quantum well at the bottom of the conduction band;
The solar cell according to claim 1, wherein the solar cell performs three-dimensional quantum confinement only for electrons.
量子ドットのn層側に量子ドットへの正孔の注入を阻止するバリアとなるキャリア注入阻止層が形成されてなること
を特徴とする請求項2記載の太陽電池。
3. The solar cell according to claim 2, wherein a carrier injection blocking layer serving as a barrier for blocking the injection of holes into the quantum dots is formed on the n layer side of the quantum dots.
量子ドットのp層側に量子ドットへの電子の注入を阻止するバリアとなるキャリア注入阻止層が形成されてなること
を特徴とする請求項3記載の太陽電池。
The solar cell according to claim 3, wherein a carrier injection blocking layer serving as a barrier for blocking injection of electrons into the quantum dots is formed on the p-layer side of the quantum dots.
JP2004302705A 2004-10-18 2004-10-18 Solar cell Expired - Fee Related JP4905623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004302705A JP4905623B2 (en) 2004-10-18 2004-10-18 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004302705A JP4905623B2 (en) 2004-10-18 2004-10-18 Solar cell

Publications (2)

Publication Number Publication Date
JP2006114815A true JP2006114815A (en) 2006-04-27
JP4905623B2 JP4905623B2 (en) 2012-03-28

Family

ID=36383057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004302705A Expired - Fee Related JP4905623B2 (en) 2004-10-18 2004-10-18 Solar cell

Country Status (1)

Country Link
JP (1) JP4905623B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009049087A2 (en) * 2007-10-10 2009-04-16 The Regents Of The University Of Michigan Type ii quantum dot solar cells
JP2009520358A (en) * 2005-12-16 2009-05-21 ザ トラスティーズ オブ プリンストン ユニヴァシティ Intermediate band photosensitive device comprising quantum dots with tunnel barriers provided in an organic matrix
JP2009520357A (en) * 2005-12-16 2009-05-21 ザ トラスティーズ オブ プリンストン ユニヴァシティ Intermediate band photosensitive device comprising a plurality of quantum dots with tunnel barriers embedded in an inorganic matrix
JP2010509772A (en) * 2006-11-13 2010-03-25 ザ トラスティーズ オブ プリンストン ユニヴァシティ Intermediate-band photosensitive device with quantum dots embedded in an energy enclosure barrier
WO2010089892A1 (en) 2009-02-09 2010-08-12 トヨタ自動車株式会社 Solar cell
WO2011004446A1 (en) 2009-07-06 2011-01-13 トヨタ自動車株式会社 Photoelectric conversion element
WO2011010379A1 (en) * 2009-07-23 2011-01-27 トヨタ自動車株式会社 Photoelectric conversion element
JP2011100915A (en) * 2009-11-09 2011-05-19 Toyota Motor Corp Photoelectric conversion element
WO2012103666A1 (en) * 2011-01-31 2012-08-09 Honeywell International Inc. Quantum dot solar cells with interface layer and manufacturing method thereof
WO2013005103A1 (en) 2011-07-07 2013-01-10 Toyota Jidosha Kabushiki Kaisha Photoelectric conversion device
JP2013046000A (en) * 2011-08-26 2013-03-04 Toyota Motor Corp Quantum dot array material and photoelectric conversion element and wavelength conversion element using the same
CN103178126A (en) * 2013-04-03 2013-06-26 上海师范大学 Colloidal-quantum-dot sensitized silicon-based solar battery piece and preparation method thereof
WO2014100707A1 (en) * 2012-12-20 2014-06-26 The Trustees Of Boston College Methods and systems for controlling phonon-scattering
US8772627B2 (en) 2009-08-07 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
JP2015041706A (en) * 2013-08-22 2015-03-02 京セラ株式会社 Solar cell
JP2015141970A (en) * 2014-01-28 2015-08-03 シャープ株式会社 Light-receiving element and solar battery having light-receiving element
US9240507B2 (en) 2014-01-28 2016-01-19 Sharp Kabushiki Kaisha Intermediate band solar cell using type I and type II quantum dot superlattices
US10283656B2 (en) 2015-09-28 2019-05-07 Kyocera Corporation Photoelectric conversion device
WO2021125120A1 (en) 2019-12-18 2021-06-24 花王株式会社 Light absorption layer, method for producing same, coating liquid, photoelectric conversion element, and intermediate band solar cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285476A (en) * 1985-08-30 1987-04-18 サントル・ナシヨナル・ド・ラ・ルシエルシエ・シヤンテイフイク High speed light detection by super lattice and apparatus for the same
JPH05160429A (en) * 1991-12-09 1993-06-25 Nec Corp Infrared ray sensor
JPH07297425A (en) * 1994-04-20 1995-11-10 Oki Electric Ind Co Ltd Solar battery
JPH08264825A (en) * 1995-03-17 1996-10-11 Daido Steel Co Ltd Optical semiconductor device
JP2002203977A (en) * 2000-12-08 2002-07-19 Daimlerchrysler Ag High efficiency silicon-germanium solar cell
JP2005072192A (en) * 2003-08-22 2005-03-17 Tohoku Univ Photovoltaic device, solar cell, and method of manufacturing the device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285476A (en) * 1985-08-30 1987-04-18 サントル・ナシヨナル・ド・ラ・ルシエルシエ・シヤンテイフイク High speed light detection by super lattice and apparatus for the same
JPH05160429A (en) * 1991-12-09 1993-06-25 Nec Corp Infrared ray sensor
JPH07297425A (en) * 1994-04-20 1995-11-10 Oki Electric Ind Co Ltd Solar battery
JPH08264825A (en) * 1995-03-17 1996-10-11 Daido Steel Co Ltd Optical semiconductor device
JP2002203977A (en) * 2000-12-08 2002-07-19 Daimlerchrysler Ag High efficiency silicon-germanium solar cell
JP2005072192A (en) * 2003-08-22 2005-03-17 Tohoku Univ Photovoltaic device, solar cell, and method of manufacturing the device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520358A (en) * 2005-12-16 2009-05-21 ザ トラスティーズ オブ プリンストン ユニヴァシティ Intermediate band photosensitive device comprising quantum dots with tunnel barriers provided in an organic matrix
JP2009520357A (en) * 2005-12-16 2009-05-21 ザ トラスティーズ オブ プリンストン ユニヴァシティ Intermediate band photosensitive device comprising a plurality of quantum dots with tunnel barriers embedded in an inorganic matrix
JP2014013927A (en) * 2006-11-13 2014-01-23 Trustees Of Princeton Univ Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier
JP2010509772A (en) * 2006-11-13 2010-03-25 ザ トラスティーズ オブ プリンストン ユニヴァシティ Intermediate-band photosensitive device with quantum dots embedded in an energy enclosure barrier
US7915521B2 (en) 2007-10-10 2011-03-29 The Trustees Of Princeton University Type II quantum dot solar cells
KR20100080607A (en) * 2007-10-10 2010-07-09 더 트러스티즈 오브 프린스턴 유니버시티 Type ii quantum dot solar cells
WO2009049087A3 (en) * 2007-10-10 2010-04-15 The Regents Of The University Of Michigan Type ii quantum dot solar cells
JP2011501419A (en) * 2007-10-10 2011-01-06 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン Type II quantum dot solar cell
KR101596972B1 (en) 2007-10-10 2016-02-23 더 트러스티즈 오브 프린스턴 유니버시티 Type quantum dot solar cells
WO2009049087A2 (en) * 2007-10-10 2009-04-16 The Regents Of The University Of Michigan Type ii quantum dot solar cells
EP2395565A1 (en) * 2009-02-09 2011-12-14 Toyota Jidosha Kabushiki Kaisha Solar cell
CN102227824A (en) * 2009-02-09 2011-10-26 丰田自动车株式会社 Solar cell
JP5029764B2 (en) * 2009-02-09 2012-09-19 トヨタ自動車株式会社 Solar cell
EP2395565A4 (en) * 2009-02-09 2013-09-18 Toyota Motor Co Ltd Solar cell
WO2010089892A1 (en) 2009-02-09 2010-08-12 トヨタ自動車株式会社 Solar cell
WO2011004446A1 (en) 2009-07-06 2011-01-13 トヨタ自動車株式会社 Photoelectric conversion element
WO2011010379A1 (en) * 2009-07-23 2011-01-27 トヨタ自動車株式会社 Photoelectric conversion element
US8895840B2 (en) 2009-07-23 2014-11-25 Toyota Jidosha Kabushiki Kaisha Photoelectric conversion device
US8772627B2 (en) 2009-08-07 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
JP2011100915A (en) * 2009-11-09 2011-05-19 Toyota Motor Corp Photoelectric conversion element
WO2012103666A1 (en) * 2011-01-31 2012-08-09 Honeywell International Inc. Quantum dot solar cells with interface layer and manufacturing method thereof
WO2013005103A1 (en) 2011-07-07 2013-01-10 Toyota Jidosha Kabushiki Kaisha Photoelectric conversion device
US9795542B2 (en) 2011-07-07 2017-10-24 Toyota Jidosha Kabushiki Kaisha Photoelectric conversion device
DE112012002855B4 (en) 2011-07-07 2021-11-11 Toyota Jidosha Kabushiki Kaisha toelectric conversion device
JP2013046000A (en) * 2011-08-26 2013-03-04 Toyota Motor Corp Quantum dot array material and photoelectric conversion element and wavelength conversion element using the same
WO2014100707A1 (en) * 2012-12-20 2014-06-26 The Trustees Of Boston College Methods and systems for controlling phonon-scattering
CN103178126A (en) * 2013-04-03 2013-06-26 上海师范大学 Colloidal-quantum-dot sensitized silicon-based solar battery piece and preparation method thereof
JP2015041706A (en) * 2013-08-22 2015-03-02 京セラ株式会社 Solar cell
JP2015141970A (en) * 2014-01-28 2015-08-03 シャープ株式会社 Light-receiving element and solar battery having light-receiving element
US9240507B2 (en) 2014-01-28 2016-01-19 Sharp Kabushiki Kaisha Intermediate band solar cell using type I and type II quantum dot superlattices
US10283656B2 (en) 2015-09-28 2019-05-07 Kyocera Corporation Photoelectric conversion device
WO2021125120A1 (en) 2019-12-18 2021-06-24 花王株式会社 Light absorption layer, method for producing same, coating liquid, photoelectric conversion element, and intermediate band solar cell

Also Published As

Publication number Publication date
JP4905623B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP4905623B2 (en) Solar cell
JP3753605B2 (en) Solar cell and method for manufacturing the same
KR101596972B1 (en) Type quantum dot solar cells
JP4435748B2 (en) Infrared detector
US20090173976A1 (en) Light-Sensing Device for Multi-Spectral Imaging
JP6355085B2 (en) Photoelectric conversion element
US8895840B2 (en) Photoelectric conversion device
JP2013239690A (en) Superlattice structure, semiconductor device and semiconductor light emitting device including the superlattice structure, and method of making the superlattice structure
JP5256268B2 (en) Solar cell
JP2009026887A (en) Solar cell
US6166320A (en) Tandem solar cell
JP4791996B2 (en) Semiconductor optical device
US20160211393A1 (en) Tunnel Diode With Broken-Gap Quantum Well
JP3724272B2 (en) Solar cell
JP6474618B2 (en) Photoelectric conversion element
JP4930317B2 (en) Semiconductor optical device
JP5555602B2 (en) Solar cell
JP2010206074A (en) Semiconductor light-emitting element and semiconductor solar cell
JP3877348B2 (en) Solar cell
JP2662309B2 (en) Compound semiconductor solar cells
JP6258712B2 (en) Light receiving element and solar cell provided with light receiving element
JP6336731B2 (en) Solar cell
JPH06196808A (en) Light-emitting device
JP2011066072A (en) Solar cell
JPH09283782A (en) Solar battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110915

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4905623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees