JP2006112900A - Infrared gas analyzing method and infrared gas analyzer - Google Patents

Infrared gas analyzing method and infrared gas analyzer Download PDF

Info

Publication number
JP2006112900A
JP2006112900A JP2004299993A JP2004299993A JP2006112900A JP 2006112900 A JP2006112900 A JP 2006112900A JP 2004299993 A JP2004299993 A JP 2004299993A JP 2004299993 A JP2004299993 A JP 2004299993A JP 2006112900 A JP2006112900 A JP 2006112900A
Authority
JP
Japan
Prior art keywords
gas
infrared
concentration
detector
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004299993A
Other languages
Japanese (ja)
Inventor
Katsuhiko Araya
克彦 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004299993A priority Critical patent/JP2006112900A/en
Publication of JP2006112900A publication Critical patent/JP2006112900A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To readily correct errors with respect to the reference concentration of CO<SB>2</SB>. <P>SOLUTION: A pneumatic CO<SB>2</SB>infrared detector 1 is installed in the vicinity of the cell 8, on the side of the gas discharge port 13 of the cell 8, and a pneumatic CO<SB>2</SB>infrared detector 2 is installed on an optical rear stage. The light transmitted through the cell 8 is measured by the detector 1, while the light transmitted through the cell 8 and the first infrared detector is measured by the detector 2; and a correction factor (k) for linearizing a calibration curve of the reference gas concentration is calculated, from the ratio of the measuring results due to both the detectors and the sensitivity of a reference gas is corrected. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、化学工場や製鉄所のガス濃度に関するプロセスモニター、ボイラーや燃焼炉の燃焼ガス分析、大気汚染の監視、自動車排ガス測定などに使用され、ガス分子固有の赤外線吸収効果を利用して、ガス及び蒸気中にある特定成分の濃度を連続的に測定する非分散型赤外線ガス分析計に関し、特にVOC(ガス状有機物)濃度測定などに利用される、所謂差量法形赤外線ガス分析計に関する。   The present invention is used for process monitors relating to gas concentrations in chemical factories and steelworks, combustion gas analysis of boilers and combustion furnaces, air pollution monitoring, automobile exhaust gas measurement, etc., utilizing the infrared absorption effect inherent to gas molecules, The present invention relates to a non-dispersive infrared gas analyzer that continuously measures the concentration of a specific component in gas and vapor, and more particularly to a so-called differential method infrared gas analyzer that is used for measuring VOC (gaseous organic matter) concentration. .

2つ以上の異なる原子から成る異核分子の多くは、波長1〜20μmの赤外光を照射すると、その化学種に特有の振動および回転の運動エネルギー準位の遷移がおこり、特定の赤外線スペクトルを吸収し、内部エネルギーや体積あるいは圧力の増加など、熱力学的な変化を引き起こす。非分散型赤外線ガス分析計は、この様なガス成分の特性を利用して、その濃度を計測する機器である(特許文献1参照。)。   Many heteronuclear molecules composed of two or more different atoms undergo a transition of vibrational and rotational kinetic energy levels specific to the chemical species when irradiated with infrared light having a wavelength of 1 to 20 μm. This causes thermodynamic changes such as an increase in internal energy, volume or pressure. A non-dispersive infrared gas analyzer is a device that measures the concentration using such characteristics of gas components (see Patent Document 1).

サンプルガス中の全VOC濃度測定に、VOCを燃焼炉で燃焼させてCO2に変換した後、CO2計で測定する方法がある。このとき、燃焼前のサンプルガス中にもともとCO2が存在する場合、所謂差量法の赤外線ガス分析計を使用して測定する。
差量法とは、基準ガスと試料ガスを電磁弁等で周期的に切り換えてセルに導入し、基準ガスと試料ガス中のCO2濃度の差を測定するものである。ここで、燃焼する前のガスを基準ガス、燃焼した後のガスを試料ガスとする。両ガス中のCO2濃度の差を測定することは、全VOCが燃焼することで増加したCO2濃度を測定することになるので、サンプルガスに含まれていた全VOC濃度と等しくなる。
All VOC concentration measurement of the sample gas, after conversion to CO 2 by burning VOC in combustion furnace, there is a method of measuring in a CO 2 meter. At this time, if CO 2 originally exists in the sample gas before combustion, the measurement is performed using a so-called differential quantity infrared gas analyzer.
The difference method is a method in which a reference gas and a sample gas are periodically switched by a solenoid valve or the like and introduced into a cell, and a difference in CO 2 concentration between the reference gas and the sample gas is measured. Here, the gas before combustion is a reference gas, and the gas after combustion is a sample gas. Measuring the difference in CO 2 concentration between the two gases is equivalent to the total VOC concentration contained in the sample gas, since it is a measure of the CO 2 concentration that has increased as a result of combustion of all VOCs.

しかし通常、サンプルガスにはVOCとCO2(基準CO2と呼ぶ)が共存している。この基準CO2濃度が測定中に変動すると、赤外線吸収のLambert−Beerの法則に従い、CO2濃度とセルでの赤外線吸光量の関係の非線形性によって測定誤差を生じる。この測定誤差の一例を図4に示す。
図4はVOC濃度が一定で、基準CO2濃度を変化させたときの検出器出力変化を示したものである。基準CO2濃度が低いところでのVOC濃度は(1b−1a)であり、そのときの検出器出力は(1c−1d)となる。基準CO2濃度が高いところでのVOC濃度は(2b−2a)であり、そのときの検出器出力は(2c−2d)となる。このとき、その2点でのVOC濃度(1a−1b)と(2a−2b)は等しいにも関わらず、検出器出力は、基準CO2濃度が低い側の(1c−1d)の方が(2a−2b)よりも大きくなる。このように、基準CO2濃度によって測定誤差が生じる。
However, normally, VOC and CO 2 (referred to as reference CO 2 ) coexist in the sample gas. If the reference CO 2 concentration fluctuates during the measurement, a measurement error is caused by the nonlinearity of the relationship between the CO 2 concentration and the infrared absorption amount in the cell in accordance with the Lambert-Beer law of infrared absorption. An example of this measurement error is shown in FIG.
FIG. 4 shows the change in detector output when the VOC concentration is constant and the reference CO 2 concentration is changed. The VOC concentration where the reference CO 2 concentration is low is (1b-1a), and the detector output at that time is (1c-1d). The VOC concentration where the reference CO 2 concentration is high is (2b-2a), and the detector output at that time is (2c-2d). At this time, although the VOC concentrations (1a-1b) and (2a-2b) at the two points are equal, the detector output (1c-1d) on the side with the lower reference CO 2 concentration is ( 2a-2b). Thus, a measurement error occurs due to the reference CO 2 concentration.

低濃度のCO2を精度よく測定する場合は、試料ガスの赤外線吸収量を多くかせぐため、試料ガスを流通させるセルの長さを長くする必要がある。この場合、検出器出力の非線形の度合いが一層大きくなり、基準CO2濃度変化に対して大きな誤差を生じる。そのため、別途セル長の短い基準CO2濃度測定用CO2計を設置し、基準CO2濃度を測定して、この測定値を用いて差量法で測定したCO2濃度値の補正を行なっている。
特開平9−49797号公報
When measuring low-concentration CO 2 with high accuracy, it is necessary to increase the length of the cell through which the sample gas flows in order to increase the amount of infrared absorption of the sample gas. In this case, the non-linear degree of the detector output is further increased, and a large error is generated with respect to the change in the reference CO 2 concentration. Therefore, a reference CO 2 concentration measurement CO 2 meter with a short cell length is separately installed, the reference CO 2 concentration is measured, and the CO 2 concentration value measured by the difference method is corrected using this measured value. Yes.
Japanese Patent Laid-Open No. 9-49797

従来の赤外線ガス分析計では、基準CO2濃度変化による誤差を補正するためには、基準CO2濃度を測定するCO2計が別途必要なため、装置が大型複雑化する。
本発明は誤差補正を簡単に行なうことを目的とする。
In conventional infrared gas analyzer, in order to correct an error due to reference the CO 2 concentration changes, since CO 2 meter for measuring the reference CO 2 concentration is required separately, apparatus are large complex.
An object of the present invention is to easily perform error correction.

本発明の赤外線ガス分析方法は、基準ガスと試料ガスの濃度差を測定する差量法形赤外線ガス分析計を用いたガス分析方法において、試料ガスを通過したセルの光学的後段に測定対象成分又は同成分と吸収領域が重なるガスを封入した第1の赤外線検出器を設置して、前記セルを透過した光を測定し、出力が測定対象成分に比例又はほぼ比例する第2の赤外線検出器を設置して、前記第1の赤外線検出器を透過した光を測定し、前記両方の検出器による測定結果の比から前記基準ガス濃度の検量線を線形化する補正係数を算出し、前記基準ガスの感度補正を行なう方法である。   The infrared gas analysis method of the present invention is a gas analysis method using a differential method infrared gas analyzer that measures the concentration difference between a reference gas and a sample gas. Alternatively, a second infrared detector in which a first infrared detector filled with a gas whose absorption region overlaps with the same component is installed, the light transmitted through the cell is measured, and the output is proportional or nearly proportional to the component to be measured. And measuring the light transmitted through the first infrared detector, calculating a correction coefficient for linearizing the calibration curve of the reference gas concentration from the ratio of the measurement results by both detectors, This is a method for correcting gas sensitivity.

本発明の赤外線ガス分析装置は、試料セルと、基準ガスと試料ガスとを選択的に前記試料セルに供給する切り換え弁と、前記試料セルに赤外光を照射する光源と、前記光源からの赤外光を断続する断続手段と、測定対象成分又は同成分と吸収領域が重なるガスを封入したニューマティック型の第1の赤外線検出器と、出力が測定対象成分に比例又はほぼ比例する第2の赤外線検出器と、前記両方の検出器による測定結果の比から前記基準ガス濃度の検量線を線形化する補正係数を算出し、前記基準ガスの感度補正を行なう演算制御部とを備えている。   An infrared gas analyzer of the present invention includes a sample cell, a switching valve that selectively supplies a reference gas and a sample gas to the sample cell, a light source that irradiates the sample cell with infrared light, and a light source from the light source. An intermittent means for intermittently transmitting infrared light, a pneumatic first infrared detector filled with a measurement target component or a gas whose absorption region overlaps with the measurement target component, and a second whose output is proportional to or substantially proportional to the measurement target component And a calculation control unit for calculating a correction coefficient for linearizing the calibration curve of the reference gas concentration from the ratio of the measurement results of both detectors and correcting the sensitivity of the reference gas. .

前記第2の赤外線検出器がニューマティック型であることは本発明の装置として好ましい形態である。   It is a preferable form for the apparatus of the present invention that the second infrared detector is a pneumatic type.

従来、誤差補正を行なうためには、基準CO2濃度を測定するためのセル長の異なるCO2計が別途必要であったが、本発明では差量CO2濃度を測定する透過型ニューマティック型CO2検出器を使用したCO2計に、ニューマティック型CO2検出器を一台追加する構造変更だけでよいため、装置全体が小型で簡単になる。 Conventionally, in order to perform error correction, a separate CO 2 meter having a different cell length for measuring the reference CO 2 concentration has been separately required, but in the present invention, a transmission type pneumatic type for measuring the difference CO 2 concentration. the CO 2 meter using CO 2 detector, because the pneumatic type CO 2 detector may only structural changes to add a single, entire apparatus is simplified small.

以下に本発明による分析方法の一実施例を説明する。
図1に装置構成図の概略図を示す。
試料セル8はガス導入口12とガス排出口13をセル8の両端にそれぞれ有している。セル8のガス導入口12側には、赤外光を発する光源9が設置され、セル8のガス排出口13側のセル8に近い方にはニューマティック型CO2検出器1、光学的に遠い方にはニューマティック型CO2検出器2が設置されている。
CO2検出器Bは、CO2の吸収波長(4.25μm等)の赤外線強度を測定できる検出器であればよい。例えば、検出器Aと同様のニューマティック型CO2検出器や、オプチカルフィルタを用いて波長選択した焦電形などの半導体赤外線センサでもよい。
An embodiment of the analysis method according to the present invention will be described below.
FIG. 1 shows a schematic diagram of the apparatus configuration diagram.
The sample cell 8 has a gas inlet 12 and a gas outlet 13 at both ends of the cell 8, respectively. A light source 9 that emits infrared light is installed on the gas inlet 12 side of the cell 8, and the pneumatic CO 2 detector 1 is optically located closer to the cell 8 on the gas outlet 13 side of the cell 8. A pneumatic CO 2 detector 2 is installed in the far side.
The CO 2 detector B may be any detector that can measure the infrared intensity of the CO 2 absorption wavelength (eg, 4.25 μm). For example, it may be a pneumatic CO 2 detector similar to the detector A or a pyroelectric type semiconductor infrared sensor such as a wavelength selected using an optical filter.

サンプルガスをセル8に導入するための流路3及び流路4は、流路の途中にバルブ6及び7を有しており、セル8に導入する試料の流量を制御することができる。流路3の途中には燃焼炉5が設置され、ここでサンプルガス中のVOCを完全燃焼することができる。
CO2検出器1は、測定対象成分CO2又は同成分と吸収領域が重なるガス(以下、単にCO2ガスという)が所定の濃度で充填されており、光源9からの照射される赤外線を検出する。CO2検出器2は、検出器1と同様にCO2ガスを所定の濃度で充填しており、CO2検出器1を透過した赤外線の吸収波長を検出する。検出器2にとって検出器1はCO2ガスフィルタの役目を担っている。
The flow path 3 and the flow path 4 for introducing the sample gas into the cell 8 have valves 6 and 7 in the middle of the flow path, and the flow rate of the sample introduced into the cell 8 can be controlled. A combustion furnace 5 is installed in the middle of the flow path 3, where VOC in the sample gas can be completely burned.
The CO 2 detector 1 is filled with a predetermined concentration of a measurement target component CO 2 or a gas in which the absorption region overlaps with the measurement target component CO 2 (hereinafter simply referred to as CO 2 gas), and detects infrared rays emitted from the light source 9 To do. Similar to the detector 1, the CO 2 detector 2 is filled with CO 2 gas at a predetermined concentration, and detects the absorption wavelength of infrared rays that have passed through the CO 2 detector 1. For the detector 2, the detector 1 serves as a CO 2 gas filter.

検出器1及び2の内部は光学的に前後の2室に仕切られており、その2室にはガス成分が入れられている。光学的距離によってガスが吸収する熱量は変化するため、両室に温度差を生じ、ガスの収縮のため隔膜が変位する。この隔膜の変位による圧力変化は、コンデンサマイクロホンやフローセンサなどを介して取り出される。   The interiors of the detectors 1 and 2 are optically partitioned into two front and rear chambers, and gas components are placed in the two chambers. Since the amount of heat absorbed by the gas varies depending on the optical distance, a temperature difference occurs between the two chambers, and the diaphragm is displaced due to the contraction of the gas. The change in pressure due to the displacement of the diaphragm is taken out via a condenser microphone, a flow sensor, or the like.

図1において、サンプルガスは流路3又は4のいずれかから装置内に導入され、バルブ6又は7を介してガス導入口12から試料セル8内に供給され、ガス排出口13から外部に排出される。このとき、燃焼炉5を通過してVOCから変換されたCO2を含んだものを試料ガス11、燃焼せずにそのままセル8に導入されたものを基準ガス10とする。
基準ガス10及び試料ガス11の両方には、サンプルガス中のCO2が同じ量だけ含まれており、試料ガス11にはさらにVOCが燃焼して生じたCO2も含まれている。
In FIG. 1, the sample gas is introduced into the apparatus from either the flow path 3 or 4, supplied through the valve 6 or 7 from the gas inlet 12 into the sample cell 8, and discharged from the gas outlet 13 to the outside. Is done. At this time, a gas containing CO 2 converted from VOC through the combustion furnace 5 is referred to as a sample gas 11, and a gas introduced into the cell 8 without being burned as a reference gas 10.
Both the reference gas 10 and the sample gas 11 contain the same amount of CO 2 in the sample gas, and the sample gas 11 further contains CO 2 generated by burning VOC.

検出器1では、セル8に含まれるCO2ガスによる吸収を検出し、検出器2では、セル8、及び検出器1に含まれるCO2ガスによる吸収を検出する。
基準CO2濃度を変えて、基準ガス10を検出器1及び検出器2で検出した出力を、図2(A)に示す。
検出器2は検出器1より多くのガスを透過していることから検出感度は低くなるが、線形の度合いは基準CO2濃度に比例した直線的な線形に近づく。
検出器2の出力が線形に近いことに着目し、検出器出力を基準CO2濃度が0のときの出力を基準にして正規化したものを図2(B)に示す。
図2(B)より、検出器2の出力Bnはほぼ直線的に線形化される一方、検出器1の出力Anは非線形であることがわかる。
The detector 1 detects absorption due to the CO 2 gas contained in the cell 8, and the detector 2 detects absorption due to the CO 2 gas contained in the cell 8 and the detector 1.
FIG. 2A shows an output obtained by detecting the reference gas 10 with the detector 1 and the detector 2 while changing the reference CO 2 concentration.
Since the detector 2 transmits more gas than the detector 1, the detection sensitivity is low, but the linearity approaches a linear linearity proportional to the reference CO 2 concentration.
Focusing on the fact that the output of the detector 2 is nearly linear, FIG. 2B shows the detector output normalized with reference to the output when the reference CO 2 concentration is 0.
FIG. 2B shows that the output Bn of the detector 2 is linearized substantially linearly, while the output An of the detector 1 is non-linear.

次に図2(C)に、検出器1の出力Anと検出器2の出力Bnの出力比An/Bnと、基準CO2濃度の関係について示す。An/Bnは基準CO2濃度との関係が1対1に対応していることがわかる。
すなわち、検出器1と検出器2の出力からAn/Bnを演算することによってサンプルガス中の基準CO2濃度を知ることができる。得られた基準CO2濃度を用いて、差量法で得られたVOC濃度に相当する検出器1の出力を補正することにより、より正確にVOC濃度を測定することができる。
実際には、予め、装置に濃度の異なる数種類のCO2標準ガスを基準ガスとしたときのAn/Bnを実測する。この値を用いて、検出器1の出力が線形になるように、標準ガス毎に補正係数kを計算し、最小二乗法でAn/Bnと補正係数kの関係を図2(D)に示すように多項式等に数式化しておく。
Next, FIG. 2C shows the relationship between the output ratio An / Bn of the output An of the detector 1 and the output Bn of the detector 2 and the reference CO 2 concentration. It can be seen that An / Bn has a one-to-one relationship with the reference CO 2 concentration.
That is, by calculating An / Bn from the outputs of the detector 1 and the detector 2, the reference CO 2 concentration in the sample gas can be known. By correcting the output of the detector 1 corresponding to the VOC concentration obtained by the difference method using the obtained reference CO 2 concentration, the VOC concentration can be measured more accurately.
Actually, An / Bn is measured in advance when several kinds of CO 2 standard gases having different concentrations are used as the reference gas in the apparatus. Using this value, the correction coefficient k is calculated for each standard gas so that the output of the detector 1 is linear, and the relationship between An / Bn and the correction coefficient k is shown in FIG. As shown in FIG.

図3は、検出器1の出力に図2(D)で求めた補正係数kを乗算したときの出力を示している。この場合、CO2濃度に対して検出出力はほぼ線形になるため、基準CO2濃度の変化の影響を受けることなく試料ガス中のCO2濃度を測定することができる。
試料ガス11と標準ガス10の濃度差を求めることにより、精度良くVOC濃度を測定することができる。
FIG. 3 shows an output when the output of the detector 1 is multiplied by the correction coefficient k obtained in FIG. In this case, the detection output to the CO 2 concentration for substantially linear, it is possible to measure the CO 2 concentration of the sample gas without being affected by change in the reference CO 2 concentration.
By obtaining the concentration difference between the sample gas 11 and the standard gas 10, the VOC concentration can be accurately measured.

本実施例は、VOC濃度測定のためのCO2濃度計に関するものであるが、CO2以外でも基準ガスに対して増大したガス成分の濃度を測定する場合に利用可能である。例えば、NO2を触媒でNOに還元し、増えたNO濃度、つまりNO2濃度を測定するNO2計や、NH3とNOを等モル比で還元して、減ったNO濃度、つまりNH3濃度を測定するNH3計にも適用することができる(特許文献1参照。)。 The present embodiment relates to a CO 2 concentration meter for measuring the VOC concentration, but can be used when measuring the concentration of the gas component increased with respect to the reference gas other than CO 2 . For example, the NO 2 is reduced to NO in the catalyst, increasing the NO concentration, i.e. NO 2 meters and measuring the NO 2 concentration was reduced in an equimolar ratio NH 3 and NO, Decreased NO concentration, i.e. NH 3 It can also be applied to an NH 3 meter that measures the concentration (see Patent Document 1).

化学工場や製鉄所のガス濃度に関するプロセスモニター、ボイラーや燃焼炉の燃焼ガス分析、大気汚染の監視、自動車排ガス測定などに使用できる。   It can be used for process monitoring of gas concentration in chemical factories and steelworks, combustion gas analysis of boilers and combustion furnaces, air pollution monitoring, and automobile exhaust gas measurement.

一実施例の装置の概略構成図である。It is a schematic block diagram of the apparatus of one Example. (A)検出器による出力と基準CO2濃度の関係、(B)検出器による出力との関係にで基準CO2濃度を基準した関係、(C)検出器による出力比An/Bnと基準CO2濃度の関係、(D)補正係数kとAn/Bnの関係を示す図である。(A) Relationship between output from detector and reference CO 2 concentration, (B) Relationship based on reference CO 2 concentration based on relationship between output from detector, (C) Output ratio An / Bn by detector and reference CO 2 It is a figure which shows the relationship between 2 density | concentrations and the relationship between (D) correction coefficient k and An / Bn. 検出器出力に補正係数kをかけたものを示した図である。It is the figure which showed what applied the correction coefficient k to the detector output. 検出器1のみで出力した場合の、基準CO2濃度との関係を示した図である。In the case of outputting only detector 1 is a diagram showing a relationship between the reference CO 2 concentration.

符号の説明Explanation of symbols

1 検出器1
2 検出器2
3,4 流路
5 燃焼炉
6、7 バルブ
8 セル
9 光源
10 標準ガス
11 試料ガス
12 サンプル入り口
13 サンプル出口
14 モータ
1 Detector 1
2 Detector 2
3, 4 Flow path 5 Combustion furnace 6, 7 Valve 8 Cell 9 Light source 10 Standard gas 11 Sample gas 12 Sample inlet 13 Sample outlet 14 Motor

Claims (3)

基準ガスと試料ガスの濃度差を測定する差量法形赤外線ガス分析計を用いたガス分析方法において、
前記試料ガスを通過したセルの光学的後段に測定対象成分又は同成分と吸収領域が重なるガスを封入したニューマティック型の第1の赤外線検出器を設置して、前記セルを透過した光を測定し、
出力が測定対象成分に比例又はほぼ比例する第2の赤外線検出器を設置して、前記第1の赤外線検出器を透過した光を測定し、
前記両方の検出器による測定結果の比から前記基準ガス濃度の検量線を線形化する補正係数を算出し、
前記基準ガスの感度補正を行なう赤外線ガス分析方法。
In a gas analysis method using a differential method infrared gas analyzer that measures the concentration difference between a reference gas and a sample gas,
A pneumatic first infrared detector in which a measurement target component or a gas in which an absorption region overlaps with the component to be measured is placed in an optical subsequent stage of the cell that has passed through the sample gas, and the light transmitted through the cell is measured. And
Installing a second infrared detector whose output is proportional or nearly proportional to the component to be measured, and measuring the light transmitted through the first infrared detector;
Calculating a correction coefficient for linearizing the calibration curve of the reference gas concentration from the ratio of the measurement results by both detectors;
An infrared gas analysis method for correcting sensitivity of the reference gas.
試料セルと、
基準ガスと試料ガスとを選択的に試料セルに供給する切り換え弁と、
前記試料セルに赤外光を照射する光源と、
前記光源からの赤外光を断続する断続手段と、
測定対象成分又は同成分と吸収領域が重なるガスを封入したニューマティック型の第1の赤外線検出器と、
出力が測定対象成分に比例又はほぼ比例する第2の赤外線検出器と、
前記両方の検出器による測定結果の比から前記基準ガス濃度の検量線を線形化する補正係数を算出し、前記基準ガスの感度補正を行なう演算制御部と、
を備えた赤外線ガス分析装置。
A sample cell;
A switching valve for selectively supplying a reference gas and a sample gas to the sample cell;
A light source for irradiating the sample cell with infrared light;
Intermittent means for interrupting infrared light from the light source;
A first infrared detector of a pneumatic type enclosing a measurement target component or a gas in which an absorption region overlaps the component to be measured;
A second infrared detector whose output is proportional or nearly proportional to the component to be measured;
An arithmetic control unit for calculating a correction coefficient for linearizing a calibration curve of the reference gas concentration from a ratio of measurement results by both detectors, and performing sensitivity correction of the reference gas;
Infrared gas analyzer equipped with.
前記第2の赤外線検出器がニューマティック型である請求項2に記載の赤外線ガス分析装置。
The infrared gas analyzer according to claim 2, wherein the second infrared detector is a pneumatic type.
JP2004299993A 2004-10-14 2004-10-14 Infrared gas analyzing method and infrared gas analyzer Pending JP2006112900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004299993A JP2006112900A (en) 2004-10-14 2004-10-14 Infrared gas analyzing method and infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299993A JP2006112900A (en) 2004-10-14 2004-10-14 Infrared gas analyzing method and infrared gas analyzer

Publications (1)

Publication Number Publication Date
JP2006112900A true JP2006112900A (en) 2006-04-27

Family

ID=36381530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299993A Pending JP2006112900A (en) 2004-10-14 2004-10-14 Infrared gas analyzing method and infrared gas analyzer

Country Status (1)

Country Link
JP (1) JP2006112900A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512526A (en) * 2006-12-14 2010-04-22 エービービー アクチエンゲゼルシャフト Apparatus and method for controlling a drying process for manufacturing a semiconductor member
KR101842799B1 (en) 2016-11-11 2018-05-14 건국대학교 산학협력단 Method for Computing NDIR Correction Factors and Gas Concentration Measurement Method Using the Computed Correction Factors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512526A (en) * 2006-12-14 2010-04-22 エービービー アクチエンゲゼルシャフト Apparatus and method for controlling a drying process for manufacturing a semiconductor member
KR101842799B1 (en) 2016-11-11 2018-05-14 건국대학교 산학협력단 Method for Computing NDIR Correction Factors and Gas Concentration Measurement Method Using the Computed Correction Factors

Similar Documents

Publication Publication Date Title
EP1715338B1 (en) Exhaust gas component analyzer
JP5729285B2 (en) Combustion exhaust gas analyzer
JP6024856B2 (en) Gas analyzer
WO2011077938A1 (en) Gas analysis device
US20140338540A1 (en) Exhaust gas flowmeter and exhaust gas analyzing system
KR101460874B1 (en) Ammonia compound concentration measuring device and ammonia compound concentration measuring method
JP6651126B2 (en) Gas analyzer
JP2013130509A (en) Calibration method and calibration device for moisture concentration measurement device
CN111855596A (en) Light absorption analyzer and program recording medium for recording light absorption analyzer program
KR100897279B1 (en) NDIR gas analyzer and gas analyzing method using the same
JP4025702B2 (en) Method and apparatus for analyzing sulfur component by ultraviolet fluorescence method
US5894128A (en) Infrared type gas analyzer
KR20000029101A (en) Process and device for measuring the amount of impurities in a gas sample to be analysed
US9927357B2 (en) Process gas analyzer and method for analyzing a process gas
CA2837588A1 (en) Re-calibration of ab ndir gas sensors
JP2006284508A (en) On-vehicle exhaust gas analyzer
JP2006112900A (en) Infrared gas analyzing method and infrared gas analyzer
JP2006349639A (en) Differential infrared gas analysis system and its calibration method
JP4042638B2 (en) Infrared gas analyzer
JP3129842U (en) Volatile organic compound measuring device
WO2023218983A1 (en) Infrared gas analyzer, and infrared gas analysis method
JP4906477B2 (en) Gas analyzer and gas analysis method
JP4176535B2 (en) Infrared analyzer
JP2009058527A (en) Ndir photometer for measuring multiple components
JP4671607B2 (en) Gas component measuring device and exhaust gas discharge facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

A977 Report on retrieval

Effective date: 20090402

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090526

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006