JP4671607B2 - Gas component measuring device and exhaust gas discharge facility - Google Patents

Gas component measuring device and exhaust gas discharge facility Download PDF

Info

Publication number
JP4671607B2
JP4671607B2 JP2004012510A JP2004012510A JP4671607B2 JP 4671607 B2 JP4671607 B2 JP 4671607B2 JP 2004012510 A JP2004012510 A JP 2004012510A JP 2004012510 A JP2004012510 A JP 2004012510A JP 4671607 B2 JP4671607 B2 JP 4671607B2
Authority
JP
Japan
Prior art keywords
gas
concentration
measuring device
component
gas component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004012510A
Other languages
Japanese (ja)
Other versions
JP2005207793A (en
Inventor
馨 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2004012510A priority Critical patent/JP4671607B2/en
Publication of JP2005207793A publication Critical patent/JP2005207793A/en
Application granted granted Critical
Publication of JP4671607B2 publication Critical patent/JP4671607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、例えば排ガス中に含まれているガス成分の濃度を計測するためのガス成分計測装置および排ガス排出設備に関するものである。   The present invention relates to a gas component measuring device and an exhaust gas discharge facility for measuring the concentration of a gas component contained in, for example, exhaust gas.

近年、排ガスの規制が強くなっており、例えばごみ焼却施設などにおいても、その排ガス中のガス成分、例えば二酸化硫黄(SO)については、10ppmという規制が執られている自治体もあり、これらの規制に対処するために、当然に、排ガス中のガス成分を計測するガス成分計測装置(ガス分析装置でもある)についても、その計測精度の向上を図る必要がある。 In recent years, regulations on exhaust gas have become stronger. For example, even in incineration facilities, there are local governments that have a regulation of 10 ppm for gas components in the exhaust gas, such as sulfur dioxide (SO 2 ). In order to cope with the regulations, naturally, it is necessary to improve the measurement accuracy of a gas component measuring device (also a gas analyzer) that measures a gas component in the exhaust gas.

例えば、二酸化硫黄の濃度を計測する自動計測器としては、非特許文献1[JIS B 7981(2002)]に示されたものがある。
この非特許文献1に開示された自動計測器に係る計測レンジは、紫外線蛍光方式の場合では0〜10ppm、赤外線吸収方式および紫外線吸収方式の場合では0〜25ppm、干渉分光方式の場合では0〜35ppmとされており、またその許容誤差(誤差範囲)は最大目盛値の±2%となっている。例えば、0〜25ppmの場合では±0.5ppm、0〜10ppmの場合では±0.2ppmの許容誤差となる。
For example, as an automatic measuring instrument for measuring the concentration of sulfur dioxide, there is one disclosed in Non-Patent Document 1 [JIS B 7981 (2002)].
The measurement range related to the automatic measuring instrument disclosed in Non-Patent Document 1 is 0 to 10 ppm in the case of the ultraviolet fluorescence method, 0 to 25 ppm in the case of the infrared absorption method and the ultraviolet absorption method, and 0 to 0 in the case of the interference spectroscopy method. The allowable error (error range) is ± 2% of the maximum scale value. For example, in the case of 0 to 25 ppm, the tolerance is ± 0.5 ppm, and in the case of 0 to 10 ppm, the tolerance is ± 0.2 ppm.

そして、これら各計測器には使用条件が色々設けられているが、これらを勘案して、通常は、赤外線吸収方式のものが用いられている。この赤外線吸収方式の計測器によると、その許容誤差が±0.5ppmであり、したがって規制値が10ppmである場合には、許容誤差が±5%となる。
JIS B 7981(2002)
In addition, these measuring instruments are provided with various usage conditions. In consideration of these conditions, an infrared absorption type is usually used. According to this infrared absorption measuring instrument, the tolerance is ± 0.5 ppm. Therefore, when the regulation value is 10 ppm, the tolerance is ± 5%.
JIS B 7981 (2002)

ところで、環境問題がクローズアップされるにつれて規制値がどんどん厳しくなることが予想されるが、例えばごみ焼却プラントでは、燃焼状態が複雑で制御が難しく、燃焼制御方法の改善も日進月歩とはいえ、規制値の強化に対しては、燃焼後の工程で工夫により追従が図られている。   By the way, it is expected that the regulation value will become more severe as environmental problems are closed up.For example, in a waste incineration plant, the combustion state is complicated and difficult to control, and although improvement of the combustion control method is progressing steadily, The enhancement of the value is followed by a device in the post-combustion process.

このような状況下において、ガスクロマトグラフィは確かに精度は良いが、数分間に1度程度の計測となるため、ガス成分の変化をより詳しく知る必要がある場合には、すなわち連続的な計測ニーズに対応することができないものである。   Under these circumstances, gas chromatography is certainly accurate, but it measures only once every few minutes, so if you need to know more about changes in gas components, that is, continuous measurement needs. It can not cope with.

また、ガスクロマトグラフィ以外の分析計、すなわち上述したような紫外線蛍光方式の自動計測器において、規制値がさらに強化された場合、例えば二酸化硫黄の排出規制値が5ppm以下または1ppm以下となった場合には、許容誤差が10%または50%と非常に大きくなってしまい、使用することができなくなってしまう。   Further, in the analyzer other than gas chromatography, that is, in the ultraviolet fluorescent automatic measuring instrument as described above, when the regulation value is further strengthened, for example, when the emission regulation value of sulfur dioxide is 5 ppm or less or 1 ppm or less. The tolerance becomes so large as 10% or 50%, and it cannot be used.

これに対して、精度良く計測する計測器として、ガス濃度が排ガスに比べて、はるかに低い大気用のものがある。
この大気中の二酸化硫黄の計測器としては、JIS B 7952(1996)が知られており、連続計測可能な方式として紫外線蛍光方式が示されている。これらの方式のものは、0〜0.10ppmまたは0〜1.00ppmの範囲での計測が可能であり、指示誤差が±4%であるため、排出規制値の強化に対応可能なように思えるが、大気に比べてはるかに各種ガス成分の濃度が高い劣悪な条件下の排ガスのガス成分の分析に適用することができなかった。
On the other hand, as a measuring instrument for measuring with high accuracy, there is an instrument for the atmosphere whose gas concentration is much lower than that of exhaust gas.
JIS B 7952 (1996) is known as a measuring instrument for sulfur dioxide in the atmosphere, and an ultraviolet fluorescent method is shown as a method capable of continuous measurement. These methods can be measured in the range of 0 to 0.10 ppm or 0 to 1.00 ppm, and the indication error is ± 4%, so it seems that it can cope with the strengthening of emission regulation values. However, it could not be applied to the analysis of gas components of exhaust gas under poor conditions where the concentrations of various gas components are much higher than those of the atmosphere.

例えば、大気用の紫外線蛍光方式の計測器について、排ガスへの適用を試みたところ、一酸化窒素(NO)が干渉してノイズになることが判明し、しかも排ガス中の一酸化窒素が計測対象とする二酸化硫黄より濃度が5倍〜50倍程度高いとともに時々刻々と規制範囲内ではあるが大きく変動しているため、高精度の計測においては、致命的であることが判明した。   For example, when trying to apply an ultraviolet fluorescent measuring instrument for the atmosphere to exhaust gas, it was found that nitrogen monoxide (NO) interfered with it and became noise, and in addition, nitrogen monoxide in the exhaust gas was measured. The concentration is about 5 to 50 times higher than that of sulfur dioxide, and is constantly changing within the regulated range. However, it has been found to be fatal in high-precision measurement.

そこで、本発明は、大気用の高精度の計測器を用いて排ガス中のガス成分の濃度を計測し得るガス成分計測装置および当該計測装置を具備した排ガス排出設備を提供することを目的とする。   Then, this invention aims at providing the gas component measuring device which can measure the density | concentration of the gas component in waste gas using the high precision measuring instrument for air | atmosphere, and the waste gas discharge equipment provided with the said measuring device. .

上記課題を解決するために、本発明の請求項1に係るガス成分計測装置は、ガス導入管により導かれるとともに計測対象のガス中に含まれている所定のガス成分の濃度を紫外線蛍光方式を用いて計測するガス成分計測装置であって、
計測対象となるガス成分の濃度を計測する第1ガス濃度計測器と、
上記第1ガス濃度計測器により計測した濃度値に、他のガス成分を計測してしまうことにより発生する計測誤差が含まれるような当該他のガス成分の濃度を計測する第2ガス濃度計測器と、
この第2ガス濃度計測器により計測された他のガス成分の濃度値を入力して、上記第1ガス濃度計測器にて計測される当該他のガス成分に起因する計測誤差を、その濃度値に応じた比例係数を用いて検出する計測誤差検出部と、
この計測誤差検出部で検出された計測誤差および上記第1ガス濃度計測器にて計測された所定のガス成分の濃度値を入力して、当該所定のガス成分の濃度値から計測誤差を差し引いて、所定のガス成分の濃度値を求める濃度演算部と、
上記各ガス濃度計測器におけるゼロ校正および上記計測誤差検出部で用いられる比例係数の校正を行うための校正手段とから構成し、
且つ上記校正手段を、
排ガス導入管に一端側が接続されたガス供給管と、
このガス供給管の他端側に第1接続管を介してそれぞれ接続されるとともに所定のガス成分が充填されたガスボンベおよび他のガス成分が充填されたガスボンベと、
上記各第1接続管に接続された第2接続管を介して上記所定のガス成分、他のガス成分、および不活性ガスまたは空気を導いて所定濃度のガスに希釈するとともにこの希釈ガスを開閉弁が設けられた第3接続管を介して上記ガス供給管に供給するガス希釈器とから構成したものである。
In order to solve the above-mentioned problem, a gas component measuring apparatus according to claim 1 of the present invention uses an ultraviolet fluorescent method to determine the concentration of a predetermined gas component that is guided by a gas introduction pipe and contained in a gas to be measured. A gas component measuring device that uses and measures,
A first gas concentration measuring device for measuring the concentration of a gas component to be measured;
A second gas concentration measuring device that measures the concentration of the other gas component such that a measurement error caused by measuring another gas component is included in the concentration value measured by the first gas concentration measuring device. When,
The concentration value of the other gas component measured by the second gas concentration measuring device is inputted, and the measurement error caused by the other gas component measured by the first gas concentration measuring device is changed to the concentration value. A measurement error detection unit that detects using a proportional coefficient according to
The measurement error detected by the measurement error detector and the concentration value of the predetermined gas component measured by the first gas concentration measuring device are input, and the measurement error is subtracted from the concentration value of the predetermined gas component. A concentration calculation unit for obtaining a concentration value of a predetermined gas component;
Comprising calibration means for performing zero calibration in each gas concentration measuring instrument and calibration of the proportionality coefficient used in the measurement error detector,
And the calibration means,
A gas supply pipe having one end connected to the exhaust gas introduction pipe;
A gas cylinder that is connected to the other end of the gas supply pipe via a first connection pipe and filled with a predetermined gas component, and a gas cylinder filled with another gas component;
The predetermined gas component, other gas components, and inert gas or air are guided through the second connection pipe connected to each of the first connection pipes to dilute to a predetermined concentration gas, and the dilution gas is opened and closed. And a gas diluter that supplies the gas supply pipe via a third connection pipe provided with a valve .

また、請求項2に係るガス成分計測装置は、請求項1に記載の計測装置における第1ガス濃度計測器と第2ガス濃度計測器とを直列に接続して、これらいずれか一方のガス濃度計測器から取り出されたガスを他方のガス計測器に導くようにしたものである。   Moreover, the gas component measuring device according to claim 2 is configured such that the first gas concentration measuring device and the second gas concentration measuring device in the measuring device according to claim 1 are connected in series, and either one of these gas concentrations is measured. The gas taken out from the measuring instrument is guided to the other gas measuring instrument.

また、請求項3に係るガス成分計測装置は、請求項1または2に記載の計測装置において、計測対象のガスを排ガスとしたものである。
また、請求項4に係るガス成分計測装置は、請求項1乃至3のいずれかに記載の計測装置において、ガス濃度計測器における計測方式が紫外線蛍光方式であるとともに、計測対象のガス成分が二酸化硫黄であり且つ計測誤差を引き起こす他のガス成分が一酸化窒素であるものである。
A gas component measuring apparatus according to claim 3 is the measuring apparatus according to claim 1 or 2, wherein the gas to be measured is exhaust gas.
According to a fourth aspect of the present invention, there is provided the gas component measuring apparatus according to any one of the first to third aspects, wherein the measurement method in the gas concentration measuring instrument is an ultraviolet fluorescent method, and the gas component to be measured is a carbon dioxide. Another gas component that is sulfur and causes measurement errors is nitric oxide.

さらに、請求項5に係る排ガス排出設備は、排ガス流路と、排ガス流路から排ガスの一部を採取する排ガス採取管と、この排ガス採取管にて採取された排ガスを導き所定のガス成分の濃度を計測するガス成分計測装置とから構成するとともに、
このガス成分計測装置を、少なくとも、計測対象となるガス成分の濃度を計測する第1ガス濃度計測器と、上記第1ガス濃度計測器により計測した濃度値に、他のガス成分を計測してしまうことにより発生する計測誤差を含むような当該他のガス成分の濃度を計測する第2ガス濃度計測器と、この第2ガス濃度計測器により計測された他のガス成分の濃度値を入力して、上記第1ガス濃度計測器にて計測される当該他のガス成分の計測誤差を検出する計測誤差検出部、およびこの計測誤差検出部で検出された計測誤差および第1ガス濃度計測器にて計測された所定のガス成分の濃度値を入力して、当該所定のガス成分の濃度値から計測誤差を差し引いて、所定のガス成分の濃度値を求める濃度演算手段とから構成したものである。
Further, the exhaust gas discharge facility according to claim 5 includes an exhaust gas flow channel, an exhaust gas sampling tube for collecting a part of the exhaust gas from the exhaust gas flow channel, and a predetermined gas component of the exhaust gas collected by the exhaust gas sampling tube. Consists of a gas component measuring device that measures the concentration,
This gas component measuring device measures at least the first gas concentration measuring device that measures the concentration of the gas component to be measured and the concentration value measured by the first gas concentration measuring device to measure other gas components. A second gas concentration measuring device that measures the concentration of the other gas component that includes a measurement error caused by the error, and a concentration value of the other gas component measured by the second gas concentration measuring device. A measurement error detecting unit for detecting a measurement error of the other gas component measured by the first gas concentration measuring instrument, and a measurement error detected by the measurement error detecting unit and the first gas concentration measuring instrument. A concentration calculating means for inputting a concentration value of a predetermined gas component measured in this way and subtracting a measurement error from the concentration value of the predetermined gas component to obtain a concentration value of the predetermined gas component. .

さらに、請求項5に係る排ガス排出設備は、排ガス流路と、排ガス流路から排ガスの一部を採取する排ガス採取管と、この排ガス採取管にて採取された排ガスを導き所定のガス成分の濃度を紫外線蛍光方式を用いて計測するガス成分計測装置とから構成し、
且つこのガス成分計測装置を、
少なくとも、計測対象となるガス成分の濃度を計測する第1ガス濃度計測器と、上記第1ガス濃度計測器により計測した濃度値に、他のガス成分を計測してしまうことにより発生する計測誤差が含まれるような当該他のガス成分の濃度を計測する第2ガス濃度計測器と、この第2ガス濃度計測器により計測された他のガス成分の濃度値を入力して、上記第1ガス濃度計測器にて計測される当該他のガス成分に起因する計測誤差を検出する計測誤差検出部と、この計測誤差検出部で検出された計測誤差および上記第1ガス濃度計測器にて計測された所定のガス成分の濃度値を入力して、当該所定のガス成分の濃度値から計測誤差を差し引いて、所定のガス成分の濃度値を求める濃度演算部と、上記各ガス濃度計測器におけるゼロ校正および上記計測誤差検出部で用いられる比例係数の校正を行うための校正手段とから構成し、
且つ上記校正手段を、
排ガス導入管に一端側が接続されたガス供給管と、
このガス供給管の他端側に第1接続管を介してそれぞれ接続されるとともに所定のガス成分が充填されたガスボンベおよび他のガス成分が充填されたガスボンベと、
上記各第1接続管に接続された第2接続管を介して上記所定のガス成分、他のガス成分、および不活性ガスまたは空気を導いて所定濃度のガスに希釈するとともにこの希釈ガスを第3接続管を介して上記ガス供給管に供給するガス希釈器とから構成したものである。
Furthermore, the exhaust gas discharge facility according to claim 5 includes an exhaust gas flow path, an exhaust gas sampling pipe for collecting a part of the exhaust gas from the exhaust gas flow path, and guiding the exhaust gas collected by the exhaust gas sampling pipe for a predetermined gas component. Consists of a gas component measuring device that measures the concentration using an ultraviolet fluorescent method ,
And this gas component measuring device,
At least a first gas concentration measuring device that measures the concentration of a gas component to be measured, and a measurement error that occurs due to measuring other gas components in the concentration value measured by the first gas concentration measuring device A second gas concentration measuring device that measures the concentration of the other gas component, and the concentration value of the other gas component measured by the second gas concentration measuring device is input to input the first gas. A measurement error detector that detects a measurement error caused by the other gas component measured by the concentration measuring instrument, a measurement error detected by the measurement error detector, and the first gas concentration measuring instrument. The concentration calculation unit for inputting the concentration value of the predetermined gas component and subtracting the measurement error from the concentration value of the predetermined gas component to obtain the concentration value of the predetermined gas component, and the zero in each gas concentration measuring device Calibration and above Consist of a calibration means for calibrating the proportional coefficient used in measuring the error detection unit,
And the calibration means,
A gas supply pipe having one end connected to the exhaust gas introduction pipe;
A gas cylinder that is connected to the other end of the gas supply pipe via a first connection pipe and filled with a predetermined gas component, and a gas cylinder filled with another gas component;
The predetermined gas component, other gas components, and inert gas or air are guided through the second connection pipe connected to each first connection pipe to dilute to a predetermined concentration gas, and the diluted gas is The gas diluter is configured to be supplied to the gas supply pipe through a three connection pipe .

より具体的に説明すれば、排ガス中のSOガス成分の濃度を計測する濃度計測器が紫外線蛍光式である場合に、他のガス成分であるNOガス成分の存在の影響を大きく受ける場合に、NOガス成分による計測誤差を検出するとともに、SOの実測値からNOガスによる計測誤差を差し引くようにしたので、大気用のガス濃度計測器を用いて、SOガス濃度を所定の誤差範囲内で、すなわち高精度でもって計測することができる。 More specifically, when the concentration measuring device for measuring the concentration of the SO 2 gas component in the exhaust gas is an ultraviolet fluorescent type, it is greatly affected by the presence of the NO gas component which is another gas component. It detects a measurement error due to NO gas component. Thus subtracting the measurement error due to NO gas from the measured value of sO 2, with a gas concentration meter for the air, sO 2 gas concentration a predetermined error range Within, that is, with high accuracy.

また、2つのガス濃度計測器を直列に接続することで、並列に接続した場合に比べて、流量が個別に変化することがなくなるため、2つの計測器間の応答性のバラツキを排除することができる。   Also, by connecting two gas concentration measuring instruments in series, the flow rate will not change individually compared to the case of connecting them in parallel, eliminating the variation in responsiveness between the two measuring instruments. Can do.

請求項5に記載の構成によると、ごみ焼却炉およびその他各種プラントなどの大気と比較して劣悪なガスを排出する設備において、排ガス成分の高精度な分析が可能となり、その結果を制御、その他排ガス処理の改善に役立てることができる。   According to the configuration described in claim 5, in a facility that discharges gas inferior to the atmosphere of a garbage incinerator and other various plants, it is possible to analyze exhaust gas components with high accuracy, and control the results. It can be used to improve exhaust gas treatment.

[実施の形態]
以下、本発明の実施の形態に係るガス成分計測装置および排ガス排出設備を、図1〜図3に基づき説明する。
[Embodiment]
Hereinafter, a gas component measuring apparatus and an exhaust gas discharge facility according to an embodiment of the present invention will be described with reference to FIGS.

本実施の形態においては、ごみ焼却炉から排出される排ガス中の5ppm未満、1ppm未満程度の低濃度の二酸化硫黄の濃度を、紫外線蛍光方式を用いた計測精度の高い大気用ガス濃度計測器[例えば、JIS B 7952(1996)に規定されたガス分析器に相当するもの]を用いて計測するものとして説明する。また、この紫外線蛍光方式を用いた大気用のガス濃度計測器においては、二酸化硫黄の濃度を計測する際に、一酸化窒素により計測誤差が生じるものである。一般的に説明すれば、計測対象のガスに所定波長の光を照射して所定のガス成分を励起し、この励起したガス成分が放出する光を観測して所定ガス成分の濃度を検出するものであるが、所定波長の光により、計測対象のガス成分以外の他のガス成分についても励起する場合には、その他のガス成分についても計測されるため、誤差を含むことになる。   In the present embodiment, a low-concentration sulfur dioxide concentration of less than 5 ppm or less than 1 ppm in exhaust gas discharged from a waste incinerator is used for measuring atmospheric gas concentration with high measurement accuracy using an ultraviolet fluorescent method [ For example, it is assumed that measurement is performed using a gas analyzer defined in JIS B 7952 (1996). Further, in the atmospheric gas concentration measuring instrument using the ultraviolet fluorescence method, measurement error occurs due to nitric oxide when measuring the concentration of sulfur dioxide. Generally speaking, the gas to be measured is irradiated with light of a predetermined wavelength to excite a predetermined gas component, and the light emitted from the excited gas component is observed to detect the concentration of the predetermined gas component However, when other gas components other than the gas component to be measured are excited by light of a predetermined wavelength, the other gas components are also measured, and thus an error is included.

図1に示すように、このガス成分計測装置1は、ごみ焼却炉の炉本体にて発生した燃焼排ガス(以下、単に、排ガスという)を、大気に放出する煙突などに導くための煙道2内、すなわちバグフィルタ3などが配置された煙道2を有する排ガス排出設備4内を流れる排ガス中の二酸化硫黄(以下、SOという)の濃度を計測するものである。したがって、この排ガス排出設備4としては、少なくとも、ガス成分計測装置1と、排ガス中の塵埃を除去し得る除塵手段例えばバグフィルタ3が設けられた煙道2とから構成されていることになる。 As shown in FIG. 1, this gas component measuring apparatus 1 has a flue 2 for guiding combustion exhaust gas (hereinafter simply referred to as exhaust gas) generated in a furnace body of a waste incinerator to a chimney or the like that is released to the atmosphere. That is, the concentration of sulfur dioxide (hereinafter referred to as SO 2 ) in the exhaust gas flowing through the exhaust gas exhaust facility 4 having the flue 2 in which the bag filter 3 and the like are arranged is measured. Therefore, the exhaust gas discharge facility 4 includes at least a gas component measuring device 1 and a flue 2 provided with dust removing means such as a bag filter 3 that can remove dust in the exhaust gas.

このガス成分計測装置1は監視室に分析計盤として設置され、バグフィルタ3より下流側の煙道2の途中に接続されて当該煙道2内を流れる排ガスの一部を採取する排ガス採取手段10により採取された排ガスを排ガス供給管(例えば、数10mの長さでもって設けられている)11および排ガス導入管12を介して導き、当該排ガス中の一酸化窒素(以下、NOという)の濃度を計測(検出)するNO濃度計測器(第1ガス濃度計測器の一例)13と、このNO濃度計測器13を通過した排ガスを排ガス接続管14を介して導きSOの濃度を計測(検出)するSO濃度計測器(第2ガス濃度計測器の一例)15と、上記NO濃度計測器13およびSO濃度計測器15にて計測された各濃度を入力するとともに、排ガス中のSOの計測に際して、NOの影響による計測誤差(ノイズともいう)を除去するために、その計測誤差を求めて差し引くことにより誤差のないSO濃度を求めるSO濃度演算手段16と、上記各濃度計測器13,15におけるゼロ校正およびSO濃度演算手段16で用いられる係数k(後述する)の校正を行うための校正手段17とから構成されている。 This gas component measuring device 1 is installed in the monitoring room as an analytical instrument panel, and is connected to the middle of the flue 2 downstream from the bag filter 3 to collect a part of the exhaust gas flowing in the flue 2. The exhaust gas collected by the exhaust gas 10 is guided through an exhaust gas supply pipe (for example, provided with a length of several tens of meters) 11 and an exhaust gas introduction pipe 12, and nitrogen monoxide (hereinafter referred to as NO) in the exhaust gas An NO concentration measuring device (an example of a first gas concentration measuring device) 13 that measures (detects) the concentration, and exhaust gas that has passed through the NO concentration measuring device 13 is guided through the exhaust gas connection pipe 14 to measure the concentration of SO 2 ( (Detection) SO 2 concentration measuring device (an example of a second gas concentration measuring device) 15 and each concentration measured by the NO concentration measuring device 13 and the SO 2 concentration measuring device 15 are input, and SO in the exhaust gas is input. 2 Upon measurement, in order to remove the measure due to the influence of NO error (also referred to as noise), and SO 2 concentration calculating means 16 for obtaining the free SO 2 concentrations error by subtracting Searching for the measurement error, the respective concentration measuring instrument 13 and 15 and calibration means 17 for calibrating a coefficient k (described later) used in the SO 2 concentration calculation means 16.

また、上記排ガス供給管11の途中で且つ排ガス採取手段10に近い箇所において、水蒸気を強制的に除去するための第1水分除去装置(電子クーラ21a、ドレンポット21b、ドレンポンプ21cよりなる)21が設置され、またこの排ガス供給管11については、全体的にヒーティングが施されて水分の発生が抑制されている。上記第1水分除去装置21は、排ガスには比較的水分が多く含まれており、SOの水分への溶解による計測誤差の発生を極力抑えるために設置されている。通常は設置されていないが、低濃度の計測においては、非常に有効である。また、第1水分除去装置21は排ガス採取手段10の傍に設置され、比較的、早い段階で水分が除去される。 A first moisture removing device (comprising an electronic cooler 21a, a drain pot 21b, and a drain pump 21c) 21 for forcibly removing water vapor in the middle of the exhaust gas supply pipe 11 and close to the exhaust gas collecting means 10. The exhaust gas supply pipe 11 is heated as a whole to suppress the generation of moisture. The first moisture removing device 21 is installed in order to suppress as much as possible the generation of measurement errors due to dissolution of SO 2 in moisture, since the exhaust gas contains a relatively large amount of moisture. Although it is not usually installed, it is very effective for low concentration measurement. The first moisture removing device 21 is installed beside the exhaust gas collecting means 10 and removes moisture at a relatively early stage.

さらに、排ガス供給管11の端部に接続された分析盤側の排ガス導入管(フッソ樹脂管が用いられる)12には、排ガス中の塵埃を除去するフィルタ22と、サンプリングガス量を規定値に調整するニードルバルブ23と、サンプリングガスを吸引するガス吸引用ポンプ24と、サンプリングガス中の水分を計測器13,15が要求する規定レベルまで下げるための第2水分除去装置(電子クーラ25a、ドレンポット25b、ドレンポンプ25cよりなる)25と、サンプリングガス量を計測器13,15が要求する規定レベルまで調整するニードルバルブ26と、各計測器13,15に流れるサンプリングガス量を示す流量計27とが設けられている。   Further, an analysis panel side exhaust gas introduction pipe (a fluorine resin pipe is used) 12 connected to the end of the exhaust gas supply pipe 11 includes a filter 22 for removing dust in the exhaust gas, and a sampling gas amount to a specified value. A needle valve 23 to be adjusted, a gas suction pump 24 for sucking a sampling gas, and a second moisture removing device (electronic cooler 25a, drain) for lowering the moisture in the sampling gas to a specified level required by the measuring instruments 13 and 15 (Consisting of a pot 25b and a drain pump 25c) 25, a needle valve 26 for adjusting the amount of sampling gas to a specified level required by the measuring devices 13 and 15, and a flow meter 27 indicating the amount of sampling gas flowing through each of the measuring devices 13 and 15. And are provided.

次に、上記SO濃度演算手段16について説明する。
このSO濃度演算手段16は、上述したように、SO濃度計測器15にてSOを計測した際に、NOの存在に起因して発生した計測誤差を実測のSO濃度値から差し引くことにより正確なSO濃度値を得るもので、概略的には、NO濃度計測器13からのNO濃度値を入力するとともに当該濃度値に応じて、例えば係数kを用いて計測誤差を検出する計測誤差検出部16aと、この計測誤差検出部16aからの計測誤差および上記SO濃度計測器15からの実測のSO濃度値を入力して、実測SO濃度値から計測誤差を差し引いて、正確な(真の)SO濃度値を求める濃度演算部16bとから構成されている。
Next, the SO 2 concentration calculating means 16 will be described.
The SO 2 concentration calculating means 16, as described above, when the measurement of the SO 2 in SO 2 concentration measuring device 15 subtracts the measurement error generated due to the presence of NO from SO 2 concentration value of the measured Thus, an accurate SO 2 concentration value is obtained. Generally, the NO concentration value from the NO concentration measuring device 13 is input, and a measurement error is detected using a coefficient k, for example, according to the concentration value. The measurement error detector 16a, the measurement error from the measurement error detector 16a and the actual SO 2 concentration value from the SO 2 concentration measuring device 15 are input, and the measurement error is subtracted from the actual SO 2 concentration value. The concentration calculation unit 16b obtains an accurate (true) SO 2 concentration value.

ところで、NOの存在によるSO濃度に対する計測誤差については、予め、実験により求められる係数kを用いて求めることができる。
すなわち、実験により、NOだけの存在下でSO濃度計測器15が検出するSO濃度値とNO濃度値とが比例関係にあることが判明したため、この比例係数kを求めておくことにより、排ガス中のNO濃度から計測誤差を求めることができる。
By the way, the measurement error for the SO 2 concentration due to the presence of NO can be obtained in advance using a coefficient k obtained by experiments.
That is, since it has been found through experiments that the SO 2 concentration value detected by the SO 2 concentration measuring instrument 15 in the presence of only NO and the NO concentration value are in a proportional relationship, by determining this proportional coefficient k, A measurement error can be obtained from the NO concentration in the exhaust gas.

以下、係数kを求める方法について説明する。
この係数kは計測器ごとに固有のものとして求められ、例えば図2に示すような係数検出装置31を用いて求められる。
Hereinafter, a method for obtaining the coefficient k will be described.
The coefficient k is obtained as unique to each measuring instrument, and is obtained using, for example, a coefficient detection device 31 as shown in FIG.

この係数検出装置31は、SO標準ガスが充填されたSOガスボン32と、NO標準ガスが充填されたNOガスボンベ33と、これら両ガスボンベ32,33からSOガスおよびNOガスを導くとともに空気[大気または高純度の窒素ガスなどの計測器の誤差成分を含まない不活性ガス(ゼロガス)である]を混ぜて所定濃度に希釈するためのガス希釈器34と、このガス希釈器34にて希釈されたガスをそれぞれ直列に導き、当該希釈されたガス中のSO濃度を計測するSO濃度計測器35と、同じくガス中のNO濃度を計測するNO濃度計測器36とから構成されている。 Air with the factor detection apparatus 31 directs a SO 2 Gasubon 32 SO 2 standard gas is filled, the NO gas cylinder 33 NO standard gas is filled, the SO 2 gas and NO gas from these two gas cylinders 32 and 33 A gas diluter 34 for mixing [inert gas (zero gas) that does not include an error component of a measuring instrument such as air or high-purity nitrogen gas] and diluting to a predetermined concentration, and this gas diluter 34 directing the diluted gas in series, and SO 2 concentration meter 35 for measuring the SO 2 concentration in the diluted gas, which likewise consists of NO concentration meter 36 for measuring the NO concentration in the gas Yes.

この係数検出装置31において、NOガスボンベ33からNO標準ガスをガス希釈器34に導き大気(または不活性ガス)を混入させて希釈を行った後、SO濃度計測器35およびNO濃度計測器36に導き、それぞれにてSO濃度およびNO濃度を計測する。そして、この計測を、NOガスの濃度をガス希釈器34にて種々変化させて行い、その結果をグラフで表すと図3の実線で示す直線Aのようになる。図3から、両者の値が比例しているのが良く分かり、その直線Aの傾きが係数kの値に相当することになる。なお、図3の横軸はNOガスの濃度値(0〜10ppm)で、縦軸は計測誤差として検出されるSOガスの濃度値(0〜0.1ppm)を表している。勿論、上述したように、この係数kは計測器ごとに求められるもので、例えば図3の破線Bに示すように、計測器が異なれば、係数kの値は異なる。 In this coefficient detection device 31, after diluting the NO standard gas from the NO gas cylinder 33 to the gas diluter 34 by introducing air (or inert gas) into the gas diluter 34, the SO 2 concentration measuring device 35 and the NO concentration measuring device 36. In each case, the SO 2 concentration and the NO concentration are measured. And this measurement is performed by changing the concentration of NO gas in the gas diluter 34, and the result is represented by a graph as a straight line A shown by a solid line in FIG. FIG. 3 clearly shows that the two values are proportional to each other, and the slope of the straight line A corresponds to the value of the coefficient k. In FIG. 3, the horizontal axis represents the NO gas concentration value (0 to 10 ppm), and the vertical axis represents the SO 2 gas concentration value (0 to 0.1 ppm) detected as a measurement error. Of course, as described above, the coefficient k is obtained for each measuring instrument. For example, as shown by a broken line B in FIG. 3, the value of the coefficient k is different if the measuring instrument is different.

したがって、計測誤差検出部16aにおいては、NO濃度値に係数kを乗算することにより、計測誤差を求めることができる。なお、この計測誤差検出部16aにおいて、上述したような乗算を行う替わりに、係数kに対して、NO濃度値とこれに対応する計測誤差とをデータベース(例えば、テーブル化したもの)でもって保持させておき、NO濃度値からこれに対応する計測誤差を求めるようにしてもよい。勿論、係数kについても、種々のテーブルが用意されることになる。   Therefore, the measurement error detector 16a can obtain the measurement error by multiplying the NO concentration value by the coefficient k. In this measurement error detection unit 16a, instead of performing the above-described multiplication, the NO concentration value and the measurement error corresponding to the coefficient k are held in a database (for example, a table) for the coefficient k. Alternatively, a measurement error corresponding to the NO concentration value may be obtained. Of course, various tables are prepared for the coefficient k.

また、係数検出装置31には、SOガスボンベ32をガス希釈器34に接続しているが、このSOガスボンベ32とNOガスボンベ33とを用いてSO濃度計測器35での計測誤差を計測することにより、係数kの値がほぼ正しいことを実証することができる。 Further, the coefficient detection device 31, but the SO 2 gas cylinder 32 is connected to a gas diluter 34, measures the measurement error in the SO 2 concentration meter 35 by using the this SO 2 gas cylinder 32 and the NO gas cylinder 33 By doing so, it can be proved that the value of the coefficient k is almost correct.

そして、濃度演算部16bでは、下記(1)式に基づき、真のSOの濃度値が求められる。 Then, the concentration calculation unit 16b obtains a true SO 2 concentration value based on the following equation (1).

真のSO濃度値=実測のSO濃度値−k×実測のNO濃度値・・・(1)
さらに、上記校正手段17は、ガス吸引用ポンプ24と第2水分除去装置25との間の排ガス導入管12に一端側が接続されたガス供給管41と、このガス供給管41の他端側にそれぞれ開閉弁42(42A,42B,42C)が設けられた第1接続管43(43A,43B,43C)を介して接続されたNガスボンベ44、SO標準ガスが充填されたSOガスボンベ45およびNO標準ガスが充填されたNOガスボンベ46と、上記各第1接続管43に接続された第2接続管47(47A,47B,47C)を介してNOガスとSOガスおよびNガス(または大気)を導いて所定濃度のガスに希釈するとともにこの希釈ガスを途中に開閉弁50が設けられた第3接続管48を介して上記ガス供給管41に供給するガス希釈器49とから構成されている。
True SO 2 concentration value = actually measured SO 2 concentration value−k × actually measured NO concentration value (1)
Further, the calibration means 17 includes a gas supply pipe 41 having one end connected to the exhaust gas introduction pipe 12 between the gas suction pump 24 and the second moisture removing device 25, and the other end of the gas supply pipe 41. each on-off valve 42 (42A, 42B, 42C) first connecting pipe 43 is provided (43A, 43B, 43C) N 2 gas cylinder 44 connected via a, SO 2 SO 2 gas cylinder 45 standard gas-filled And NO gas cylinder 46 filled with NO standard gas and the second connecting pipe 47 (47A, 47B, 47C) connected to each of the first connecting pipes 43, NO gas, SO 2 gas and N 2 gas ( Or a gas diluter that supplies the diluted gas to the gas supply pipe 41 via a third connection pipe 48 provided with an on-off valve 50 in the middle. And a 9.

なお、上記排ガス採取手段10には、煙道2内に、その流れと直交する方向で挿入されたガス採取管10aが具備されるとともに、このガス採取管10aの先端部の流れの下手側(ガスが下方から上方に流れる場合には上面側である)が斜めにカットされて、排ガス中の塵埃をできるだけ取り込まないように考慮されている。   The exhaust gas sampling means 10 is provided with a gas sampling tube 10a inserted in the flue 2 in a direction perpendicular to the flow thereof, and the lower side of the flow at the tip of the gas sampling tube 10a ( When the gas flows from the lower side to the upper side, the upper side is cut obliquely so that dust in the exhaust gas is not taken in as much as possible.

また、SO濃度計測器15からの排ガスは、排ガス放出管51に導かれて、煙道に戻されるかまたは安全な場所に解放される。
次に、上記排ガス排出設備4での排ガス中のSO濃度の計測について説明する。
Further, the exhaust gas from the SO 2 concentration measuring instrument 15 is guided to the exhaust gas discharge pipe 51 and returned to the flue or released to a safe place.
Next, measurement of the SO 2 concentration in the exhaust gas in the exhaust gas discharge facility 4 will be described.

ガス吸引用ポンプ24の作動により煙道2内の排ガスが排ガス供給管11および排ガス導入管12を介してNO濃度計測器13に導かれ、ここで排ガス中のNOガスの濃度が計測された後、この排ガスはガス接続管14を介してSO濃度計測器15に導かれ、ここで、SOの濃度が計測される。 After the exhaust gas in the flue 2 is led to the NO concentration measuring device 13 through the exhaust gas supply pipe 11 and the exhaust gas introduction pipe 12 by the operation of the gas suction pump 24, the concentration of NO gas in the exhaust gas is measured here. The exhaust gas is guided to the SO 2 concentration measuring device 15 through the gas connection pipe 14, and the concentration of SO 2 is measured here.

そして、両濃度計測器13,15で計測されたNOガスおよびSOガスの実測濃度がSO濃度演算手段16に入力され、その計測誤差検出部16aで計測誤差が求められるともに、濃度演算部16bにて、上記(1)式に基づき実測濃度値から計測誤差が差し引かれて、真のSO濃度値が求められる。 The measured concentrations of NO gas and SO 2 gas measured by both concentration measuring devices 13 and 15 are input to the SO 2 concentration calculating means 16, and a measurement error is obtained by the measurement error detecting portion 16 a, and the concentration calculating portion. At 16b, the true SO 2 concentration value is obtained by subtracting the measurement error from the actually measured concentration value based on the above equation (1).

なお、SO濃度の計測時においては、第1および第2水分除去手段21,25により、計測の誤差原因となる水分が除去されるとともに、ニードルバルブ26により、各ガス濃度計測器13,15に導かれるガス量が、計測器13,15での適正値となるように調整されている。 At the time of measuring the SO 2 concentration, the first and second moisture removing means 21 and 25 remove moisture that causes measurement errors, and the needle valve 26 uses the gas concentration measuring devices 13 and 15. Is adjusted so that the amount of gas guided to the gas reaches an appropriate value in the measuring instruments 13 and 15.

また、各濃度計測器13,15での計測濃度値およびSO濃度演算手段16にて真のSO濃度を演算により求める際に使用する係数kの値が経年変化する場合があるため、これらを修正する際には校正手段17が用いられる。 Further, since the measured concentration values in the concentration measuring devices 13 and 15 and the value of the coefficient k used when calculating the true SO 2 concentration by the SO 2 concentration calculating means 16 may change over time, these values may change. When the correction is made, the calibration means 17 is used.

すなわち、まず、開閉弁42Aを開いてNガスを各濃度計測器13,15に供給することにより、それぞれゼロ校正を行う。
次に、Nガスにより配管系統の排ガスを追い出した後、係数検出装置31の箇所で説明したと同様に、ガス希釈器49において、NOガスをN標準ガス(または大気)で希釈し、SO濃度計測器15にてSO濃度を計測して係数kを求めればよい。勿論、現在使用している係数の値と異なっていれば、この新しい係数に置き替えが行われる。
That is, first, the open / close valve 42A is opened, and N 2 gas is supplied to the concentration measuring devices 13 and 15, thereby performing zero calibration.
Then, after purging the gas piping system by N 2 gas, as described in the portion of the factor detection apparatus 31, the gas diluter 49, to dilute the NO gas N 2 with a standard gas (or atmosphere), The coefficient k may be obtained by measuring the SO 2 concentration with the SO 2 concentration measuring instrument 15. Of course, if it is different from the value of the coefficient currently used, the new coefficient is replaced.

なお、SOガスボンベ45からSO標準ガスを流すことにより、SO濃度計測器15の校正も行うことができる。
このように、排ガス中のSOガス成分の濃度を計測する濃度計測器が紫外線蛍光式である場合で且つNOガス成分の存在の影響を大きく受ける場合には、NOガス成分による計測誤差を検出するとともに、実測のSO濃度値からNOガスの存在に起因する計測誤差を差し引くようにしたので、大気用のガス濃度計測器(ガス分析器)を用いて、SOガス濃度を所定の誤差範囲内で、すなわち高精度でもって計測することができる。
The SO 2 concentration measuring instrument 15 can also be calibrated by flowing SO 2 standard gas from the SO 2 gas cylinder 45.
As described above, when the concentration measuring device for measuring the concentration of the SO 2 gas component in the exhaust gas is an ultraviolet fluorescent type and greatly affected by the presence of the NO gas component, a measurement error due to the NO gas component is detected. In addition, since the measurement error due to the presence of NO gas is subtracted from the measured SO 2 concentration value, the SO 2 gas concentration is set to a predetermined error by using an atmospheric gas concentration measuring device (gas analyzer). Measurement can be performed within the range, that is, with high accuracy.

また、大気用の濃度計測器であるガス分析計は、ガス成分を検出する部屋(セルとも呼ばれる)で検出され、部屋に供給されるサンプルガス流量が多いと応答が早く、少ないと応答が遅いという特性を有している。したがって、2種類のガス分析計を使用する場合には、それぞれのセルにガスが流入してから、分析結果が出力されるまでの時間(遅れ時間と称する)も異なるわけで、パラレルにガスを入力する場合、様々な要因により、2つのガス分析計間で入力されるガスの流速が変わると、上記遅れ時間も2つの分析計間で異なることになる。精度良く分析するためには、2つのガス分析計の遅れ時間を考慮して補正しているが、パラレルな構成であれば、上記遅れ時間の変化が2つの分析計間で異なるようになるため、上述したような補正が難しくなる。   In addition, a gas analyzer, which is a concentration meter for the atmosphere, is detected in a room (also referred to as a cell) that detects gas components, and responds quickly when the flow rate of sample gas supplied to the room is large, and slow when it is small. It has the characteristic. Therefore, when two types of gas analyzers are used, the time from when the gas flows into each cell until the analysis result is output (referred to as delay time) is also different. When inputting, if the flow velocity of the gas input between the two gas analyzers changes due to various factors, the delay time also differs between the two analyzers. In order to analyze accurately, correction is performed in consideration of the delay time of the two gas analyzers. However, if the parallel configuration is used, the change in the delay time becomes different between the two analyzers. The correction as described above becomes difficult.

しかし、上述したように、両濃度計測器を直列に接続することで、流量が個別に変化することがなくなるため、補正すなわち計測誤差をより正確に行い得るというメリットがある。   However, as described above, by connecting both concentration measuring instruments in series, the flow rate does not change individually, so that there is an advantage that correction, that is, measurement error can be performed more accurately.

ところで、上記実施の形態においては、SO濃度計測器15よりもNO濃度計測器13の方を先に配置したが、逆に、SO濃度計測器15の方を、先に配置してもよい。
ところで、上記実施の形態においては、少なくとも、SOガス成分およびNOガスが含まれる燃焼排ガス中の、SOガス成分の濃度を計測する場合について説明したが、勿論、このような排ガス中のガス成分に限定されるものでもない。
Incidentally, in the above embodiment has been previously placed towards the NO concentration meter 13 than SO 2 concentration meter 15, conversely, towards the SO 2 concentration meter 15, it is placed first Good.
Incidentally, in the foregoing embodiment, at least, the combustion exhaust gas containing the SO 2 gas component and NO gas, has been described for measuring the concentration of SO 2 gas component, of course, gas such flue gas It is not limited to ingredients.

すなわち、ガス中に含まれている或るガス成分の濃度を計測する際に、同じガス中に含まれている他のガス成分の存在に影響を受ける場合においても、上述した実施の形態に係るガス濃度計測装置を適用することができる。   That is, when measuring the concentration of a certain gas component contained in a gas, even if it is affected by the presence of other gas components contained in the same gas, the embodiment described above is applied. A gas concentration measuring device can be applied.

この構成を簡単に説明すると、ガス中に含まれている所定のガス成分の濃度を計測するガス成分計測装置であって、計測対象となるガス成分の濃度を計測する第1ガス濃度計測器と、上記第1ガス濃度計測器により計測した濃度値に、他のガス成分を計測してしまうことにより発生する計測誤差を含むような当該他のガス成分の濃度を計測する第2ガス濃度計測器と、この第2ガス濃度計測器により計測された他のガス成分の濃度値を入力して、上記第1ガス濃度計測器にて計測される当該他のガス成分の計測誤差を検出する計測誤差検出部、およびこの計測誤差検出部で検出された計測誤差および第1ガス濃度計測器にて計測された所定のガス成分の濃度値を入力して、当該所定のガス成分の濃度値から計測誤差を差し引いて、所定のガス成分の濃度値を求める濃度演算部とから構成し、且つ上記第1ガス濃度計測器と第2ガス濃度計測器とを直列に接続して、これらいずれか一方のガス濃度計測器から取り出されたガスを他方のガス計測器に導くようにしたものである。   Briefly explaining this configuration, a gas component measuring device for measuring the concentration of a predetermined gas component contained in a gas, comprising: a first gas concentration measuring device for measuring the concentration of a gas component to be measured; The second gas concentration measuring instrument for measuring the concentration of the other gas component including the measurement error generated by measuring the other gas component in the concentration value measured by the first gas concentration measuring instrument. And a measurement error for detecting a measurement error of the other gas component measured by the first gas concentration meter by inputting a concentration value of the other gas component measured by the second gas concentration meter. The measurement error detected by the detection unit and the measurement error detection unit and the concentration value of the predetermined gas component measured by the first gas concentration measuring device are input, and the measurement error is calculated from the concentration value of the predetermined gas component. Subtract the specified gas A concentration calculating unit for obtaining a concentration value of the minute, and the first gas concentration measuring device and the second gas concentration measuring device are connected in series, and are taken out from any one of these gas concentration measuring devices. The gas is led to the other gas measuring instrument.

本発明の実施の形態に係るガス濃度計測装置および排ガス排出設備の概略構成を示す図である。It is a figure which shows schematic structure of the gas concentration measuring apparatus which concerns on embodiment of this invention, and waste gas discharge equipment. 同ガス濃度計測装置での係数kを求める係数検出装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the coefficient detection apparatus which calculates | requires the coefficient k in the gas concentration measuring device. 同係数検出装置にて求められたNO濃度値と、SO濃度値との関係を示すグラフである。And NO concentration value determined at the same coefficient detector is a graph showing the relationship between the SO 2 concentration value.

符号の説明Explanation of symbols

1 ガス成分計測装置
2 煙道
4 排ガス排出設備
10 排ガス採取手段
11 排ガス供給管
12 排ガス導入管
13 NO濃度計測器
15 SO濃度計測器
16 SO濃度演算手段
16a 計測誤差検出部
16b 濃度演算部
17 校正手段
DESCRIPTION OF SYMBOLS 1 Gas component measuring device 2 Flue 4 Exhaust gas discharge facility 10 Exhaust gas collection means 11 Exhaust gas supply pipe 12 Exhaust gas introduction pipe 13 NO concentration measuring device 15 SO 2 concentration measuring device 16 SO 2 concentration calculating means 16a Measurement error detecting portion 16b Concentration calculating portion 17 Calibration means

Claims (5)

ガス導入管により導かれるとともに計測対象のガス中に含まれている所定のガス成分の濃度を紫外線蛍光方式を用いて計測するガス成分計測装置であって、
計測対象となるガス成分の濃度を計測する第1ガス濃度計測器と、
上記第1ガス濃度計測器により計測した濃度値に、他のガス成分を計測してしまうことにより発生する計測誤差が含まれるような当該他のガス成分の濃度を計測する第2ガス濃度計測器と、
この第2ガス濃度計測器により計測された他のガス成分の濃度値を入力して、上記第1ガス濃度計測器にて計測される当該他のガス成分に起因する計測誤差を、その濃度値に応じた比例係数を用いて検出する計測誤差検出部と、
この計測誤差検出部で検出された計測誤差および上記第1ガス濃度計測器にて計測された所定のガス成分の濃度値を入力して、当該所定のガス成分の濃度値から計測誤差を差し引いて、所定のガス成分の濃度値を求める濃度演算部と、
上記各ガス濃度計測器におけるゼロ校正および上記計測誤差検出部で用いられる比例係数の校正を行うための校正手段とから構成し、
且つ上記校正手段を、
排ガス導入管に一端側が接続されたガス供給管と、
このガス供給管の他端側に第1接続管を介してそれぞれ接続されるとともに所定のガス成分が充填されたガスボンベおよび他のガス成分が充填されたガスボンベと、
上記各第1接続管に接続された第2接続管を介して上記所定のガス成分、他のガス成分、および不活性ガスまたは空気を導いて所定濃度のガスに希釈するとともにこの希釈ガスを第3接続管を介して上記ガス供給管に供給するガス希釈器とから構成したことを特徴とするガス成分計測装置。
A gas component measuring device that is guided by a gas introduction pipe and measures the concentration of a predetermined gas component contained in a gas to be measured using an ultraviolet fluorescent method ,
A first gas concentration measuring device for measuring the concentration of a gas component to be measured;
A second gas concentration measuring device that measures the concentration of the other gas component such that a measurement error caused by measuring another gas component is included in the concentration value measured by the first gas concentration measuring device. When,
The concentration value of the other gas component measured by the second gas concentration measuring device is inputted, and the measurement error caused by the other gas component measured by the first gas concentration measuring device is changed to the concentration value. A measurement error detection unit that detects using a proportional coefficient according to
The measurement error detected by the measurement error detector and the concentration value of the predetermined gas component measured by the first gas concentration measuring device are input, and the measurement error is subtracted from the concentration value of the predetermined gas component. A concentration calculation unit for obtaining a concentration value of a predetermined gas component;
Comprising calibration means for performing zero calibration in each gas concentration measuring instrument and a proportional coefficient used in the measurement error detector,
And the calibration means,
A gas supply pipe having one end connected to the exhaust gas introduction pipe;
A gas cylinder that is connected to the other end of the gas supply pipe via a first connection pipe and filled with a predetermined gas component, and a gas cylinder filled with another gas component;
The predetermined gas component, other gas components, and inert gas or air are guided through the second connection pipe connected to each first connection pipe to dilute to a predetermined concentration gas, and the diluted gas is A gas component measuring apparatus comprising a gas diluter that supplies the gas supply pipe via a three-connection pipe .
第1ガス濃度計測器と第2ガス濃度計測器とを直列に接続して、これらいずれか一方のガス濃度計測器から取り出されたガスを他方のガス計測器に導くようにしたことを特徴とする請求項1に記載のガス成分計測装置。   The first gas concentration measuring device and the second gas concentration measuring device are connected in series, and the gas taken out from any one of these gas concentration measuring devices is guided to the other gas measuring device. The gas component measuring device according to claim 1. 計測対象のガスが排ガスであることを特徴とする請求項1または2に記載のガス成分計測装置。   The gas component measuring device according to claim 1 or 2, wherein the gas to be measured is exhaust gas. ガス濃度計測器における計測方式が紫外線蛍光方式であるとともに、計測対象のガス成分が二酸化硫黄であり且つ計測誤差を引き起こす他のガス成分が一酸化窒素であることを特徴とする請求項1乃至3のいずれかに記載のガス成分計測装置。   The measurement method in the gas concentration measuring device is an ultraviolet fluorescent method, and the gas component to be measured is sulfur dioxide and the other gas component causing measurement error is nitrogen monoxide. The gas component measuring device according to any one of the above. 排ガス流路と、排ガス流路から排ガスの一部を採取する排ガス採取管と、この排ガス採取管にて採取された排ガスを導き所定のガス成分の濃度を紫外線蛍光方式を用いて計測するガス成分計測装置とから構成し、
且つこのガス成分計測装置を、
少なくとも、計測対象となるガス成分の濃度を計測する第1ガス濃度計測器と、上記第1ガス濃度計測器により計測した濃度値に、他のガス成分を計測してしまうことにより発生する計測誤差が含まれるような当該他のガス成分の濃度を計測する第2ガス濃度計測器と、この第2ガス濃度計測器により計測された他のガス成分の濃度値を入力して、上記第1ガス濃度計測器にて計測される当該他のガス成分に起因する計測誤差を検出する計測誤差検出部と、この計測誤差検出部で検出された計測誤差および上記第1ガス濃度計測器にて計測された所定のガス成分の濃度値を入力して、当該所定のガス成分の濃度値から計測誤差を差し引いて、所定のガス成分の濃度値を求める濃度演算部と、上記各ガス濃度計測器におけるゼロ校正および上記計測誤差検出部で用いられる比例係数の校正を行うための校正手段とから構成し、
且つ上記校正手段を、
排ガス導入管に一端側が接続されたガス供給管と、
このガス供給管の他端側に第1接続管を介してそれぞれ接続されるとともに所定のガス成分が充填されたガスボンベおよび他のガス成分が充填されたガスボンベと、
上記各第1接続管に接続された第2接続管を介して上記所定のガス成分、他のガス成分、および不活性ガスまたは空気を導いて所定濃度のガスに希釈するとともにこの希釈ガスを第3接続管を介して上記ガス供給管に供給するガス希釈器とから構成したことを特徴とする排ガス排出設備。
An exhaust gas channel, an exhaust gas sampling tube that collects part of the exhaust gas from the exhaust gas channel, and a gas component that guides the exhaust gas collected by the exhaust gas sampling tube and measures the concentration of a predetermined gas component using an ultraviolet fluorescent method It consists of a measuring device and
And this gas component measuring device,
At least a first gas concentration measuring device that measures the concentration of a gas component to be measured, and a measurement error that occurs due to measuring other gas components in the concentration value measured by the first gas concentration measuring device. A second gas concentration measuring device that measures the concentration of the other gas component, and the concentration value of the other gas component measured by the second gas concentration measuring device is input to input the first gas. A measurement error detector that detects a measurement error caused by the other gas component measured by the concentration measuring instrument, a measurement error detected by the measurement error detector, and the first gas concentration measuring instrument. The concentration calculation unit for inputting the concentration value of the predetermined gas component and subtracting the measurement error from the concentration value of the predetermined gas component to obtain the concentration value of the predetermined gas component, and the zero in each gas concentration measuring instrument Calibration and above Consist of a calibration means for calibrating the proportional coefficient used in measuring the error detection unit,
And the calibration means,
A gas supply pipe having one end connected to the exhaust gas introduction pipe;
A gas cylinder that is connected to the other end of the gas supply pipe via a first connection pipe and filled with a predetermined gas component, and a gas cylinder filled with another gas component;
The predetermined gas component, other gas components, and inert gas or air are guided through the second connection pipe connected to each first connection pipe to dilute to a predetermined concentration gas, An exhaust gas discharge facility comprising a gas diluter that supplies the gas supply pipe through a three-connection pipe .
JP2004012510A 2004-01-21 2004-01-21 Gas component measuring device and exhaust gas discharge facility Expired - Fee Related JP4671607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004012510A JP4671607B2 (en) 2004-01-21 2004-01-21 Gas component measuring device and exhaust gas discharge facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004012510A JP4671607B2 (en) 2004-01-21 2004-01-21 Gas component measuring device and exhaust gas discharge facility

Publications (2)

Publication Number Publication Date
JP2005207793A JP2005207793A (en) 2005-08-04
JP4671607B2 true JP4671607B2 (en) 2011-04-20

Family

ID=34898855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004012510A Expired - Fee Related JP4671607B2 (en) 2004-01-21 2004-01-21 Gas component measuring device and exhaust gas discharge facility

Country Status (1)

Country Link
JP (1) JP4671607B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020204438A (en) * 2019-06-18 2020-12-24 東京瓦斯株式会社 Combustion system and measurement device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050203A (en) * 2001-08-03 2003-02-21 Nissan Motor Co Ltd Gas analyzing device of non-dispersive infrared absorption type, and its analyzing method
JP2005062013A (en) * 2003-08-13 2005-03-10 Horiba Ltd Analysis method and analysis device for sulfur component by ultraviolet fluorescence method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT390840B (en) * 1983-06-08 1990-07-10 Avl Verbrennungskraft Messtech METHOD FOR FLUORIMETRICALLY DETERMINING THE CONCENTRATION OF SUBSTANCES CONTAINING A SUBSTANCE AND ARRANGEMENT FOR CARRYING OUT THIS METHOD
JPH0763683A (en) * 1993-08-27 1995-03-10 Shimadzu Corp Fluorescence analyzer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050203A (en) * 2001-08-03 2003-02-21 Nissan Motor Co Ltd Gas analyzing device of non-dispersive infrared absorption type, and its analyzing method
JP2005062013A (en) * 2003-08-13 2005-03-10 Horiba Ltd Analysis method and analysis device for sulfur component by ultraviolet fluorescence method

Also Published As

Publication number Publication date
JP2005207793A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
EP1693665B1 (en) Method and apparatus for trace gas detection
CN104568836B (en) Low-concentration and multi-component gas detection method based on integration of multiple spectrum technologies
US7454950B2 (en) Vehicle exhaust gas analyzer
JP6561587B2 (en) Analytical apparatus and exhaust gas treatment system
CN102980870B (en) High-precision micro-flow infrared gas sensor and measurement method thereof
CN102183468A (en) Interference correction and concentration inversion method of multi-component gas analysis
US20080282764A1 (en) Calibration checking for continuous emissions monitoring system
CN103149171A (en) Combustion exhaust analysis device
CN107271365A (en) A kind of device of on-line determination the escaping of ammonia in situ
JP6093607B2 (en) Exhaust gas analyzer
de Krom et al. Comparability of calibration strategies for measuring mercury concentrations in gas emission sources and the atmosphere
KR20000029101A (en) Process and device for measuring the amount of impurities in a gas sample to be analysed
Gamboa et al. System for performance evaluation and calibration of low-cost gas sensors applied to air quality monitoring
KR100910871B1 (en) Method and apparatus for measuring water contained in the chimney gas
KR101030931B1 (en) Measuring apparatus of hydrochloride among a continuous auto-measuring system for exhaust gas of chimney and measuring method for exhaust gas using the same
JP4671607B2 (en) Gas component measuring device and exhaust gas discharge facility
CN104406932B (en) The determination of uv absorption method of stationary source waste gas sulfur dioxide
JP2008261865A (en) Instrument for measuring volatile organic compound
JP2007327830A (en) Investigation method for soil pollution
KR20130029868A (en) Continuous water vapor content measurement system of stack gas emissions
KR20220162723A (en) Method and aerosol measuring device for determining the source dependent particle size distribution of an aerosol
JP2004138467A (en) Ultraviolet absorption type measuring instrument and method for treating measurement specimen
CN207096084U (en) A kind of device of on-line determination the escaping of ammonia in situ
No METHOD 15-DETERMINATION OF HYDROGEN SULFIDE, CARBONYL SULFIDE, AND CARBON DISULFIDE EMISSIONS FROM STATIONARY SOURCES
Senior Batch Methods for Mercury Monitoring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R151 Written notification of patent or utility model registration

Ref document number: 4671607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees