JP2006112507A - Double layer fluororesin tube and method of manufacturing the same - Google Patents

Double layer fluororesin tube and method of manufacturing the same Download PDF

Info

Publication number
JP2006112507A
JP2006112507A JP2004299808A JP2004299808A JP2006112507A JP 2006112507 A JP2006112507 A JP 2006112507A JP 2004299808 A JP2004299808 A JP 2004299808A JP 2004299808 A JP2004299808 A JP 2004299808A JP 2006112507 A JP2006112507 A JP 2006112507A
Authority
JP
Japan
Prior art keywords
tube
layer side
side tube
fluororesin
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004299808A
Other languages
Japanese (ja)
Inventor
Tadahiro Omi
忠弘 大見
Akinobu Teramoto
章伸 寺本
Kengo Iwahara
健吾 岩原
Shohei Yoshida
昌平 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nichias Corp
Original Assignee
Tohoku University NUC
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nichias Corp filed Critical Tohoku University NUC
Priority to JP2004299808A priority Critical patent/JP2006112507A/en
Publication of JP2006112507A publication Critical patent/JP2006112507A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide, at low cost, a double layer fluororesin tube formed by firmly joining an inner layer side tube with excellent corrosive resistance and chemical resistance to an outer layer tube with excellent gas impermeability and allowing less transmission of gas. <P>SOLUTION: This double layer fluororesin tube comprises the inner layer tube formed of PFA, FEP, or ETFE and the outer layer tube formed of PVDF. The inner layer tube is welded to the outer layer tube. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、共にフッ素樹脂からなるチューブを2層に積層してなるフッ素樹脂2層チューブ及びその製造法に関する。   The present invention relates to a fluororesin two-layer tube formed by laminating tubes made of fluororesin in two layers and a method for producing the same.

半導体製造装置や液晶製造装置等では、半導体ウエハはガラス基板の処理のために機能水や各種薬液が多く使用されており、これら液体の輸送のために、耐食性や耐薬品性等に優れるテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−エチレン共重合体(ETFE)等のフッ素樹脂製の配管(チューブ)が一般に使用されている。   In semiconductor manufacturing equipment, liquid crystal manufacturing equipment, etc., semiconductor wafers often use functional water and various chemical solutions for processing glass substrates. Tetrafluoro, which has excellent corrosion resistance and chemical resistance, is used for transporting these liquids. Pipes (tubes) made of fluororesin such as ethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-ethylene copolymer (ETFE) are generally used. in use.

しかし、上記のフッ素樹脂チューブは、ガスの透過を完全に防止できず、例えば、塩酸の輸送ラインでは、塩素ガスが透過して本来の処理ができなくなるおそれがあり、更には透過した塩素ガスが周囲の機器を腐食するおそれもある。また、機能水についても、例えば、水素添加水は水素濃度を調整しているため、水素透過により水素濃度が変動し、純水でも溶存酸素濃度の変動が起こる。   However, the above fluororesin tube cannot completely prevent the permeation of gas. For example, in the hydrochloric acid transport line, there is a possibility that chlorine gas permeates and the original treatment cannot be performed, and further, the permeated chlorine gas does not pass. It may corrode surrounding equipment. As for functional water, for example, hydrogen concentration of hydrogenated water is adjusted, so that the hydrogen concentration varies due to hydrogen permeation, and the dissolved oxygen concentration also varies with pure water.

このようなガスの透過を解決するために、耐食性や耐薬品性に優れるPFA、PTFE、FEPからなる内層側チューブと、ポリフッ化ビニリデン(PVDF)等のガスの透過を防ぐ効果の高い樹脂からなる外層側チューブとを積層した2層構造のチューブも提案されている。しかし、PFA、PTFE、FEP、PVDFは非粘着性のため他の材料との接合が非常に困難であるため、通常は、内層側チューブの外表面を改質したり、粗面化して、接着剤やプライマー層を介して外層側チューブを接合している(例えば、特許文献1及び特許文献2参照)。また、官能基を有する有機化合物を含む不活性ガス雰囲気中で放電処理することにより、接着剤やプライマー層を介さずに接合したフッ素樹脂2層チューブも知られている(例えば、特許文献3参照)。   In order to solve such gas permeation, it is made of an inner layer side tube made of PFA, PTFE, FEP having excellent corrosion resistance and chemical resistance, and a resin having a high effect of preventing gas permeation such as polyvinylidene fluoride (PVDF). A tube having a two-layer structure in which an outer layer side tube is laminated has also been proposed. However, since PFA, PTFE, FEP, and PVDF are non-sticky and are very difficult to join with other materials, the outer surface of the inner layer side tube is usually modified or roughened for adhesion. The outer layer side tube is joined via an agent or a primer layer (see, for example, Patent Document 1 and Patent Document 2). There is also known a fluororesin two-layer tube that is bonded without an adhesive or a primer layer by performing a discharge treatment in an inert gas atmosphere containing an organic compound having a functional group (see, for example, Patent Document 3). ).

特公平2−54848号公報Japanese Examined Patent Publication No. 2-54848 特公昭59−51421号公報Japanese Patent Publication No.59-51421 特開平5−318553号公報JP-A-5-318553

しかし、従来のフッ素樹脂2層チューブは、接合強度が必ずしも十分とはいえず、配管の際に曲げられたりすると、内層側チューブと外層側チューブとの接合面に隙間が生じ、この隙間に内層側チューブを透過したガスが滞留して接着剤やプライマー層を劣化させて徐々に隙間がチューブ長手方向に延びるように形成され、最終的にこの隙間を通じてガス漏れを起こすようなる。また、フッ素素樹脂同士の接着強度は得にくい。   However, the conventional fluororesin two-layer tube does not necessarily have a sufficient bonding strength, and if it is bent during piping, a gap is formed in the bonding surface between the inner layer side tube and the outer layer side tube, and the inner layer is formed in this gap. The gas that has permeated through the side tube stays and deteriorates the adhesive and the primer layer so that the gap gradually extends in the longitudinal direction of the tube, and finally gas leaks through the gap. Moreover, it is difficult to obtain an adhesive strength between fluorine resins.

また、表面改質方法も、コロナ放電処理やグロー放電処理、プラズマ放電処理、スパッタリング処理などによる放電処理が主流であり、処理装置が大規模で、処理コストも高いものとなっている。   In addition, as the surface modification method, a corona discharge treatment, a glow discharge treatment, a plasma discharge treatment, a sputtering treatment or the like is the mainstream, and the treatment apparatus is large-scale and the treatment cost is high.

本発明はこのような状況に鑑みてなされたものであり、耐食性や耐薬品性に優れる内層側チューブと、ガス非透過性に優れる外層側チューブとが強固に接合され、ガス透過の少ないフッ素樹脂2層チューブを安価に提供することを目的とする。   The present invention has been made in view of such a situation, and an inner layer side tube excellent in corrosion resistance and chemical resistance and an outer layer side tube excellent in gas non-permeability are firmly joined, and a fluororesin having less gas permeation. It aims at providing a two-layer tube cheaply.

本発明は上記の目的を達成するために、下記のフッ素樹脂2層チューブ及びその製造方法を提供する。
(1)PFA、FEPまたはETFEからなる内層側チューブと、PVDFからなる外層側チューブとからなる2層チューブであって、前記内層側チューブと前記外層側チューブとが溶着されていることを特徴とするフッ素樹脂2層チューブ。
(2)前記内層側チューブと前記外層側チューブとの溶着強度が3N/cm以上であることを特徴とする上記(1)記載のフッ素樹脂2層チューブ。
(3)前記外層側チューブの厚さが10μm〜0.6mmであることを特徴とする上記(1)または(2)記載のフッ素樹脂2層チューブ。
(4)前記内層側チューブの外表面が親水化処理されていることを特徴とする上記(1)〜(3)の何れか1項に記載のフッ素樹脂2層チューブ。
(5)PFA、FEPまたはテトラフルオロエチレン−エチレン共重合体からなる内層側チューブの外表面に親水化処理を施し、加熱処理した後、前記内層側チューブをコアとしてPVDFにより押出し被覆した後、所定圧力で圧着させることを特徴とするフッ素樹脂2層チューブの製造方法。
(6)前記加熱処理を、160〜180℃で7〜10分間行うことを特徴とする上記(5)記載のフッ素樹脂2層チューブの製造方法。
In order to achieve the above object, the present invention provides the following fluororesin two-layer tube and a method for producing the same.
(1) A two-layer tube comprising an inner layer side tube made of PFA, FEP or ETFE and an outer layer side tube made of PVDF, wherein the inner layer side tube and the outer layer side tube are welded. Fluororesin two-layer tube.
(2) The fluororesin two-layer tube according to (1) above, wherein the welding strength between the inner layer side tube and the outer layer side tube is 3 N / cm or more.
(3) The fluororesin two-layer tube according to (1) or (2), wherein the outer layer side tube has a thickness of 10 μm to 0.6 mm.
(4) The fluororesin two-layer tube according to any one of (1) to (3), wherein an outer surface of the inner layer side tube is subjected to a hydrophilic treatment.
(5) The outer surface of the inner layer side tube made of PFA, FEP or tetrafluoroethylene-ethylene copolymer is subjected to a hydrophilic treatment, heat-treated, and then extruded and coated with PVDF using the inner layer side tube as a core. A method for producing a fluororesin two-layer tube, wherein the pressure-bonding is performed by pressure.
(6) The method for producing a fluororesin two-layer tube according to (5), wherein the heat treatment is performed at 160 to 180 ° C. for 7 to 10 minutes.

本発明によれば、耐食性や耐薬品性に優れるPFA、PTFE、FEPからなる内層側チューブと、ガス非透過性に優れるPVDFからなる外層側チューブとが強固に接合され、ガス漏れの無いフッ素樹脂2層チューブが提供される。また、製造方法においても、一般的な電線の被覆層を形成する押出し被覆法に親水化処理を付加するだけでよく、低コストである。   According to the present invention, a fluororesin in which an inner layer side tube made of PFA, PTFE, FEP excellent in corrosion resistance and chemical resistance and an outer layer side tube made of PVDF excellent in gas non-permeability are firmly joined and have no gas leakage. A two-layer tube is provided. Also in the manufacturing method, it is only necessary to add a hydrophilic treatment to the extrusion coating method for forming a general electric wire coating layer, and the cost is low.

以下、本発明に関して詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のフッ素樹脂2層チューブは、内層側チューブを耐食性や耐薬品性に優れるPFA、PTFEまたはFEP製とし、外層側チューブをガス非透過性に優れるPVDF製とする。これは個別には、従来から半導体製造装置等の液送ラインに使用されており、本発明でもこれら各チューブを用いる。   In the fluororesin two-layer tube of the present invention, the inner layer side tube is made of PFA, PTFE or FEP having excellent corrosion resistance and chemical resistance, and the outer layer side tube is made of PVDF having excellent gas non-permeability. Each of these tubes has been conventionally used in a liquid feed line of a semiconductor manufacturing apparatus or the like, and these tubes are also used in the present invention.

そして、本発明では上記の内層側チューブと外層側チューブとを強固に接合するために、以下の工程を行い、フッ素樹脂2層チューブを作製する。先ず、内層側チューブの外表面に親水化処理を施す。親水化の程度は、水の接触角が70°程度になることが好ましく、このような親水化を実現できる方法を選択する。   And in this invention, in order to join said inner layer side tube and outer layer side tube firmly, the following processes are performed and a fluororesin two layer tube is produced. First, the outer surface of the inner layer side tube is subjected to a hydrophilic treatment. The degree of hydrophilization is preferably such that the contact angle of water is about 70 °, and a method capable of realizing such hydrophilization is selected.

具体的には、親水化方法としては、金属ナトリウムと、ナフタレンと、THFとの混合溶液に内層側チューブを浸漬した後、メタノール洗浄してナフタレンを除去し、水洗によりフッ化ナトリウムを除去する方法が適当である。   Specifically, as a hydrophilization method, after immersing the inner layer side tube in a mixed solution of metallic sodium, naphthalene, and THF, the naphthalene is removed by washing with methanol, and sodium fluoride is removed by washing with water. Is appropriate.

親水化処理後、内層側チューブをコアとし、その外表面に直接、外層側チューブ材料であるPVDFを押出し被覆する。この被覆時において、接合高度を高めるためには、内層側チューブと、ノズルから押出されて内層側チューブと接するPVDFとの温度ができるだけ一致していることが好ましく、PVDFの押出し温度を考慮すると、前記温度は140〜160℃が好ましく、そのためには内層側チューブをノズルに送り込まれる前に160〜180℃に加熱する。但し、後述する実施例にも示すように、加熱時間が短いと十分な接合強度が得られず、加熱時間が長いと気泡等が発生して外観不良を起こすようになる。そこで、本発明では、被覆前に、親水化処理した内層側チューブを160〜180℃で7〜10分間加熱を行う。   After the hydrophilic treatment, the inner layer side tube is used as a core, and PVDF which is the outer layer side tube material is extruded and coated directly on the outer surface thereof. At the time of this coating, in order to increase the joining height, it is preferable that the temperature of the inner layer side tube and the PVDF extruded from the nozzle and in contact with the inner layer side tube match as much as possible, considering the extrusion temperature of PVDF, The temperature is preferably 140 to 160 ° C. For that purpose, the inner layer side tube is heated to 160 to 180 ° C. before being fed into the nozzle. However, as shown in the examples described later, when the heating time is short, sufficient bonding strength cannot be obtained, and when the heating time is long, bubbles and the like are generated, resulting in poor appearance. Therefore, in the present invention, the inner layer side tube subjected to the hydrophilic treatment is heated at 160 to 180 ° C. for 7 to 10 minutes before coating.

尚、上記の押出し被覆は、電線の外皮(シース)を形成するときに広く行われており、一般的な電線用被覆装置を転用することができる。   In addition, said extrusion coating is performed widely when forming the outer sheath (sheath) of an electric wire, and a general electric wire coating | coated apparatus can be diverted.

次いで、PVDF被覆チューブを圧着ブロックに挿通して内層側チューブと外層側チューブとを圧着させ、同時に外径制御を行う。このときの圧力は0.05〜0.3MPaが適当であり、更に圧着ブロックを加熱することが好ましい。   Next, the PVDF-coated tube is inserted into the crimping block to crimp the inner layer side tube and the outer layer side tube, and the outer diameter is controlled at the same time. The pressure at this time is suitably 0.05 to 0.3 MPa, and it is preferable to heat the pressure-bonding block.

そして、空冷して本発明のフッ素樹脂2層チューブが得られる。尚、外層側チューブの厚さは、十分なガス非透過性を確保するにはより厚い方が好ましいが、フッ素樹脂2層チューブ全体としての柔軟性や成形性等を勘案すると、10μm〜0.6mmとすることが好ましい。   And it cools by air and the fluororesin two-layer tube of this invention is obtained. The outer layer side tube is preferably thicker in order to ensure sufficient gas impermeability, but considering the flexibility and formability of the entire fluororesin two-layer tube, it is 10 μm to 0. 6 mm is preferable.

このようにして得られる本発明のフッ素樹脂2層チューブでは、内層側チューブと外層側チューブとの間に3N/cm以上という高い接合強度が得られる。   In the fluororesin two-layer tube of the present invention thus obtained, a high bonding strength of 3 N / cm or more is obtained between the inner layer side tube and the outer layer side tube.

<試験−1>
内径4.35mmで外径6.35mmのPFA製チューブを、金属ナトリウム、ナフタレン及びTHFからなる溶液に浸漬し、メタノール洗浄及び水洗して親水化処理した。親水化の度合いを示す水の接触角を測定したところ、65℃であった。
<Test-1>
A PFA tube having an inner diameter of 4.35 mm and an outer diameter of 6.35 mm was dipped in a solution composed of metallic sodium, naphthalene and THF, and washed with methanol and washed with water to make it hydrophilic. It was 65 degreeC when the contact angle of water which shows the degree of hydrophilization was measured.

次いで、親水化処理したPFA製チューブをコアとし、PVDFを押出し被覆した。この押出し被覆において、ノズルの直前に加熱炉を配置し、親水化処理したPFA製チューブを180℃で、表1に示す時間加熱した後、同一条件でPVDFを押出し被覆した。また、チューブの引取速度は0.7m/secとし、PVDFによる被覆量は、外層側チューブの厚さとして0.4mmとなるようにした。その後、圧着ブロックに挿通して0.1MPaにて圧着し、室温まで冷却してサンプルとした。   Subsequently, the PDF tube subjected to the hydrophilic treatment was used as a core, and PVDF was extrusion coated. In this extrusion coating, a heating furnace was placed immediately before the nozzle, and the hydrophilic PFA tube was heated at 180 ° C. for the time shown in Table 1, and then the PVDF was extrusion coated under the same conditions. The tube take-up speed was 0.7 m / sec, and the coating amount with PVDF was 0.4 mm as the thickness of the outer layer side tube. Thereafter, the sample was inserted into a pressure-bonding block, pressure-bonded at 0.1 MPa, and cooled to room temperature to obtain a sample.

また、比較のために、親水化処理を行わずに、上記と同様の加熱処理及び押出し被覆を行い、サンプルを作製した。   For comparison, a sample was prepared by performing the same heat treatment and extrusion coating as described above without performing a hydrophilic treatment.

そして、各サンプルについて、曲げ半径50mmにて湾曲した後、湾曲部をチューブカッタにて切断し、切断面を観察して内層側チューブと外層側チューブとの間の隙間の有無を確認し、更に90°ピール試験により剥離強度を測定した。即ち、図1に模式的に示すように、サンプルを約3mm幅に縦にカットしてテンシロン万能試験機にセットし、外層側チューブBの先端を内層側チューブAに対して垂直方向(矢印P)に引張り、引き剥がしに要する力を測定した。結果を表1に併記する。   For each sample, after bending at a bending radius of 50 mm, the curved portion is cut with a tube cutter, the cut surface is observed to confirm the presence or absence of a gap between the inner layer side tube and the outer layer side tube, The peel strength was measured by a 90 ° peel test. That is, as schematically shown in FIG. 1, the sample is vertically cut to about 3 mm width and set on a Tensilon universal testing machine, and the tip of the outer layer side tube B is perpendicular to the inner layer side tube A (arrow P). ) And the force required for peeling was measured. The results are also shown in Table 1.

<試験−2>
肉厚0.6mmのPFA製チューブを試験−1と同様にして親水化処理し、10分間加熱してPVDFを0.4mmの厚さに被覆してサンプルを作製した。また、肉厚0.6mmのPFA製チューブに親水化処理することなくPVDFを0.4mmの厚さに被覆してサンプルを作製した。更に、比較のために、肉厚1mmのPFA製チューブを用意した。 そして、図2に示す装置に、各サンプルから切り出した50mのチューブを装着して純水を循環させ、チューブの入り口側の酸素濃度と出口側の酸素濃度とを測定し、その濃度差から次式により酸素透過量を算出し、透過係数に換算した。結果を表2に示す。
酸素透過量(grams/24hr)=(溶存ガス濃度(g/l)×チューブ内容積(l))/チューブ内滞留時間(24hr)
酸素透過係数(grams・mil/100in2・24hr・atm)=(酸素透過量(grams/24hr)×チューブ肉厚(mil))/(チューブ表面積(100in)×ガス差圧(atm))
<Test-2>
A PFA tube having a thickness of 0.6 mm was hydrophilized in the same manner as in Test-1, heated for 10 minutes, and coated with PVDF to a thickness of 0.4 mm to prepare a sample. Further, a PFA tube having a thickness of 0.6 mm was coated with PVDF to a thickness of 0.4 mm without subjecting it to a hydrophilic treatment. For comparison, a PFA tube having a wall thickness of 1 mm was prepared. Then, a 50-meter tube cut out from each sample is attached to the apparatus shown in FIG. 2 to circulate pure water, and the oxygen concentration on the inlet side and the oxygen concentration on the outlet side of the tube are measured. The amount of oxygen permeation was calculated from the equation and converted to a permeation coefficient. The results are shown in Table 2.
Oxygen permeation rate (grams / 24hr) = (dissolved gas concentration (g / l) x tube volume (l)) / tube residence time (24hr)
Oxygen transmission coefficient (grams · mil / 100in 2 · 24hr · atm) = (Oxygen transmission rate (grams / 24hr) × tube wall thickness (mil)) / (tube surface area (100in 2 ) × gas differential pressure (atm))

Figure 2006112507
Figure 2006112507

Figure 2006112507
Figure 2006112507

表1に示すように、親水化処理を行い、更に180℃で7〜10分加熱処理した後に押出し被覆することで、内層側チューブと外層側チューブとが強固に接合されることがわかる。また、表2に示すように、ガス非透過性にも優れる。   As shown in Table 1, it can be seen that the inner layer side tube and the outer layer side tube are firmly joined by carrying out a hydrophilic treatment, followed by heat treatment at 180 ° C. for 7 to 10 minutes and then extrusion coating. Moreover, as shown in Table 2, it is excellent also in gas non-permeability.

剥離強度の測定方法を説明するための模式図である。It is a schematic diagram for demonstrating the measuring method of peeling strength. 酸素透過量の測定方法を説明するための模式図である。It is a schematic diagram for demonstrating the measuring method of oxygen permeation amount.

Claims (6)

テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)またはテトラフルオロエチレン−エチレン共重合体(ETFE)からなる内層側チューブと、ポリフッ化ビニリデン(PVDF)からなる外層側チューブとからなる2層チューブであって、前記内層側チューブと前記外層側チューブとが溶着されていることを特徴とするフッ素樹脂2層チューブ。   An inner-layer side tube made of tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP) or tetrafluoroethylene-ethylene copolymer (ETFE), and polyvinylidene fluoride. A fluororesin two-layer tube, which is a two-layer tube comprising an outer layer side tube made of (PVDF), wherein the inner layer side tube and the outer layer side tube are welded. 前記内層側チューブと前記外層側チューブとの溶着強度が3N/cm以上であることを特徴とする請求項1記載のフッ素樹脂2層チューブ。   The fluororesin two-layer tube according to claim 1, wherein a welding strength between the inner layer side tube and the outer layer side tube is 3 N / cm or more. 前記外層側チューブの厚さが10μm〜0.6mmであることを特徴とする請求項1または2記載のフッ素樹脂2層チューブ。   The fluororesin two-layer tube according to claim 1 or 2, wherein the outer layer side tube has a thickness of 10 µm to 0.6 mm. 前記内層側チューブの外表面が親水化処理されていることを特徴とする請求項1〜3の何れか1項に記載のフッ素樹脂2層チューブ。   The fluororesin bilayer tube according to any one of claims 1 to 3, wherein the outer surface of the inner layer side tube is subjected to a hydrophilic treatment. テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)またはテトラフルオロエチレン−エチレン共重合体(ETFE)からなる内層側チューブの外表面に親水化処理を施し、加熱処理した後、前記内層側チューブをコアとしてポリフッ化ビニリデン(PVDF)により押出し被覆した後、所定圧力で圧着させることを特徴とするフッ素樹脂2層チューブの製造方法。   The outer surface of the inner layer side tube made of tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP) or tetrafluoroethylene-ethylene copolymer (ETFE) is hydrophilic on the outer surface. A method for producing a fluororesin two-layer tube, characterized by subjecting to heat treatment and heat treatment, followed by extrusion coating with polyvinylidene fluoride (PVDF) using the inner-layer side tube as a core, followed by pressure bonding with a predetermined pressure. 前記加熱処理を、160〜180℃で7〜10分間行うことを特徴とする請求項5記載のフッ素樹脂2層チューブの製造方法。   The said heat processing are performed for 7 to 10 minutes at 160-180 degreeC, The manufacturing method of the fluororesin two-layer tube of Claim 5 characterized by the above-mentioned.
JP2004299808A 2004-10-14 2004-10-14 Double layer fluororesin tube and method of manufacturing the same Pending JP2006112507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004299808A JP2006112507A (en) 2004-10-14 2004-10-14 Double layer fluororesin tube and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299808A JP2006112507A (en) 2004-10-14 2004-10-14 Double layer fluororesin tube and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2006112507A true JP2006112507A (en) 2006-04-27

Family

ID=36381189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299808A Pending JP2006112507A (en) 2004-10-14 2004-10-14 Double layer fluororesin tube and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2006112507A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292292A (en) * 2006-03-29 2007-11-08 Tohoku Univ Resin pipe
JP2008085263A (en) * 2006-09-29 2008-04-10 Tohoku Univ Film applying device and film applying method
EP2082871A1 (en) 2007-12-28 2009-07-29 National University Corporation Tohoku University Resin pipe
JP2010234576A (en) * 2009-03-30 2010-10-21 Kurita Water Ind Ltd Multilayer tube
WO2012077760A1 (en) * 2010-12-09 2012-06-14 ダイキン工業株式会社 Multilayered tube, and method for producing multilayered tube
US8562320B2 (en) 2007-03-28 2013-10-22 National University Corporation Tohoku University Resin molding device
KR20160113977A (en) * 2015-03-23 2016-10-04 도쿄엘렉트론가부시키가이샤 Thermal processing apparatus
JP2020155735A (en) * 2019-03-22 2020-09-24 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145139A (en) * 1990-10-05 1992-05-19 Bridgestone Corp Surface-treating method of fluorine based member and method for bonding fluorine based member
JPH05125202A (en) * 1991-04-12 1993-05-21 Bridgestone Corp Production of rubber-based composite material
WO2003089514A2 (en) * 2002-04-18 2003-10-30 3M Innovative Properties Company Fluoropolymer blends and multilayer articles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145139A (en) * 1990-10-05 1992-05-19 Bridgestone Corp Surface-treating method of fluorine based member and method for bonding fluorine based member
JPH05125202A (en) * 1991-04-12 1993-05-21 Bridgestone Corp Production of rubber-based composite material
WO2003089514A2 (en) * 2002-04-18 2003-10-30 3M Innovative Properties Company Fluoropolymer blends and multilayer articles

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292292A (en) * 2006-03-29 2007-11-08 Tohoku Univ Resin pipe
JP2008085263A (en) * 2006-09-29 2008-04-10 Tohoku Univ Film applying device and film applying method
US8562320B2 (en) 2007-03-28 2013-10-22 National University Corporation Tohoku University Resin molding device
EP2082871A1 (en) 2007-12-28 2009-07-29 National University Corporation Tohoku University Resin pipe
JP2010234576A (en) * 2009-03-30 2010-10-21 Kurita Water Ind Ltd Multilayer tube
JP2012136020A (en) * 2010-12-09 2012-07-19 Daikin Industries Ltd Multilayered tube, and method for producing the same
WO2012077760A1 (en) * 2010-12-09 2012-06-14 ダイキン工業株式会社 Multilayered tube, and method for producing multilayered tube
KR20160113977A (en) * 2015-03-23 2016-10-04 도쿄엘렉트론가부시키가이샤 Thermal processing apparatus
JP2016181563A (en) * 2015-03-23 2016-10-13 東京エレクトロン株式会社 Heat treatment device
KR102105225B1 (en) * 2015-03-23 2020-04-27 도쿄엘렉트론가부시키가이샤 Thermal processing apparatus
JP2020155735A (en) * 2019-03-22 2020-09-24 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
WO2020195533A1 (en) * 2019-03-22 2020-10-01 株式会社Screenホールディングス Substrate processing device and substrate processing method
TWI750603B (en) * 2019-03-22 2021-12-21 日商斯庫林集團股份有限公司 Substrate processing apparatus and substrate processing method
JP7278822B2 (en) 2019-03-22 2023-05-22 株式会社Screenホールディングス SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD

Similar Documents

Publication Publication Date Title
EP1497112B2 (en) Fluoropolymer articles
JP2006112507A (en) Double layer fluororesin tube and method of manufacturing the same
JP4993188B2 (en) Resin piping
JP6378576B2 (en) Metal laminate and manufacturing method thereof
JP5049078B2 (en) Multilayer tube
KR20080029885A (en) Multilayer tube
TWI485060B (en) Resin pipe
JP2006130909A (en) Piping member made of multi-layer coated propylene resin
US20040058112A1 (en) Method for making tubular articles
JP4816639B2 (en) Chlorotrifluoroethylene copolymer-containing laminate and method for producing the same
JP5625251B2 (en) Multilayer pipe
JPWO2019065084A1 (en) Processed graphite laminate, its manufacturing method and laser cutting equipment for processed graphite laminate
JP2009007050A (en) Long life fluororesin lining tank and its manufacturing process
JP3955643B2 (en) Composite tube with great flexibility
WO2007119745A1 (en) Feeder for drug solution or ultrapurified water, board treating system, board treating device or board treating method
JPH05245988A (en) Fuel transfer tube
JP3593985B2 (en) LAMINATE AND ITS MANUFACTURING METHOD
JP2009083288A (en) Resin tube and its manufacturing method
JPH04133732A (en) Double-layer tube
JPH08118546A (en) Laminate and manufacture thereof
JP2021181222A (en) Heat-resistant buffer sheet, and heating-pressurizing method
JP2024025141A (en) multilayer tube
JP2018063940A (en) Electrolyte structure, and method for manufacturing the same
JPH06285988A (en) Manufacture of laminate
JP2006070106A (en) Long-size primerless tube

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005