WO2012077760A1 - Multilayered tube, and method for producing multilayered tube - Google Patents
Multilayered tube, and method for producing multilayered tube Download PDFInfo
- Publication number
- WO2012077760A1 WO2012077760A1 PCT/JP2011/078464 JP2011078464W WO2012077760A1 WO 2012077760 A1 WO2012077760 A1 WO 2012077760A1 JP 2011078464 W JP2011078464 W JP 2011078464W WO 2012077760 A1 WO2012077760 A1 WO 2012077760A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core wire
- tube
- ptfe
- porous
- layer
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 47
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 100
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 100
- -1 polytetrafluoroethylene Polymers 0.000 claims abstract description 32
- 239000012528 membrane Substances 0.000 claims description 36
- 238000010438 heat treatment Methods 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 24
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims description 20
- 239000011248 coating agent Substances 0.000 claims description 14
- 238000000576 coating method Methods 0.000 claims description 14
- 238000004804 winding Methods 0.000 claims description 12
- 229920000642 polymer Polymers 0.000 claims description 9
- 239000000126 substance Substances 0.000 abstract description 6
- 239000011347 resin Substances 0.000 abstract description 3
- 229920005989 resin Polymers 0.000 abstract description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 abstract 1
- 229910052731 fluorine Inorganic materials 0.000 abstract 1
- 239000011737 fluorine Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 93
- 239000011162 core material Substances 0.000 description 76
- 229910001220 stainless steel Inorganic materials 0.000 description 11
- 229920001577 copolymer Polymers 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 125000000962 organic group Chemical group 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229920006361 Polyflon Polymers 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- KHXKESCWFMPTFT-UHFFFAOYSA-N 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2-trifluoroethenoxy)propane Chemical compound FC(F)=C(F)OC(F)(F)C(F)(F)C(F)(F)F KHXKESCWFMPTFT-UHFFFAOYSA-N 0.000 description 2
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 125000005009 perfluoropropyl group Chemical group FC(C(C(F)(F)F)(F)F)(F)* 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 2
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 2
- 229920002620 polyvinyl fluoride Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- RRZIJNVZMJUGTK-UHFFFAOYSA-N 1,1,2-trifluoro-2-(1,2,2-trifluoroethenoxy)ethene Chemical compound FC(F)=C(F)OC(F)=C(F)F RRZIJNVZMJUGTK-UHFFFAOYSA-N 0.000 description 1
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical group FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 1
- CNPVJWYWYZMPDS-UHFFFAOYSA-N 2-methyldecane Chemical compound CCCCCCCCC(C)C CNPVJWYWYZMPDS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920006367 Neoflon Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 206010061592 cardiac fibrillation Diseases 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 230000002600 fibrillogenic effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000005003 perfluorobutyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- 125000005004 perfluoroethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000005005 perfluorohexyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- 125000005008 perfluoropentyl group Chemical group FC(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)* 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/0011—Manufacturing of endoscope parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B1/00—Layered products having a non-planar shape
- B32B1/08—Tubular products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/304—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/714—Inert, i.e. inert to chemical degradation, corrosion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/72—Density
- B32B2307/722—Non-uniform density
Definitions
- the present invention relates to a multilayer tube and a method for producing the multilayer tube.
- the present invention also relates to an endoscope including the multilayer tube.
- Fluororesin especially polytetrafluoroethylene resin [PTFE]
- PTFE polytetrafluoroethylene resin
- Patent Document 2 discloses a method for producing a tubular body including a PTFE layer.
- a tubular body obtained by the production method of Patent Document 2 a tubular body having a tetrafluoroethylene / perfluoro (alkyl vinyl ether) [PFA] layer as a first layer and an expanded PTFE layer as a second layer is disclosed.
- PFA tetrafluoroethylene / perfluoro (alkyl vinyl ether)
- a 1st layer is formed by the method of winding a PFA film around a core, and it does not disclose about forming by melt molding.
- a 1st layer is formed from a fluorocarbon film, a seam arises in the 1st layer, and the member etc. which pass through an inside may be caught.
- the present invention provides a multilayer tube which is excellent in chemical resistance and heat resistance and excellent in flexibility. Moreover, this invention provides the manufacturing method of this multilayer tube, and an endoscope provided with this multilayer tube.
- the melt-processable fluororesin is preferably a fluororesin including a polymer unit based on tetrafluoroethylene and a polymer unit based on perfluoro (alkyl vinyl ether).
- the present invention relates to a multilayer tube for medical use.
- the porous membrane is wound around the coated core wire in a spiral shape.
- the present invention provides a process for obtaining a coated core wire by coating a fluororesin that can be melt-processed on the core wire, Obtaining a porous tube of polytetrafluoroethylene, Covering the porous tube over the coated core wire, A step of heat-treating the coated core wire covered with the porous tube; and A step of drawing the core wire from a coated core wire covered with a porous tube to obtain a multilayer tube; It is related with the manufacturing method of a multilayer tube which consists of.
- the melt-processable fluororesin is preferably a fluororesin including a polymer unit based on tetrafluoroethylene and a polymer unit based on perfluoro (alkyl vinyl ether).
- the multilayer tube of the present invention has excellent chemical resistance and heat resistance, and is excellent in flexibility. Therefore, even when bent with a small bending radius, it does not cause kinking (breaking). It is very useful as a tube in medical equipment. Further, since the inner layer is seamless, members passing through the inside are not caught, and the inside can pass through smoothly, and the production efficiency is higher than that in the case of producing from a film. Furthermore, the manufacturing method of the multilayer tube of this invention can manufacture the multilayer tube which has the above outstanding effects by a simple method.
- the multilayer tube of the present invention includes an outer layer made of porous polytetrafluoroethylene [PTFE] and an inner layer made of a melt-processable fluororesin, and the inner layer is seamless.
- PTFE porous polytetrafluoroethylene
- Porous PTFE can be obtained, for example, by stretching an unstretched PTFE film.
- a PTFE porous membrane is obtained by stretching an unstretched PTFE film.
- the stretching may be biaxial stretching or uniaxial stretching, but is preferably uniaxial stretching from the viewpoint of workability and handling.
- the stretching ratio is not particularly limited, but in the case of uniaxial stretching, it is preferably stretched 2 to 15 times in the longitudinal direction (MD direction), more preferably stretched 3 to 7 times. It is particularly preferable that the film is stretched 3.5 to 6 times. It is preferable that the draw ratio is in the above range because the tube can be prevented from being blocked.
- the thickness of the PTFE porous membrane is preferably 50 to 300 ⁇ m. More preferably, it is 100 to 250 ⁇ m. It is preferable from the point of the obstruction
- the film thickness of the PTFE porous membrane may be 150 ⁇ m or more.
- the PTFE constituting the PTFE porous membrane has stretchability, fibrillation property and non-melt processability.
- the PTFE constituting the PTFE porous membrane may be a TFE homopolymer composed only of tetrafluoroethylene [TFE], or a modified PTFE composed of TFE and a modified monomer.
- the modifying monomer is not particularly limited as long as it can be copolymerized with TFE.
- perfluoroolefin such as hexafluoropropylene [HFP]; chlorofluoroolefin such as chlorotrifluoroethylene [CTFE];
- HFP hexafluoropropylene
- CFE chlorofluoroolefin
- examples thereof include hydrogen-containing fluoroolefins such as trifluoroethylene and vinylidene fluoride [VdF]; perfluorovinyl ether; perfluoroalkylethylene: ethylene.
- denatured monomer to be used may be 1 type, and multiple types may be sufficient as it.
- the modified monomer unit is preferably 1% by mass or less, more preferably 0.001 to 1% by mass of the total monomer units.
- the material for the porous PTFE membrane used in the present invention is preferably a TFE homopolymer composed only of tetrafluoroethylene [TFE].
- TFE tetrafluoroethylene
- the PTFE film can be produced by a known method described in Japanese Patent No. 2940166.
- the melt-processable fluororesin used for the inner layer is a fluororesin having a melt fluidity.
- TFE / hexafluoropropylene [HFP] copolymer [FEP] TFE / perfluoro (alkyl vinyl ether) [PAVE] Polymer [PFA], ethylene [Et] / TFE copolymer, Et / TFE / HFP copolymer, polychlorotrifluoroethylene [PCTFE], CTFE / TFE copolymer, Et / CTFE copolymer, polyfluoride Vinylidene [PVdF], TFE / VdF copolymer, VdF / HFP / TFE copolymer, VdF / HFP copolymer, and at least one copolymer selected from the group consisting of polyvinyl fluoride [PVF] Is preferred.
- TFE units those containing polymerized units based on TFE
- PAVE units polymerized units based on PAVE
- TFE / PAVE copolymer [PFA] is more preferable.
- PFA is preferable because it has a melting point close to that of PTFE and is easily melt-bonded.
- perfluoro (alkyl vinyl ether) examples include perfluoro (alkyl vinyl ether) [PAVE] in which Rf represents a perfluoroalkyl group having 1 to 10 carbon atoms in the general formula (1).
- the perfluoroalkyl group preferably has 1 to 5 carbon atoms.
- perfluoroalkyl group in the PAVE examples include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, and a perfluorohexyl group.
- Perfluoro (propyl vinyl ether) [PPVE] in which the group is a perfluoropropyl group is preferred.
- those having a PAVE unit of 3 to 8 wt% are preferred, and those having a PAVE unit of 4 to 7.5 wt% are more preferred.
- the melt-processable fluororesin used in the present invention preferably has an MFR of 15 to 85 (g / 10 minutes), more preferably 25 to 75 (g / 10 minutes).
- the MFR is a value that can be measured under the conditions of a temperature of 372 ° C. and a load of 5.0 kg in accordance with ASTM D-1238.
- ASTM D-1238 ASTM D-1238
- the inner layer of the multilayer tube of the present invention is seamless.
- seamless means a seamless state.
- the inner layer is seamless, the inner wall surface is seamless, so that the smoothness is excellent, and members passing through the inside of the tube are not caught and can pass through the inside smoothly. Furthermore, the production efficiency is higher compared to the case of producing from a film.
- the thickness of the outer layer of the multilayer tube of the present invention is preferably 50 to 500 ⁇ m. More preferably, it is 100 ⁇ m or more. Moreover, it is more preferable that it is 400 micrometers or less, and it is still more preferable that it is 300 micrometers or less.
- the thickness of the outer layer may be 250 ⁇ m or less.
- the thickness of the inner layer is preferably 30 to 150 ⁇ m, and more preferably 40 to 80 ⁇ m.
- the outer layer made of porous polytetrafluoroethylene preferably has a porosity of 50 to 97%, more preferably 70 to 95%.
- the manufacturing method of the multilayer tube of this invention is not specifically limited, It is preferable to manufacture with the following manufacturing methods of this invention.
- the production method of the present invention will be described with reference to FIGS.
- the inner layer is made of PFA, which is more seamless than the conventional inner layer PTFE, has a low inner surface roughness, and a high tensile elastic modulus. Scratch resistance and wear resistance can be improved. Moreover, about an outer layer, a extending
- the multilayer tube of the present invention is excellent in chemical resistance and heat resistance, and has excellent inner surface strength. Therefore, even if it is bent with a small bending radius, it does not cause kinking (breaking). It is very useful as a tube in medical equipment. Further, since the inner layer is seamless, members passing through the inside are not caught, and the inside can pass through smoothly, and the production efficiency is higher than that in the case of producing from a film. Furthermore, the manufacturing method of the multilayer tube of this invention can manufacture the multilayer tube which has the above outstanding effects by a simple method.
- Core wire 2 Inner layer made of melt-processable fluororesin 3: Coated core wire 4: PTFE porous membrane 5: PTFE porous tube 6: Gap
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Manufacturing & Machinery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
- Materials For Medical Uses (AREA)
- Endoscopes (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
A multilayered tube having excellent chemical resistance, heat resistance, and flexibility is provided. A method for producing the multilayered tube, and an endoscope equipped with the multilayered tube are also provided. The multilayered tube contains an outer layer comprising a porous polytetrafluoroethylene, and an inner layer comprising a melt-processable fluorine resin, and is characterized in that the inner layer is seamless.
Description
本発明は、多層チューブ、及び、該多層チューブの製造方法に関する。また、本発明は、該多層チューブを備える内視鏡に関する。
The present invention relates to a multilayer tube and a method for producing the multilayer tube. The present invention also relates to an endoscope including the multilayer tube.
フッ素樹脂、特にポリテトラフルオロエチレン樹脂〔PTFE〕は、耐熱性、耐薬品性、耐候性、非粘着性、電気絶縁性、高周波特性等の多くの優れた特性を有するので、薬品等の化学分野のみならず幅広い分野で使用されている。
Fluororesin, especially polytetrafluoroethylene resin [PTFE], has many excellent properties such as heat resistance, chemical resistance, weather resistance, non-adhesiveness, electrical insulation, high frequency characteristics, etc. It is used not only in a wide range of fields.
その一つとして、例えば、医療分野において、PTFEからなるチューブが電子内視鏡装置における吸引チューブ等として有用であることが知られている(例えば、特許文献1参照)。特許文献1では、充実構造のPTFEからなる第一層と、その外周面に積層された多孔質構造のPTFEからなる第2層とを有する多層チューブが開示されている。しかしながら、特許文献1のチューブは、第1層がPTFE樹脂からなるものであるため、強度が低く、内側に金属線等を通した場合、破損する恐れがある。
As one of them, for example, in the medical field, it is known that a tube made of PTFE is useful as a suction tube or the like in an electronic endoscope apparatus (see, for example, Patent Document 1). Patent Document 1 discloses a multilayer tube including a first layer made of PTFE having a solid structure and a second layer made of PTFE having a porous structure laminated on the outer peripheral surface thereof. However, since the first layer of the tube of Patent Document 1 is made of PTFE resin, the strength is low, and there is a risk of breakage when a metal wire or the like is passed inside.
また、特許文献2には、PTFE層を含む管状体の製造法が開示されている。特許文献2の製造法により得られる管状体として、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)〔PFA〕層を第1層とし、延伸PTFE層を第2層とする管状体が開示されている。しかしながら、特許文献2においては、PFAフィルムを芯体に巻き付ける方法により第1層を形成するものであり、溶融成形により形成することについては開示されていない。また、特許文献2においては、フルオロカーボンフィルムから第1層を形成するものであり、第1層に継ぎ目が生じてしまい、内部を通過する部材等が引っ掛かる場合もある。
Patent Document 2 discloses a method for producing a tubular body including a PTFE layer. As a tubular body obtained by the production method of Patent Document 2, a tubular body having a tetrafluoroethylene / perfluoro (alkyl vinyl ether) [PFA] layer as a first layer and an expanded PTFE layer as a second layer is disclosed. However, in patent document 2, a 1st layer is formed by the method of winding a PFA film around a core, and it does not disclose about forming by melt molding. Moreover, in patent document 2, a 1st layer is formed from a fluorocarbon film, a seam arises in the 1st layer, and the member etc. which pass through an inside may be caught.
本発明は、耐薬品性及び耐熱性に優れ、かつ、柔軟性に優れる多層チューブを提供する。また、本発明は、該多層チューブの製造方法、該多層チューブを備える内視鏡を提供するものである。
The present invention provides a multilayer tube which is excellent in chemical resistance and heat resistance and excellent in flexibility. Moreover, this invention provides the manufacturing method of this multilayer tube, and an endoscope provided with this multilayer tube.
本発明は、多孔質のポリテトラフルオロエチレンからなる外層、及び、溶融加工可能なフッ素樹脂からなる内層を含み、該内層がシームレスであることを特徴とする多層チューブに関する。
The present invention relates to a multilayer tube including an outer layer made of porous polytetrafluoroethylene and an inner layer made of a melt-processable fluororesin, and the inner layer is seamless.
溶融加工可能なフッ素樹脂が、テトラフルオロエチレンに基づく重合単位及びパーフルオロ(アルキルビニルエーテル)に基づく重合単位を含むフッ素樹脂であることが好ましい。
The melt-processable fluororesin is preferably a fluororesin including a polymer unit based on tetrafluoroethylene and a polymer unit based on perfluoro (alkyl vinyl ether).
本発明は、医療用である多層チューブに関する。
The present invention relates to a multilayer tube for medical use.
本発明は、前記多層チューブを備えることを特徴とする内視鏡に関する。
The present invention relates to an endoscope comprising the multilayer tube.
また、本発明は、芯線上に溶融加工可能なフッ素樹脂を被覆成形して被覆芯線を得る工程、
ポリテトラフルオロエチレン多孔質膜を得る工程、
前記被覆芯線に前記多孔質膜を巻きつける工程、
多孔質膜を巻きつけた被覆芯線を熱処理する工程、及び、
多孔質膜を巻きつけた被覆芯線から前記芯線を引き抜いて多層チューブを得る工程、
を含むことからなる、多層チューブの製造方法に関する。 Further, the present invention provides a process for obtaining a coated core wire by coating a fluororesin that can be melt-processed on the core wire,
Obtaining a polytetrafluoroethylene porous membrane;
Winding the porous membrane around the coated core wire,
Heat-treating the coated core wire around which the porous membrane is wound, and
A step of drawing the core wire from a coated core wire wound with a porous membrane to obtain a multilayer tube;
It is related with the manufacturing method of a multilayer tube which consists of.
ポリテトラフルオロエチレン多孔質膜を得る工程、
前記被覆芯線に前記多孔質膜を巻きつける工程、
多孔質膜を巻きつけた被覆芯線を熱処理する工程、及び、
多孔質膜を巻きつけた被覆芯線から前記芯線を引き抜いて多層チューブを得る工程、
を含むことからなる、多層チューブの製造方法に関する。 Further, the present invention provides a process for obtaining a coated core wire by coating a fluororesin that can be melt-processed on the core wire,
Obtaining a polytetrafluoroethylene porous membrane;
Winding the porous membrane around the coated core wire,
Heat-treating the coated core wire around which the porous membrane is wound, and
A step of drawing the core wire from a coated core wire wound with a porous membrane to obtain a multilayer tube;
It is related with the manufacturing method of a multilayer tube which consists of.
前記被覆芯線に、前記多孔質膜を寿司巻き状に巻きつけることが好ましい。
It is preferable to wind the porous membrane around the coated core wire in a sushi roll shape.
前記被覆芯線に、前記多孔質膜をスパイラル状に巻きつけることが好ましい。
It is preferable that the porous membrane is wound around the coated core wire in a spiral shape.
また、本発明は、芯線上に溶融加工可能なフッ素樹脂を被覆成形して被覆芯線を得る工程、
ポリテトラフルオロエチレンの多孔質チューブを得る工程、
前記被覆芯線に前記多孔質チューブを被せる工程、
多孔質チューブを被せた被覆芯線を熱処理する工程、及び、
多孔質チューブを被せた被覆芯線から前記芯線を引き抜いて多層チューブを得る工程、
を含むことからなる、多層チューブの製造方法に関する。 Further, the present invention provides a process for obtaining a coated core wire by coating a fluororesin that can be melt-processed on the core wire,
Obtaining a porous tube of polytetrafluoroethylene,
Covering the porous tube over the coated core wire,
A step of heat-treating the coated core wire covered with the porous tube; and
A step of drawing the core wire from a coated core wire covered with a porous tube to obtain a multilayer tube;
It is related with the manufacturing method of a multilayer tube which consists of.
ポリテトラフルオロエチレンの多孔質チューブを得る工程、
前記被覆芯線に前記多孔質チューブを被せる工程、
多孔質チューブを被せた被覆芯線を熱処理する工程、及び、
多孔質チューブを被せた被覆芯線から前記芯線を引き抜いて多層チューブを得る工程、
を含むことからなる、多層チューブの製造方法に関する。 Further, the present invention provides a process for obtaining a coated core wire by coating a fluororesin that can be melt-processed on the core wire,
Obtaining a porous tube of polytetrafluoroethylene,
Covering the porous tube over the coated core wire,
A step of heat-treating the coated core wire covered with the porous tube; and
A step of drawing the core wire from a coated core wire covered with a porous tube to obtain a multilayer tube;
It is related with the manufacturing method of a multilayer tube which consists of.
溶融加工可能なフッ素樹脂が、テトラフルオロエチレンに基づく重合単位及びパーフルオロ(アルキルビニルエーテル)に基づく重合単位を含むフッ素樹脂であることが好ましい。
The melt-processable fluororesin is preferably a fluororesin including a polymer unit based on tetrafluoroethylene and a polymer unit based on perfluoro (alkyl vinyl ether).
熱処理の温度が、320~345℃であることが好ましい。
The heat treatment temperature is preferably 320 to 345 ° C.
本発明の多層チューブは、耐薬品性及び耐熱性に優れ、かつ、柔軟性に優れているため、小さな曲げ半径で屈曲させてもキンク(折れ)を生じないものであり、内視鏡等の医療機器等におけるチューブとして非常に有用である。また、内層がシームレスであるため、内部を通過する部材等が引っ掛かることがなく、スムーズに内部を通過することができ、フィルムから作製する場合と比較して生産効率が高くなる。さらに、本発明の多層チューブの製造方法は、前述のような優れた効果を有する多層チューブを簡便な方法で製造することができるものである。
The multilayer tube of the present invention has excellent chemical resistance and heat resistance, and is excellent in flexibility. Therefore, even when bent with a small bending radius, it does not cause kinking (breaking). It is very useful as a tube in medical equipment. Further, since the inner layer is seamless, members passing through the inside are not caught, and the inside can pass through smoothly, and the production efficiency is higher than that in the case of producing from a film. Furthermore, the manufacturing method of the multilayer tube of this invention can manufacture the multilayer tube which has the above outstanding effects by a simple method.
本発明の多層チューブは、多孔質のポリテトラフルオロエチレン〔PTFE〕からなる外層、及び、溶融加工可能なフッ素樹脂からなる内層を含み、該内層がシームレスであることを特徴とする。
The multilayer tube of the present invention includes an outer layer made of porous polytetrafluoroethylene [PTFE] and an inner layer made of a melt-processable fluororesin, and the inner layer is seamless.
多孔質のPTFEは、例えば、未延伸のPTFEフィルムを延伸することにより得ることができる。未延伸のPTFEフィルムを延伸することによりPTFE多孔質膜が得られる。延伸は、二軸延伸であっても、一軸延伸であってもよいが、作業性、取り扱い性の点から、一軸延伸であることが好ましい。延伸倍率は、特に限定されるものではないが、一軸延伸の場合は、長手方向(MD方向)に、2~15倍に延伸することが好ましく、3~7倍に延伸することがより好ましく、3.5~6倍に延伸することが特に好ましい。延伸倍率が上記範囲にあることで、チューブの閉塞を防止できるため好ましい。
Porous PTFE can be obtained, for example, by stretching an unstretched PTFE film. A PTFE porous membrane is obtained by stretching an unstretched PTFE film. The stretching may be biaxial stretching or uniaxial stretching, but is preferably uniaxial stretching from the viewpoint of workability and handling. The stretching ratio is not particularly limited, but in the case of uniaxial stretching, it is preferably stretched 2 to 15 times in the longitudinal direction (MD direction), more preferably stretched 3 to 7 times. It is particularly preferable that the film is stretched 3.5 to 6 times. It is preferable that the draw ratio is in the above range because the tube can be prevented from being blocked.
PTFE多孔質膜の膜厚は、50~300μmであることが好ましい。より好ましくは、100~250μmである。膜厚が上記範囲にあることで、閉塞防止効果の点から好ましい。PTFE多孔質膜の膜厚は、150μm以上であってもよい。
The thickness of the PTFE porous membrane is preferably 50 to 300 μm. More preferably, it is 100 to 250 μm. It is preferable from the point of the obstruction | occlusion prevention effect that a film thickness exists in the said range. The film thickness of the PTFE porous membrane may be 150 μm or more.
PTFE多孔膜を構成するPTFEは、延伸性、フィブリル化性および非溶融加工性を有する。PTFE多孔質膜を構成するPTFEとしては、テトラフルオロエチレン〔TFE〕のみからなるTFEホモポリマーであってもよいし、TFEと変性モノマーとからなる変性PTFEであってもよい。前記変性モノマーとしては、TFEとの共重合が可能なものであれば特に限定されず、例えば、ヘキサフルオロプロピレン〔HFP〕等のパーフルオロオレフィン;クロロトリフルオロエチレン〔CTFE〕等のクロロフルオロオレフィン;トリフルオロエチレン、フッ化ビニリデン〔VdF〕等の水素含有フルオロオレフィン;パーフルオロビニルエーテル;パーフルオロアルキルエチレン:エチレン等が挙げられる。また、用いる変性モノマーは1種であってもよいし、複数種であってもよい。
PTFE constituting the PTFE porous membrane has stretchability, fibrillation property and non-melt processability. The PTFE constituting the PTFE porous membrane may be a TFE homopolymer composed only of tetrafluoroethylene [TFE], or a modified PTFE composed of TFE and a modified monomer. The modifying monomer is not particularly limited as long as it can be copolymerized with TFE. For example, perfluoroolefin such as hexafluoropropylene [HFP]; chlorofluoroolefin such as chlorotrifluoroethylene [CTFE]; Examples thereof include hydrogen-containing fluoroolefins such as trifluoroethylene and vinylidene fluoride [VdF]; perfluorovinyl ether; perfluoroalkylethylene: ethylene. Moreover, the modified | denatured monomer to be used may be 1 type, and multiple types may be sufficient as it.
上記変性PTFEにおいて、上記変性モノマー単位は、全単量体単位の1質量%以下であることが好ましく、0.001~1質量%であることがより好ましい。
In the modified PTFE, the modified monomer unit is preferably 1% by mass or less, more preferably 0.001 to 1% by mass of the total monomer units.
これらの中でも、本発明に用いられるPTFE多孔質膜の材料としては、テトラフルオロエチレン〔TFE〕のみからなるTFEホモポリマーであることが好ましい。また、本発明においては、乳化重合で得られる微細なPTFE粒子(いわゆるファインパウダー)を用いることが好ましい。
Among these, the material for the porous PTFE membrane used in the present invention is preferably a TFE homopolymer composed only of tetrafluoroethylene [TFE]. In the present invention, it is preferable to use fine PTFE particles (so-called fine powder) obtained by emulsion polymerization.
PTFEフィルムは、特許第2940166号等に記載された公知の方法により製造することができる。
The PTFE film can be produced by a known method described in Japanese Patent No. 2940166.
内層に用いる溶融加工可能なフッ素樹脂は、溶融流動性を有するフッ素樹脂であり、例えば、TFE/ヘキサフルオロプロピレン〔HFP〕共重合体〔FEP〕、TFE/パーフルオロ(アルキルビニルエーテル)〔PAVE〕共重合体〔PFA〕、エチレン〔Et〕/TFE共重合体、Et/TFE/HFP共重合体、ポリクロロトリフルオロエチレン〔PCTFE〕、CTFE/TFE共重合体、Et/CTFE共重合体、ポリフッ化ビニリデン〔PVdF〕、TFE/VdF共重合体、VdF/HFP/TFE共重合体、VdF/HFP共重合体、及び、ポリフッ化ビニル〔PVF〕からなる群より選択される少なくとも1種の共重合体が好ましい。これらの中でも、TFEに基づく重合単位(以下、TFE単位という)及びPAVEに基づく重合単位(以下、PAVE単位という)を含むものが好ましく、TFE/PAVE共重合体〔PFA〕がより好ましい。PFAは、融点がPTFEに近いため溶融接着しやすい点から好ましい。
The melt-processable fluororesin used for the inner layer is a fluororesin having a melt fluidity. For example, TFE / hexafluoropropylene [HFP] copolymer [FEP], TFE / perfluoro (alkyl vinyl ether) [PAVE] Polymer [PFA], ethylene [Et] / TFE copolymer, Et / TFE / HFP copolymer, polychlorotrifluoroethylene [PCTFE], CTFE / TFE copolymer, Et / CTFE copolymer, polyfluoride Vinylidene [PVdF], TFE / VdF copolymer, VdF / HFP / TFE copolymer, VdF / HFP copolymer, and at least one copolymer selected from the group consisting of polyvinyl fluoride [PVF] Is preferred. Among these, those containing polymerized units based on TFE (hereinafter referred to as TFE units) and polymerized units based on PAVE (hereinafter referred to as PAVE units) are preferable, and TFE / PAVE copolymer [PFA] is more preferable. PFA is preferable because it has a melting point close to that of PTFE and is easily melt-bonded.
上記パーフルオロ(アルキルビニルエーテル)としては特に限定されず、例えば、下記一般式(1):
CF2=CF-ORf (1)
(式中、Rfは、パーフルオロ有機基を表す。)
で表されるパーフルオロ不飽和化合物等が挙げられる。本明細書において、上記「パーフルオロ有機基」とは、炭素原子に結合する水素原子が全てフッ素原子に置換されてなる有機基を意味する。上記パーフルオロ有機基は、エーテル結合性の酸素原子を有していてもよい。 The perfluoro (alkyl vinyl ether) is not particularly limited, and for example, the following general formula (1):
CF 2 = CF-ORf (1)
(In the formula, Rf represents a perfluoro organic group.)
Perfluoro unsaturated compounds represented by the formula: In the present specification, the “perfluoro organic group” means an organic group in which all hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms. The perfluoro organic group may have an etheric oxygen atom.
CF2=CF-ORf (1)
(式中、Rfは、パーフルオロ有機基を表す。)
で表されるパーフルオロ不飽和化合物等が挙げられる。本明細書において、上記「パーフルオロ有機基」とは、炭素原子に結合する水素原子が全てフッ素原子に置換されてなる有機基を意味する。上記パーフルオロ有機基は、エーテル結合性の酸素原子を有していてもよい。 The perfluoro (alkyl vinyl ether) is not particularly limited, and for example, the following general formula (1):
CF 2 = CF-ORf (1)
(In the formula, Rf represents a perfluoro organic group.)
Perfluoro unsaturated compounds represented by the formula: In the present specification, the “perfluoro organic group” means an organic group in which all hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms. The perfluoro organic group may have an etheric oxygen atom.
上記パーフルオロ(アルキルビニルエーテル)としては、例えば、上記一般式(1)において、Rfが炭素数1~10のパーフルオロアルキル基を表すものであるパーフルオロ(アルキルビニルエーテル)〔PAVE〕が挙げられる。上記パーフルオロアルキル基の炭素数は、好ましくは1~5である。
Examples of the perfluoro (alkyl vinyl ether) include perfluoro (alkyl vinyl ether) [PAVE] in which Rf represents a perfluoroalkyl group having 1 to 10 carbon atoms in the general formula (1). The perfluoroalkyl group preferably has 1 to 5 carbon atoms.
上記PAVEにおけるパーフルオロアルキル基としては、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基等が挙げられるが、パーフルオロアルキル基がパーフルオロプロピル基であるパーフルオロ(プロピルビニルエーテル)〔PPVE〕が好ましい。
Examples of the perfluoroalkyl group in the PAVE include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, and a perfluorohexyl group. Perfluoro (propyl vinyl ether) [PPVE] in which the group is a perfluoropropyl group is preferred.
PFAとしては、PAVE単位が3~8wt%であるものが好ましく、PAVE単位が4~7.5wt%であるものがより好ましい。
As PFA, those having a PAVE unit of 3 to 8 wt% are preferred, and those having a PAVE unit of 4 to 7.5 wt% are more preferred.
本発明で用いる溶融加工可能なフッ素樹脂は、MFRが15~85(g/10分)であることが好ましく、25~75(g/10分)であることがより好ましい。上記MFRは、ASTM D-1238に準拠して、温度372℃、荷重5.0kgの条件下で測定し得られる値である。以下、本明細書中におけるMFR測定については、前記方法に従うものである。
The melt-processable fluororesin used in the present invention preferably has an MFR of 15 to 85 (g / 10 minutes), more preferably 25 to 75 (g / 10 minutes). The MFR is a value that can be measured under the conditions of a temperature of 372 ° C. and a load of 5.0 kg in accordance with ASTM D-1238. Hereinafter, the MFR measurement in this specification follows the above method.
また、本発明の多層チューブの内層は、シームレスである。ここで、シームレスとは、継ぎ目の無い状態をいう。本発明において、内層がシームレスであることにより、内壁面が無継ぎ目なので平滑性に優れており、チューブの内部を通過する部材等が引っ掛かることがなく、スムーズに内部を通過することができる。さらに、フィルムから作製する場合と比較して生産効率が高くなる。
Moreover, the inner layer of the multilayer tube of the present invention is seamless. Here, seamless means a seamless state. In the present invention, since the inner layer is seamless, the inner wall surface is seamless, so that the smoothness is excellent, and members passing through the inside of the tube are not caught and can pass through the inside smoothly. Furthermore, the production efficiency is higher compared to the case of producing from a film.
本発明の多層チューブの外層の厚さは、50~500μmであることが好ましい。より好ましくは、100μm以上である。また、400μm以下であることがより好ましく、300μm以下であることが更に好ましい。外層の厚さは、250μm以下であってもよい。また、内層の厚さは、30~150μmであることが好ましく、40~80μmであることがより好ましい。
The thickness of the outer layer of the multilayer tube of the present invention is preferably 50 to 500 μm. More preferably, it is 100 μm or more. Moreover, it is more preferable that it is 400 micrometers or less, and it is still more preferable that it is 300 micrometers or less. The thickness of the outer layer may be 250 μm or less. Further, the thickness of the inner layer is preferably 30 to 150 μm, and more preferably 40 to 80 μm.
多孔質のポリテトラフルオロエチレンからなる外層は、例えば、空孔率が50~97%の範囲が好ましく、70~95%の範囲がより好ましい。
For example, the outer layer made of porous polytetrafluoroethylene preferably has a porosity of 50 to 97%, more preferably 70 to 95%.
本発明の多層チューブの製造方法は、特に限定されるものではないが、以下の本発明の製造方法により製造されることが好ましい。以下、本発明の製造方法について、図1~5を用いて説明する。
Although the manufacturing method of the multilayer tube of this invention is not specifically limited, It is preferable to manufacture with the following manufacturing methods of this invention. Hereinafter, the production method of the present invention will be described with reference to FIGS.
本発明は、
芯線1上に溶融加工可能なフッ素樹脂を被覆成形して被覆芯線3を得る工程、
PTFE多孔質膜4を得る工程、
前記被覆芯線3に前記多孔質膜4を巻きつける工程、
多孔質膜を巻きつけた被覆芯線3を熱処理する工程、及び、
多孔質膜を巻きつけた被覆芯線3から前記芯線1を引き抜いて多層チューブを得る工程、
を含むことからなる、多層チューブの製造方法
に関する(以下、第一の製造方法とする、図1及び2参照)。 The present invention
A step of obtaining acoated core wire 3 by coating and molding a melt-processable fluororesin on the core wire 1;
Obtaining a PTFEporous membrane 4;
Winding theporous membrane 4 around the coated core wire 3;
A step of heat-treating thecoated core wire 3 around which the porous film is wound, and
A step of drawing thecore wire 1 from the coated core wire 3 around which the porous membrane is wound to obtain a multilayer tube;
(Referred to below as the first manufacturing method, see FIGS. 1 and 2).
芯線1上に溶融加工可能なフッ素樹脂を被覆成形して被覆芯線3を得る工程、
PTFE多孔質膜4を得る工程、
前記被覆芯線3に前記多孔質膜4を巻きつける工程、
多孔質膜を巻きつけた被覆芯線3を熱処理する工程、及び、
多孔質膜を巻きつけた被覆芯線3から前記芯線1を引き抜いて多層チューブを得る工程、
を含むことからなる、多層チューブの製造方法
に関する(以下、第一の製造方法とする、図1及び2参照)。 The present invention
A step of obtaining a
Obtaining a PTFE
Winding the
A step of heat-treating the
A step of drawing the
(Referred to below as the first manufacturing method, see FIGS. 1 and 2).
芯線としては、熱処理後に芯線を除去しやすいように、剥離性の良い、表面がなめらかで凹凸の少ないものが良い。芯線の材料は、特に限定されるものではないが、例えば、ステンレス、銅、アルミニウム等を挙げることができる。これらの中でも、熱処理によって変形せず、その結果、得られる被覆層の肉厚を均一にできる点から、ステンレス、又は、銅からなる芯線であることが好ましい。
As the core wire, one having good peelability and a smooth surface with little unevenness is preferable so that the core wire can be easily removed after the heat treatment. Although the material of a core wire is not specifically limited, For example, stainless steel, copper, aluminum etc. can be mentioned. Among these, a core wire made of stainless steel or copper is preferable because it is not deformed by heat treatment and, as a result, the thickness of the resulting coating layer can be made uniform.
芯線の直径は、本発明の多層チューブの内径に相当するため、本発明の多層チューブの用途によって適宜決定することができるが、例えば、1~8mm程度であることが好ましい。また、例えば、本発明の多層チューブを内視鏡スコープに用いるような場合は、芯線の直径は1.5~6mmであることが好ましく、本発明の多層チューブをプッシュプルケーブルに用いるような場合は、芯線の直径は2~8mmであることが好ましい。
Since the diameter of the core wire corresponds to the inner diameter of the multilayer tube of the present invention, it can be appropriately determined depending on the use of the multilayer tube of the present invention, but is preferably about 1 to 8 mm, for example. For example, when the multilayer tube of the present invention is used for an endoscope scope, the diameter of the core wire is preferably 1.5 to 6 mm, and when the multilayer tube of the present invention is used for a push-pull cable. The core wire preferably has a diameter of 2 to 8 mm.
本発明の製造方法においては、前記芯線に溶融加工可能なフッ素樹脂を被覆成形して被覆芯線を得る工程を含む。溶融加工可能なフッ素樹脂としては、前述のものを挙げることができる。
The production method of the present invention includes a step of coating the core wire with a melt-processable fluororesin to obtain a coated core wire. The above-mentioned thing can be mentioned as a fluororesin which can be melt-processed.
前記芯線に溶融加工可能なフッ素樹脂を被覆成形する方法とは、溶融加工可能なフッ素樹脂を溶融させて芯線上に被覆する方法である。具体的な方法としては、特に限定されるものではなく、公知の溶融押出成形機等を用いて行うことができる。本発明の製造方法においては、第1層を融点以上の温度で被覆成形することにより、継ぎ目がなく(シームレス)、均一な厚さの被覆膜が形成できる。
The method of coating the core wire with a melt-processable fluororesin is a method in which a melt-processable fluororesin is melted and coated on the core wire. The specific method is not particularly limited, and can be performed using a known melt extrusion molding machine or the like. In the manufacturing method of the present invention, the first layer is coated at a temperature equal to or higher than the melting point, so that a coating film having a uniform thickness can be formed without a seam (seamless).
溶融加工可能なフッ素樹脂の加熱処理前の被覆厚さは、特に限定されるものではなく、加熱処理後に得られる多層チューブの内層の厚さにより適宜決定することができる。例えば、溶融加工可能なフッ素樹脂の加熱処理前の被覆厚さとしては、30~150μmであることが好ましく、40~80μmであることがより好ましい。
The coating thickness of the fluororesin that can be melt-processed before the heat treatment is not particularly limited, and can be appropriately determined depending on the thickness of the inner layer of the multilayer tube obtained after the heat treatment. For example, the coating thickness before heat treatment of a melt-processable fluororesin is preferably 30 to 150 μm, and more preferably 40 to 80 μm.
本発明の製造方法は、被覆芯線にPTFE多孔質膜を巻きつける工程を含む。PTFE多孔質膜の製造方法としては、前述の通りである。
The production method of the present invention includes a step of winding a PTFE porous membrane around a coated core wire. The method for producing the PTFE porous membrane is as described above.
また、被覆芯線にPTFE多孔質膜を巻きつける際に用いるPTFE多孔質膜は、未焼成のものが好ましい。
Moreover, the PTFE porous membrane used when the PTFE porous membrane is wound around the coated core wire is preferably unfired.
前記被覆芯線にPTFE多孔質膜を巻きつける方法としては、特に限定されるものではないが、例えば、図1に示すような寿司巻き状(被覆芯線の長手方向に直角に巻きつける方法)や、図2に示すようなスパイラル状(螺旋状)に巻きつける方法などを挙げることができる。
The method for winding the PTFE porous membrane around the coated core wire is not particularly limited, but for example, a sushi roll shape (a method of winding at right angles to the longitudinal direction of the coated core wire), A method of winding in a spiral shape (spiral shape) as shown in FIG.
寿司巻き状やスパイラル状に巻き付ける際、PTFE多孔質膜がオーバーラップしないように巻き付けてもよく、また、オーバーラップするように巻き付けてもよい。オーバーラップする場合について以下に図を用いて説明をする。
When winding in a sushi roll or spiral, the PTFE porous membrane may be wound so as not to overlap, or may be wound so as to overlap. The case of overlapping will be described below with reference to the drawings.
第1層である溶融加工可能なフッ素樹脂からなる内層2上に、PTFE多孔質膜4を寿司巻き状で巻き付けた場合(図1(b))、図3(図1(c)のAA’断面)に示すように、PTFE多孔質膜4の端部の上面にPTFE多孔質膜4の巻き終わり端部が重なり、内層2の外周面との間に隙間6が形成される。この隙間6は、被覆芯線3の長手方向に一直線状で形成される。また、図4(図2(c)のBB’断面)に示すように、スパイラル状に巻き付けた場合でもスパイラル状に隙間6が生じる。なお、図3、4においては、PTFE多孔質膜を1層形成した場合を示したが、2層以上形成した場合にも同様の隙間ができることとなる。
When the PTFE porous membrane 4 is wound in a sushi roll shape on the inner layer 2 made of a melt-processable fluororesin that is the first layer (FIG. 1 (b)), FIG. 3 (AA ′ in FIG. 1 (c)) As shown in (cross section), the winding end end portion of the PTFE porous membrane 4 overlaps the upper surface of the end portion of the PTFE porous membrane 4, and a gap 6 is formed between the outer peripheral surface of the inner layer 2. The gap 6 is formed in a straight line in the longitudinal direction of the coated core wire 3. Further, as shown in FIG. 4 (BB ′ cross section in FIG. 2C), the gap 6 is formed in a spiral shape even when wound in a spiral shape. 3 and 4 show the case where one layer of the PTFE porous membrane is formed, the same gap is formed when two or more layers are formed.
この形成された隙間6は、熱処理をすることにより、溶融したPTFEが隙間6に充填されて、溶融加工可能なフッ素樹脂からなる内層の外周上に実質上平滑なPTFE層が形成される。
The formed gap 6 is subjected to heat treatment, so that the melted PTFE is filled into the gap 6, and a substantially smooth PTFE layer is formed on the outer periphery of the inner layer made of a fluororesin that can be melt-processed.
PTFE多孔質膜の加熱処理前の被覆厚さは、特に限定されるものではなく、加熱加工後に得られる多層チューブの外層の厚さにより適宜決定することができる。例えば、PTFE多孔質膜の加熱処理前の被覆厚さとしては、100~350μmであることが好ましく、100~300μmであることがより好ましく、150~250μmであることが更に好ましい。
The coating thickness of the PTFE porous membrane before the heat treatment is not particularly limited, and can be appropriately determined depending on the thickness of the outer layer of the multilayer tube obtained after the heat processing. For example, the coating thickness of the PTFE porous membrane before the heat treatment is preferably 100 to 350 μm, more preferably 100 to 300 μm, and further preferably 150 to 250 μm.
PTFE多孔質膜の被覆芯線への巻き数は、多孔質膜の厚さや得られる多層チューブの用途によっても異なるが、通常、1~5層にすることが好ましい。
The number of windings of the PTFE porous membrane around the coated core wire varies depending on the thickness of the porous membrane and the use of the obtained multilayer tube, but it is usually preferably 1 to 5 layers.
さらに、本発明の製造方法においては、多孔質膜を巻きつけた被覆芯線を熱処理する工程を含む。熱処理条件としては、PTFE層及び溶融加工可能なフッ素樹脂からなる層がともに溶融するが、その形状が維持されるような温度範囲及び時間であることが好ましい。具体的には、熱処理温度としては、320~345℃が好ましく、327~342℃がより好ましく、330~338℃がさらに好ましい。また、熱処理時間は、焼成温度やチューブの肉厚等にもよるが、一般には30秒~7分程度であり、50秒~5分が好ましい。熱処理時間は、3分以下であってもよい。上記加熱条件とすることで、PTFE層及び溶融加工可能なフッ素樹脂からなる層の2層が接合し、一体化された多層構造が形成される。
Furthermore, in the manufacturing method of this invention, the process of heat-processing the coated core wire which wound the porous membrane is included. As the heat treatment conditions, both the PTFE layer and the melt-processable fluororesin layer are melted, but it is preferable that the temperature range and time be such that the shape is maintained. Specifically, the heat treatment temperature is preferably 320 to 345 ° C, more preferably 327 to 342 ° C, and further preferably 330 to 338 ° C. The heat treatment time is generally about 30 seconds to 7 minutes, preferably 50 seconds to 5 minutes, although it depends on the firing temperature and the tube thickness. The heat treatment time may be 3 minutes or less. By setting it as the said heating conditions, two layers, the layer which consists of a PTFE layer and a melt processable fluororesin, join, and the integrated multilayer structure is formed.
得られた多孔質膜を巻きつけた被覆芯線から、前記芯線を引き抜いて本発明の多層チューブを得ることができる。ここで、芯線を引き抜く方法としては、特に限定されるものではないが、例えば、芯線を、芯線全長に対して10~50%程度引き伸ばして、芯線直径を元の直径の70~90%程度にまですることにより、引き抜く方法を挙げることができる。
The multilayer core tube of the present invention can be obtained by pulling out the core wire from the coated core wire around which the obtained porous membrane is wound. Here, the method of pulling out the core wire is not particularly limited. For example, the core wire is stretched by about 10 to 50% with respect to the entire length of the core wire, so that the core wire diameter is about 70 to 90% of the original diameter. The method of pulling out can be mentioned.
さらに、本発明は、
芯線1上に溶融加工可能なフッ素樹脂を被覆成形して被覆芯線3を得る工程、
PTFEの多孔質チューブ5を得る工程、
前記被覆芯線に前記多孔質チューブ5を被せる工程、
多孔質チューブ5を被せた被覆芯線3を熱処理する工程、及び、
多孔質チューブ5を被せた被覆芯線3から前記芯線1を引き抜いて多層チューブを得る工程、
を含むことからなる、多層チューブの製造方法
に関する(以下、第二の製造方法とする、図5参照)。 Furthermore, the present invention provides
A step of obtaining acoated core wire 3 by coating and molding a melt-processable fluororesin on the core wire 1;
Obtaining aporous tube 5 of PTFE;
Covering the coated core wire with theporous tube 5;
A step of heat-treating thecoated core wire 3 covered with the porous tube 5; and
A step of drawing thecore wire 1 from the coated core wire 3 covered with the porous tube 5 to obtain a multilayer tube;
(Hereinafter referred to as FIG. 5).
芯線1上に溶融加工可能なフッ素樹脂を被覆成形して被覆芯線3を得る工程、
PTFEの多孔質チューブ5を得る工程、
前記被覆芯線に前記多孔質チューブ5を被せる工程、
多孔質チューブ5を被せた被覆芯線3を熱処理する工程、及び、
多孔質チューブ5を被せた被覆芯線3から前記芯線1を引き抜いて多層チューブを得る工程、
を含むことからなる、多層チューブの製造方法
に関する(以下、第二の製造方法とする、図5参照)。 Furthermore, the present invention provides
A step of obtaining a
Obtaining a
Covering the coated core wire with the
A step of heat-treating the
A step of drawing the
(Hereinafter referred to as FIG. 5).
第二の製造方法は、図5に示すように、PTFEの多孔質チューブ5を被覆芯線に被せる点で第一の製造方法とは異なるが(図5(b))、それ以外の工程については、第一の製造方法と同じである。
As shown in FIG. 5, the second manufacturing method is different from the first manufacturing method in that the porous PTFE tube 5 is covered with the coated core wire (FIG. 5B), but the other steps are as follows. This is the same as the first manufacturing method.
多孔質チューブの製造方法としては、特に限定されるものではなく、例えば、特開平9-241412号公報等に記載されているような、公知の方法で製造される。
第二の製造方法により多層チューブを製造する場合、例えば、多孔質のPTFEは、未延伸のPTFEチューブを延伸することにより得ることができる。未延伸のPTFEチューブを延伸することによりPTFE多孔質チューブが得られる。延伸は、例えば、未延伸のPTFEチューブを管軸方向に引き伸ばして行う。延伸倍率は、特に限定されるものではないが、管軸方向に、2~15倍に延伸することが好ましい。より好ましくは、3.5~6倍である。延伸倍率が上記範囲にあることで、チューブの閉塞を防止できるため好ましい。
延伸時には、高温槽等により加熱した状態で延伸してもよい。加熱の温度は特に限定されないが、例えば、133~300℃であることが好ましい。 The method for producing the porous tube is not particularly limited, and for example, it is produced by a known method as described in JP-A-9-241411.
When a multilayer tube is manufactured by the second manufacturing method, for example, porous PTFE can be obtained by stretching an unstretched PTFE tube. A PTFE porous tube is obtained by stretching an unstretched PTFE tube. Stretching is performed, for example, by stretching an unstretched PTFE tube in the tube axis direction. The stretching ratio is not particularly limited, but it is preferably stretched 2 to 15 times in the tube axis direction. More preferably, it is 3.5 to 6 times. It is preferable that the draw ratio is in the above range because the tube can be prevented from being blocked.
At the time of stretching, the film may be stretched while being heated in a high-temperature tank or the like. The heating temperature is not particularly limited, but is preferably 133 to 300 ° C., for example.
第二の製造方法により多層チューブを製造する場合、例えば、多孔質のPTFEは、未延伸のPTFEチューブを延伸することにより得ることができる。未延伸のPTFEチューブを延伸することによりPTFE多孔質チューブが得られる。延伸は、例えば、未延伸のPTFEチューブを管軸方向に引き伸ばして行う。延伸倍率は、特に限定されるものではないが、管軸方向に、2~15倍に延伸することが好ましい。より好ましくは、3.5~6倍である。延伸倍率が上記範囲にあることで、チューブの閉塞を防止できるため好ましい。
延伸時には、高温槽等により加熱した状態で延伸してもよい。加熱の温度は特に限定されないが、例えば、133~300℃であることが好ましい。 The method for producing the porous tube is not particularly limited, and for example, it is produced by a known method as described in JP-A-9-241411.
When a multilayer tube is manufactured by the second manufacturing method, for example, porous PTFE can be obtained by stretching an unstretched PTFE tube. A PTFE porous tube is obtained by stretching an unstretched PTFE tube. Stretching is performed, for example, by stretching an unstretched PTFE tube in the tube axis direction. The stretching ratio is not particularly limited, but it is preferably stretched 2 to 15 times in the tube axis direction. More preferably, it is 3.5 to 6 times. It is preferable that the draw ratio is in the above range because the tube can be prevented from being blocked.
At the time of stretching, the film may be stretched while being heated in a high-temperature tank or the like. The heating temperature is not particularly limited, but is preferably 133 to 300 ° C., for example.
多孔質チューブの内径は、被覆芯線の外径と同程度であることが好ましく、1~10mmであることが好ましく、2~6mmであることがより好ましい。多孔質チューブの内径は、被覆芯線の外径と同程度であることが好ましいが、被覆芯線の外径よりも0.2~2mm程度大きくても、加熱処理時の収縮により両層が接合される。
The inner diameter of the porous tube is preferably about the same as the outer diameter of the coated core wire, preferably 1 to 10 mm, and more preferably 2 to 6 mm. The inner diameter of the porous tube is preferably about the same as the outer diameter of the coated core wire, but even if it is about 0.2 to 2 mm larger than the outer diameter of the coated core wire, both layers are joined by shrinkage during the heat treatment. The
また、多孔質チューブの厚さは、100~300μmであることが好ましく、150~250μmであることがより好ましい。
Further, the thickness of the porous tube is preferably 100 to 300 μm, more preferably 150 to 250 μm.
第二の製造方法においては、前記多孔質チューブを前記被覆芯線に被せ、その後前記条件で熱処理を行い、最後に多孔質チューブを被せた被覆芯線から前記芯線を引き抜いて多層チューブを得ることができる。
In the second production method, the porous tube is covered with the coated core wire, and then heat treatment is performed under the conditions, and finally the core wire is pulled out from the coated core wire covered with the porous tube to obtain a multilayer tube. .
本発明の多層チューブは、プッシュプルケーブルなどの工業用用途や、カテーテル、内視鏡などの医療用途に使用可能である。医療用途のさらなる具体例としては、例えば、体液流通用チューブ、内視鏡装置に備わっているチューブ等が挙げられる。このような医療分野で用いられるチューブは、気密性、水密性、可とう性、屈曲性、耐屈曲性に優れているとともに、内壁面の平滑性、耐汚染性、耐微生物性、有機物付着防止性等において優れていることが必要とされるが、本発明の多層チューブは、これらの要件を満たしており、医療分野においても好適に用いられる。
The multilayer tube of the present invention can be used for industrial applications such as push-pull cables and medical applications such as catheters and endoscopes. Further specific examples of the medical use include, for example, a body fluid distribution tube, a tube provided in an endoscope apparatus, and the like. Tubes used in such medical fields have excellent airtightness, watertightness, flexibility, flexibility, and bending resistance, as well as inner wall smoothness, contamination resistance, microbial resistance, and prevention of organic matter adhesion. However, the multilayer tube of the present invention satisfies these requirements and can be suitably used in the medical field.
つぎに本発明を実施例及び比較例を挙げて説明するが、本発明はかかる実施例のみに限定されるものではない。
Next, the present invention will be described with reference to examples and comparative examples, but the present invention is not limited to such examples.
(膜厚測定方法)
かみそりの刃などの鋭い刃物を使用して、チューブを切断し、その断面をマイクロスコープによって100倍の倍率で観察し、膜厚を測定した。 (Thickness measurement method)
The tube was cut using a sharp blade such as a razor blade, the cross section was observed at a magnification of 100 times with a microscope, and the film thickness was measured.
かみそりの刃などの鋭い刃物を使用して、チューブを切断し、その断面をマイクロスコープによって100倍の倍率で観察し、膜厚を測定した。 (Thickness measurement method)
The tube was cut using a sharp blade such as a razor blade, the cross section was observed at a magnification of 100 times with a microscope, and the film thickness was measured.
実施例1
1)第1層(PFA層)の作製
PFA(商品名:ネオフロンPFA、AP-202、ダイキン工業(株)製、MFR:72g/10分)を、内径16mmのダイ、外径14mmのチップを用いて、ダイス温度400℃、10m/分の速度で直径2.0mmのステンレス線上に、PFA層の肉厚が60μmとなるように溶融成形し、第1層(シームレス)とした。以下、ステンレス線上に第1層であるPFA層を有するものを、PFA被覆芯材という。 Example 1
1) Production of first layer (PFA layer) PFA (trade name: NEOFLON PFA, AP-202, manufactured by Daikin Industries, Ltd., MFR: 72 g / 10 min), die having an inner diameter of 16 mm, and chip having an outer diameter of 14 mm The first layer (seamless) was formed by using a die temperature of 400 ° C. at a speed of 10 m / min on a stainless steel wire having a diameter of 2.0 mm so that the thickness of the PFA layer was 60 μm. Hereinafter, what has the PFA layer which is a 1st layer on a stainless steel wire is called PFA coating | coated core material.
1)第1層(PFA層)の作製
PFA(商品名:ネオフロンPFA、AP-202、ダイキン工業(株)製、MFR:72g/10分)を、内径16mmのダイ、外径14mmのチップを用いて、ダイス温度400℃、10m/分の速度で直径2.0mmのステンレス線上に、PFA層の肉厚が60μmとなるように溶融成形し、第1層(シームレス)とした。以下、ステンレス線上に第1層であるPFA層を有するものを、PFA被覆芯材という。 Example 1
1) Production of first layer (PFA layer) PFA (trade name: NEOFLON PFA, AP-202, manufactured by Daikin Industries, Ltd., MFR: 72 g / 10 min), die having an inner diameter of 16 mm, and chip having an outer diameter of 14 mm The first layer (seamless) was formed by using a die temperature of 400 ° C. at a speed of 10 m / min on a stainless steel wire having a diameter of 2.0 mm so that the thickness of the PFA layer was 60 μm. Hereinafter, what has the PFA layer which is a 1st layer on a stainless steel wire is called PFA coating | coated core material.
2)第2層(多孔質PTFE層)の作製
PTFEファインパウダー(商品名:ポリフロンPTFE F-104、ダイキン工業(株)製)100重量部に、炭化水素系薬剤であるアイソパーM(エクソン化学社製)28部を混合したものを、直径12mmにペースト押出成形し、カレンダーロールにて、厚さ180μm、130mm幅シートにした。この130mm幅シートを、フィルムの長手方向(MD方向)に10m/秒の延伸速度で5倍に延伸して、厚さ110μmのPTFE多孔質のシートを得た。 2) Production of second layer (porous PTFE layer) PTFE fine powder (trade name: Polyflon PTFE F-104, manufactured by Daikin Industries, Ltd.) 100 parts by weight is a hydrocarbon-based agent, Isopar M (Exxon Chemical) (Product made) A mixture of 28 parts was paste-extruded to a diameter of 12 mm and formed into a sheet having a thickness of 180 μm and a width of 130 mm using a calendar roll. This 130 mm wide sheet was stretched 5 times in the longitudinal direction (MD direction) of the film at a stretching speed of 10 m / sec to obtain a 110 μm thick PTFE porous sheet.
PTFEファインパウダー(商品名:ポリフロンPTFE F-104、ダイキン工業(株)製)100重量部に、炭化水素系薬剤であるアイソパーM(エクソン化学社製)28部を混合したものを、直径12mmにペースト押出成形し、カレンダーロールにて、厚さ180μm、130mm幅シートにした。この130mm幅シートを、フィルムの長手方向(MD方向)に10m/秒の延伸速度で5倍に延伸して、厚さ110μmのPTFE多孔質のシートを得た。 2) Production of second layer (porous PTFE layer) PTFE fine powder (trade name: Polyflon PTFE F-104, manufactured by Daikin Industries, Ltd.) 100 parts by weight is a hydrocarbon-based agent, Isopar M (Exxon Chemical) (Product made) A mixture of 28 parts was paste-extruded to a diameter of 12 mm and formed into a sheet having a thickness of 180 μm and a width of 130 mm using a calendar roll. This 130 mm wide sheet was stretched 5 times in the longitudinal direction (MD direction) of the film at a stretching speed of 10 m / sec to obtain a 110 μm thick PTFE porous sheet.
上記PFA被覆芯材上に、得られたPTFE多孔質のシートを寿司巻き状に3周巻きつけた。以下、巻き付け品という。
The obtained PTFE porous sheet was wound around the PFA-coated core material three times in a sushi roll. Hereinafter, it is called a wound product.
3)加熱処理
この巻き付け品を、340℃の電気炉で5分間加熱処理した。加熱処理後、冷却して、ステンレス線を1.3倍の長さに引き伸ばしてから引き抜き、PFA層(厚さ60μm)と多孔質PTFE層(厚さ300μm)からなる多層チューブを得た。 3) Heat treatment This wound product was heat-treated in an electric furnace at 340 ° C for 5 minutes. After the heat treatment, cooling was performed, and the stainless steel wire was stretched to a length of 1.3 times and then pulled out to obtain a multilayer tube composed of a PFA layer (thickness 60 μm) and a porous PTFE layer (thickness 300 μm).
この巻き付け品を、340℃の電気炉で5分間加熱処理した。加熱処理後、冷却して、ステンレス線を1.3倍の長さに引き伸ばしてから引き抜き、PFA層(厚さ60μm)と多孔質PTFE層(厚さ300μm)からなる多層チューブを得た。 3) Heat treatment This wound product was heat-treated in an electric furnace at 340 ° C for 5 minutes. After the heat treatment, cooling was performed, and the stainless steel wire was stretched to a length of 1.3 times and then pulled out to obtain a multilayer tube composed of a PFA layer (thickness 60 μm) and a porous PTFE layer (thickness 300 μm).
比較例1
1)第1層(PTFE層)の作製
PTFEファインパウダー(商品名:ポリフロンF-208、ダイキン工業(株)製)を、内径2.5mmのダイを用いて、ダイス温度60℃、10m/分の速度で、直径2.0mmのステンレス線上に、PTFE層の肉厚が90μmとなるようにペースト押出成形し、第1層(シームレス)とした。以下、ステンレス線上に第1層であるPTFE層を有するものを、PTFE被覆芯材という。 Comparative Example 1
1) Production of first layer (PTFE layer) PTFE fine powder (trade name: Polyflon F-208, manufactured by Daikin Industries, Ltd.) was used at a die temperature of 60 ° C. and 10 m / min using a die with an inner diameter of 2.5 mm. The first layer (seamless) was formed by paste extrusion on a stainless steel wire having a diameter of 2.0 mm so that the thickness of the PTFE layer was 90 μm. Hereinafter, what has the PTFE layer which is a 1st layer on a stainless steel wire is called PTFE covering core material.
1)第1層(PTFE層)の作製
PTFEファインパウダー(商品名:ポリフロンF-208、ダイキン工業(株)製)を、内径2.5mmのダイを用いて、ダイス温度60℃、10m/分の速度で、直径2.0mmのステンレス線上に、PTFE層の肉厚が90μmとなるようにペースト押出成形し、第1層(シームレス)とした。以下、ステンレス線上に第1層であるPTFE層を有するものを、PTFE被覆芯材という。 Comparative Example 1
1) Production of first layer (PTFE layer) PTFE fine powder (trade name: Polyflon F-208, manufactured by Daikin Industries, Ltd.) was used at a die temperature of 60 ° C. and 10 m / min using a die with an inner diameter of 2.5 mm. The first layer (seamless) was formed by paste extrusion on a stainless steel wire having a diameter of 2.0 mm so that the thickness of the PTFE layer was 90 μm. Hereinafter, what has the PTFE layer which is a 1st layer on a stainless steel wire is called PTFE covering core material.
2)第2層(多孔質PTFE層)の作製及び加熱処理
実施例1と同様の方法により、PTFE被覆芯材上にPTFE多孔質のシートを寿司巻き状に3周巻きつけ、加熱処理を行った。加熱処理後、冷却して、ステンレス線を1.3倍の長さに引き伸ばしてから引き抜き、PTFE層(厚さ100μm)と多孔質PTFE層(厚さ330μm)からなる多層チューブを得た。 2) Production of second layer (porous PTFE layer) and heat treatment In the same manner as in Example 1, a PTFE porous sheet was wrapped around a PTFE-coated core material three times in a sushi roll and subjected to heat treatment. It was. After the heat treatment, it was cooled and the stainless steel wire was stretched to a length of 1.3 times and then pulled out to obtain a multilayer tube composed of a PTFE layer (thickness 100 μm) and a porous PTFE layer (thickness 330 μm).
実施例1と同様の方法により、PTFE被覆芯材上にPTFE多孔質のシートを寿司巻き状に3周巻きつけ、加熱処理を行った。加熱処理後、冷却して、ステンレス線を1.3倍の長さに引き伸ばしてから引き抜き、PTFE層(厚さ100μm)と多孔質PTFE層(厚さ330μm)からなる多層チューブを得た。 2) Production of second layer (porous PTFE layer) and heat treatment In the same manner as in Example 1, a PTFE porous sheet was wrapped around a PTFE-coated core material three times in a sushi roll and subjected to heat treatment. It was. After the heat treatment, it was cooled and the stainless steel wire was stretched to a length of 1.3 times and then pulled out to obtain a multilayer tube composed of a PTFE layer (thickness 100 μm) and a porous PTFE layer (thickness 330 μm).
実施例2
1)第1層(PFA層)の作製
実施例1と同様の方法でPFA被覆芯材を作製した。 Example 2
1) Production of first layer (PFA layer) A PFA-coated core material was produced in the same manner as in Example 1.
1)第1層(PFA層)の作製
実施例1と同様の方法でPFA被覆芯材を作製した。 Example 2
1) Production of first layer (PFA layer) A PFA-coated core material was produced in the same manner as in Example 1.
2)第2層(多孔質PTFE層)の作製
実施例1と同様の方法で作製したPTFE多孔質のシートを、幅10mmにカットしたものを、PFA被覆芯材上に、らせん状に3周巻き付け、実施例1と同様の加熱条件で加熱処理を行った。加熱処理後、冷却して、ステンレス線を引き抜き、PFA層(厚さ60μm)と多孔質PTFE層(厚さ330μm)からなる多層チューブを得た。 2) Production of second layer (porous PTFE layer) A PTFE porous sheet produced by the same method as in Example 1 was cut to a width of 10 mm, and spirally formed on a PFA-coated core. Winding and heat treatment were performed under the same heating conditions as in Example 1. After the heat treatment, it was cooled, the stainless steel wire was drawn out, and a multilayer tube composed of a PFA layer (thickness 60 μm) and a porous PTFE layer (thickness 330 μm) was obtained.
実施例1と同様の方法で作製したPTFE多孔質のシートを、幅10mmにカットしたものを、PFA被覆芯材上に、らせん状に3周巻き付け、実施例1と同様の加熱条件で加熱処理を行った。加熱処理後、冷却して、ステンレス線を引き抜き、PFA層(厚さ60μm)と多孔質PTFE層(厚さ330μm)からなる多層チューブを得た。 2) Production of second layer (porous PTFE layer) A PTFE porous sheet produced by the same method as in Example 1 was cut to a width of 10 mm, and spirally formed on a PFA-coated core. Winding and heat treatment were performed under the same heating conditions as in Example 1. After the heat treatment, it was cooled, the stainless steel wire was drawn out, and a multilayer tube composed of a PFA layer (thickness 60 μm) and a porous PTFE layer (thickness 330 μm) was obtained.
比較例2
1)第1層(PTFE層)の作製
比較例1と同様の方法でPTFE被覆芯材を作製した。 Comparative Example 2
1) Production of first layer (PTFE layer) A PTFE-coated core material was produced in the same manner as in Comparative Example 1.
1)第1層(PTFE層)の作製
比較例1と同様の方法でPTFE被覆芯材を作製した。 Comparative Example 2
1) Production of first layer (PTFE layer) A PTFE-coated core material was produced in the same manner as in Comparative Example 1.
2)第2層(多孔質PTFE層)の作製及び加熱処理
PTFE被覆芯材を用いた以外は、実施例2と同様の方法により、PTFE層(厚さ100μm)と多孔質PTFE層(厚さ330μm)からなる多層チューブを得た。 2) Preparation of the second layer (porous PTFE layer) and heat treatment A PTFE layer (thickness of 100 μm) and a porous PTFE layer (thickness) were obtained in the same manner as in Example 2 except that a PTFE-coated core material was used. 330 μm) was obtained.
PTFE被覆芯材を用いた以外は、実施例2と同様の方法により、PTFE層(厚さ100μm)と多孔質PTFE層(厚さ330μm)からなる多層チューブを得た。 2) Preparation of the second layer (porous PTFE layer) and heat treatment A PTFE layer (thickness of 100 μm) and a porous PTFE layer (thickness) were obtained in the same manner as in Example 2 except that a PTFE-coated core material was used. 330 μm) was obtained.
実施例3
1)第1層(PFA層)の作製
実施例1と同様の方法でPFA被覆芯材を作製した。 Example 3
1) Production of first layer (PFA layer) A PFA-coated core material was produced in the same manner as in Example 1.
1)第1層(PFA層)の作製
実施例1と同様の方法でPFA被覆芯材を作製した。 Example 3
1) Production of first layer (PFA layer) A PFA-coated core material was produced in the same manner as in Example 1.
2)第2層(多孔質PTFE層)の作製
PTFEファインパウダー(商品名:ポリフロンPTFE F-104、ダイキン工業(株)製)2kgに、炭化水素系押出助剤であるアイソパーG(エクソン化学社製)205gを混合して、12時間、室温(25℃)で熟成させた。この熟成させた混合物を、φ50mmペースト押出成形機で押出成形を行った。内径φ3.0mmのダイ、外径2.5mmのチップを使用した。この押出物を助剤乾燥のため、160℃の高温槽に30分間いれた。さらに、このチューブを200℃の高温槽に5分入れたのち、その温度のまま2倍の長さに伸ばして、伸ばしたまま常温に戻した。これにより、内径2.4mm、外径2.9mm、厚さ250μmのPTFE多孔質チューブを得た。得られたPTFE多孔質チューブを、PFA被覆芯材上にかぶせた。 2) Preparation of second layer (porous PTFE layer) 2 kg of PTFE fine powder (trade name: Polyflon PTFE F-104, manufactured by Daikin Industries, Ltd.) and Isopar G (Exxon Chemical Co., Ltd.), a hydrocarbon-based extrusion aid. 205 g) was mixed and aged at room temperature (25 ° C.) for 12 hours. This aged mixture was extruded with a φ50 mm paste extruder. A die having an inner diameter of φ3.0 mm and a chip having an outer diameter of 2.5 mm were used. This extrudate was placed in a high-temperature bath at 160 ° C. for 30 minutes to dry the auxiliary. Furthermore, after putting this tube in a 200 degreeC high temperature tank for 5 minutes, it extended to 2 times length with the temperature, and returned to normal temperature with extending | stretching. As a result, a PTFE porous tube having an inner diameter of 2.4 mm, an outer diameter of 2.9 mm, and a thickness of 250 μm was obtained. The obtained PTFE porous tube was placed on the PFA-coated core material.
PTFEファインパウダー(商品名:ポリフロンPTFE F-104、ダイキン工業(株)製)2kgに、炭化水素系押出助剤であるアイソパーG(エクソン化学社製)205gを混合して、12時間、室温(25℃)で熟成させた。この熟成させた混合物を、φ50mmペースト押出成形機で押出成形を行った。内径φ3.0mmのダイ、外径2.5mmのチップを使用した。この押出物を助剤乾燥のため、160℃の高温槽に30分間いれた。さらに、このチューブを200℃の高温槽に5分入れたのち、その温度のまま2倍の長さに伸ばして、伸ばしたまま常温に戻した。これにより、内径2.4mm、外径2.9mm、厚さ250μmのPTFE多孔質チューブを得た。得られたPTFE多孔質チューブを、PFA被覆芯材上にかぶせた。 2) Preparation of second layer (porous PTFE layer) 2 kg of PTFE fine powder (trade name: Polyflon PTFE F-104, manufactured by Daikin Industries, Ltd.) and Isopar G (Exxon Chemical Co., Ltd.), a hydrocarbon-based extrusion aid. 205 g) was mixed and aged at room temperature (25 ° C.) for 12 hours. This aged mixture was extruded with a φ50 mm paste extruder. A die having an inner diameter of φ3.0 mm and a chip having an outer diameter of 2.5 mm were used. This extrudate was placed in a high-temperature bath at 160 ° C. for 30 minutes to dry the auxiliary. Furthermore, after putting this tube in a 200 degreeC high temperature tank for 5 minutes, it extended to 2 times length with the temperature, and returned to normal temperature with extending | stretching. As a result, a PTFE porous tube having an inner diameter of 2.4 mm, an outer diameter of 2.9 mm, and a thickness of 250 μm was obtained. The obtained PTFE porous tube was placed on the PFA-coated core material.
3)加熱処理
PTFE多孔質チューブをかぶせたPFA被覆芯材を、実施例1と同様の条件で加熱処理した。加熱処理後、冷却して、ステンレス線を全長の1.3倍となるように引き伸ばしてから引き抜き、PFA層(厚さ60μm)と多孔質PTFE層(厚さ250μm)からなる多層チューブを得た。 3) Heat treatment The PFA-coated core material covered with the PTFE porous tube was heat-treated under the same conditions as in Example 1. After the heat treatment, it was cooled and the stainless steel wire was stretched to 1.3 times the total length and then pulled out to obtain a multilayer tube comprising a PFA layer (thickness 60 μm) and a porous PTFE layer (thickness 250 μm). .
PTFE多孔質チューブをかぶせたPFA被覆芯材を、実施例1と同様の条件で加熱処理した。加熱処理後、冷却して、ステンレス線を全長の1.3倍となるように引き伸ばしてから引き抜き、PFA層(厚さ60μm)と多孔質PTFE層(厚さ250μm)からなる多層チューブを得た。 3) Heat treatment The PFA-coated core material covered with the PTFE porous tube was heat-treated under the same conditions as in Example 1. After the heat treatment, it was cooled and the stainless steel wire was stretched to 1.3 times the total length and then pulled out to obtain a multilayer tube comprising a PFA layer (thickness 60 μm) and a porous PTFE layer (thickness 250 μm). .
比較例3
1)第1層(PTFE層)の作製
比較例1と同様の方法でPTFE被覆芯材を作製した。 Comparative Example 3
1) Production of first layer (PTFE layer) A PTFE-coated core material was produced in the same manner as in Comparative Example 1.
1)第1層(PTFE層)の作製
比較例1と同様の方法でPTFE被覆芯材を作製した。 Comparative Example 3
1) Production of first layer (PTFE layer) A PTFE-coated core material was produced in the same manner as in Comparative Example 1.
2)第2層(多孔質PTFE層)の作製及び加熱処理
PTFE被覆芯材を用いた以外は、実施例3と同様の方法によりPTFE層(厚さ100μm)と多孔質PTFE層(厚さ250μm)からなる多層チューブを得た。 2) Preparation of the second layer (porous PTFE layer) and heat treatment A PTFE layer (thickness: 100 μm) and a porous PTFE layer (thickness: 250 μm) were produced in the same manner as in Example 3 except that a PTFE-coated core material was used. Was obtained.
PTFE被覆芯材を用いた以外は、実施例3と同様の方法によりPTFE層(厚さ100μm)と多孔質PTFE層(厚さ250μm)からなる多層チューブを得た。 2) Preparation of the second layer (porous PTFE layer) and heat treatment A PTFE layer (thickness: 100 μm) and a porous PTFE layer (thickness: 250 μm) were produced in the same manner as in Example 3 except that a PTFE-coated core material was used. Was obtained.
比較例4
実施例1と同様の方法でPFA被覆芯材を作製した。
このPFA被覆芯材内のステンレス線を1.3倍の長さに引き伸ばしてから引き抜き、PFA層(厚さ60μm)からなる単層チューブを得た。 Comparative Example 4
A PFA-coated core material was produced in the same manner as in Example 1.
The stainless steel wire in the PFA-coated core material was stretched to a length of 1.3 times and then drawn to obtain a single-layer tube composed of a PFA layer (thickness 60 μm).
実施例1と同様の方法でPFA被覆芯材を作製した。
このPFA被覆芯材内のステンレス線を1.3倍の長さに引き伸ばしてから引き抜き、PFA層(厚さ60μm)からなる単層チューブを得た。 Comparative Example 4
A PFA-coated core material was produced in the same manner as in Example 1.
The stainless steel wire in the PFA-coated core material was stretched to a length of 1.3 times and then drawn to obtain a single-layer tube composed of a PFA layer (thickness 60 μm).
実施例1~3、比較例1~4で得られた多層チューブについて、以下の評価を行った。評価結果を表1に示す。
The multilayer tube obtained in Examples 1 to 3 and Comparative Examples 1 to 4 was evaluated as follows. The evaluation results are shown in Table 1.
耐キンク性:得られた多層チューブを内径20mmとなるように曲げて、チューブの閉じ具合を以下の評価基準により評価した。
○:チューブは閉じなかった。
×:チューブは閉じた。 Kink resistance: The obtained multilayer tube was bent so as to have an inner diameter of 20 mm, and the degree of closure of the tube was evaluated according to the following evaluation criteria.
○: The tube was not closed.
X: The tube was closed.
○:チューブは閉じなかった。
×:チューブは閉じた。 Kink resistance: The obtained multilayer tube was bent so as to have an inner diameter of 20 mm, and the degree of closure of the tube was evaluated according to the following evaluation criteria.
○: The tube was not closed.
X: The tube was closed.
内面粗度の測定方法:JIS B 0601による。
Measuring method of inner surface roughness: According to JIS B 0601.
引張り弾性率の測定方法:ASTM D 638による。
Tensile modulus measurement method: According to ASTM D638.
本発明では、内層をPFAにすることで、従来の内層のPTFEに比べて、シームレスであり、内面粗度が低く、引張り弾性率が高いために、使用時にチューブ内を通過する金属線などによる耐キズ、耐摩耗性を向上できる。また、外層については、延伸チューブ押出をすることで、工程を簡素化でき、また、均一な外層を作製できる。
In the present invention, the inner layer is made of PFA, which is more seamless than the conventional inner layer PTFE, has a low inner surface roughness, and a high tensile elastic modulus. Scratch resistance and wear resistance can be improved. Moreover, about an outer layer, a extending | stretching tube extrusion can simplify a process and can produce a uniform outer layer.
本発明の多層チューブは、耐薬品性及び耐熱性に優れ、かつ、内面の強度に優れているため、小さな曲げ半径で屈曲させてもキンク(折れ)を生じないものであり、内視鏡等の医療機器等におけるチューブとして非常に有用である。また、内層がシームレスであるため、内部を通過する部材等が引っ掛かることがなく、スムーズに内部を通過することができ、フィルムから作製する場合と比較して生産効率が高くなる。さらに、本発明の多層チューブの製造方法は、前述のような優れた効果を有する多層チューブを簡便な方法で製造することができるものである。
The multilayer tube of the present invention is excellent in chemical resistance and heat resistance, and has excellent inner surface strength. Therefore, even if it is bent with a small bending radius, it does not cause kinking (breaking). It is very useful as a tube in medical equipment. Further, since the inner layer is seamless, members passing through the inside are not caught, and the inside can pass through smoothly, and the production efficiency is higher than that in the case of producing from a film. Furthermore, the manufacturing method of the multilayer tube of this invention can manufacture the multilayer tube which has the above outstanding effects by a simple method.
1:芯線
2:溶融加工可能なフッ素樹脂からなる内層
3:被覆芯線
4:PTFE多孔質膜
5:PTFEの多孔質チューブ
6:隙間 1: Core wire 2: Inner layer made of melt-processable fluororesin 3: Coated core wire 4: PTFE porous membrane 5: PTFE porous tube 6: Gap
2:溶融加工可能なフッ素樹脂からなる内層
3:被覆芯線
4:PTFE多孔質膜
5:PTFEの多孔質チューブ
6:隙間 1: Core wire 2: Inner layer made of melt-processable fluororesin 3: Coated core wire 4: PTFE porous membrane 5: PTFE porous tube 6: Gap
Claims (10)
- 多孔質のポリテトラフルオロエチレンからなる外層、及び、溶融加工可能なフッ素樹脂からなる内層を含み、該内層がシームレスであることを特徴とする多層チューブ。 A multilayer tube comprising an outer layer made of porous polytetrafluoroethylene and an inner layer made of a melt-processable fluororesin, and the inner layer is seamless.
- 溶融加工可能なフッ素樹脂が、テトラフルオロエチレンに基づく重合単位及びパーフルオロ(アルキルビニルエーテル)に基づく重合単位を含むフッ素樹脂である請求項1に記載の多層チューブ。 The multilayer tube according to claim 1, wherein the melt-processable fluororesin is a fluororesin including a polymer unit based on tetrafluoroethylene and a polymer unit based on perfluoro (alkyl vinyl ether).
- 医療用である請求項1又は2記載の多層チューブ。 The multilayer tube according to claim 1 or 2, which is for medical use.
- 請求項1~3のいずれかに記載の多層チューブを備えることを特徴とする内視鏡。 An endoscope comprising the multilayer tube according to any one of claims 1 to 3.
- 芯線上に溶融加工可能なフッ素樹脂を被覆成形して被覆芯線を得る工程、
ポリテトラフルオロエチレン多孔質膜を得る工程、
前記被覆芯線に前記多孔質膜を巻きつける工程、
多孔質膜を巻きつけた被覆芯線を熱処理する工程、及び、
多孔質膜を巻きつけた被覆芯線から前記芯線を引き抜いて多層チューブを得る工程、
を含むことからなる、多層チューブの製造方法。 A process of obtaining a coated core wire by coating and forming a melt-processable fluororesin on the core wire;
Obtaining a polytetrafluoroethylene porous membrane;
Winding the porous membrane around the coated core wire,
Heat-treating the coated core wire around which the porous membrane is wound, and
A step of drawing the core wire from a coated core wire wound with a porous membrane to obtain a multilayer tube;
A process for producing a multilayer tube comprising: - 前記被覆芯線に、前記多孔質膜を寿司巻き状に巻きつける請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the porous film is wound around the coated core wire in a sushi roll shape.
- 前記被覆芯線に、前記多孔質膜をスパイラル状に巻きつける請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the porous film is wound around the coated core wire in a spiral shape.
- 芯線上に溶融加工可能なフッ素樹脂を被覆成形して被覆芯線を得る工程、
ポリテトラフルオロエチレンの多孔質チューブを得る工程、
前記被覆芯線に前記多孔質チューブを被せる工程、
多孔質チューブを被せた被覆芯線を熱処理する工程、及び、
多孔質チューブを被せた被覆芯線から前記芯線を引き抜いて多層チューブを得る工程、
を含むことからなる、多層チューブの製造方法。 A process of obtaining a coated core wire by coating and forming a melt-processable fluororesin on the core wire;
Obtaining a porous tube of polytetrafluoroethylene,
Covering the porous tube over the coated core wire,
A step of heat-treating the coated core wire covered with the porous tube; and
A step of drawing the core wire from a coated core wire covered with a porous tube to obtain a multilayer tube;
A process for producing a multilayer tube comprising: - 溶融加工可能なフッ素樹脂が、テトラフルオロエチレンに基づく重合単位及びパーフルオロ(アルキルビニルエーテル)に基づく重合単位を含むフッ素樹脂である請求項5又は8に記載の多層チューブの製造方法。 The method for producing a multilayer tube according to claim 5 or 8, wherein the melt-processable fluororesin is a fluororesin containing a polymer unit based on tetrafluoroethylene and a polymer unit based on perfluoro (alkyl vinyl ether).
- 熱処理の温度が、320~345℃である請求項5又は8に記載の多層チューブの製造方法。 The method for producing a multilayer tube according to claim 5 or 8, wherein the temperature of the heat treatment is 320 to 345 ° C.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-274850 | 2010-12-09 | ||
JP2010274850 | 2010-12-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012077760A1 true WO2012077760A1 (en) | 2012-06-14 |
Family
ID=46207243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/078464 WO2012077760A1 (en) | 2010-12-09 | 2011-12-08 | Multilayered tube, and method for producing multilayered tube |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012136020A (en) |
WO (1) | WO2012077760A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112672671A (en) * | 2018-09-20 | 2021-04-16 | 富士胶片株式会社 | Tube for endoscope and endoscope |
JP2021062169A (en) * | 2019-10-17 | 2021-04-22 | Hoya株式会社 | Endoscope |
CN113646155A (en) * | 2019-04-05 | 2021-11-12 | 株式会社润工社 | Method for providing a base product and mandrel coated with an elongated body |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5981267B2 (en) * | 2012-08-23 | 2016-08-31 | 共同印刷株式会社 | Laminate tube manufacturing method |
JP6967177B1 (en) * | 2020-02-27 | 2021-11-17 | 株式会社潤工社 | Laminated tube |
CN115996775A (en) * | 2020-07-02 | 2023-04-21 | 株式会社润工社 | Pipe |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0591973A (en) * | 1991-10-02 | 1993-04-16 | Olympus Optical Co Ltd | Tube for endoscope |
JPH08142236A (en) * | 1994-11-21 | 1996-06-04 | Japan Gore Tex Inc | Flexible multilayer tube |
JPH09123302A (en) * | 1995-10-31 | 1997-05-13 | Japan Gore Tex Inc | Composite tube with high flexibility |
JP2001046314A (en) * | 1999-08-09 | 2001-02-20 | Olympus Optical Co Ltd | Endoscope |
JP2006112507A (en) * | 2004-10-14 | 2006-04-27 | Tohoku Univ | Double layer fluororesin tube and method of manufacturing the same |
-
2011
- 2011-12-08 WO PCT/JP2011/078464 patent/WO2012077760A1/en active Application Filing
- 2011-12-08 JP JP2011268729A patent/JP2012136020A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0591973A (en) * | 1991-10-02 | 1993-04-16 | Olympus Optical Co Ltd | Tube for endoscope |
JPH08142236A (en) * | 1994-11-21 | 1996-06-04 | Japan Gore Tex Inc | Flexible multilayer tube |
JPH09123302A (en) * | 1995-10-31 | 1997-05-13 | Japan Gore Tex Inc | Composite tube with high flexibility |
JP2001046314A (en) * | 1999-08-09 | 2001-02-20 | Olympus Optical Co Ltd | Endoscope |
JP2006112507A (en) * | 2004-10-14 | 2006-04-27 | Tohoku Univ | Double layer fluororesin tube and method of manufacturing the same |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112672671A (en) * | 2018-09-20 | 2021-04-16 | 富士胶片株式会社 | Tube for endoscope and endoscope |
US20210219827A1 (en) * | 2018-09-20 | 2021-07-22 | Fujifilm Corporation | Endoscope tube and endoscope |
US12096912B2 (en) | 2018-09-20 | 2024-09-24 | Fujifilm Corporation | Endoscope tube with reinforcing member wound around outer peripheral surface thereof and endoscope having the same |
CN113646155A (en) * | 2019-04-05 | 2021-11-12 | 株式会社润工社 | Method for providing a base product and mandrel coated with an elongated body |
CN113646155B (en) * | 2019-04-05 | 2022-09-30 | 株式会社润工社 | Method for providing a base product and mandrel coated with an elongated body |
JP2021062169A (en) * | 2019-10-17 | 2021-04-22 | Hoya株式会社 | Endoscope |
WO2021075262A1 (en) * | 2019-10-17 | 2021-04-22 | Hoya株式会社 | Endoscope |
JP7372809B2 (en) | 2019-10-17 | 2023-11-01 | Hoya株式会社 | Endoscope |
Also Published As
Publication number | Publication date |
---|---|
JP2012136020A (en) | 2012-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012077760A1 (en) | Multilayered tube, and method for producing multilayered tube | |
JP7121328B1 (en) | fluorine-containing copolymer | |
JP6414632B2 (en) | Dielectric waveguide line | |
JP2005528244A (en) | Fluoropolymer articles | |
US20220407206A1 (en) | Dielectric waveguide line | |
JP4827372B2 (en) | Polytetrafluoroethylene resin tube and method for producing the same | |
JP7112014B1 (en) | fluorine-containing copolymer | |
JP7121327B1 (en) | fluorine-containing copolymer | |
JP7244790B2 (en) | fluorine-containing copolymer | |
JP7265210B2 (en) | fluorine-containing copolymer | |
JP2007185931A (en) | Hollow molding made of polytetrafluoroethylene resin and its manufacturing method | |
JP7193767B2 (en) | fluorine-containing copolymer | |
JP7108223B1 (en) | fluorine-containing copolymer | |
JP7278959B2 (en) | the film | |
JP2012153076A (en) | Flexible multi-layer tube and method of manufacturing the same | |
JP6967177B1 (en) | Laminated tube | |
JP2004142305A (en) | Laminated film | |
JP7265209B2 (en) | fluorine-containing copolymer | |
JP7193764B2 (en) | fluorine-containing copolymer | |
JP7303552B2 (en) | Method of providing base product and mandrel coated with elongated body | |
JP2022132214A (en) | fluorine-containing copolymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11847248 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11847248 Country of ref document: EP Kind code of ref document: A1 |