JP2004142305A - Laminated film - Google Patents

Laminated film Download PDF

Info

Publication number
JP2004142305A
JP2004142305A JP2002310924A JP2002310924A JP2004142305A JP 2004142305 A JP2004142305 A JP 2004142305A JP 2002310924 A JP2002310924 A JP 2002310924A JP 2002310924 A JP2002310924 A JP 2002310924A JP 2004142305 A JP2004142305 A JP 2004142305A
Authority
JP
Japan
Prior art keywords
film
laminated film
fluoropolymer
layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002310924A
Other languages
Japanese (ja)
Inventor
Yoshiaki Higuchi
樋口 義明
Masanori Kaya
賀屋 政徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002310924A priority Critical patent/JP2004142305A/en
Publication of JP2004142305A publication Critical patent/JP2004142305A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated film improved in a mold releasability, corrosion resistance, non-sticking property, mechanical properties and recycling performance. <P>SOLUTION: The laminated film is obtained by stretching a laminated body made by heating, pressing and adhering in advance, at least two times in uniaxial direction. The laminated film comprises each one or more of a layer of a fluorine containing polymer and a layer of a thermoplastic resin other than the fluorine containing polymer, and at least one side of the film is a layer of the fluorine containing polymer. The laminated film has a thickness of 10-200μm and the fluorine containing polymer layer in the laminated film has a thickness of 0.4 or more μm and less than 3 μm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、離型性、耐食性、非粘着性、機械的特性及びリサイクル性に優れる積層フィルムに関する。
【0002】
【従来の技術】
含フッ素重合体のフィルムは、離型性、耐食性、非粘着性等に優れることから各種の離型フィルム用途に使用される。しかし、含フッ素重合体のフィルムは柔軟性が高く、高温での機械的強度が低いので、100℃以上の温度下に使用される用途では、該含フッ素重合体のフィルム単体では離型フィルムとして使用することは困難であった。
【0003】
そこで、高温での機械的強度に優れる、含フッ素重合体以外の熱可塑性樹脂のフィルムと含フッ素重合体のフィルムとを接着剤を用いて接着し、表面に含フッ素重合体の層を有する積層フィルムの開発が進められた。この積層フィルムは、含フッ素重合体の表面特性を維持しながら、高温での機械的強度が向上し、また、含フッ素重合体のフィルム単体に比較して安価であり、離型フィルムをはじめ、種々の用途に使用される。該熱可塑性樹脂としては、ポリエチレンテレフタレート等の2軸延伸フィルム等が用いられる。
【0004】
該積層フィルムの表面の含フッ素重合体の層の厚さは、耐擦傷性を満足できる範囲内で、薄いほど積層フィルムが安価に製造できるので好ましい。しかし、含フッ素重合体のフィルムの成形時及び積層時には、含フッ素重合体のフィルムを単体で取り扱える機械的強度が必要であり、あまりに薄くすると機械的な張力制御が困難となり、シワ等の積層欠陥となるので、ドライラミネート法により積層フィルムを得る場合には、含フッ素重合体の層の厚さとしては、薄いものでも3μm以上の厚さのフィルムが使用されてきた(例えば、特許文献1を参照。)。そこで、より安価な積層フィルムを得るために、厚さ3μm未満の含フッ素重合体の層を含有する積層フィルムの開発が要請されている。
【0005】
また、使用後の積層フィルムは、積層フィルムから含フッ素重合体のフィルムを剥離しリサイクルする要請もあるが、含フッ素重合体の層の接着に用いた接着剤が支障となり、リサイクル性が充分でなかった。
【0006】
本発明者らは、積層前の含フッ素重合体のフィルムの厚さには上記のように制限があるが、積層フィルムを延伸すれば、積層フィルム表面の含フッ素重合体の層の厚さを3μm未満まで薄くできると考え、鋭意検討を進めた。
【0007】
【特許文献1】
特開2002−67241号公報(段落番号0014)
【0008】
【発明が解決しようとする課題】
本発明の目的は、離型性、耐食性、非粘着性及び機械的強度に優れ、含フッ素重合体のフィルムのリサイクル性に優れる、含フッ素重合体の表面層を有する積層フィルムを提供することである。
【0009】
【課題を解決するための手段】
本発明は、あらかじめ加熱加圧接着されてなる積層体を少なくとも一軸方向に2倍以上延伸して得られる積層フィルムであって、該積層フィルムは含フッ素重合体の層と含フッ素重合体以外の熱可塑性樹脂の層をそれぞれ1層以上有し、かつ少なくとも片面は含フッ素重合体の層であり、該積層フィルムの厚さが10〜200μmであり、該積層フィルムにおける含フッ素重合体の層の厚さが0.4μm以上3μm未満であることを特徴とする積層フィルムを提供する。
【0010】
【発明の実施の形態】
本発明において、含フッ素重合体としては、エチレン−テトラフルオロエチレン共重合体(以下、ETFEという。)、テトラフルオロエチレン−ペルフルオロ(アルキルビニルエーテル)共重合体(以下、PFAという。)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(以下、FEPという。)、エチレン−クロロトリフルオロエチレン共重合体等が挙げられる。より好ましくは、ETFE、PFA又はFEPである。これらは1種単独で用いてもよいし、2種以上を混合して用いてもよい。
【0011】
ETFEとしては、テトラフルオロエチレン(以下、TFEという。)/エチレンに基づく重合単位のモル比が70/30〜30/70が好ましく、65/35〜40/60がより好ましく、60/40〜40/60が最も好ましい。
【0012】
ETFEは、TFE及びエチレンの他に、コモノマーに基づく重合単位を少量含んでもよい。コモノマーとしては、CF=CFCl、CF=CH等のフルオロエチレン類(ただし、TFEを除く。)、ヘキサフルオロプロピレン(以下、HFPという。)、CF=CHCF等のフルオロプロピレン類、CFCFCFCFCH=CH、CFCFCFCFCF=CH等の炭素数が4〜12のフルオロアルキル基を有する(ペルフルオロアルキル)エチレン類、R(OCFXCFOCF=CF(式中、Rは、炭素数1〜6のペルフルオロアルキル基、Xはフッ素原子又はトリフルオロメチル基、mは0〜5の整数を表す。)等のペルフルオロビニルエーテル類、CHOCOCFCFCFOCF=CFやFSOCFCFOCF(CF)CFOCF=CF等の容易にカルボン酸基やスルホン酸基に変換可能な基を有するペルフルオロビニルエーテル類、プロピレン、イソブチレン等のオレフィン類(ただし、エチレンを除く。)等が挙げられる。コモノマーは、1種単独で又は2種以上組み合わせ使用してもよい。
【0013】
FEPとしては、TFE/HFPに基づく重合単位のモル比が98/2〜50/50が好ましく、95/15〜60/40がより好ましく、90/10〜75/25が最も好ましい。
【0014】
FEPとしては、TFE及びHFPの他に、コモノマーに基づく重合単位を少量含んでもよい。コモノマーとしては、CF=CFCl、CF=CH等のフルオロエチレン類(ただし、TFEを除く。)、CF=CHCF等のフルオロプロピレン類(ただし、HFPを除く。)、CFCFCFCFCH=CH、CFCFCFCFCF=CH等の炭素数が4〜12のフルオロアルキル基を有する(ペルフルオロアルキル)エチレン類、R(OCFXCFOCF=CF(式中、Rは、炭素数1〜6のペルフルオロアルキル基、Xはフッ素原子又はトリフルオロメチル基、mは0〜5の整数を表す。)等のペルフルオロビニルエーテル類、CHOCOCFCFCFOCF=CFやFSOCFCFOCF(CF)CFOCF=CF等の容易にカルボン酸基やスルホン酸基に変換可能な基を有するペルフルオロビニルエーテル類、エチレン、プロピレン、イソブチレン等のオレフィン類等が挙げられる。コモノマーは、1種単独で又は2種以上組み合わせ使用してもよい。
【0015】
PFAとしては、TFE/ペルフルオロ(アルキルビニルエーテル)(以下、PFAVという。)に基づく重合単位のモル比が99.9/0.1〜90/10が好ましく、99.5/0.5〜96/4がより好ましく、99/1〜98/2が最も好ましい。
【0016】
PFAVとしては、ROCF=CF(式中、Rは、炭素数1〜6のペルフルオロアルキル基を表す。)が挙げられる。Rは、直鎖状、分岐状及び環状構造のいずれでもよいが、好ましくは炭素数2〜4の直鎖状構造が好ましく、炭素数3の直鎖状構造がより好ましい。
【0017】
PFAとしては、TFE及びPFAVの他に、コモノマーに基づく重合単位を少量含んでもよい。コモノマーとしては、CF=CFCl、CF=CH等のフルオロエチレン類(ただし、TFEを除く。)、HFP、CF=CHCF等のフルオロプロピレン類、CFCFCFCFCH=CH、CFCFCFCFCF=CH等の炭素数が4〜12のフルオロアルキル基を有する(ペルフルオロアルキル)エチレン類、R(OCFXCFOCF=CF(式中、Rは、炭素数1〜6のペルフルオロアルキル基、Xはフッ素原子又はトリフルオロメチル基、pは1〜5の整数を表す。)等のペルフルオロビニルエーテル類、CHOCOCFCFCFOCF=CFやFSOCFCFOCF(CF)CFOCF=CF等の容易にカルボン酸基やスルホン酸基に変換可能な基を有するペルフルオロビニルエーテル類、エチレン、プロピレン、イソブチレン等のオレフィン類等が挙げられる。コモノマーは、1種単独で又は2種以上組み合わせ使用してもよい。
【0018】
ETFE、FEP又はPFAにおいて、コモノマーに基づく重合単位を含む場合には、コモノマーに基づく重合単位の含有割合は、通常ETFE、FEP又はPFAの全重合単位に対して、好ましくは0.02〜30モル%、より好ましくは0.1〜15モル%、最も好ましくは0.2〜10モル%である。
【0019】
本発明の積層フィルムは、含フッ素重合体以外の熱可塑性樹脂の層を含有する。以下、本明細書において、熱可塑性樹脂とは、含フッ素重合体以外の熱可塑性樹脂をいう。該熱可塑性樹脂としては、2軸延伸性を有するものが好ましい。具体例としては、ポリエチレンテレフタレート(以下、PETという。)、ポリブチレンテレフタレート、ポリブチレンナフタレート等の芳香族ポリエステル、ポリプロピレン等のポリオレフィン、ポリアミド6等のポリアミド等が挙げられる。特に、強度が高く、耐熱性に優れるPETが好ましい。
【0020】
本発明の積層フィルムは、含フッ素重合体の層と熱可塑性樹脂の層をそれぞれ1層以上有し、かつ少なくとも片面は含フッ素重合体の層である。含フッ素重合体の層は1層又は2層であることが好ましく、2層の場合にはいずれも表面層であることが好ましい。含フッ素重合体が2層以上存在する場合には各層の含フッ素重合体は異なっていてもよい。熱可塑性樹脂の層の数は特に限定されないが3層以下が好ましい。熱可塑性樹脂の層が2層以上存在する場合には各層の熱可塑性樹脂の種類は異なっていてもよい。
【0021】
積層フィルムの層構成としては、例えば、含フッ素重合体/熱可塑性樹脂の2層構成、含フッ素重合体/熱可塑性樹脂/含フッ素重合体の3層構成、含フッ素重合体/熱可塑性樹脂/熱可塑性樹脂の3層構成、含フッ素重合体/熱可塑性樹脂/熱可塑性樹脂/含フッ素重合体の4層構成等が挙げられる。
【0022】
本発明の積層フィルムにおける表面の含フッ素重合体の層の厚さは、0.4μm以上3μm未満である。好ましくは0.5〜2.5μm、より好ましくは0.7〜2.2μmである。この範囲にあると、積層フィルムが耐擦傷性に優れ、延伸成形時にピンホールの発生がない。また、含フッ素重合体の表面特性が維持される。表面層以外に含フッ素重合体の層が存在する場合には、その層の厚さは限定されないが、表面層と同じ範囲の厚さであることが好ましい。なお、本明細書において、nn〜mmなる表記は、nn以上mm以下を示す。
【0023】
本発明の積層フィルムの厚さは10〜200μmである。好ましくは12〜150μmであり、より好ましくは15〜100μmである。この範囲にあると取り扱い性に優れる。
【0024】
本発明の積層フィルムは、450nmにおける光線透過率が87%以上であることが好ましい。より好ましくは88%以上であり、最も好ましくは89%以上である。この範囲にあると透明性に優れ、光学検査用途に用いる場合などには、S/N比が向上する傾向となる。
【0025】
本発明の積層フィルムの層間接着力は、3〜80g/cmが好ましく、6〜60g/cmがより好ましく、10〜40g/cmが最も好ましい。この範囲にあると使用時の耐剥離性に優れると同時に、使用後のリサイクル時の剥離性に優れる。この層間接着力は、下記原反積層シートの層間接着力に比例すると考えられ、層間接着力が高い原反積層シートを使用することにより層間接着力に優れる積層フィルムが得られる。
【0026】
本発明の積層フィルムは、あらかじめ加熱加圧接着されてなる積層体を少なくとも一軸方向に2倍以上延伸して得られる積層フィルムである。延伸は2軸延伸であることが好ましく、各方向に2倍以上延伸して得られる積層フィルムであることが好ましい。延伸倍率は2〜10倍が好ましく、2軸延伸の場合は2方向とも2〜10倍であることが好ましい。より好ましい延伸倍率は2.5〜6倍である。なお、延伸前の「あらかじめ加熱加圧接着されてなる積層体」を以下「原反積層シート」ともいう。
【0027】
原反積層シートは、含フッ素重合体のフィルムやシートの1枚以上と熱可塑性樹脂のフィルムやシートの1枚以上を加熱加圧接着して得られる。原反積層シートの層構成は、目的とする前記積層フィルムの層構成からなる。原反積層シートの原材料の各フィルムやシートの厚さ及び原反積層シートの厚さは、前記積層フィルムにおける各層の厚さや前記積層フィルムの厚さと延伸倍率から選択される。なお、一般にフィルムとシートを区別する厚さは特に明確ではないので、本明細書においては特に言及しない限り通常シートと呼ばれる厚さのものであっても以下フィルムと称する。また、本発明における原反積層シートは通常フィルムと呼ばれる厚さのものであってもよい。
【0028】
原反積層シートを製造する時に用いる熱可塑性樹脂のフィルムとしては、原反積層シートを安定的かつ効果的に延伸するために、結晶性が低く、溶融押出し性に優れるフィルムが好ましい。PETの場合には、溶融押出し時に成形ダイスから押し出されたフィルムを急冷する操作等で得た非結晶性PETフィルムが好ましい。非結晶性PETフィルムの市販品としては、帝人社製A−PETTM等が挙げられる。
【0029】
原反積層シートにおける含フッ素重合体の層と熱可塑性樹脂の層とは、前記積層フィルムの好ましい層間接着力を達成するために充分に接着されていることが好ましい。このため、原反積層シートは、原材料である含フッ素重合体のフィルムと熱可塑性樹脂のフィルムとを加熱加圧して得られるものであることが必要がある。含フッ素重合体は、表面のぬれ張力が低く、通常接着性が低い材料であることから、含フッ素重合体のフィルムの積層面は接着性向上処理が施されていることが好ましい。この表面処理としては、コロナ放電処理、ナトリウムエッチング処理等が好ましい。
【0030】
本発明において、原反積層シートの製造前に、含フッ素重合体のフィルムの積層面をコロナ放電等で処理し、ぬれ張力を高めておくことが好ましい。特に、コロナ放電処理が好ましい。ここで、ぬれ張力は、JIS K 6768:1999及びISO8296及びTECHNICAL CORRIGENDUM:1998にしたがって測定される値であり、その値が高いほど含フッ素重合体のフィルムと熱可塑性樹脂のフィルムとの接着性が優れることがわかった。表面処理された含フッ素重合体のフィルムのぬれ張力は、25.4〜62mN/mが好ましく、30〜56mN/mがより好ましい。含フッ素重合体のリサイクル性を特に向上するためには、30〜50mN/mのねれ張力が最も好ましい。
【0031】
通常、含フッ素重合体のフィルムと積層する、熱可塑性樹脂のフィルムの表面は表面処理する必要はないが、より高い層間の接着力が必要な場合は、熱可塑性樹脂のフィルムの表面についてもコロナ放電処理することが好ましい。
【0032】
原反積層シートを製造する時に用いる加熱加圧方法としては、原材料フィルムを重ねて、加熱下に平板間でプレスする方法(以下、熱プレス法ともいう。)、加熱した1対のロール間で圧着する方法(以下、熱ロール法ともいう。)等が挙げられる。特に、原反積層シートを連続製造できる熱ロール法が好ましい。加熱温度は、熱可塑性樹脂の結晶化温度以下が好ましい。PETの場合、65〜110℃が好ましい。圧力は熱プレス法では2〜20kg/cm、熱ロール法では5〜50kg/cmが好ましい。圧力がこれより低いと層間にエアートラップ等の欠陥が生じやすく、これより高いと熱可塑性樹脂の変形し厚さが不安定になりやすい。また、同時にPETの結晶化が起こり、以後の延伸加工が著しく困難になる。この範囲にあると層間に欠陥が生じず、層の厚さの寸法安定性に優れる。
【0033】
本発明において、原反積層シートの延伸条件として、熱可塑性樹脂の層を延伸できる条件を採用すると、熱可塑性樹脂の層より弾性率が低い含フッ素重合体の層は追随するので好ましい。例えば、PETの層を含有する原反積層シートの場合には、PETの層が延伸される条件である、延伸温度が85〜110℃、延伸倍率がタテヨコそれぞれ2.5〜6倍、熱固定温度が220〜250℃を採用することが好ましい。また、PETに充分な引張り強度と引き裂き強度を与えるためには加熱下に延伸することが好ましい。
【0034】
本発明の積層フィルムは、特に原反積層シートを2軸延伸して得ることが好ましい。2軸延伸方法としては、一般に採用されるものが適用される。積層フィルムの製造工程の例を図1に示す。工程1は、積層原反シートの形成工程、工程2は、積層シートの形成工程であり、工程2は、予熱、延伸及び熱固定の3工程からなる。
【0035】
2軸延伸条件としては、例えば、熱可塑性樹脂がPETの場合には、PETの延伸条件である、延伸温度85〜110℃を適用することが好ましく、延伸倍率はタテヨコそれぞれに2.5〜6倍が好ましい。連続的に積層フィルムを製造する場合には、原反積層シートの4方向の端部をクリップで掴み、タテヨコを同時に延伸する同時2軸延伸法、又は、原反積層シートをタテ方向にロールの回転周差を利用して延伸した後、ヨコの端部をクリップで掴み、ヨコ方向に延伸する逐次2軸延伸法が好ましい。同時2軸延伸又は逐次2軸法のヨコ方向の延伸が終了した時に、ヨコ端部をクリップで掴んだまま、所定温度に加熱した後、冷却して熱固定することが好ましい。熱固定における加熱温度は180〜250℃、冷却温度は80℃以下が好ましい。熱固定すると積層フィルムの加熱収縮率等の寸法安定性が向上し、引き裂き強度が増加する。
【0036】
原反積層シートの厚さは、延伸倍率と積層フィルムの厚さから規定される。例えば、延伸して得られる積層フィルムの厚さが50μmで、延伸倍率をタテヨコそれぞれ4倍に設定した場合には、面積倍率は16倍となることから、原反積層シートの厚さとしては、50μm×16=800μmを用いる。特に、原反積層シートの厚さとしては、3200〜160μmが好ましく、2400〜192μmがより好ましく、1600〜224μmが最も好ましい。
【0037】
また、原反積層シートにおける含フッ素重合体の層の厚さは、6〜50μmが好ましく、8〜40μmがより好ましく、10〜30μmが最も好ましい。この範囲にあると各フィルムの単体での取り扱い性がよく、かつ延伸後に含フッ素重合体の厚さが3μm未満とすることが容易である。
【0038】
本発明の積層フィルムの用途としては、離型フィルム、壁紙、防汚フィルム、薬品等保護フィルム等が挙げられるが、離型フィルムが好ましい。離型フィルムとしては、耐溶剤性離型フィルム、易剥離性フィルム、加熱離型フィルム、耐酸性離型フィルム、耐アルカリ性離型フィルム等が挙げられる。特に、無機粒子とバインダーを含有する組成物溶液からキャスト成膜されたフィルムを容易に剥離できる易剥離性フィルム、溶液から高分子フィルムをキャスト製膜する時に用いる耐溶剤性離型フィルム等が好ましい。
【0039】
【実施例】
本発明を以下の実施例により具体的に説明するが、本発明はこれらに限定されない。なお、機械的特性、層間接着力、剥離性、ぬれ張力、光線透過率は以下に記載の方法により測定した。
【0040】
[機械的特性]試験規格ASTM D638に準じて、積層フィルムの引張り強度及び破断伸度を測定した。
【0041】
[層間接着力(g/cm)]積層フィルムのETFE層とPET層の層間接着力を以下のように測定した。幅2.5cm、長さ10cmの短冊状試験片を用い、ETFEの層の一部を剥離して、引張り試験機を用い、引張り速度50mm/分で剥離したときの応力を測定し、幅2.5cmで除して層間接着力とした。
【0042】
[剥離性]トルエンの100質量部にセラミック粒子(平均一次粒子径が0.6μmのチタン酸バリウム粉末(富士チタン社製)の100質量部を混合し、メディアである粒径3mmのガラスビーズ(充填量:スラリーに対し300質量%)と共にボールミルで16時間分散した後、バインダー(ポリビニルブチラール:積水化学工業社製)の10質量部及び可塑剤(ポリエチレングリコール)をチタン酸バリウム粉末とバインダーの総量に対し2質量%混合し、ボールミルで24時間分散した。これを孔径3μmのガラス繊維フィルターで濾過してセラミックスラリーを得た。得られたセラミックスラリーをドクターブレード法により積層フィルム上に乾燥膜厚が10μmになるようにキャストし、ついで120℃の熱風恒温槽内で2分乾燥して、積層フィルム上にセラミック膜を形成した。セラミック膜が形成された積層フィルムを幅2.5cm、長さ10cmの短冊状に切断し試験片とした。試験片の積層フィルムとセラミック膜とを50mm/分の速度で剥離させたときの剥離力を評価した。
【0043】
[ぬれ張力]JIS K 6768:1999に従って測定した。
【0044】
[光線透過率(%)]旭スペクトラ社製全光線透過率計MODEL304を用い、白色光を光源としてサンプルのない状態を100%、完全に透過光を遮った状態を0%として測定した。
【0045】
[実施例1]
300℃におけるメルトインデックス(MI)値が3.8であるETFE(旭硝子社製アフロンCOP(登録商標)C−88AX)を、口径40mmの1軸押出し成形機(VS40、池貝社製)を用いて、700mmの口金幅を有するコートハンガータイプフラットダイを用い、ダイス温度340℃、押出し速度5.2kg/時間で押出して吐出物を得た。吐出物を表面温度が130℃になるように調整したロールで3.15m/分の速度で引き取ることにより、厚さ24μmの原反ETFEフィルムを得た。
【0046】
ついで、原反ETFEフィルムを間隙1mmに設定した幅800mmの電極とシリコーンゴムライニングロールの間を通し、コロナ放電処理された原反ETFEフィルム1を得た。電極にはコロナ発生装置により0.3kwの電力を付加しコロナを発生させた。原反ETFEフィルム1のぬれ張力は45mN/mであった。
【0047】
厚さ610μmの非晶質PETシート(帝人社製FR−1、以下、A−PETという。)と原反ETFEフィルム1とを、原反ETFEフィルム1/A−PET/原反ETFEフィルム1の3層に重ねるように金属ロールとゴムロールの1対からなる積層ロール装置の繰り出し部に設置した。原反ETFEフィルム1は、コロナ放電処理面がA−PET側になるように設置した。金属ロール及びゴムロールの表面温度87℃、圧力25kg/cm、速度0.3m/分の条件下に3層のフィルムをロール間で圧着し3層原反シート1を得た。
【0048】
得られた3層原反シート1の平均厚さは657μmであった。この3層原反シート1を以下の方法で2軸延伸を行った。すなわち、3層原反シート1を90mm角に切断し原反試料とした。この原反試料を、2軸延伸装置(東洋精機社製、2軸延伸装置×6H)を用い、温度97℃、予熱2分、延伸速度2m/分で、原反試料の寸法に対してタテ、ヨコともに3.7倍になるように延伸し、2軸延伸された積層フィルムを得た。積層フィルムを、その表面温度が50℃以下になるまで冷却した後、取出した。積層フィルムの厚さは中央部(面積で75%)の平均値として49μmであった。また、光学顕微鏡による断面観察の結果、ETFEの層の厚さは、いずれも1.8μmであった。
【0049】
ついで、積層フィルムを内寸20cm角、外寸25cm角のステンレス製の2枚の枠の間に挟み、その周辺をクランプで固定した後、130℃の熱風恒温槽内で2分間、ついで、250℃の熱風恒温槽内で2分間、保持した後、熱風恒温槽から枠を取出して積層フィルムの表面温度が40℃以下となるまで冷却し、熱固定した。その後、クランプ及び枠を外して、延伸、熱固定した積層フィルム1を得た。光学顕微鏡による断面観察の結果、ETFEの層の厚さは、いずれも1.8μmであった。積層フィルム1の特性を評価した結果を表1に示す。
【0050】
[実施例2]
コロナ放電処理時の付加電力が0.15kwであり、得られた処理面のぬれ張力が34mN/mである原反ETFEフィルムを用いる以外は実施例1と同様にして積層、延伸、熱固定して積層フィルム2を得た。光学顕微鏡による断面観察の結果、ETFEの層の厚さは、いずれも1.9μmであった。この積層フィルム2の特性を評価した結果を表1に示す。
【0051】
[実施例3]
原反ETFEフィルム1のコロナ放電処理していない面をA−PET側に設置した以外は実施例1と同様にして積層、延伸、熱固定して積層フィルム3を得た。光学顕微鏡による断面観察の結果、ETFEの層の厚さは、いずれも1.8μmであった。この積層フィルムの特性を評価した結果を表1に示す。
【0052】
[比較例1]
厚さ51μmの2軸延伸PETフィルム(帝人社製、帝人PET#50)の特性を評価した結果を表1に示す。
【0053】
【表1】

Figure 2004142305
【0054】
【発明の効果】
本発明の積層フィルムは、離型性、非粘着性、剥離性、強度に優れ、含フッ素重合体の層と熱可塑性樹脂の層との層間接着力が適度であり、含フッ素重合体のリサイクル性に優れる。
【図面の簡単な説明】
【図1】積層フィルムの製造工程を示す図。
【符号の説明】
1:熱可塑性樹脂のフィルム
2:含フッ素重合体のフィルム
3:原反積層シート
4:積層フィルム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated film excellent in releasability, corrosion resistance, non-adhesiveness, mechanical properties and recyclability.
[0002]
[Prior art]
Fluoropolymer films are excellent in mold release, corrosion resistance, non-adhesiveness, etc., and are therefore used for various mold release film applications. However, since the fluoropolymer film has high flexibility and low mechanical strength at high temperatures, the fluoropolymer film alone is used as a release film in applications where the film is used at a temperature of 100 ° C. or higher. It was difficult to use.
[0003]
Therefore, a laminate having a fluoropolymer layer on the surface, which is excellent in mechanical strength at high temperatures, and which is obtained by adhering a film of a thermoplastic resin other than a fluoropolymer and a fluoropolymer film using an adhesive. Film development was underway. This laminated film has improved mechanical strength at high temperatures while maintaining the surface properties of the fluoropolymer, and is less expensive than the fluoropolymer film alone, including release films, Used for various applications. As the thermoplastic resin, a biaxially stretched film such as polyethylene terephthalate is used.
[0004]
The thickness of the fluoropolymer layer on the surface of the laminated film is preferably within the range where the scratch resistance can be satisfied. However, when molding and laminating a fluoropolymer film, it is necessary to have sufficient mechanical strength to handle the fluoropolymer film alone. If it is too thin, mechanical tension control becomes difficult and stacking faults such as wrinkles Therefore, when obtaining a laminated film by the dry laminating method, a film having a thickness of 3 μm or more has been used as the thickness of the fluoropolymer layer (for example, Patent Document 1). reference.). Therefore, in order to obtain a cheaper laminated film, development of a laminated film containing a fluoropolymer layer having a thickness of less than 3 μm is required.
[0005]
In addition, the laminated film after use is also requested to peel and recycle the fluoropolymer film from the laminated film, but the adhesive used for bonding the fluoropolymer layer becomes an obstacle, and the recyclability is sufficient. There wasn't.
[0006]
The present inventors have a limitation on the thickness of the fluoropolymer film before lamination as described above, but if the laminate film is stretched, the thickness of the fluoropolymer layer on the surface of the laminate film is reduced. We thought that it could be thinned to less than 3 μm, and proceeded with intensive studies.
[0007]
[Patent Document 1]
JP 2002-67241 A (paragraph number 0014)
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a laminated film having a fluoropolymer surface layer, which is excellent in releasability, corrosion resistance, non-adhesiveness and mechanical strength, and excellent in recyclability of the fluoropolymer film. is there.
[0009]
[Means for Solving the Problems]
The present invention is a laminated film obtained by stretching a laminate that has been pre-heated and pressure-bonded at least twice in a uniaxial direction, and the laminated film is a layer other than a fluoropolymer layer and a fluoropolymer. Each has at least one thermoplastic resin layer, and at least one surface is a fluoropolymer layer, the thickness of the laminated film is 10 to 200 μm, and the fluoropolymer layer in the laminated film Provided is a laminated film having a thickness of 0.4 μm or more and less than 3 μm.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the fluorine-containing polymer includes an ethylene-tetrafluoroethylene copolymer (hereinafter referred to as ETFE), a tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (hereinafter referred to as PFA), and tetrafluoroethylene. -Hexafluoropropylene copolymer (hereinafter referred to as FEP), ethylene-chlorotrifluoroethylene copolymer and the like. More preferred is ETFE, PFA or FEP. These may be used singly or in combination of two or more.
[0011]
As ETFE, the molar ratio of polymer units based on tetrafluoroethylene (hereinafter referred to as TFE) / ethylene is preferably 70/30 to 30/70, more preferably 65/35 to 40/60, and 60/40 to 40 / 60 is most preferred.
[0012]
ETFE may contain a small amount of polymerized units based on comonomers in addition to TFE and ethylene. As comonomer, CF 2 = CFCl, CF 2 = CH 2 Fluoroethylenes (excluding TFE), hexafluoropropylene (hereinafter referred to as HFP), CF 2 = CHCF 3 Fluoropropylenes such as CF, CF 3 CF 2 CF 2 CF 2 CH = CH 2 , CF 3 CF 2 CF 2 CF 2 CF = CH 2 (Perfluoroalkyl) ethylenes having a fluoroalkyl group having 4 to 12 carbon atoms such as R, f (OCFXCF 2 ) m OCF = CF 2 (Wherein R f Represents a C 1-6 perfluoroalkyl group, X represents a fluorine atom or a trifluoromethyl group, and m represents an integer of 0-5. ) And other perfluorovinyl ethers, CH 3 OCOCF 2 CF 2 CF 2 OCF = CF 2 And FSO 2 CF 2 CF 2 OCF (CF 3 CF 2 OCF = CF 2 Examples thereof include perfluorovinyl ethers having a group that can be easily converted into a carboxylic acid group or a sulfonic acid group, and olefins such as propylene and isobutylene (excluding ethylene). A comonomer may be used individually by 1 type or in combination of 2 or more types.
[0013]
As FEP, the molar ratio of polymerized units based on TFE / HFP is preferably 98/2 to 50/50, more preferably 95/15 to 60/40, and most preferably 90/10 to 75/25.
[0014]
As FEP, in addition to TFE and HFP, a small amount of polymerized units based on a comonomer may be included. As comonomer, CF 2 = CFCl, CF 2 = CH 2 Fluoroethylenes (excluding TFE), CF 2 = CHCF 3 Fluoropropylenes (excluding HFP), CF 3 CF 2 CF 2 CF 2 CH = CH 2 , CF 3 CF 2 CF 2 CF 2 CF = CH 2 (Perfluoroalkyl) ethylenes having a fluoroalkyl group having 4 to 12 carbon atoms such as R, f (OCFXCF 2 ) m OCF = CF 2 (Wherein R f Represents a C 1-6 perfluoroalkyl group, X represents a fluorine atom or a trifluoromethyl group, and m represents an integer of 0-5. ) And other perfluorovinyl ethers, CH 3 OCOCF 2 CF 2 CF 2 OCF = CF 2 And FSO 2 CF 2 CF 2 OCF (CF 3 CF 2 OCF = CF 2 Examples thereof include perfluorovinyl ethers having a group that can be easily converted into a carboxylic acid group or a sulfonic acid group, and olefins such as ethylene, propylene, and isobutylene. A comonomer may be used individually by 1 type or in combination of 2 or more types.
[0015]
As PFA, the molar ratio of polymerized units based on TFE / perfluoro (alkyl vinyl ether) (hereinafter referred to as PFAV) is preferably 99.9 / 0.1 to 90/10, and 99.5 / 0.5 to 96 / 4 is more preferable, and 99/1 to 98/2 is most preferable.
[0016]
As PFAV, R f OCF = CF 2 (Wherein R f Represents a perfluoroalkyl group having 1 to 6 carbon atoms. ). R f May be any of linear, branched and cyclic structures, preferably a linear structure having 2 to 4 carbon atoms, and more preferably a linear structure having 3 carbon atoms.
[0017]
As PFA, in addition to TFE and PFAV, a small amount of polymerized units based on a comonomer may be included. As comonomer, CF 2 = CFCl, CF 2 = CH 2 Fluoroethylenes (excluding TFE), HFP, CF 2 = CHCF 3 Fluoropropylenes such as CF 3 CF 2 CF 2 CF 2 CH = CH 2 , CF 3 CF 2 CF 2 CF 2 CF = CH 2 (Perfluoroalkyl) ethylenes having a fluoroalkyl group having 4 to 12 carbon atoms such as R, f (OCFXCF 2 ) p OCF = CF 2 (Wherein R f Represents a C 1-6 perfluoroalkyl group, X represents a fluorine atom or a trifluoromethyl group, and p represents an integer of 1-5. ) And other perfluorovinyl ethers, CH 3 OCOCF 2 CF 2 CF 2 OCF = CF 2 And FSO 2 CF 2 CF 2 OCF (CF 3 CF 2 OCF = CF 2 Examples thereof include perfluorovinyl ethers having a group that can be easily converted into a carboxylic acid group or a sulfonic acid group, and olefins such as ethylene, propylene, and isobutylene. A comonomer may be used individually by 1 type or in combination of 2 or more types.
[0018]
In the case of ETFE, FEP or PFA, when the polymerization unit based on the comonomer is included, the content of the polymerization unit based on the comonomer is preferably 0.02 to 30 mol based on the total polymerization unit of ETFE, FEP or PFA. %, More preferably 0.1 to 15 mol%, most preferably 0.2 to 10 mol%.
[0019]
The laminated film of the present invention contains a thermoplastic resin layer other than the fluoropolymer. Hereinafter, in the present specification, the thermoplastic resin refers to a thermoplastic resin other than the fluoropolymer. As this thermoplastic resin, what has biaxial stretching property is preferable. Specific examples include aromatic polyesters such as polyethylene terephthalate (hereinafter referred to as PET), polybutylene terephthalate and polybutylene naphthalate, polyolefins such as polypropylene, polyamides such as polyamide 6, and the like. In particular, PET having high strength and excellent heat resistance is preferable.
[0020]
The laminated film of the present invention has one or more fluoropolymer layers and one or more thermoplastic resin layers, and at least one surface is a fluoropolymer layer. The layer of the fluoropolymer is preferably one layer or two layers, and in the case of two layers, both are preferably surface layers. When two or more fluoropolymers are present, the fluoropolymer in each layer may be different. The number of thermoplastic resin layers is not particularly limited but is preferably 3 or less. When two or more layers of thermoplastic resin are present, the type of thermoplastic resin in each layer may be different.
[0021]
As the layer structure of the laminated film, for example, a two-layer structure of fluoropolymer / thermoplastic resin, a three-layer structure of fluoropolymer / thermoplastic resin / fluorinated polymer, fluoropolymer / thermoplastic resin / Examples thereof include a three-layer structure of a thermoplastic resin and a four-layer structure of a fluoropolymer / thermoplastic resin / thermoplastic resin / fluoropolymer.
[0022]
The thickness of the surface fluoropolymer layer in the laminated film of the present invention is 0.4 μm or more and less than 3 μm. Preferably it is 0.5-2.5 micrometers, More preferably, it is 0.7-2.2 micrometers. When it is in this range, the laminated film has excellent scratch resistance, and no pinholes are generated during stretch molding. Further, the surface characteristics of the fluoropolymer are maintained. When a fluoropolymer layer is present in addition to the surface layer, the thickness of the layer is not limited, but is preferably in the same range as the surface layer. In addition, in this specification, the notation nn-mm shows nn or more and mm or less.
[0023]
The thickness of the laminated film of the present invention is 10 to 200 μm. Preferably it is 12-150 micrometers, More preferably, it is 15-100 micrometers. Within this range, the handleability is excellent.
[0024]
The laminated film of the present invention preferably has a light transmittance at 450 nm of 87% or more. More preferably, it is 88% or more, Most preferably, it is 89% or more. Within this range, the transparency is excellent, and the S / N ratio tends to be improved when used for optical inspection.
[0025]
The interlayer adhesive force of the laminated film of the present invention is preferably 3 to 80 g / cm, more preferably 6 to 60 g / cm, and most preferably 10 to 40 g / cm. Within this range, the peel resistance during use is excellent, and at the same time, the peelability during recycling after use is excellent. This interlayer adhesive strength is considered to be proportional to the interlayer adhesive strength of the following raw fabric laminated sheet, and a laminated film having excellent interlayer adhesive strength can be obtained by using a raw fabric laminated sheet having a high interlayer adhesive strength.
[0026]
The laminated film of the present invention is a laminated film obtained by stretching a laminate that has been previously heated and pressurized bonded at least twice in a uniaxial direction. The stretching is preferably biaxial stretching, and is preferably a laminated film obtained by stretching twice or more in each direction. The stretching ratio is preferably 2 to 10 times, and in the case of biaxial stretching, it is preferably 2 to 10 times in both directions. A more preferable draw ratio is 2.5 to 6 times. In addition, the “laminated body that is preliminarily heated and pressure-bonded” before stretching is also referred to as “raw fabric laminated sheet”.
[0027]
The raw laminate sheet is obtained by heat-pressing and bonding one or more of a fluoropolymer film or sheet and one or more of a thermoplastic resin film or sheet. The layer structure of the original laminated sheet is the layer structure of the target laminated film. The thickness of each film and sheet of the raw material of the raw laminated sheet and the thickness of the raw laminated sheet are selected from the thickness of each layer in the laminated film, the thickness of the laminated film and the stretch ratio. In general, the thickness for distinguishing between a film and a sheet is not particularly clear. Therefore, in the present specification, a film having a thickness usually called a sheet is hereinafter referred to as a film unless otherwise specified. Moreover, the raw fabric laminated sheet in the present invention may have a thickness usually called a film.
[0028]
As the thermoplastic resin film used for producing the raw laminated sheet, a film having low crystallinity and excellent melt extrudability is preferable in order to stretch the raw laminated sheet stably and effectively. In the case of PET, an amorphous PET film obtained by an operation of rapidly cooling a film extruded from a forming die at the time of melt extrusion is preferable. Examples of commercially available amorphous PET films include A-PETTM manufactured by Teijin Limited.
[0029]
It is preferable that the fluoropolymer layer and the thermoplastic resin layer in the raw laminate sheet are sufficiently bonded to achieve the preferred interlayer adhesion of the laminate film. For this reason, the raw fabric laminated sheet needs to be obtained by heating and pressurizing a fluoropolymer film and a thermoplastic resin film as raw materials. Since the fluoropolymer is a material having a low surface wetting tension and usually low adhesion, it is preferable that the laminated surface of the fluoropolymer film is subjected to an adhesion improving treatment. As this surface treatment, corona discharge treatment, sodium etching treatment or the like is preferable.
[0030]
In the present invention, it is preferable to increase the wetting tension by treating the laminated surface of the fluoropolymer film with corona discharge or the like before producing the raw laminated sheet. In particular, corona discharge treatment is preferable. Here, the wetting tension is a value measured according to JIS K 6768: 1999 and ISO 8296 and TECHNICAL CORRIGENDUM: 1998, and the higher the value, the more the adhesion between the fluoropolymer film and the thermoplastic resin film. I found it excellent. The wetting tension of the surface-treated fluoropolymer film is preferably 25.4 to 62 mN / m, more preferably 30 to 56 mN / m. In order to particularly improve the recyclability of the fluoropolymer, a torsional tension of 30 to 50 mN / m is most preferable.
[0031]
Usually, the surface of the thermoplastic resin film laminated with the fluoropolymer film does not need to be surface-treated, but if a higher adhesion between the layers is required, the surface of the thermoplastic resin film may also be corona. It is preferable to perform a discharge treatment.
[0032]
As a heating and pressurizing method used when producing a raw fabric laminated sheet, a method in which raw material films are stacked and pressed between flat plates under heating (hereinafter also referred to as a hot pressing method), between a pair of heated rolls. Examples include a method of pressure bonding (hereinafter also referred to as a hot roll method). In particular, a hot roll method capable of continuously producing a raw fabric laminated sheet is preferable. The heating temperature is preferably equal to or lower than the crystallization temperature of the thermoplastic resin. In the case of PET, 65 to 110 ° C is preferable. The pressure is 2-20 kg / cm in the hot press method. 2 In the hot roll method, 5-50 kg / cm 2 Is preferred. If the pressure is lower than this, defects such as air traps are likely to occur between the layers, and if it is higher than this, the thermoplastic resin is deformed and the thickness is likely to be unstable. At the same time, crystallization of PET occurs, and the subsequent stretching process becomes extremely difficult. Within this range, no defects occur between the layers, and the dimensional stability of the layer thickness is excellent.
[0033]
In the present invention, it is preferable to adopt a condition in which the thermoplastic resin layer can be stretched as the stretching condition of the raw fabric laminated sheet, since the fluoropolymer layer having a lower elastic modulus than the thermoplastic resin layer follows. For example, in the case of a raw fabric laminated sheet containing a PET layer, the stretching temperature is 85 to 110 ° C., the stretching ratio is 2.5 to 6 times each, and the heat setting is the conditions under which the PET layer is stretched. It is preferable to employ a temperature of 220 to 250 ° C. In order to give sufficient tensile strength and tear strength to PET, it is preferable to stretch under heating.
[0034]
The laminated film of the present invention is particularly preferably obtained by biaxially stretching a raw fabric laminated sheet. As the biaxial stretching method, those generally employed are applied. An example of the production process of the laminated film is shown in FIG. Step 1 is a laminated raw sheet forming step, step 2 is a laminated sheet forming step, and step 2 includes three steps of preheating, stretching, and heat setting.
[0035]
As the biaxial stretching conditions, for example, when the thermoplastic resin is PET, it is preferable to apply a stretching temperature of 85 to 110 ° C., which is a stretching condition of PET, and the stretching ratio is 2.5 to 6 for each vertical length. Double is preferred. In the case of continuously producing a laminated film, the end of the raw laminated sheet is gripped with a clip, and a simultaneous biaxial stretching method in which the vertical and horizontal sides are simultaneously stretched, or the raw laminated sheet is rolled in the vertical direction. A sequential biaxial stretching method is preferred, in which, after stretching using the difference in rotational circumference, the end of the side is gripped with a clip and then stretched in the side direction. When the simultaneous biaxial stretching or the sequential biaxial stretching in the horizontal direction is completed, it is preferable that the horizontal end is held with a clip and heated to a predetermined temperature, and then cooled and heat-set. The heating temperature in heat setting is preferably 180 to 250 ° C., and the cooling temperature is preferably 80 ° C. or less. When heat-fixed, the dimensional stability such as the heat shrinkage rate of the laminated film is improved, and the tear strength is increased.
[0036]
The thickness of the raw fabric laminated sheet is defined from the draw ratio and the thickness of the laminated film. For example, when the thickness of the laminated film obtained by stretching is 50 μm, and the stretching magnification is set to 4 times each, the area magnification is 16 times. 50 μm × 16 = 800 μm is used. In particular, the thickness of the raw fabric laminated sheet is preferably 3200 to 160 μm, more preferably 2400 to 192 μm, and most preferably 1600 to 224 μm.
[0037]
Moreover, 6-50 micrometers is preferable, as for the thickness of the layer of the fluoropolymer in an original fabric laminated sheet, 8-40 micrometers is more preferable, and 10-30 micrometers is the most preferable. Within this range, each film is easy to handle as a single film, and it is easy to make the thickness of the fluoropolymer less than 3 μm after stretching.
[0038]
Applications of the laminated film of the present invention include release films, wallpaper, antifouling films, protective films for chemicals, etc., but release films are preferred. Examples of the release film include a solvent-resistant release film, an easily peelable film, a heated release film, an acid-resistant release film, and an alkali-resistant release film. In particular, an easily peelable film that can easily peel off a film formed by casting from a composition solution containing inorganic particles and a binder, a solvent-resistant release film used when casting a polymer film from a solution, and the like are preferable. .
[0039]
【Example】
The present invention will be specifically described by the following examples, but the present invention is not limited thereto. The mechanical properties, interlayer adhesion, peelability, wetting tension, and light transmittance were measured by the methods described below.
[0040]
[Mechanical Properties] The tensile strength and breaking elongation of the laminated film were measured according to the test standard ASTM D638.
[0041]
[Interlayer adhesion (g / cm)] The interlayer adhesion between the ETFE layer and the PET layer of the laminated film was measured as follows. Using a strip-shaped test piece having a width of 2.5 cm and a length of 10 cm, a part of the ETFE layer was peeled off, and the stress when peeled at a pulling speed of 50 mm / min was measured using a tensile tester. It was divided by .5 cm to obtain interlayer adhesion.
[0042]
[Peelability] 100 parts by mass of toluene mixed with 100 parts by mass of ceramic particles (barium titanate powder (manufactured by Fuji Titanium) having an average primary particle diameter of 0.6 μm), and glass beads having a particle diameter of 3 mm as media ( After being dispersed for 16 hours with a ball mill together with a filling amount: 300% by mass with respect to the slurry, 10 parts by mass of a binder (polyvinyl butyral: manufactured by Sekisui Chemical Co., Ltd.) and a plasticizer (polyethylene glycol) in the total amount of barium titanate powder and binder The resulting mixture was mixed with a ball mill for 24 hours, filtered through a glass fiber filter having a pore size of 3 μm to obtain a ceramic slurry, and the obtained ceramic slurry was dried on a laminated film by a doctor blade method. Cast to 10 μm, then dry for 2 minutes in a 120 ° C hot air constant temperature bath A ceramic film was formed on the laminated film, and the laminated film on which the ceramic film was formed was cut into strips having a width of 2.5 cm and a length of 10 cm to form test pieces. The peel force when peeled at a speed of 50 mm / min was evaluated.
[0043]
[Wetting tension] Measured according to JIS K 6768: 1999.
[0044]
[Light transmittance (%)] Using a total light transmittance meter MODEL304 manufactured by Asahi Spectra Co., Ltd., white light was used as a light source, and the sample-free state was measured as 100%, and the state where transmitted light was completely blocked was measured as 0%.
[0045]
[Example 1]
ETFE (Aflon COP (registered trademark) C-88AX manufactured by Asahi Glass Co., Ltd.) having a melt index (MI) value of 3.8 at 300 ° C. was used using a single screw extruder (VS40, manufactured by Ikegai Co., Ltd.) having a diameter of 40 mm. Using a coat hanger type flat die having a die width of 700 mm, extrusion was performed at a die temperature of 340 ° C. and an extrusion speed of 5.2 kg / hour to obtain a discharge product. The discharged material was taken up at a speed of 3.15 m / min with a roll adjusted to have a surface temperature of 130 ° C., thereby obtaining a raw fabric ETFE film having a thickness of 24 μm.
[0046]
Next, the raw fabric ETFE film 1 was passed between an electrode having a width of 800 mm set at a gap of 1 mm and a silicone rubber lining roll to obtain a corona discharge treated raw fabric ETFE film 1. Corona was generated by applying an electric power of 0.3 kw to the electrode by a corona generator. The wetting tension of the raw fabric ETFE film 1 was 45 mN / m.
[0047]
An amorphous PET sheet (FR-1 manufactured by Teijin Ltd., hereinafter referred to as A-PET) having a thickness of 610 μm and an original fabric ETFE film 1 are combined into an original fabric ETFE film 1 / A-PET / original fabric ETFE film 1. It installed in the supply part of the lamination | stacking roll apparatus which consists of 1 pair of a metal roll and a rubber roll so that it might overlap in 3 layers. The original fabric ETFE film 1 was installed such that the corona discharge treatment surface was on the A-PET side. A three-layer film was pressure-bonded between the rolls under the conditions of a metal roll and a rubber roll having a surface temperature of 87 ° C., a pressure of 25 kg / cm, and a speed of 0.3 m / min.
[0048]
The average thickness of the obtained three-layer original fabric sheet 1 was 657 μm. This three-layer original fabric sheet 1 was biaxially stretched by the following method. That is, the three-layer original fabric sheet 1 was cut into 90 mm squares to obtain an original fabric sample. Using a biaxial stretching device (Toyo Seiki Co., Ltd., biaxial stretching device × 6H), the original fabric sample was tested against the dimensions of the original fabric sample at a temperature of 97 ° C., preheating of 2 minutes, and a stretching speed of 2 m / min. The film was stretched 3.7 times in both sides to obtain a biaxially stretched laminated film. The laminated film was cooled until its surface temperature became 50 ° C. or lower, and then taken out. The thickness of the laminated film was 49 μm as an average value in the central portion (75% in area). As a result of cross-sectional observation with an optical microscope, the thickness of each ETFE layer was 1.8 μm.
[0049]
Next, the laminated film was sandwiched between two stainless steel frames having an inner size of 20 cm square and an outer size of 25 cm square, and the periphery thereof was fixed with a clamp, and then in a hot air constant temperature bath at 130 ° C. for 2 minutes, then 250 After holding for 2 minutes in a hot air thermostat bath at 0 ° C., the frame was taken out of the hot air thermostat bath, cooled until the surface temperature of the laminated film became 40 ° C. or lower, and heat fixed. Thereafter, the clamp and the frame were removed, and a laminated film 1 stretched and heat-set was obtained. As a result of cross-sectional observation using an optical microscope, the thickness of each ETFE layer was 1.8 μm. The results of evaluating the characteristics of the laminated film 1 are shown in Table 1.
[0050]
[Example 2]
Lamination, stretching, and heat setting were performed in the same manner as in Example 1 except that an original fabric ETFE film having an applied power of 0.15 kw at the time of corona discharge treatment and a wet tension of the obtained treated surface of 34 mN / m was used. Thus, a laminated film 2 was obtained. As a result of cross-sectional observation with an optical microscope, the thickness of each ETFE layer was 1.9 μm. The results of evaluating the characteristics of the laminated film 2 are shown in Table 1.
[0051]
[Example 3]
A laminated film 3 was obtained by laminating, stretching and heat setting in the same manner as in Example 1 except that the surface of the raw fabric ETFE film 1 which was not subjected to corona discharge treatment was placed on the A-PET side. As a result of cross-sectional observation with an optical microscope, the thickness of each ETFE layer was 1.8 μm. The results of evaluating the properties of this laminated film are shown in Table 1.
[0052]
[Comparative Example 1]
Table 1 shows the results of evaluating the characteristics of a 51 μm thick biaxially stretched PET film (Teijin Limited, Teijin PET # 50).
[0053]
[Table 1]
Figure 2004142305
[0054]
【The invention's effect】
The laminated film of the present invention is excellent in releasability, non-adhesiveness, releasability, and strength, has an appropriate interlayer adhesion between the fluoropolymer layer and the thermoplastic resin layer, and is capable of recycling the fluoropolymer. Excellent in properties.
[Brief description of the drawings]
FIG. 1 is a view showing a manufacturing process of a laminated film.
[Explanation of symbols]
1: Thermoplastic resin film
2: Fluoropolymer film
3: Raw fabric laminated sheet
4: Laminated film

Claims (3)

あらかじめ加熱加圧接着されてなる積層体を少なくとも一軸方向に2倍以上延伸して得られる積層フィルムであって、該積層フィルムは含フッ素重合体の層と含フッ素重合体以外の熱可塑性樹脂の層をそれぞれ1層以上有し、かつ少なくとも片面は含フッ素重合体の層であり、該積層フィルムの厚さが10〜200μmであり、該積層フィルムにおける含フッ素重合体の層の厚さが0.4μm以上3μm未満であることを特徴とする積層フィルム。A laminate film obtained by stretching a laminate that has been pre-heated and pressure-bonded at least twice in a uniaxial direction, the laminate film comprising a fluoropolymer layer and a thermoplastic resin other than the fluoropolymer. Each layer has one or more layers, and at least one surface is a fluoropolymer layer, the thickness of the laminated film is 10 to 200 μm, and the thickness of the fluoropolymer layer in the laminated film is 0 A laminated film having a thickness of 4 μm or more and less than 3 μm. 前記含フッ素重合体が、エチレン−テトラフルオロエチレン共重合体、テトラフルオロエチレン−ペルフルオロ(アルキルビニルエーテル)共重合体又はテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体である請求項1に記載の積層フィルム。The laminated film according to claim 1, wherein the fluoropolymer is an ethylene-tetrafluoroethylene copolymer, a tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, or a tetrafluoroethylene-hexafluoropropylene copolymer. 該含フッ素重合体以外の熱可塑性樹脂が、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレン又はポリアミドである請求項1又は2に記載の積層フィルム。The laminated film according to claim 1 or 2, wherein the thermoplastic resin other than the fluoropolymer is polyethylene terephthalate, polybutylene terephthalate, polypropylene or polyamide.
JP2002310924A 2002-10-25 2002-10-25 Laminated film Withdrawn JP2004142305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310924A JP2004142305A (en) 2002-10-25 2002-10-25 Laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310924A JP2004142305A (en) 2002-10-25 2002-10-25 Laminated film

Publications (1)

Publication Number Publication Date
JP2004142305A true JP2004142305A (en) 2004-05-20

Family

ID=32456302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310924A Withdrawn JP2004142305A (en) 2002-10-25 2002-10-25 Laminated film

Country Status (1)

Country Link
JP (1) JP2004142305A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121070A1 (en) * 2005-05-10 2006-11-16 Mitsubishi Plastics, Inc. Laminate film for metal coating and laminate film for coating metal for use in screen board
JP2014522575A (en) * 2011-06-07 2014-09-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Solar cell backsheet having improved adhesion to sealant
WO2019069656A1 (en) * 2017-10-03 2019-04-11 日本メクトロン株式会社 Multilayer releasing film, method for producing multilayer releasing film, and method for producing flexible printed circuit
JP2020500734A (en) * 2016-09-16 2020-01-16 エシコン・インコーポレイテッドEthicon, Inc. Method of laminating an absorbent semi-crystalline polymer film
CN112874097A (en) * 2021-02-07 2021-06-01 刘烈新 High-temperature efficient release type teflon and nylon multilayer composite material
CN113272482A (en) * 2018-12-17 2021-08-17 赢创运营有限公司 Stretched fluoropolymer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121070A1 (en) * 2005-05-10 2006-11-16 Mitsubishi Plastics, Inc. Laminate film for metal coating and laminate film for coating metal for use in screen board
JP2014522575A (en) * 2011-06-07 2014-09-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Solar cell backsheet having improved adhesion to sealant
JP2020500734A (en) * 2016-09-16 2020-01-16 エシコン・インコーポレイテッドEthicon, Inc. Method of laminating an absorbent semi-crystalline polymer film
US11135823B2 (en) 2016-09-16 2021-10-05 Ethicon, Inc. Method of laminating absorbable semi-crystalline polymeric films
WO2019069656A1 (en) * 2017-10-03 2019-04-11 日本メクトロン株式会社 Multilayer releasing film, method for producing multilayer releasing film, and method for producing flexible printed circuit
JP2019064200A (en) * 2017-10-03 2019-04-25 日本メクトロン株式会社 Multilayer release film and manufacturing method of multilayer release film, and manufacturing method of flexible printed circuit board using the multilayer release film
CN109952199A (en) * 2017-10-03 2019-06-28 日本Mektron株式会社 Multilayer release film, the manufacturing method of multilayer release film, the manufacturing method of flexible printed board
CN113272482A (en) * 2018-12-17 2021-08-17 赢创运营有限公司 Stretched fluoropolymer
CN112874097A (en) * 2021-02-07 2021-06-01 刘烈新 High-temperature efficient release type teflon and nylon multilayer composite material

Similar Documents

Publication Publication Date Title
JP4659241B2 (en) Polytetrafluoroethylene membrane and method for producing the same
JP6380104B2 (en) Biaxially oriented laminated polyester film for mold release
JP2023040009A (en) Biaxially stretched laminated polypropylene film
JPH05295147A (en) Production of porous high-strength ptfe multilayer article
KR102455834B1 (en) Biaxially Oriented Polypropylene Film
JP2005306033A (en) Polytetrafluorethylene resin film and its manufacturing process
JPH0848004A (en) Release film
JP6760404B2 (en) Fluororesin film
JP2004142305A (en) Laminated film
JP2022061012A (en) Process film, laminate of resin composition film, resin composition film, and method for manufacturing resin composition film
JP2002219750A (en) Fluororesin film of high mechanical strength
JP2017193112A (en) Laminate and production method of laminate
JP4058668B2 (en) Hard porous molded body of fluororesin
JP2014054797A (en) Biaxially oriented nylon film, laminate film, laminate packaging material, and production method of biaxially oriented nylon film
JP2019089317A (en) Polyarylene sulfide film
TWI308108B (en) Carrier film and method for its production
JP2012081741A (en) Biaxially oriented polyarylene sulfide composite film for mold release
JP2015051527A (en) Biaxially stretched nylon film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film
JP2002226611A (en) Ethylene-tetrafluoroethylene and tetrafluoroethylene- hexafluoropropylene copolymer films which have excellent light transmissivity
JP2002240144A (en) Fluoroplastic film of low double refraction
JP2005014598A (en) Release laminated film
JP2007308724A (en) Rigid porous molded product of fluorine resin
WO2022210693A1 (en) Polypropylene film
JP2019153713A (en) Piezoelectric film, manufacturing method thereof, and piezoelectric device
JP2005088273A (en) Laminate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080117

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080313