JP2006111046A - Propeller for vessel - Google Patents

Propeller for vessel Download PDF

Info

Publication number
JP2006111046A
JP2006111046A JP2004297544A JP2004297544A JP2006111046A JP 2006111046 A JP2006111046 A JP 2006111046A JP 2004297544 A JP2004297544 A JP 2004297544A JP 2004297544 A JP2004297544 A JP 2004297544A JP 2006111046 A JP2006111046 A JP 2006111046A
Authority
JP
Japan
Prior art keywords
camber
propeller
cavitation
edge side
marine propeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004297544A
Other languages
Japanese (ja)
Inventor
Yasuhiko Inukai
泰彦 犬飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Marine United Inc
Original Assignee
IHI Marine United Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Marine United Inc filed Critical IHI Marine United Inc
Priority to JP2004297544A priority Critical patent/JP2006111046A/en
Publication of JP2006111046A publication Critical patent/JP2006111046A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Hydraulic Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a propeller for a vessel capable of improving cavitation performance and propeller efficiency. <P>SOLUTION: A maximum value of a camber is made to a shape positioned at a rear edge side more than 0.75 in a chord line direction (x/C), so as to restrain a high negative pressure peak value at a leading edge and delay initial generation of cavitation. The leading edge side of the camber is made small, and the trailing edge side is made large. The camber increment at the rear part is made large compared to the camber decrement at the front part, so as to enlarge a lifting force almost without changing resistance force and improve efficiency of the propeller. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、舶用プロペラに関し、耐キャビテーション性能を向上するとともに、抗力を増やすことなく揚力を得て、プロペラ効率を向上できるようにしたものである。   The present invention relates to a marine propeller, which improves cavitation resistance, obtains lift without increasing drag, and improves propeller efficiency.

水中を高速で回転する舶用プロペラでは、翼の周辺で圧力が非常に小さくなり、部分的にその水温での飽和蒸気圧以下になる領域が生じると、この領域の水が蒸発し、気泡が発生する現象である、いわゆるキャビテーションが発生する。   In a marine propeller that rotates in water at high speed, if the pressure is very small around the wing and a region that partially falls below the saturated vapor pressure at that water temperature occurs, the water in this region evaporates and bubbles are generated. In other words, so-called cavitation occurs.

このキャビテーションが舶用プロペラに発生すると、プロペラ翼面前縁近傍に発生したキャビティが翼後縁や翼端の高圧域に曝されると崩壊し、何百気圧にも達する衝撃圧が翼面などに加わり、エロージョンが生じるなどの問題がある。   When this cavitation occurs in a marine propeller, the cavity generated near the front edge of the propeller blade surface collapses when exposed to the high pressure region of the blade trailing edge or blade tip, and impact pressure reaching hundreds of atmospheres is applied to the blade surface. There are problems such as erosion.

このようなキャビテーションやこれによるエロージョンを防止するため、種々の提案がなされており、例えば特許文献1のプロペラでは、キャビテーションなどの抑制のため、図4に示すように、プロペラ本体1の所定領域Aにおいてその前縁部1aの半径を小さくするとともに、他の所定領域Cにおいて後縁部1bの厚さを厚くするようにしている。   Various proposals have been made to prevent such cavitation and erosion caused by the cavitation. For example, in the propeller of Patent Document 1, a predetermined region A of the propeller body 1 is used to suppress cavitation as shown in FIG. In FIG. 5, the radius of the front edge portion 1a is reduced, and the thickness of the rear edge portion 1b is increased in another predetermined region C.

また、特許文献2の船舶用プロペラでは、ルートエロージョンを防止するため、図5に示すように、プロペラ本体1の翼根部1cの断面形状を、最大厚み位置から後縁1bにかけて肉厚が緩やかに減少し、かつ後端でもなお厚みを有するとともに、後端面と翼側面との交差部に丸みを持たせるようにしている。   Further, in the marine propeller of Patent Document 2, in order to prevent route erosion, as shown in FIG. 5, the cross-sectional shape of the blade root portion 1c of the propeller body 1 is gradually increased from the maximum thickness position to the rear edge 1b. Further, the thickness is reduced and the rear end is still thick, and the intersection between the rear end face and the wing side face is rounded.

一方、キャビテーションを極力抑えることができる舶用プロペラの翼断面形状については、これまでの研究結果から、図1(b)中に破線で示すように、通常翼断面形状2を、最大キャンバー3が翼弦長方向の中央(x/C=0.5)に位置するようにしたもの(NACA断面)が広く使用されている。
特開2000−79897号公報 特開平8−91291号公報
On the other hand, as for the blade cross-sectional shape of a marine propeller capable of suppressing cavitation as much as possible, as shown by a broken line in FIG. The one (NACA cross section) that is positioned at the center (x / C = 0.5) in the chord length direction is widely used.
JP 2000-79897 A JP-A-8-91291

ところが、これまで広く使われていた舶用プロペラの翼断面形状について検討したところ、キャビテーション性能などに改善の余地があることが分かった。   However, when examining the cross-section shape of a marine propeller widely used until now, it was found that there is room for improvement in cavitation performance and the like.

すなわち、図2中に破線で示すように、翼断面の前縁部の負圧ピークが大きいこと、圧力分布の変動が大きいこと等の知見を得るに至った。   That is, as shown by a broken line in FIG. 2, the inventors have obtained knowledge that the negative pressure peak at the leading edge of the blade cross section is large and that the pressure distribution varies greatly.

この発明は、かかる従来技術の課題に鑑みてなされたもので、キャビテーション性能やプロペラ効率などを向上することができる舶用プロペラを提供しようとするものである。   This invention is made in view of the subject of this prior art, and intends to provide the marine propeller which can improve a cavitation performance, propeller efficiency, etc.

上記従来技術が有する課題を解決するため、この発明の請求項1記載の舶用プロペラは、舶用プロペラの断面形状を、翼弦長方向(x/C)の中央よりも後縁側にキャンバーの最大位置を位置させる形状としたことを特徴とするものである。   In order to solve the above-described problems of the prior art, the marine propeller according to claim 1 of the present invention is configured such that the cross-sectional shape of the marine propeller has a camber maximum position on the trailing edge side from the center in the chord length direction (x / C) It is characterized by having a shape for positioning.

この舶用プロペラによれば、キャンバーの最大位置を中央部より後縁側とすることで前縁での負圧ピーク値が高くなることを抑え、キャビテーションの初生を遅らせるようにしている。   According to this marine propeller, by setting the maximum position of the camber to the rear edge side from the center portion, it is possible to suppress the negative pressure peak value at the front edge from becoming high, and to delay the initial generation of cavitation.

また、この発明の舶用プロペラでは、上記構成などに加え、前記キャンバーの最大位置を、翼弦長方向(x/C)の0.75よりも後縁側に位置させる形状としたり、前記キャンバーを、前縁側を小さくするとともに、後縁側を大きくした形状としている。   Further, in the marine propeller of the present invention, in addition to the above-described configuration, the camber has a maximum position on the trailing edge side of 0.75 in the chord length direction (x / C), or the camber, The front edge side is made smaller and the rear edge side is made larger.

これら舶用プロペラにより、キャビテーションの初生が遅れ、キャビテーションおよびサーフェスフォースを減少するとともに、前方のキャンバー減少に対し後方のキャンバー増大分を大きくすることで、抗力をほとんど変えずに揚力を大きくでき、プロペラ効率の向上を図るようにしている。   These marine propellers delay the initial generation of cavitation, reduce cavitation and surface force, and increase the increase in the rear camber against the decrease in the front camber, thereby increasing the lift force with almost no change in the drag force. It is trying to improve.

この発明の請求項1記載の舶用プロペラによれば、キャンバーの最大位置を中央部より後縁側としたので、前縁での負圧ピーク値が高くなることを抑えることができ、キャビテーションの初生を遅らせることができる。   According to the marine propeller according to claim 1 of the present invention, since the maximum position of the camber is set to the trailing edge side from the central portion, it is possible to suppress the negative pressure peak value at the leading edge from being increased, and the initial generation of cavitation is achieved. Can be delayed.

また、この発明の請求項2記載の舶用プロペラでは、キャンバーの最大位置を、翼弦長方向(x/C)の0.75よりも後縁側に位置させる形状とし、請求項3記載の舶用プロペラでは、キャンバーを、前縁側を小さくするとともに、後縁側を大きくした形状としたので、キャビテーションの初生を遅らせ、キャビテーションおよびサーフェスフォースを減少することができるとともに、前方のキャンバー減少に対し後方のキャンバー増大分を大きくすることで、抗力をほとんど変えずに揚力を大きくでき、プロペラ効率の向上を図ることができる。   Further, in the marine propeller according to claim 2 of the present invention, the maximum position of the camber is configured to be positioned on the trailing edge side from 0.75 in the chord length direction (x / C), and the marine propeller according to claim 3. Then, because the camber has a shape with a smaller leading edge and a larger trailing edge, it can delay the initial generation of cavitation, reduce cavitation and surface force, and increase the rear camber against the decrease in front camber. By increasing the minutes, the lift can be increased without changing the drag force, and the propeller efficiency can be improved.

以下、この発明の一実施の形態について、図面に基づき詳細に説明する。
図1は、この発明の舶用プロペラの一実施の形態にかかり、(a)は概略翼断面形状の説明図、(b)は従来形状と比較して示す翼型の断面形状およびキャンバーラインの説明図である。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
1A and 1B show an embodiment of a marine propeller according to the present invention. FIG. 1A is an explanatory diagram of a schematic blade cross-sectional shape, and FIG. 1B is a cross-sectional shape of an airfoil and a camber line shown in comparison with a conventional shape. FIG.

この舶用プロペラ10では、プロペラ本体11の翼横断面12のキャンバー13の最大位置14を翼弦長方向x/Cの中央部より後縁11b側、好ましくは翼弦長方向x/C=0.75より後縁11b側にずらすようにし、キャビテーションの初生を遅らせるようにする。   In this marine propeller 10, the maximum position 14 of the camber 13 in the blade cross section 12 of the propeller body 11 is located on the trailing edge 11 b side from the central portion in the chord length direction x / C, preferably in the chord length direction x / C = 0. It is made to shift to the trailing edge 11b side from 75, and the initial generation of cavitation is delayed.

このため、翼横断面における前縁のキャンバーを小さめにとるとともに、後縁のキャンバーを大きくする。  For this reason, the camber at the leading edge in the blade cross section is made smaller and the camber at the trailing edge is made larger.

このキャンバー13の最大位置14は、従来の翼型では、図1中破線3で示すように、翼弦長方向x/C=0.5の中央としていたのに対し、この舶用プロペラ10では、図1中実線13で示すように、キャンバー13の最大位置14を中央部より後縁側の翼弦長方向x/C=0.75にずらしてある。   The maximum position 14 of the camber 13 is the center of the chord length direction x / C = 0.5 as shown by the broken line 3 in FIG. 1 in the conventional airfoil, whereas in the marine propeller 10, As indicated by the solid line 13 in FIG. 1, the maximum position 14 of the camber 13 is shifted in the chord length direction x / C = 0.75 on the trailing edge side from the center portion.

このように舶用プロペラ10の翼断面でのキャンバー13の最大位置14を中央より後縁11b側にずらすことにより、前縁11aでの負圧ピークを減少させることができるとともに、圧力分布を平坦なものとすることができ、特に翼弦長方向x/C=0.75より後縁11b側にずらすことで、一層負圧ピークを減少させ、圧力分布を平坦にすることができる。   Thus, by shifting the maximum position 14 of the camber 13 in the blade cross section of the marine propeller 10 to the rear edge 11b side from the center, the negative pressure peak at the front edge 11a can be reduced, and the pressure distribution is flattened. In particular, by shifting to the trailing edge 11b side from the chord length direction x / C = 0.75, the negative pressure peak can be further reduced and the pressure distribution can be flattened.

そこで、キャンバー13の最大位置14を中央部より後端側の翼弦長方向x/C=0.75にずらした場合の圧力分布の測定結果を、従来の翼型と比較して図2に示した。  Therefore, the measurement result of the pressure distribution when the maximum position 14 of the camber 13 is shifted in the chord length direction x / C = 0.75 on the rear end side from the center is shown in FIG. 2 in comparison with the conventional airfoil. Indicated.

同図は、横軸を翼弦長方向x/Cとし、縦軸を圧力分布Cpとしたもので、図2中実線で示す新翼型の場合では、破線で示す従来型に比べ、圧力係数Cpの前縁11aでの負圧ピークが減少し、全域にわたる圧力分布が平坦になっていることが分かる。  In this figure, the horizontal axis is the chord length direction x / C, and the vertical axis is the pressure distribution Cp. In the case of the new airfoil type indicated by the solid line in FIG. It can be seen that the negative pressure peak at the leading edge 11a of Cp decreases, and the pressure distribution over the entire region becomes flat.

このように前縁11aで負圧ピークが破線の高い状態から実線のように高くなることを抑えることで、キャビテーションの初生を遅らせることができる。  Thus, by suppressing the negative pressure peak at the leading edge 11a from being high as indicated by a broken line, the initial generation of cavitation can be delayed.

さらに、この舶用プロペラ10では、前縁側(x/C=0側)でのキャンバーを減少させ、後端11b側(x/C=1.0側)のキャンバー増加分を大きくしている。   Further, in the marine propeller 10, the camber on the front edge side (x / C = 0 side) is reduced, and the camber increase on the rear end 11b side (x / C = 1.0 side) is increased.

このようにキャンバー13の最大位置14を翼弦長方向x/Cの後縁11b側にずらすとともに、前縁11a側(x/C=0側)でのキャンバーを減少させ、後端(x/C=1.0)のキャンバー増加分を大きくすることで、キャビテーションの初生を遅らせることができ、キャビテーションを抑えることで、キャビテーションが大きくなることにより船底に誘起されるサーフェスフォース減少させることができる。   In this way, the maximum position 14 of the camber 13 is shifted to the trailing edge 11b side of the chord length direction x / C, and the camber on the leading edge 11a side (x / C = 0 side) is reduced, so that the trailing end (x / By increasing the camber increase of (C = 1.0), the initial generation of cavitation can be delayed, and by suppressing cavitation, the surface force induced on the bottom of the ship can be reduced by increasing cavitation.

さらに、この舶用プロペラ10では、前縁側(x/C=0側)でのキャンバーを減少させ、後端(x/C=1.0)のキャンバー増加分を大きくすることで、抗力をほとんど変えずに揚力を稼ぐことができ、これによりプロペラ効率を改善することができる。   Furthermore, in this marine propeller 10, the camber on the front edge side (x / C = 0 side) is reduced, and the increase in the camber at the rear end (x / C = 1.0) is increased, so that the drag is almost changed. Without gaining lift, thereby improving propeller efficiency.

このような舶用プロペラ10によれば、例えばキャビテーション性能を従来と同程度になるようにした場合、この舶用プロペラ10を用いることで、試算によれば、図3に示すように、展開面積を小さくすることができ、重量を10%軽くすることができるとともに、プロペラ単独効率を2%向上することができる。   According to such a marine propeller 10, for example, when the cavitation performance is set to the same level as the conventional one, by using this marine propeller 10, according to a trial calculation, as shown in FIG. The weight can be reduced by 10%, and the propeller single efficiency can be improved by 2%.

この発明の舶用プロペラの一実施の形態にかかり、(a)は概略翼断面形状の説明図、(b)は従来形状と比較して示す翼型の断面形状およびキャンバーラインの説明図である。1A is an explanatory view of a schematic blade cross-sectional shape, and FIG. 2B is an explanatory view of a blade shape cross-sectional shape and a camber line shown in comparison with a conventional shape. この発明の舶用プロペラの一実施の形態にかかる翼弦長方向の圧力係数の変化を示すグラフである。It is a graph which shows the change of the pressure coefficient of the chord length direction concerning one Embodiment of the ship propeller of this invention. この発明の舶用プロペラの一実施の形態にかかる荷重度とプロペラ単独効率の変化を示すグラフである。It is a graph which shows the change of the load degree concerning one embodiment of the marine propeller of this invention, and propeller independent efficiency. 従来の舶用プロペラの形状の説明図である。It is explanatory drawing of the shape of the conventional marine propeller. 従来の他の舶用プロペラの形状の説明図である。It is explanatory drawing of the shape of the other conventional marine propeller.

符号の説明Explanation of symbols

10 舶用プロペラ
11 プロペラ本体
11a 前縁
11b 後縁
12 翼横断面
13 キャンバー
14 最大位置
x/C 翼弦長方向

10 Marine Propeller 11 Propeller Body 11a Leading Edge 11b Trailing Edge 12 Blade Cross Section 13 Camber 14 Maximum Position x / C Blade Chord Length Direction

Claims (3)

舶用プロペラの断面形状を、翼弦長方向(x/C)の中央よりも後縁側にキャンバーの最大位置を位置させる形状としたことを特徴とする舶用プロペラ。   A marine propeller characterized in that the cross-sectional shape of a marine propeller is shaped such that the maximum position of the camber is located on the trailing edge side of the center of the chord length direction (x / C). 前記キャンバーの最大位置を、翼弦長方向(x/C)の0.75よりも後縁側に位置させる形状としたことを特徴とする請求項1記載の舶用プロペラ。   2. The marine propeller according to claim 1, wherein the maximum position of the camber is configured to be positioned on the trailing edge side of 0.75 in the chord length direction (x / C). 3. 前記キャンバーの前縁側を小さくするとともに、後縁側を大きくした形状としたことを特徴とする請求項1または2記載の舶用プロペラ。

The marine propeller according to claim 1 or 2, wherein the camber has a shape in which a front edge side is reduced and a rear edge side is increased.

JP2004297544A 2004-10-12 2004-10-12 Propeller for vessel Pending JP2006111046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004297544A JP2006111046A (en) 2004-10-12 2004-10-12 Propeller for vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004297544A JP2006111046A (en) 2004-10-12 2004-10-12 Propeller for vessel

Publications (1)

Publication Number Publication Date
JP2006111046A true JP2006111046A (en) 2006-04-27

Family

ID=36379932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004297544A Pending JP2006111046A (en) 2004-10-12 2004-10-12 Propeller for vessel

Country Status (1)

Country Link
JP (1) JP2006111046A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114476000A (en) * 2022-02-23 2022-05-13 深圳市苇渡智能科技有限公司 Blade structure based on improved usability, application method of blade structure and propeller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100088A (en) * 1982-11-30 1984-06-09 Sanshin Ind Co Ltd Propeller for propulsion machine for ship
JP2000508268A (en) * 1996-03-26 2000-07-04 バルチースキ ザウオド フィリアル バルチースカヤ マシノストロイテルナヤ コンパニヤ Blade of hydraulic propulsion system
JP2001247089A (en) * 2000-03-03 2001-09-11 Sumitomo Heavy Ind Ltd PROPELLER DESIGNING METHOD AND OPTIMAL VALUE RANGE CHANGING METHOD OF Bp-delta CHART IN THIS DESIGNING METHOD

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100088A (en) * 1982-11-30 1984-06-09 Sanshin Ind Co Ltd Propeller for propulsion machine for ship
JP2000508268A (en) * 1996-03-26 2000-07-04 バルチースキ ザウオド フィリアル バルチースカヤ マシノストロイテルナヤ コンパニヤ Blade of hydraulic propulsion system
JP2001247089A (en) * 2000-03-03 2001-09-11 Sumitomo Heavy Ind Ltd PROPELLER DESIGNING METHOD AND OPTIMAL VALUE RANGE CHANGING METHOD OF Bp-delta CHART IN THIS DESIGNING METHOD

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114476000A (en) * 2022-02-23 2022-05-13 深圳市苇渡智能科技有限公司 Blade structure based on improved usability, application method of blade structure and propeller

Similar Documents

Publication Publication Date Title
US10697427B2 (en) Vortex generator and wind turbine blade assembly
KR20110132310A (en) Ship propulsion device and ship with same
EP2952427A1 (en) Stern structure of ship
JP2008260445A (en) Vessel
KR101094539B1 (en) Stern shape for displacement type ship
JP6418451B2 (en) Ship
US20170197687A1 (en) Vessel Comprising An Aft Foil Oriented To Provide A Forwardly Directed Component Of Lift Force
CN101992852A (en) Hydrofoil for water-borne vessels
JP5852591B2 (en) Stepped surface propeller
JP3944462B2 (en) Rudder with fins, ship
KR101010850B1 (en) Asymmetric Rudder for reduced cavitation
JP2006111046A (en) Propeller for vessel
KR20100048540A (en) Wavy rudder and ship having the same
JP2007186204A (en) Rudder for ship
KR102535242B1 (en) Stern plate construction and ship
KR101390309B1 (en) Wedge tail type rudder
JP5244341B2 (en) Marine propulsion device and design method for marine propulsion device
JPH0443192A (en) Rudder
JP5265034B1 (en) Ship propeller
JP4116986B2 (en) Stern structure in high-speed ship
JP3196988U (en) Non-protruding valve bow
JP2004306839A (en) Ship
KR20040077163A (en) Rudder shape of a ship
JP3134108U (en) Stern end fin
JP2012116401A (en) Ship

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Effective date: 20070905

Free format text: JAPANESE INTERMEDIATE CODE: A625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Effective date: 20090810

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20100216

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100624

Free format text: JAPANESE INTERMEDIATE CODE: A02