JP2006108254A - Manufacturing methods of semiconductor chip and semiconductor device - Google Patents

Manufacturing methods of semiconductor chip and semiconductor device Download PDF

Info

Publication number
JP2006108254A
JP2006108254A JP2004290516A JP2004290516A JP2006108254A JP 2006108254 A JP2006108254 A JP 2006108254A JP 2004290516 A JP2004290516 A JP 2004290516A JP 2004290516 A JP2004290516 A JP 2004290516A JP 2006108254 A JP2006108254 A JP 2006108254A
Authority
JP
Japan
Prior art keywords
wafer
semiconductor chip
chip
semiconductor
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004290516A
Other languages
Japanese (ja)
Inventor
Seiji Ishihara
誠治 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004290516A priority Critical patent/JP2006108254A/en
Publication of JP2006108254A publication Critical patent/JP2006108254A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10156Shape being other than a cuboid at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a semiconductor chip capable of reducing chipping and lack of any chip corner that are problems of a manufacturing method of a semiconductor chip formed by a conventional dicing method, and of improving the yield. <P>SOLUTION: As illustrated in (1), (2) of Fig. (b), cutouts 3, 4 having inclination side faces 3a, 4a are formed along a dicing line or a chip division line on the side of a circuit formation surface 2 of a wafer 1. A protective tape 7 is stuck on the side of the circuit formation surface 2 as illustrated in (3) of Fig. (b), and the rear surface 12 of the wafer 1 is polished as illustrated in (4) of Fig. (b). As illustrated in (5) of Fig. (b), the wafer 1 is polished to a predetermined thickness, and is separated into a plurality of semiconductor chips 13. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は半導体チップを製造するにあたり、特に半導体チップ形成の歩留り向上に有効な形状とその製造方法とを提供するもので、例えば、各種ICカード、1チップのチップサイズパッケージ(CSP)、2チップ以上の積層体を実装したスタックドチップサイズパッケージ(S−CSP)、2チップ以上を横置きに並べて実装したマルチチップサイズパッケージ(M−CSP)に有効な技術に関するものである。   The present invention provides a shape and method for manufacturing a semiconductor chip that are particularly effective for improving the yield of semiconductor chip formation. For example, various IC cards, one-chip chip size package (CSP), and two chips are provided. The present invention relates to a technique effective for a stacked chip size package (S-CSP) in which the above-described stacked body is mounted, and a multichip size package (M-CSP) in which two or more chips are mounted side by side.

一般に、半導体チップの製造工程では、半導体ウェハ表面に回路素子を形成した後、回路形成面の反対側を所定の厚さに研磨し、次にダイシングにより個々の半導体チップに分割する。分割した半導体チップは、配線基板等に実装し、金線やバンプなどで接続し、更に樹脂で封止して、ICカードやCSP(Chip Size Package:チップサイズパッケージ)に代表される種々の半導体パッケージとして形成する。しかし、近年の小型・薄型化の要求により、半導体チップの厚みを100μm以下まで薄くする工程が行われている。   In general, in a semiconductor chip manufacturing process, after circuit elements are formed on the surface of a semiconductor wafer, the opposite side of the circuit formation surface is polished to a predetermined thickness and then divided into individual semiconductor chips by dicing. The divided semiconductor chips are mounted on a wiring board or the like, connected with gold wires or bumps, sealed with resin, and various semiconductors represented by IC cards and CSPs (Chip Size Packages). Form as a package. However, due to recent demands for miniaturization and thickness reduction, a process of reducing the thickness of the semiconductor chip to 100 μm or less is performed.

しかしながら、従来の半導体チップの製造方法では、ダイシング工程において半導体チップの裏面にチッピングが生じたり、側面にダイシングブレードによるキズ(破砕層)で多数のダメージが形成されたりする。特に100μm以下の厚みを要求される半導体チップにおいては、パッケージ製造中に受けるハンドリング時の衝撃、もしくはパッケージ完成後の熱ストレスで受ける、半導体チップと封止材やダイボンド材との熱膨張特性の差異により生じる応力によって、上記裏面のチッピングや側面のダメージが起点となって半導体チップが割れやすくなってくる。   However, in the conventional method of manufacturing a semiconductor chip, chipping occurs on the back surface of the semiconductor chip in the dicing process, or many damages are formed on the side surface due to scratches (crushed layers) by the dicing blade. In particular, for semiconductor chips that require a thickness of 100 μm or less, the difference in thermal expansion characteristics between the semiconductor chip and the sealing material or die bond material due to impact during handling during package manufacturing or thermal stress after completion of the package Due to the stress caused by the above, the chipping on the back surface or the damage on the side surface is the starting point, and the semiconductor chip is easily cracked.

そこで、チッピングを低減させる半導体チップの製造方法において、先ダイシング法が提案されている(例えば、特許文献1)。この技術は、半導体ウェハの回路素子形成面に、ダイシングラインまたはチップ分割ラインに沿って所定のチップ厚よりも深く切り込みを形成し、上記半導体ウェハの回路素子形成面に保護テープを貼り付け、半導体ウェハの回路素子形成面の反対側から研磨して半導体チップを形成することで、半導体チップの裏面エッジに発生するチッピングを大幅に低減し、チップ強度を向上する方法である。場合によっては、裏面研磨の後、ドライポリッシュやCMP(Chemical Mechanical Polish)によって、研磨面を鏡面化することもある。または、プラズマエッチングにより、研磨面を鏡面化するだけでなく、ダイシングなどで切り込みを形成する時に生じたチップ側面のダメージをも軽減し、更なるチップ強度の向上を図ったりしている。
特開昭61−112345号公報(昭和61(1986)年5月30日公開) 特開2003−229384号公報(平成15(2003)年8月15日公開)
Therefore, a tip dicing method has been proposed as a semiconductor chip manufacturing method for reducing chipping (for example, Patent Document 1). In this technique, a notch deeper than a predetermined chip thickness is formed along a dicing line or a chip dividing line on a circuit element forming surface of a semiconductor wafer, and a protective tape is attached to the circuit element forming surface of the semiconductor wafer. In this method, the semiconductor chip is formed by polishing from the opposite side of the circuit element forming surface of the wafer, thereby greatly reducing chipping generated at the back edge of the semiconductor chip and improving the chip strength. In some cases, after polishing the back surface, the polished surface may be mirror-finished by dry polishing or CMP (Chemical Mechanical Polish). Alternatively, not only the polished surface is mirror-finished by plasma etching, but also damage on the side surface of the chip that occurs when a cut is formed by dicing or the like is reduced, and the chip strength is further improved.
Japanese Patent Laid-Open No. 61-112345 (published May 30, 1986) Japanese Patent Laying-Open No. 2003-229384 (published on August 15, 2003)

前記特許文献1の先ダイシング法は、従来のような裏面研磨後に半導体ウェハの回路素子形成面からダイシングを行うものより、半導体チップの裏面チッピングは大幅に低減する。しかし、裏面研磨工程において、保護テープの種類や裏面研磨条件によっては、チップ厚が予め形成した切り込み深さに到達し、チップが分割する瞬間や、切り込み深さに到達してから所定のチップ厚まで研磨するまでに、隣接する分割されたチップ同士の接触や研磨中の機械的応力・衝撃により、チップエッジに新たなチッピングやチップコーナーの欠けが発生し、歩留りが低減することがあった。   In the prior dicing method of Patent Document 1, the chipping of the back surface of the semiconductor chip is greatly reduced compared to the conventional method in which dicing is performed from the circuit element forming surface of the semiconductor wafer after the back surface polishing. However, in the backside polishing process, depending on the type of protective tape and the backside polishing conditions, the chip thickness reaches the pre-formed cutting depth, the moment when the chip is divided, or the predetermined chip thickness after reaching the cutting depth. Until the polishing is completed, new chipping and chip corner chipping may occur at the chip edge due to contact between adjacent divided chips and mechanical stress and impact during polishing, which may reduce the yield.

本発明は、上記従来の問題点に鑑みなされたものであり、その目的は、従来の先ダイシング法で形成する半導体チップの製造方法の問題点であったチッピングやチップコーナー欠けを低減し、歩留り向上が可能な半導体チップの製造方法、および半導体装置の製造方法を提供することにある。   The present invention has been made in view of the above-described conventional problems, and its object is to reduce chipping and chip corner chipping, which are problems in the conventional method of manufacturing a semiconductor chip formed by the prior dicing method, and to improve the yield. An object of the present invention is to provide a semiconductor chip manufacturing method and a semiconductor device manufacturing method that can be improved.

本発明の半導体チップの製造方法は、上記課題を解決するために、ウェハ上で半導体素子または回路が形成された表面側の内部領域に、所定のダイシングラインまたはチップ分割ラインから当該ダイシングラインまたはチップ分割ラインに沿って、かつ上記ウェハの上記表面から上記ウェハの仕上げ厚よりも深く、かつ上記ウェハの厚みの途中で止まる深さで、厚み方向に進むにつれて互いに離れていくように上記ウェハの厚み方向に対して互いに反対側に傾斜する2つの側面を有する切り込みを、形成する工程と、上記ウェハの上記表面に保護テープを貼り付ける工程と、上記ウェハの裏面を研磨して、上記ウェハの厚みを上記仕上げ厚まで薄くすることにより上記ウェハの複数の半導体チップ同士を分離する工程とを有することを特徴としている。   In order to solve the above-described problem, the semiconductor chip manufacturing method of the present invention provides a dicing line or chip from a predetermined dicing line or chip dividing line to an inner region on the surface side where a semiconductor element or circuit is formed on the wafer. Thickness of the wafer along the dividing line and deeper than the finished thickness of the wafer from the surface of the wafer and stopped in the middle of the thickness of the wafer so as to move away from each other in the thickness direction. Forming a notch having two side surfaces inclined opposite to each other in a direction, attaching a protective tape to the front surface of the wafer, polishing the back surface of the wafer, and thickness of the wafer And a step of separating a plurality of semiconductor chips of the wafer by reducing the thickness to the finished thickness. To have.

上記の発明によれば、ウェハに形成された切り込みの幅は、回路形成面から深くなるに従って広がっている(この広がりをΔDとする)ため、半導体チップが分離する瞬間や切り込み深さに到達してから所定の厚みまで研磨されるまでに、隣接する分離されたチップの裏面エッジ間の隙間(クリアランス)がΔDだけ増加している。従って、保護テープの伸縮、研磨中の機械的応力・衝撃に対し、隣接する半導体チップ同士の接触が軽減される。更に、ウェハの研磨面従って半導体チップの裏面に対し、半導体チップの側面が鈍角をなすため、半導体チップの裏面のエッジの応力が分散し、研磨中の機械的応力・衝撃があっても半導体チップ裏面のエッジに新たなチッピングやチップコーナーの欠けが発生するのを大幅に低減することができる。   According to the above invention, the width of the cut formed in the wafer increases as it becomes deeper from the circuit formation surface (this spread is set to ΔD), and therefore reaches the moment when the semiconductor chip is separated or the cut depth. The gap (clearance) between the back surface edges of adjacent separated chips increases by ΔD after polishing to a predetermined thickness. Accordingly, contact between adjacent semiconductor chips is reduced against expansion and contraction of the protective tape and mechanical stress / impact during polishing. Furthermore, since the side surface of the semiconductor chip forms an obtuse angle with respect to the polished surface of the wafer, that is, the back surface of the semiconductor chip, the stress on the edge of the back surface of the semiconductor chip is dispersed, and even if there is mechanical stress / impact during polishing, the semiconductor chip The occurrence of new chipping and chip corner chipping at the edge of the back surface can be greatly reduced.

以上により、従来の先ダイシング法で形成する半導体チップの製造方法の問題点であったチッピングやチップコーナー欠けを低減し、歩留り向上が可能な半導体チップの製造方法を提供することができるという効果を奏する。   As described above, it is possible to provide a method of manufacturing a semiconductor chip that can reduce chipping and chip corner chipping, which are problems of a method of manufacturing a semiconductor chip formed by a conventional tip dicing method, and can improve yield. Play.

本発明の半導体チップの製造方法は、上記課題を解決するために、半導体素子または回路が形成された表面側の内部領域にダイシングラインまたはチップ分割ラインが形成されたウェハの上記表面に保護テープを貼り付ける工程と、上記ウェハの裏面を研磨して、上記ウェハの厚みを仕上げ厚まで薄くする工程と、上記ウェハの所定のダイシングラインまたはチップ分割ラインに沿って、上記ウェハの上記研磨後の研磨面からダイシングにより、厚み方向に進むにつれて互いにかつ当該ダイシングラインまたはチップ分割ラインに近づいていくように上記ウェハの厚み方向に対して互いに反対側に傾斜する2つの側面を有する切り込みを形成することにより上記ウェハの複数の半導体チップ同士を分離する工程とを有することを特徴としている。   In order to solve the above-described problems, the semiconductor chip manufacturing method of the present invention applies a protective tape to the surface of the wafer in which dicing lines or chip dividing lines are formed in the internal region on the surface side where the semiconductor elements or circuits are formed. A process of pasting, a process of polishing the back surface of the wafer to reduce the thickness of the wafer to a finished thickness, and polishing of the wafer after the polishing along a predetermined dicing line or chip dividing line of the wafer By dicing from the surface, by forming a notch having two side surfaces that are inclined to the opposite sides with respect to the thickness direction of the wafer so as to approach each other and the dicing line or the chip dividing line as proceeding in the thickness direction And a step of separating a plurality of semiconductor chips of the wafer. .

上記の発明によれば、ウェハの裏面を研磨してから、研磨面からダイシングにより切り込みを形成して半導体チップを分離するので、研磨時にチッピングやチップコーナーの欠けが発生することがない。   According to the above invention, since the back surface of the wafer is polished and then the semiconductor chip is separated by forming a cut by dicing from the polished surface, chipping and chip corner chipping do not occur during polishing.

また、ウェハに形成された切り込みの幅は、回路形成面から深くなるに従って広がっている。従って、切り込み形成後に裏面からプラズマエッチングを行えば、反応性イオンの運動方向が半導体チップの裏面に対し垂直(異方性エッチング)であっても、半導体チップの裏面を効率良くエッチングできる一方、従来に比べ半導体チップの側面への反応性イオンの到達効率が向上し、切り込みを形成する時に生じたチップの側面へのダメージをも効率的に除去することができ、チップ強度を向上することができる。   In addition, the width of the cut formed in the wafer increases with increasing depth from the circuit formation surface. Therefore, if plasma etching is performed from the back surface after the cut is formed, the back surface of the semiconductor chip can be efficiently etched even if the direction of movement of reactive ions is perpendicular to the back surface of the semiconductor chip (anisotropic etching). Compared to the above, the arrival efficiency of the reactive ions on the side surface of the semiconductor chip is improved, the damage to the side surface of the chip caused when forming the notch can be efficiently removed, and the chip strength can be improved. .

以上により、従来の先ダイシング法で形成する半導体チップの製造方法の問題点であったチッピングやチップコーナー欠けを低減し、歩留り向上が可能な半導体チップの製造方法を提供することができるという効果を奏する。   As described above, it is possible to provide a method of manufacturing a semiconductor chip that can reduce chipping and chip corner chipping, which are problems of a method of manufacturing a semiconductor chip formed by a conventional tip dicing method, and can improve yield. Play.

また、ウェハの裏面からダイシングするので、刃先の先端に角度を設けたダイシングブレードを用いることにより、1回のダイシングで半導体チップの側面に傾斜をつけることが容易であるという効果を奏する。   In addition, since dicing is performed from the back surface of the wafer, it is possible to easily incline the side surface of the semiconductor chip by one dicing by using a dicing blade having an angle at the tip of the blade edge.

本発明の半導体チップの製造方法は、上記課題を解決するために、各半導体チップを互いに分離した後、上記半導体チップの裏面側からプラズマエッチングを実施することを特徴としている。   In order to solve the above problems, the semiconductor chip manufacturing method of the present invention is characterized in that after the semiconductor chips are separated from each other, plasma etching is performed from the back side of the semiconductor chip.

従来の先ダイシング法で半導体ウェハを裏面研磨した後、分割した半導体チップの裏面に対し、特に異方性プラズマエッチングをする場合においては、反応性イオンの運動方向が半導体チップの裏面に対し垂直であり、半導体チップの裏面は効率良くエッチングできる一方、半導体チップの側面には反応性イオンが僅かしか到達せず、エッチングの効率が悪かった。   After polishing the back surface of the semiconductor wafer by the conventional tip dicing method, the reactive ion movement direction is perpendicular to the back surface of the semiconductor chip, particularly when anisotropic plasma etching is performed on the back surface of the divided semiconductor chip. On the other hand, while the back surface of the semiconductor chip can be etched efficiently, only a few reactive ions reach the side surface of the semiconductor chip, and the etching efficiency is poor.

上記の発明によれば、プラズマエッチングの反応性イオンの運動方向が半導体チップの裏面に対し垂直であっても、半導体チップの裏面が効率良くエッチングできるだけでなく、半導体チップの側面が傾斜しているため、半導体チップの側面にも反応性イオンの到達効率が向上する。従って、切り込みを形成する時、ダイシングブレードのダイヤモンド粒などで生じた半導体チップの側面へのダメージをも除去することができるという効果を奏する。   According to the above invention, even if the direction of movement of reactive ions in plasma etching is perpendicular to the back surface of the semiconductor chip, not only the back surface of the semiconductor chip can be etched efficiently, but also the side surface of the semiconductor chip is inclined. Therefore, the arrival efficiency of the reactive ions is also improved on the side surface of the semiconductor chip. Therefore, when the cut is formed, the damage to the side surface of the semiconductor chip caused by the diamond grains of the dicing blade can be removed.

本発明の半導体チップの製造方法は、上記課題を解決するために、分離後の上記半導体チップの上記表面と、上記切り込みの上記側面により形成された当該半導体チップの側面とのなす角度が45°以上89°以下となるように上記切り込みを形成することを特徴としている。   In order to solve the above problems, the semiconductor chip manufacturing method of the present invention has an angle of 45 ° between the surface of the semiconductor chip after separation and the side surface of the semiconductor chip formed by the side surface of the cut. The above-mentioned cut is formed so as to be at least 89 °.

上記の発明によれば、上記角度が45°以上であることから半導体チップ表面の十分なエッジ強度を確保することができるとともに、上記角度が89°以下であることからプラズマの反応性イオンの半導体チップの側面への到達効率が向上するため、半導体チップの側面へのダメージを除去することができるという効果を奏する。   According to the above invention, since the angle is 45 ° or more, a sufficient edge strength on the surface of the semiconductor chip can be secured, and since the angle is 89 ° or less, the semiconductor of reactive ion of plasma Since the arrival efficiency to the side surface of the chip is improved, the damage to the side surface of the semiconductor chip can be removed.

本発明の半導体装置の製造方法は、上記課題を解決するために、上記半導体チップの製造方法により半導体チップを製造し、一または複数の上記半導体チップの積層体を配線基板上に実装し、上記半導体チップ上の外部端子と上記配線基板上の端子とを電気的に接続し、封止材で封止することにより半導体装置を製造することを特徴としている。   In order to solve the above problems, a method for manufacturing a semiconductor device according to the present invention manufactures a semiconductor chip by the method for manufacturing a semiconductor chip, mounts one or more stacked bodies of the semiconductor chips on a wiring board, A semiconductor device is manufactured by electrically connecting an external terminal on a semiconductor chip and a terminal on the wiring substrate and sealing with a sealing material.

従来、配線基板上へ半導体チップを固着するためにペーストまたはフィルムなどを用いて第一の半導体チップを実装したり、上記第一の半導体チップ上へペーストまたはフィルムなどを用いて更に第二、第三の複数の半導体チップを実装したりする時に、ペーストまたはフィルムの塗布量や材料特性によっては、半導体チップからはみ出して半導体チップ表面や配線基板端子を汚染し、それが原因となってダイボンディングのコレットにペーストまたはフィルムのカスが付着する事態を誘発したり、次のワイヤボンディング工程でボンディングミスを誘発したりして歩留りが低下する問題があった。   Conventionally, a first semiconductor chip is mounted using a paste or a film to fix the semiconductor chip on the wiring board, or a second or second is further used using the paste or film on the first semiconductor chip. When mounting multiple semiconductor chips, depending on the amount of paste or film applied and the material characteristics, the semiconductor chip surface and wiring board terminals may be contaminated by protruding from the semiconductor chip. There has been a problem that the yield is lowered by inducing a situation in which paste or film residue adheres to the collet or inducing a bonding error in the next wire bonding process.

上記の発明によれば、半導体チップの側面が傾斜を有し、半導体チップの裏面が表面の直下に隠れるような形状であるので、ペーストまたはフィルムのはみ出し量が低減し、安定して半導体チップを実装することができるという効果を奏する。   According to the above invention, since the side surface of the semiconductor chip has an inclination and the back surface of the semiconductor chip is hidden under the front surface, the amount of paste or film protruding is reduced, and the semiconductor chip is stably formed. There is an effect that it can be implemented.

本発明の半導体装置の製造方法は、上記課題を解決するために、上記半導体チップの厚みを100μm以下とすることを特徴としている。   In order to solve the above-described problems, a method for manufacturing a semiconductor device according to the present invention is characterized in that the thickness of the semiconductor chip is 100 μm or less.

上記の発明によれば、チッピングやチップコーナーの欠け、および、ペーストまたはフィルムのはみ出しが従来特に問題となっていた厚みの半導体チップを、問題なくウェハから分離して装置に実装することができるという効果を奏する。   According to the above invention, a semiconductor chip having a thickness that has been particularly problematic in the past due to chipping, chipping of chip corners, and protrusion of paste or film can be separated from the wafer and mounted on the apparatus without any problem. There is an effect.

本発明の半導体チップの製造方法は、以上のように、ウェハ上で半導体素子または回路が形成された表面側の内部領域に、所定のダイシングラインまたはチップ分割ラインから当該ダイシングラインまたはチップ分割ラインに沿って、かつ上記ウェハの上記表面から上記ウェハの仕上げ厚よりも深く、かつ上記ウェハの厚みの途中で止まる深さで、厚み方向に進むにつれて互いに離れていくように上記ウェハの厚み方向に対して互いに反対側に傾斜する2つの側面を有する切り込みを、形成する工程と、上記ウェハの上記表面に保護テープを貼り付ける工程と、上記ウェハの裏面を研磨して、上記ウェハの厚みを上記仕上げ厚まで薄くすることにより上記ウェハの複数の半導体チップ同士を分離する工程とを有する。   As described above, the semiconductor chip manufacturing method according to the present invention changes from a predetermined dicing line or chip dividing line to a dicing line or chip dividing line in an internal region on the surface side where a semiconductor element or circuit is formed on the wafer. Along the thickness direction of the wafer so that the distance from the surface of the wafer is greater than the finished thickness of the wafer and stops at the middle of the thickness of the wafer, and away from each other as it proceeds in the thickness direction. Forming a notch having two side surfaces that are inclined opposite to each other, attaching a protective tape to the front surface of the wafer, polishing the back surface of the wafer, and finishing the thickness of the wafer. A step of separating the plurality of semiconductor chips of the wafer by thinning them to a thickness.

また、本発明の半導体チップの製造方法は、以上のように、半導体素子または回路が形成された表面側の内部領域にダイシングラインまたはチップ分割ラインが形成されたウェハの上記表面に保護テープを貼り付ける工程と、上記ウェハの裏面を研磨して、上記ウェハの厚みを仕上げ厚まで薄くする工程と、上記ウェハの所定のダイシングラインまたはチップ分割ラインに沿って、上記ウェハの上記研磨後の研磨面からダイシングにより、厚み方向に進むにつれて互いにかつ当該ダイシングラインまたはチップ分割ラインに近づいていくように上記ウェハの厚み方向に対して互いに反対側に傾斜する2つの側面を有する切り込みを形成することにより上記ウェハの複数の半導体チップ同士を分離する工程と有する。   In addition, as described above, the method for manufacturing a semiconductor chip according to the present invention attaches a protective tape to the surface of the wafer in which dicing lines or chip dividing lines are formed in the internal region on the surface side where the semiconductor elements or circuits are formed. Attaching the wafer, polishing the back surface of the wafer to reduce the thickness of the wafer to a final thickness, and polishing the polished surface of the wafer along a predetermined dicing line or chip dividing line of the wafer. From the above, by dicing, the notch having two side surfaces that are inclined to the opposite sides with respect to the thickness direction of the wafer so as to approach each other and the dicing line or the chip dividing line as it proceeds in the thickness direction. And a step of separating a plurality of semiconductor chips on the wafer.

それゆえ、従来の先ダイシング法で形成する半導体チップの製造方法の問題点であったチッピングやチップコーナー欠けを低減し、歩留り向上が可能な半導体チップの製造方法を提供することができるという効果を奏する。   Therefore, it is possible to provide a method of manufacturing a semiconductor chip that can reduce chipping and chip corner chipping, which are problems of a method of manufacturing a semiconductor chip formed by a conventional tip dicing method, and can improve yield. Play.

以下、本発明を図示の実施の形態により詳細に説明する。
(第1実施形態)
本発明の一実施形態について図1及び図2を用いて説明すれば、以下の通りである。
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
(First embodiment)
An embodiment of the present invention will be described with reference to FIGS. 1 and 2 as follows.

図1(a)の(1)〜(7)は本実施形態の半導体チップの製造方法の工程フローを示し、図1(b)の(1)〜(7)は図1(a)の(1)〜(7)に対応した工程断面を示している。   1 (a) to 1 (7) show a process flow of the method of manufacturing a semiconductor chip of this embodiment, and FIGS. 1 (b) to 1 (7) show ( Process cross sections corresponding to 1) to (7) are shown.

図1(b)の(1)に示すように、ウェハ1で半導体素子または回路が形成された面である回路形成面2の内部領域に、各ダイシングラインまたは各チップ分割ラインから当該ダイシングラインまたはチップ分割ラインに沿って、上記ウェハの表面から上記ウェハの仕上げ厚よりも深く、かつ上記ウェハの厚みの途中で止まる深さで、かつ上記切り込み3の側面が傾斜を有する切り込み3を形成する。この切り込み3を形成する工程を傾斜ダイシングAの工程とする(図1(a)の(1))。   As shown in (1) of FIG. 1 (b), the dicing line or chip dicing line from each dicing line or each chip dividing line is formed in the internal region of the circuit forming surface 2 on which the semiconductor element or circuit is formed on the wafer 1. A notch 3 is formed along the chip dividing line with a depth deeper than the finished thickness of the wafer from the surface of the wafer and stopped in the middle of the thickness of the wafer, and the side surface of the notch 3 is inclined. The step of forming the cut 3 is a step of inclined dicing A ((1) in FIG. 1A).

次に、図1(b)の(2)に示すように、上記傾斜ダイシングAの切り込み3の形成に対し、元来のウェハ上の回路形成された内部領域にダイシングラインまたはチップ分割ラインの中心に対しミラー反転するように、傾斜ダイシングBの切り込み4を形成する(図1(a)の(2))。   Next, as shown in (2) of FIG. 1B, the center of the dicing line or chip dividing line is formed in the internal region where the circuit is formed on the original wafer, compared to the formation of the notch 3 of the inclined dicing A. On the other hand, the incision 4 of the inclined dicing B is formed so as to be mirror-reversed ((2) in FIG. 1A).

上記傾斜ダイシングA及びBの工程により、互いに分離されるべき隣接する半導体チップ13(後述)同士の間に、切り込み3と切り込み4とを併せた切り込みが形成される。この2つを併せた切り込みは、各ダイシングラインまたは各チップ分割ラインから厚み方向に進むにつれて互いに離れていくようにウェハ1の厚み方向に対して互いに反対側に傾斜する2つの側面3a・4aを有する切り込みとなる。側面3a・4aは切り込み3・4の外側の2つの側面であって、後の半導体チップ13の分離に使用されるものである。切り込み3・4の内側の2つの側面3b・4bはなくてもよい。従って、切り込み3と切り込み4とを併せた切り込みは、側面3a・4aを有するように一度に形成されてもよい。   By the steps of the inclined dicing A and B, a cut formed by combining the cut 3 and the cut 4 is formed between adjacent semiconductor chips 13 (described later) to be separated from each other. The combination of the two cuts includes two side surfaces 3a and 4a that are inclined opposite to each other with respect to the thickness direction of the wafer 1 so as to move away from each dicing line or each chip dividing line in the thickness direction. It has a notch. The side surfaces 3a and 4a are two side surfaces outside the notches 3 and 4, and are used for separation of the semiconductor chip 13 later. The two side surfaces 3b and 4b inside the notches 3 and 4 may be omitted. Therefore, the notch combining the notch 3 and the notch 4 may be formed at a time so as to have the side surfaces 3a and 4a.

次に、図1(b)の(3)に示すように、ウェハ1の回路形成面2を覆うように粘着材5と基材6とから構成される保護テープ7を貼り付ける(図1(a)の(3))。次に、図1(b)の(4)に示すように、ウェハ1の裏面12に対して回転砥石8による裏面研磨を実施し(図1(a)の(4))、図1(b)の(5)に示すように複数の半導体チップ13同士が分離して所定の厚みとなる状態を形成したら裏面研磨を完了する(図1(a)の(5))。   Next, as shown in (3) of FIG. 1B, a protective tape 7 composed of an adhesive material 5 and a base material 6 is applied so as to cover the circuit forming surface 2 of the wafer 1 (FIG. 1 ( a) (3)). Next, as shown in (4) of FIG. 1 (b), the back surface 12 of the wafer 1 is subjected to back surface polishing by the rotating grindstone 8 ((4) of FIG. 1 (a)), and FIG. When the plurality of semiconductor chips 13 are separated from each other to form a predetermined thickness as shown in (5) of FIG. 1), the back surface polishing is completed ((5) of FIG. 1A).

次に、図1(b)の(6)に示すように、金属製キャリアフレーム10に張られたダイシングテープ11にウェハ1の裏面となる半導体チップ13の裏面13aを貼り付けるウェハマウントを行う(図1(a)の(6))。次に、図1(b)の(7)に示すように、表面保護テープ7を剥がし、次工程に移送する(図1(a)の(7))。   Next, as shown in (6) of FIG. 1B, wafer mounting is performed in which the back surface 13a of the semiconductor chip 13 serving as the back surface of the wafer 1 is attached to the dicing tape 11 stretched on the metal carrier frame 10 ( (6) in FIG. Next, as shown to (7) of FIG.1 (b), the surface protection tape 7 is peeled and it transfers to the following process ((7) of FIG.1 (a)).

本実施形態に示す方法によって形成した半導体チップ13の断面である、図1(b)の(5)のZ部拡大図を図2(a)に示す。併せて、従来の半導体チップ13’の断面を図2(b)に示す。隣接する半導体チップ13同士および半導体チップ13’同士の隙間を、チップの回路形成面2側で距離D1、チップの裏面側で距離D2とすると、従来はD1=D2の形状で加工されていた。本実施形態では、D1<D2の形状になるように加工していることが特徴となっている。図1(b)の(2)に示す切り込み3・4はチップの分離すべき全ての方向に形成されてもよいが、特定の方向にのみ形成されても従来に対して少なくとも下記の効果は得られる。D1<D2としたことで、半導体チップ13の回路形成面2側の面と切り込み3・4の側面3a・4aにより形成された傾斜面とのなす角度θは90°より小さくなる。これにより、半導体チップ13の回路形成面2側を表面として、半導体チップ13は少なくとも一対の傾斜側面を有し、裏面13aが表面の直下に隠れるメサ形状となる。   FIG. 2A shows an enlarged view of the Z portion in (5) of FIG. 1B, which is a cross section of the semiconductor chip 13 formed by the method shown in this embodiment. In addition, FIG. 2B shows a cross section of a conventional semiconductor chip 13 ′. If the gap between the adjacent semiconductor chips 13 and the semiconductor chip 13 'is a distance D1 on the circuit forming surface 2 side of the chip and a distance D2 on the back surface side of the chip, it is conventionally processed in a shape of D1 = D2. This embodiment is characterized by being processed so as to have a shape of D1 <D2. The incisions 3 and 4 shown in (2) of FIG. 1B may be formed in all directions to be separated from the chip. However, at least the following effects can be obtained even if formed only in a specific direction. can get. By setting D1 <D2, the angle θ formed by the surface on the circuit forming surface 2 side of the semiconductor chip 13 and the inclined surface formed by the side surfaces 3a and 4a of the cuts 3 and 4 becomes smaller than 90 °. As a result, the semiconductor chip 13 has at least a pair of inclined side surfaces with the circuit forming surface 2 side of the semiconductor chip 13 as the front surface, and has a mesa shape in which the back surface 13a is hidden directly under the surface.

本実施形態に示す形状に加工する効果は、保護テープ7の貼り付け時の張力や回転砥石8の発熱などによって生じる保護テープ7の伸縮や研磨中の機械的応力・衝撃に対し、D1<D2の形状であるため、隣接するチップ13の裏面同士の接触が起こりにくくなり、裏面チッピングやチップコーナー欠けの発生を低減できることである。   The effect of processing into the shape shown in the present embodiment is such that D1 <D2 with respect to expansion / contraction of the protective tape 7 caused by tension when the protective tape 7 is applied, heat generation of the rotating grindstone 8, and mechanical stress / impact during polishing. This makes it difficult for the back surfaces of adjacent chips 13 to come into contact with each other, thereby reducing the occurrence of back surface chipping and chip corner chipping.

更に、半導体チップ13の傾斜側面が半導体チップ13の裏面13aと鈍角をなすように傾斜しているため、裏面研磨時に回転砥石8が回転しながら各半導体チップ13に分離しつつあるウェハ1の裏面12(裏面13aと平行)に接触するときに、半導体チップ13の裏面エッジの応力が分散し、機械的応力・衝撃に対し強くなる。従って、半導体チップ13の裏面チッピングやチップコーナー欠けの発生を大幅に低減することができる。   Further, since the inclined side surface of the semiconductor chip 13 is inclined so as to form an obtuse angle with the back surface 13a of the semiconductor chip 13, the back surface of the wafer 1 being separated into each semiconductor chip 13 while rotating the rotating grindstone 8 during back surface polishing. 12 (parallel to the back surface 13a), the stress at the back surface edge of the semiconductor chip 13 is dispersed and becomes strong against mechanical stress and impact. Therefore, the occurrence of chipping on the back surface of the semiconductor chip 13 and chipping of chip corners can be greatly reduced.

以上により、従来の先ダイシング法で形成する半導体チップの製造方法の問題点であったチッピングやチップコーナー欠けを低減し、歩留り向上が可能な半導体チップの製造方法を提供することができる。
(第2実施形態)
本発明の他の実施形態について図3を用いて説明すれば、以下の通りである。
As described above, it is possible to provide a method of manufacturing a semiconductor chip that can reduce chipping and chip corner chipping, which are problems of a method of manufacturing a semiconductor chip formed by the conventional tip dicing method, and can improve the yield.
(Second Embodiment)
The following will describe another embodiment of the present invention with reference to FIG.

図3(a)の(1)〜(6)は本実施形態の半導体チップの製造方法の工程フローを示し、図3(b)の(1)〜(6)は図3(a)の(1)〜(6)に対応した工程断面を示している。   (1) to (6) in FIG. 3 (a) show the process flow of the semiconductor chip manufacturing method of the present embodiment, and (1) to (6) in FIG. Process cross sections corresponding to 1) to (6) are shown.

図3(b)の(1)に示すように、ウェハ1の回路形成面2を覆うように粘着材5と基材6とから構成される保護テープ7を貼り付ける(図3(a)の(1))。次に、図3(b)の(2)に示すように、ウェハ1の裏面12に対して回転砥石8によって裏面研磨を実施し(図3(a)の(2))、図3(b)の(3)のようにウェハ1が規定の厚さに達したら裏面研磨が完了する(図3(a)の(3))。完了後のウェハ1の裏面を裏面22とする。   As shown in (1) of FIG. 3B, a protective tape 7 composed of an adhesive material 5 and a base material 6 is applied so as to cover the circuit forming surface 2 of the wafer 1 (in FIG. 3A). (1)). Next, as shown in (2) of FIG. 3B, the back surface 12 of the wafer 1 is subjected to back surface polishing by the rotating grindstone 8 ((2) of FIG. 3A), and FIG. When the wafer 1 reaches a specified thickness as in (3)), the back surface polishing is completed ((3) in FIG. 3A). Let the back surface of the wafer 1 after completion be the back surface 22.

次に、図3(b)の(4)に示すように、ウェハ1の裏面22側からウェハ1のダイシングラインやチップ分割ラインに沿って、赤外線透過によってウェハ1の回路形成面2のパターンを認識し、ウェハ1の裏面22からダイシングにより、隣接する半導体チップ13同士の間に切り込み23を形成することにより複数の半導体チップ13…に分離する(図3(a)の(4))。この時、ダイシングブレードの刃先の先端に鋭角の角度を設けることにより、分離された半導体チップ13の側面に傾斜を設ける。この状態において、ウェハ1の裏面22は半導体チップ13の裏面13aとして残る。   Next, as shown in (4) of FIG. 3B, the pattern of the circuit forming surface 2 of the wafer 1 is transmitted by infrared rays from the back surface 22 side of the wafer 1 along the dicing line or chip dividing line of the wafer 1. Recognizing and dicing from the back surface 22 of the wafer 1 to form a notch 23 between adjacent semiconductor chips 13 to separate them into a plurality of semiconductor chips 13 ((4) in FIG. 3A). At this time, an acute angle is provided at the tip of the cutting edge of the dicing blade, so that the side surface of the separated semiconductor chip 13 is inclined. In this state, the back surface 22 of the wafer 1 remains as the back surface 13 a of the semiconductor chip 13.

切り込み23は、ウェハ1の研磨面から厚み方向に進むにつれて互いにかつ当該ダイシングラインまたはチップ分割ラインに近づいていくようにウェハ1の厚み方向に対して互いに反対側に傾斜する2つの側面23a・23bを有する。   The notch 23 has two side surfaces 23a and 23b that are inclined to the opposite sides with respect to the thickness direction of the wafer 1 so as to approach each other and the dicing line or chip dividing line as the thickness advances from the polishing surface of the wafer 1. Have

次に、図3(b)の(5)に示すように、金属製キャリアフレーム10に張られたダイシングテープ11に半導体チップ13の裏面13aを貼り付ける(図3(a)の(5))。次に、図3(b)の(6)に示すように、表面保護テープ7を剥がし、次工程に移送する(図3(a)の(6))。   Next, as shown in FIG. 3B (5), the back surface 13a of the semiconductor chip 13 is attached to the dicing tape 11 stretched on the metal carrier frame 10 (FIG. 3A (5)). . Next, as shown to (6) of FIG.3 (b), the surface protection tape 7 is peeled and it transfers to the following process ((6) of Fig.3 (a)).

本実施の形態では、ウェハ1の裏面を研磨してから、研磨面からダイシングにより切り込み23を形成して半導体チップ13を分離するので、研磨時にチッピングやチップコーナーの欠けが発生することがない。   In this embodiment, after the back surface of the wafer 1 is polished, the semiconductor chip 13 is separated from the polished surface by forming the cuts 23 by dicing, so that chipping and chipping of chip corners do not occur during polishing.

また、図3(b)の(4)により切り込み23を形成した後、プラズマエッチングを行えば、反応性イオンの運動方向9(図中の実線矢印)が半導体チップ13の裏面13aに対し垂直(異方性エッチング)であっても、半導体チップ13の裏面13aを効率良くエッチングできる一方、従来に比べ半導体チップ13の側面に反応性イオンの到達効率が向上し、切り込み23を形成する時にダイシングブレードのダイヤモンド粒で生じたチップの側面へのダメージをも効率的に除去することができ、チップ強度を向上することができる。   In addition, if plasma etching is performed after forming the notch 23 according to (4) of FIG. 3B, the reactive ion motion direction 9 (solid arrow in the figure) is perpendicular to the back surface 13a of the semiconductor chip 13 ( Even in the case of anisotropic etching, the back surface 13a of the semiconductor chip 13 can be efficiently etched, while the arrival efficiency of reactive ions on the side surface of the semiconductor chip 13 is improved compared to the conventional case, and the dicing blade is formed when the cut 23 is formed. The damage to the side surface of the chip caused by the diamond grains can be efficiently removed, and the chip strength can be improved.

以上により、従来の先ダイシング法で形成する半導体チップの製造方法の問題点であったチッピングやチップコーナー欠けを低減し、歩留り向上が可能な半導体チップの製造方法を提供することができる。   As described above, it is possible to provide a method of manufacturing a semiconductor chip that can reduce chipping and chip corner chipping, which are problems of a method of manufacturing a semiconductor chip formed by the conventional tip dicing method, and can improve the yield.

また、ウェハ1の裏面からダイシングするので、刃先の先端に角度を設けたダイシングブレードを用いることにより、1回のダイシングで半導体チップ13の側面に傾斜をつけることが容易である。
(第3実施形態)
本発明の他の実施形態について図1ないし図3を用いて説明すれば、以下の通りである。
Further, since the dicing is performed from the back surface of the wafer 1, it is easy to incline the side surface of the semiconductor chip 13 by one dicing by using a dicing blade having an angle at the tip of the blade edge.
(Third embodiment)
The following will describe another embodiment of the present invention with reference to FIGS.

本実施形態は、第1実施形態の図1(a)の(5)および第2実施形態の図3(a)の(4)の次工程に、プラズマエッチング工程を追加したものである。上記以外の工程の説明は、同一なので省略する。本実施形態によれば、図2(a)に図示するように、半導体チップ13はD1<D2のメサ形状をなし、裏面13aの傾斜側面と隣接するエッジより、回路形成面2の傾斜側面と隣接するエッジの方が、半導体チップ13の中心部から厚み方向に垂直な方向に見て外側となる。従って、プラズマエッチングの反応性イオンの運動方向9(図中の実線矢印)が半導体チップ13の裏面13aに対し垂直(異方性エッチング)であっても、半導体チップ13の裏面13aを効率良くエッチングできる一方、従来に比べ半導体チップ13の側面に反応性イオンの到達効率が向上し、切り込みを形成する時にダイシングブレードのダイヤモンド粒で生じたチップの側面へのダメージをも効率的に除去することができ、チップ強度を向上することができる。ここで、反応性イオンの運動方向9の強度をS、半導体チップ13の側面に到達するの反応性イオンの強度をS’(図中の点線矢印)とすると、S‘≒S・cosθにほぼ従う。   In this embodiment, a plasma etching step is added to the next step of FIG. 1A (5) of the first embodiment and (4) of FIG. 3A of the second embodiment. Since the description of other steps is the same, the description thereof is omitted. According to the present embodiment, as shown in FIG. 2A, the semiconductor chip 13 has a mesa shape of D1 <D2, and the inclined side surface of the circuit forming surface 2 is formed from the edge adjacent to the inclined side surface of the back surface 13a. Adjacent edges are outside as viewed from the center of the semiconductor chip 13 in the direction perpendicular to the thickness direction. Therefore, even when the direction 9 of movement of reactive ions in plasma etching (solid arrow in the figure) is perpendicular to the back surface 13a of the semiconductor chip 13 (anisotropic etching), the back surface 13a of the semiconductor chip 13 is efficiently etched. On the other hand, the arrival efficiency of the reactive ions on the side surface of the semiconductor chip 13 can be improved compared to the conventional case, and the damage to the side surface of the chip caused by the diamond grains of the dicing blade can be efficiently removed when the cut is formed. And the chip strength can be improved. Here, when the intensity of the reactive ion in the moving direction 9 is S and the intensity of the reactive ion reaching the side surface of the semiconductor chip 13 is S ′ (dotted arrow in the figure), S′≈S · cos θ is almost equal. Follow.

また、先ダイシング法を用いる第1実施形態に比べ、通常ダイシング法を用いる第2実施形態は、半導体チップ13の裏面13aのエッジのチッピング量が増加する場合があり得るが、プラズマエッチング工程を追加することで、チッピングを除去することが可能である。
(第4実施形態)
本発明の他の実施形態について図4を用いて説明すれば、以下の通りである。
Further, in the second embodiment using the normal dicing method, the chipping amount of the edge of the back surface 13a of the semiconductor chip 13 may be increased as compared with the first embodiment using the previous dicing method, but an additional plasma etching process is added. By doing so, it is possible to remove chipping.
(Fourth embodiment)
The following will describe another embodiment of the present invention with reference to FIG.

図4(a)は、本実施形態の半導体装置の断面図である。本実施形態における半導体装置は、上記第1〜3実施形態で説明したいずれかの半導体チップの製造方法を用いて製造した半導体チップ13を2段積層した2チップスタックドCSPの例である。同図では2つの半導体チップ13のうち下段に配置されるものを半導体チップ113、上段に配置されるものを半導体チップ213とする。半導体チップ113は、その上方に半導体チップ213が積層される分、厚み方向に垂直な方向の面の面積が大きくなっている。なお、半導体装置としては、一般に一または複数の半導体チップ13の積層体が実装されるものが考えられる。   FIG. 4A is a cross-sectional view of the semiconductor device of this embodiment. The semiconductor device in the present embodiment is an example of a two-chip stacked CSP in which the semiconductor chips 13 manufactured using any one of the semiconductor chip manufacturing methods described in the first to third embodiments are stacked in two stages. In the figure, the semiconductor chip 113 is disposed at the lower stage of the two semiconductor chips 13 and the semiconductor chip 213 is disposed at the upper stage. The semiconductor chip 113 has a larger surface area in the direction perpendicular to the thickness direction because the semiconductor chip 213 is stacked thereabove. In general, a semiconductor device in which a stacked body of one or a plurality of semiconductor chips 13 is mounted is considered.

1つの半導体チップ13の厚さは、チップ積層数、封止樹脂の厚みによって、種々に変更することが可能であり、例えば、封止樹脂14の厚みが800μmの場合、一般的に2チップ積層した場合で200μm、3チップ積層した場合で150μm、4チップ積層した場合で100μm、5チップ積層した場合で70μm、6チップ積層した場合で50μm程度とすることが必要となる。   The thickness of one semiconductor chip 13 can be variously changed depending on the number of stacked chips and the thickness of the sealing resin. For example, when the thickness of the sealing resin 14 is 800 μm, the thickness of two chips is generally stacked. In this case, it is necessary to set the thickness to 200 μm, three chips stacked to 150 μm, four chips stacked to 100 μm, five chips stacked to 70 μm, and six chips stacked to about 50 μm.

特に、チップ厚が100μm以下になると、チップ強度が著しく低下するので、上記第1〜3実施形態で説明した半導体チップ13によれば、チッピングやチップコーナー欠けのないものを使用することができるので、安定して厚み100μm以下の半導体チップ13を実装することができる。   In particular, when the chip thickness is 100 μm or less, the chip strength is remarkably reduced. Therefore, according to the semiconductor chip 13 described in the first to third embodiments, a chip without chipping or chip corner chipping can be used. The semiconductor chip 13 having a thickness of 100 μm or less can be stably mounted.

更に、従来は図4(b)に示すように、配線基板17の半田ボール18が形成されている面と反対側の面上へ半導体チップ113’を固着するために、エポキシ系樹脂、ポリイミド系樹脂、エポキシ/ポリイミド系混合樹脂のペーストまたはフィルム16などを用いて第一の半導体チップ113’を実装、または前記第一の半導体チップ113’上へペーストまたはフィルム16を用いて更に第二の半導体チップ213’(同様に、第三・第四・…の半導体チップも考えられる)を順次実装する。この時に、ペーストまたはフィルム16の塗布量や材料特性によっては、同図に示すように、半導体チップ113’または213’からのペーストまたはフィルム16のはみ出し距離Xが大きくなって半導体チップ113’・213’・…の表面や配線基板端子を汚染し、それが原因となって、半導体チップ113’・213’・…上の外部端子と配線基板17上の端子とを電気的に接続する際に、ダイボンディングのコレットにペーストまたはフィルム16のカスが付着する事態を誘発したり、次のワイヤボンディング工程で金線15のボンディングミスを誘発したりして歩留りが低下する。図4(b)のはみ出し距離Xは、一般的なダイボンドペーストを例にすれば、0.5mm〜0.8mm程度である。   Further, conventionally, as shown in FIG. 4B, in order to fix the semiconductor chip 113 ′ on the surface of the wiring board 17 opposite to the surface on which the solder balls 18 are formed, an epoxy resin or a polyimide resin is used. A first semiconductor chip 113 ′ is mounted using a resin, epoxy / polyimide mixed resin paste or film 16 or the like, or a second semiconductor using paste or film 16 on the first semiconductor chip 113 ′. Chips 213 ′ (similarly, third, fourth,... Semiconductor chips are also conceivable) are sequentially mounted. At this time, depending on the application amount and material characteristics of the paste or film 16, as shown in the figure, the protruding distance X of the paste or film 16 from the semiconductor chip 113 ′ or 213 ′ increases, and the semiconductor chips 113 ′ and 213 increase. When the electrical terminals of the semiconductor chips 113 ′, 213 ′,... And the terminals on the wiring substrate 17 are electrically connected due to contamination of the surface of the circuit board terminals and the wiring board terminals. The yield is lowered by inducing a situation in which the paste or debris of the film 16 adheres to the die bonding collet or inducing a bonding error of the gold wire 15 in the next wire bonding process. The protruding distance X in FIG. 4B is about 0.5 mm to 0.8 mm when a general die bond paste is taken as an example.

一方、図4(a)に示すように、配線基板17の半田ボール18が形成されている面と反対側の面上へ半導体チップを固着する場合に、第1〜第3実施形態の半導体チップ13を半導体チップ113・213に用いる。そして、半導体チップ113・213上の外部端子と配線基板17上の端子とをダイボンディングやワイヤボンディングなどで電気的に接続し、封止材の封止樹脂14で封止して半導体装置を製造する。各半導体チップ13は傾斜側面を有するメサ形状をなし、裏面13aの傾斜側面と隣接するエッジより、回路形成面2の傾斜側面と隣接するエッジの方が、半導体チップ13の中心部から厚み方向に垂直な方向に見て外側となる形状である(裏面13aが表面の直下に隠れる)ので、図2(a)の角度θが小さいほどペーストまたはフィルム16のはみ出し距離Xは縮小され、安定して厚み100μm以下の半導体チップ113・213を実装することができる。このような小さなはみ出し距離Xを実現するという観点からは、半導体チップ13には、ペーストまたはフィルム16のはみ出し距離Xを小さくしたい方向の全てに傾斜側面を形成するのが好ましい。   On the other hand, as shown in FIG. 4A, when the semiconductor chip is fixed on the surface of the wiring board 17 opposite to the surface on which the solder balls 18 are formed, the semiconductor chip of the first to third embodiments. 13 is used for the semiconductor chips 113 and 213. Then, the external terminals on the semiconductor chips 113 and 213 and the terminals on the wiring substrate 17 are electrically connected by die bonding or wire bonding, and sealed with a sealing resin 14 as a sealing material to manufacture a semiconductor device. To do. Each semiconductor chip 13 has a mesa shape having an inclined side surface, and the edge adjacent to the inclined side surface of the circuit forming surface 2 is closer to the thickness direction from the center of the semiconductor chip 13 than the edge adjacent to the inclined side surface of the back surface 13a. Since the shape is the outer side when viewed in the vertical direction (the back surface 13a is hidden directly under the front surface), the protrusion distance X of the paste or film 16 is reduced as the angle θ in FIG. Semiconductor chips 113 and 213 having a thickness of 100 μm or less can be mounted. From the viewpoint of realizing such a small protruding distance X, the semiconductor chip 13 is preferably formed with inclined side surfaces in all directions in which it is desired to reduce the protruding distance X of the paste or film 16.

はみ出し距離Xを縮小するのに、半導体チップ13の前記角度θが小さい程効果は大きくなるが、45°未満にすると角度θが鋭利になり過ぎて、応力集中などにより半導体チップ13の回路形成面2側の表面のエッジチッピングが増大する可能性があるので、少なくとも45°以上は確保しておくことが望ましい。一方、角度θが大きくなるとはみ出し距離Xの縮小効果が小さくなるが、70°を超えるとはみ出し距離Xは半導体チップ13の側面に傾斜がない(θ=90°)場合と実質上同等になる。従って、半導体チップ13の回路形成面2側の表面のエッジ強度を十分に確保しながら、はみ出し距離Xを縮小するには、角度θが45°以上70°以下であることが望ましい。   When the angle θ of the semiconductor chip 13 is reduced, the effect is increased to reduce the protrusion distance X. However, when the angle θ is less than 45 °, the angle θ becomes too sharp, and the circuit formation surface of the semiconductor chip 13 due to stress concentration or the like. Since edge chipping of the surface on the two sides may increase, it is desirable to ensure at least 45 ° or more. On the other hand, the effect of reducing the protrusion distance X decreases as the angle θ increases. However, when the angle θ exceeds 70 °, the protrusion distance X is substantially the same as when the side surface of the semiconductor chip 13 is not inclined (θ = 90 °). Therefore, in order to reduce the protrusion distance X while sufficiently securing the edge strength of the surface of the semiconductor chip 13 on the circuit forming surface 2 side, it is desirable that the angle θ is 45 ° or more and 70 ° or less.

しかしながら、ダイシングによる半導体チップ13の側面のダメージ層をプラズマエッチングにより除去する目的であれば、その好ましい角度θの範囲は広がる。具体的には、89°からそれ以下に小さくなるにつれてプラズマの反応性イオンが半導体チップ13の側面へ到達する効率が向上するため、角度θが45°以上89°以下であれば上記目的は達成し、かつ、半導体チップ表面の十分なエッジ強度も確保することができる。これは、図2(a)においてS=1とすると、
θ=90°のとき S‘≒S・cosθ≒0
θ=89°のとき S‘≒S・cosθ≒0.0175(1.75%)
となって、89°以下でθが小さい程プラズマエネルギーの到達効率が増加することによる。θ=90°でも、実際はガスの散乱により、プラズマエネルギーは若干到達するが、cosθの変化でプラズマエネルギーの到達効率が向上するので、90°と89°との間では変化が大きく、89°では上記数値のようにプラズマエネルギーの到達効率が大きくなる。従って、89°以下の角度ではさらにダメージ層の除去が可能になる。
However, if the purpose is to remove the damaged layer on the side surface of the semiconductor chip 13 by dicing by plasma etching, the range of the preferable angle θ is widened. Specifically, as the plasma reactive ions reach the side surface of the semiconductor chip 13 as the angle decreases from 89 ° or less, the above object is achieved when the angle θ is 45 ° or more and 89 ° or less. In addition, sufficient edge strength on the surface of the semiconductor chip can be ensured. When S = 1 in FIG. 2 (a),
When θ = 90 ° S′≈S · cos θ≈0
When θ = 89 ° S′≈S · cos θ≈0.0175 (1.75%)
This is because the efficiency of reaching plasma energy increases as θ decreases below 89 °. Even at θ = 90 °, the plasma energy actually reaches a little due to gas scattering, but the change efficiency of plasma energy is improved by the change of cos θ, so the change is large between 90 ° and 89 °, and at 89 ° As shown in the above numerical value, the arrival efficiency of plasma energy increases. Therefore, the damage layer can be further removed at an angle of 89 ° or less.

以上より明らかなように、各実施の形態に係る半導体チップの製造方法および半導体装置の製造方法によれば、特にチップの厚みが100μm以下というような薄型であっても、半導体チップの裏面のチッピングやチップコーナーの欠けを防止し、半導体チップの側面のダメージ層を除去することができるので、ICカード、CSP、スタックドCSP、マルチCSPなどの各種半導体装置の歩留りを向上させ、安定的に生産することができる。   As is clear from the above, according to the semiconductor chip manufacturing method and the semiconductor device manufacturing method according to each embodiment, even when the chip thickness is as thin as 100 μm or less, chipping of the back surface of the semiconductor chip is possible. And chip corners can be prevented and the damage layer on the side surface of the semiconductor chip can be removed, so that the yield of various semiconductor devices such as IC cards, CSPs, stacked CSPs, and multi-CSPs can be improved and stably produced. be able to.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.

本発明は、ICカード、CSP、スタックドCSP、マルチCSPなどの各種半導体装置のための半導体チップおよびそのアッセンブリに好適に使用できる。   The present invention can be suitably used for a semiconductor chip and its assembly for various semiconductor devices such as an IC card, a CSP, a stacked CSP, and a multi-CSP.

(a)は本発明の実施形態の半導体チップの製造方法による工程を示すフローチャートであり、(b)は同図(a)に対応した工程断面図である。(A) is a flowchart which shows the process by the manufacturing method of the semiconductor chip of embodiment of this invention, (b) is process sectional drawing corresponding to the figure (a). (a)は本発明の実施形態の半導体チップの加工形状を示す断面図であり、(b)は従来のチップの加工形状を示す断面図である。(A) is sectional drawing which shows the processing shape of the semiconductor chip of embodiment of this invention, (b) is sectional drawing which shows the processing shape of the conventional chip | tip. (a)は本発明の実施形態の半導体チップの製造方法による他の工程を示すフローチャートであり、(b)は同図(a)に対応した工程断面図である。(A) is a flowchart which shows the other process by the manufacturing method of the semiconductor chip of embodiment of this invention, (b) is process sectional drawing corresponding to the figure (a). (a)は本発明の実施形態による加工形状の半導体チップを用いた半導体装置の断面図であり、(b)は従来の加工形状の半導体チップを用いた半導体装置の断面図である。(A) is sectional drawing of the semiconductor device using the semiconductor chip of the processing shape by embodiment of this invention, (b) is sectional drawing of the semiconductor device using the semiconductor chip of the conventional processing shape.

符号の説明Explanation of symbols

1 ウェハ
2 回路形成面
3 切り込み
3a 側面
4 切り込み
4a 側面
5 粘着材
6 基材
7 保護テープ
8 回転砥石
9 異方性プラズマエッチングの反応性イオンの運動方向
10 金属製キャリア
11 ダイシングテープ
12 裏面
13 半導体チップ
13a 裏面
14 封止材
15 金線
16 ペーストまたはフィルム
17 配線基板
18 半田ボール
22 裏面
23a 側面
23b 側面
DESCRIPTION OF SYMBOLS 1 Wafer 2 Circuit formation surface 3 Notch 3a Side surface 4 Notch 4a Side surface 5 Adhesive material 6 Base material 7 Protective tape 8 Rotary grindstone 9 Direction of movement of reactive ion of anisotropic plasma etching 10 Metal carrier 11 Dicing tape 12 Back surface 13 Semiconductor Chip 13a Back surface 14 Sealing material 15 Gold wire 16 Paste or film 17 Wiring board 18 Solder ball 22 Back surface 23a Side surface 23b Side surface

Claims (6)

ウェハ上で半導体素子または回路が形成された表面側の内部領域に、所定のダイシングラインまたはチップ分割ラインから当該ダイシングラインまたはチップ分割ラインに沿って、かつ上記ウェハの上記表面から上記ウェハの仕上げ厚よりも深く、かつ上記ウェハの厚みの途中で止まる深さで、厚み方向に進むにつれて互いに離れていくように上記ウェハの厚み方向に対して互いに反対側に傾斜する2つの側面を有する切り込みを、形成する工程と、
上記ウェハの上記表面に保護テープを貼り付ける工程と、
上記ウェハの裏面を研磨して、上記ウェハの厚みを上記仕上げ厚まで薄くすることにより上記ウェハの複数の半導体チップ同士を分離する工程とを有することを特徴とする半導体チップの製造方法。
Finishing thickness of the wafer from a predetermined dicing line or chip dividing line along the dicing line or chip dividing line and from the surface of the wafer to an inner region on the surface side where semiconductor elements or circuits are formed on the wafer A notch having two side surfaces that are inclined to the opposite sides with respect to the thickness direction of the wafer so as to move away from each other in the thickness direction at a depth that is deeper and stops in the middle of the thickness of the wafer, Forming, and
Attaching a protective tape to the surface of the wafer;
And a step of separating the plurality of semiconductor chips of the wafer by polishing the back surface of the wafer and reducing the thickness of the wafer to the finished thickness.
半導体素子または回路が形成された表面側の内部領域にダイシングラインまたはチップ分割ラインが形成されたウェハの上記表面に保護テープを貼り付ける工程と、
上記ウェハの裏面を研磨して、上記ウェハの厚みを仕上げ厚まで薄くする工程と、
上記ウェハの所定のダイシングラインまたはチップ分割ラインに沿って、上記ウェハの上記研磨後の研磨面からダイシングにより、厚み方向に進むにつれて互いにかつ当該ダイシングラインまたはチップ分割ラインに近づいていくように上記ウェハの厚み方向に対して互いに反対側に傾斜する2つの側面を有する切り込みを形成することにより上記ウェハの複数の半導体チップ同士を分離する工程とを有することを特徴とする半導体チップの製造方法。
A step of attaching a protective tape to the surface of the wafer on which a dicing line or a chip dividing line is formed in the inner region on the surface side where the semiconductor element or circuit is formed;
Polishing the backside of the wafer and reducing the thickness of the wafer to a finished thickness;
Dicing along the predetermined dicing line or chip dividing line of the wafer from the polished surface of the wafer after polishing so that the wafers approach each other and the dicing line or chip dividing line as they progress in the thickness direction. And a step of separating the plurality of semiconductor chips of the wafer by forming a notch having two side surfaces inclined in opposite directions with respect to the thickness direction of the semiconductor chip.
各半導体チップを互いに分離した後、上記半導体チップの裏面側からプラズマエッチングを実施することを特徴とする請求項1または2に記載の半導体チップの製造方法。   3. The method of manufacturing a semiconductor chip according to claim 1, wherein after the semiconductor chips are separated from each other, plasma etching is performed from the back side of the semiconductor chip. 分離後の上記半導体チップの上記表面と、上記切り込みの上記側面により形成された当該半導体チップの側面とのなす角度が45°以上89°以下となるように上記切り込みを形成することを特徴とする請求項1ないし3のいずれかに記載の半導体チップの製造方法。   The notch is formed so that an angle formed between the surface of the semiconductor chip after separation and the side surface of the semiconductor chip formed by the side surface of the notch is 45 ° or more and 89 ° or less. The method for manufacturing a semiconductor chip according to claim 1. 請求項1ないし4のいずれかに記載の半導体チップの製造方法により半導体チップを製造し、一または複数の上記半導体チップの積層体を配線基板上に実装し、上記半導体チップ上の外部端子と上記配線基板上の端子とを電気的に接続し、封止材で封止することにより半導体装置を製造することを特徴とする半導体装置の製造方法。   A semiconductor chip is manufactured by the method for manufacturing a semiconductor chip according to any one of claims 1 to 4, and a laminated body of one or a plurality of the semiconductor chips is mounted on a wiring board, and the external terminals on the semiconductor chip and the above-mentioned A semiconductor device manufacturing method comprising manufacturing a semiconductor device by electrically connecting terminals on a wiring board and sealing with a sealing material. 上記半導体チップの厚みを100μm以下とすることを特徴とする請求項5に記載の半導体装置の製造方法。   6. The method of manufacturing a semiconductor device according to claim 5, wherein the thickness of the semiconductor chip is 100 [mu] m or less.
JP2004290516A 2004-10-01 2004-10-01 Manufacturing methods of semiconductor chip and semiconductor device Pending JP2006108254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004290516A JP2006108254A (en) 2004-10-01 2004-10-01 Manufacturing methods of semiconductor chip and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290516A JP2006108254A (en) 2004-10-01 2004-10-01 Manufacturing methods of semiconductor chip and semiconductor device

Publications (1)

Publication Number Publication Date
JP2006108254A true JP2006108254A (en) 2006-04-20

Family

ID=36377645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290516A Pending JP2006108254A (en) 2004-10-01 2004-10-01 Manufacturing methods of semiconductor chip and semiconductor device

Country Status (1)

Country Link
JP (1) JP2006108254A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073821A (en) * 2008-09-17 2010-04-02 Disco Abrasive Syst Ltd Wafer dividing method
JP2010245286A (en) * 2009-04-06 2010-10-28 Canon Inc Method of manufacturing semiconductor device
JP2010245287A (en) * 2009-04-06 2010-10-28 Canon Inc Method of manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073821A (en) * 2008-09-17 2010-04-02 Disco Abrasive Syst Ltd Wafer dividing method
JP2010245286A (en) * 2009-04-06 2010-10-28 Canon Inc Method of manufacturing semiconductor device
JP2010245287A (en) * 2009-04-06 2010-10-28 Canon Inc Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US7019397B2 (en) Semiconductor device, manufacturing method of semiconductor device, stack type semiconductor device, and manufacturing method of stack type semiconductor device
US7833836B2 (en) Stack MCP and manufacturing method thereof
US6753238B2 (en) Semiconductor device and manufacturing method thereof
US8546244B2 (en) Method of manufacturing semiconductor device
JPH03204954A (en) Semiconductor device and manufacture thereof
US6750082B2 (en) Method of assembling a package with an exposed die backside with and without a heatsink for flip-chip
JP6649308B2 (en) Semiconductor device and manufacturing method thereof
US6507092B1 (en) Semiconductor device having increased reliability and method of producing the same and semiconductor chip suitable for such a semiconductor device and method of producing the same
JP2008028325A (en) Method of manufacturing semiconductor device
US10490531B2 (en) Manufacturing method of semiconductor device and semiconductor device
JP2003086762A (en) Semiconductor device and manufacturing method therefor
JP2009135348A (en) Semiconductor chip, semiconductor device and method of manufacturing them
JP2013120767A (en) Semiconductor device manufacturing method
JP2002270720A (en) Semiconductor device and its manufacturing method
CN106531638B (en) Semiconductor device including stacked semiconductor bare chip and method of manufacturing the same
JP2000091274A (en) Formation of semiconductor chip and manufacture of semiconductor device using the same
JP6482454B2 (en) Electronic component manufacturing method and electronic component manufacturing apparatus
JP2004343088A (en) Semiconductor device and its manufacturing method
JP2006108254A (en) Manufacturing methods of semiconductor chip and semiconductor device
KR20110017728A (en) Method for wafer sawing preventing a bond pad oxidation
JP2010135565A (en) Semiconductor device and production process of the same
US20060125060A1 (en) Semiconductor chip, and manufacturing method and application of the chip
CN112117186A (en) Wafer cutting method
JP2005166807A (en) Method for manufacturing semiconductor element and method for segmenting substrate
WO2007049356A1 (en) Semiconductor device and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302