JP2006108125A - Double-sided polishing method of semiconductor wafer, and polishing equipment for use therein - Google Patents

Double-sided polishing method of semiconductor wafer, and polishing equipment for use therein Download PDF

Info

Publication number
JP2006108125A
JP2006108125A JP2004288255A JP2004288255A JP2006108125A JP 2006108125 A JP2006108125 A JP 2006108125A JP 2004288255 A JP2004288255 A JP 2004288255A JP 2004288255 A JP2004288255 A JP 2004288255A JP 2006108125 A JP2006108125 A JP 2006108125A
Authority
JP
Japan
Prior art keywords
polishing
wafer
carrier plate
double
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004288255A
Other languages
Japanese (ja)
Inventor
Shinya Kawamoto
真也 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2004288255A priority Critical patent/JP2006108125A/en
Publication of JP2006108125A publication Critical patent/JP2006108125A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing method in which the polishing end point of a bare wafer can be detected, without causing variation in the polishing conditions during polishing operation, the profile of polishing cloth will not deteriorate, and the planarity of the wafer being polished will also not degrade. <P>SOLUTION: In the double-sided polishing method of a wafer 50, where a carrier plate 30 having a hole inserted with the wafer is held between polishing cloths stuck to the opposing surfaces of upper and lower rotatable polishing plates and the wafer 50 is polished by rotating the polishing plates and the carrier plate 30 relatively, while pressing the polishing clothes of the upper and lower polishing plates relatively, a ring 34 for polish adjusting the member of a material having a wear rate higher than that of the wafer 50 is arranged around the hole of the carrier plate 30 for inserting the wafer 50, at a height corresponding to the target polishing thickness of the wafer 50. The wafer 50 is polished to a predetermined target thickness during polishing operation, and the polishing end point of the wafer 50 is detected, by detecting the moment when the frictional resistance is varied by polishing the material 34 of high wear rate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、半導体ウェーハの研磨方法およびそれに用いる研磨装置に関する。   The present invention relates to a semiconductor wafer polishing method and a polishing apparatus used therefor.

半導体ウェーハの表面を鏡面に仕上げる場合は、一般的にCMP(化学的機械的研磨)が用いられている。これは、回転可能な定盤の表面に半導体ウェーハを固着し、これに対向して設けられた回転可能な定盤の表面に研磨布を貼設して、研磨剤を供給しながら対向する定盤を相対的に回転させて、半導体ウェーハを研磨する方法である。   When finishing the surface of a semiconductor wafer to a mirror surface, CMP (Chemical Mechanical Polishing) is generally used. This is because a semiconductor wafer is fixed to the surface of a rotatable surface plate, an abrasive cloth is attached to the surface of the rotatable surface plate provided opposite to the surface, and the surface of the surface facing the surface is supplied while supplying an abrasive. This is a method of polishing a semiconductor wafer by relatively rotating a disc.

このような半導体ウェーハの研磨は、これまで一般に、表面にデバイス形成のためのパターンニング、凹凸等が形成されているウェーハの研磨で、これについて各種の提案がなされている。しかしながら、表面に特にデバイス構造が形成されていないベアウェーハの研磨においては、その研磨量の管理はこれまで特に重視されていなかった。そのため、ベアウェーハの研磨においては、研磨時間を一定として研磨布の使用回数で管理するという画一的な方法で行われている。   Such polishing of a semiconductor wafer has been generally performed for polishing a wafer having a surface on which patterning for forming a device, unevenness and the like are formed, and various proposals have been made. However, in the polishing of a bare wafer whose device structure is not formed on the surface, management of the polishing amount has not been particularly emphasized so far. For this reason, the bare wafer is polished by a uniform method in which the polishing time is constant and the number of times the polishing cloth is used is managed.

しかしながら、ベアウェーハに対するこうした従来の研磨においては、研磨布の目詰まりによる研磨温度の低下により研磨速度が低下してしまうため、研磨量の誤差が大きくなり、その結果として、仕上がりにバラツキが生じてしまい製品歩留まりに大きな影響を与えていた。   However, in such conventional polishing of bare wafers, the polishing rate decreases due to the decrease in polishing temperature due to clogging of the polishing cloth, resulting in a large error in the amount of polishing, resulting in variations in the finish. It had a great influence on the product yield.

半導体ウェーハの研磨終点を判定する先行技術としては、研磨摩擦力が予め設定された単位時間t内に予め設定された変化量hで変化したことを検出したものがある(例えば、特許文献1。)。さらに、凹凸を研磨している時の摩擦力と、平坦面を研磨している時の摩擦力と差異に基いて決定し、その時点から所定時間の後を研磨終点とするものがある(特許文献2。)。さらに、研磨するときの温度変化点を検出することによって研磨終点を検出するものがある(特許文献3。)。さらに、研磨パットに形成された観測窓を通して、光源ユニットからの白色光を研磨中のウェーハに照射し、その反射光を分光測定解析することで研磨終点を検出するものがある(特許文献4。)。さらに、ウェーハの両面研磨において、ウェーハを保持するキャリアプレートに、硬くて磨耗し難い材質の中子を挿入しておき、ウェーハが研磨されて中子の厚さに達する時点で研磨終点を検出するようにしたものがある(特許文献5。)。
特開2002−353179号公報(請求項1) 特開平9−131663号公報(請求項1) 特開平8−330261号公報(請求項1) 特開2003−168667号公報(請求項1) 特開平5−169365号公報(請求項1,3頁,3欄,段 落0012)
As a prior art for determining the polishing end point of a semiconductor wafer, there is one in which the polishing friction force is detected to change with a preset change amount h within a preset unit time t (for example, Patent Document 1). ). In addition, there is one that is determined based on the difference between the frictional force when polishing the unevenness and the frictional force when polishing the flat surface, and the polishing end point is after a predetermined time from that point (patent) Literature 2.). Further, there is one that detects a polishing end point by detecting a temperature change point when polishing (Patent Document 3). Further, there is a technique for detecting a polishing end point by irradiating a wafer being polished with white light from a light source unit through an observation window formed on a polishing pad and performing spectroscopic analysis of the reflected light (Patent Document 4). ). Furthermore, in double-sided polishing of the wafer, a core that is hard and hard to wear is inserted into the carrier plate that holds the wafer, and the polishing end point is detected when the thickness of the core is reached after the wafer is polished. There is something like that (Patent Document 5).
JP 2002-353179 A (Claim 1) JP-A-9-131663 (Claim 1) JP-A-8-330261 (Claim 1) JP 2003-168667 A (Claim 1) JP-A-5-169365 (Claims 1, 3, page 3, column 3, step 0012)

上記の先行技術の特許文献1ないし4は、いずれもウェーハの片面研磨の技術であるとともに、その研磨する被加工物のウェーハ表面には酸化膜、凹凸、その他デバイス構造が形成されたものが適用されるCMPに関するものである。しかしながら、ウェーハ表面に上記のような酸化膜、デバイス構造などが形成されている場合には、ウェーハ表面を研磨している間に積層されている層が変わるために、研磨温度、ヘッド回転電流といった研磨条件が大きく変化するものである。上記の先行技術は、いずれもこうした研磨中に生ずる研磨条件の変化を用いた技術であって、ウェーハ表面に酸化膜、デバイス構造などがなく、研磨中に研磨条件の変化の生じないベアウェーハに対する技術の開示は何らない。   Patent Documents 1 to 4 of the above prior art are all techniques for single-side polishing of a wafer, and those in which an oxide film, irregularities, and other device structures are formed on the wafer surface of the workpiece to be polished are applied. Is related to CMP. However, when the above oxide film, device structure, etc. are formed on the wafer surface, the layers stacked while the wafer surface is being polished change, so the polishing temperature, head rotation current, etc. Polishing conditions change greatly. Each of the above prior arts is a technique using such a change in polishing conditions that occurs during polishing, and there is no oxide film, device structure, etc. on the wafer surface, and for bare wafers in which the polishing conditions do not change during polishing. There is no disclosure of technology.

また、特許文献5はウェーハの両面研磨の技術ではあるが、この先行技術についても同じようにベアウェーハの研磨については何ら記載がない。さらに、この技術はキャリアプレートに複数の孔を設け、この孔にアルミナ焼結体など硬い複数の中子を挿入してウェーハの研磨中に被研磨物の厚さが中子の高さに近づくと中子が作用にして摩擦の程度が低下するのでこの時点を検知して研磨終点として、良好な平坦度で研磨されたウェーハを得るようにしたものである。しかしながら、この技術ではアルミナ焼結体などの硬い中子を用いるので、研磨中に中子が研磨布に接するとこの部分では研磨抵抗が低下し、研磨終点として検出されるまでの間は研磨布が中子に押圧された状態となって研磨布の形状が悪化し、そのために研磨ウェーハの平坦度も悪くなる可能性がある。   Further, although Patent Document 5 is a technique for double-side polishing of a wafer, there is no description about the polishing of a bare wafer in this prior art as well. Furthermore, in this technique, a plurality of holes are provided in the carrier plate, and a plurality of hard cores such as an alumina sintered body are inserted into the holes, so that the thickness of the object to be polished approaches the height of the core during polishing of the wafer. Since the core acts to reduce the degree of friction, this point is detected and a wafer polished with good flatness is obtained as a polishing end point. However, since this technique uses a hard core such as an alumina sintered body, if the core comes into contact with the polishing cloth during polishing, the polishing resistance decreases in this portion, and until the polishing end point is detected, the polishing cloth However, the shape of the polishing cloth is deteriorated due to being pressed by the core, and therefore the flatness of the polishing wafer may be deteriorated.

本願の発明は、研磨中に研磨条件が何ら変化しないベアウェーハの研磨装置であって、ウェーハの挿入されるキャリアプレートのウェーハ挿入孔の周囲に磨耗性の大なる厚さ調整部材のリングを埋設することによって研磨中に研磨布の形状を悪化させることなく摩擦抵抗が変化するようにして、研磨終点の判定を容易にできるようにしたウェーハの両面研磨装置を得ようとしたものである。   The invention of the present application is a bare wafer polishing apparatus in which polishing conditions do not change during polishing, and a ring of a thickness adjusting member having high wearability is embedded around a wafer insertion hole of a carrier plate into which a wafer is inserted. Thus, a double-sided polishing apparatus for a wafer is obtained in which the frictional resistance is changed without deteriorating the shape of the polishing cloth during polishing so that the end point of polishing can be easily determined.

この発明は、回転可能な上定盤と下定盤の対向面に貼付した研磨布の間に、ウェーハが孔に挿入されているキャリアプレートを挟持して、上定盤の研磨布と下定盤の研磨布をウェーハに押圧しながら定盤とキャリアプレートを相対的に回転してウェーハを両面研磨する方法であって、キャリアプレートのウェーハを挿入する孔の周囲に、ウェーハよりも磨耗性の大なる素材の研磨調整部材のリングを、ウェーハの研磨狙い目厚さ寸法に対応する高さ位置に配置しておき、研磨中にウェーハが所定の狙い目厚さ寸法まで研磨されて、磨耗性の大なる素材の研磨によって摩擦抵抗値が変化した時点を検出してウェーハの研磨終点を検出するようにしたことを特徴とする半導体ウェーハの両面研磨方法(請求項1)、回転軸に固定して回転可能としかつ対向する面にそれぞれ研磨布を貼り付けた上定盤および下定盤と、この上下の定盤の間にあってウェーハを挿入する孔が設けられているキャリアプレートと、このキャリアプレートの周囲に設けたギアと噛合してキャリアプレートを回転させるサンギアと、さらにキャリアプレートの全てを囲繞してキャリアプレートを公転させるインターナルギヤとからなるウェーハの両面研磨装置であって、キャリアプレートのウェーハを挿入する孔の周囲に、ウェーハよりも磨耗性の大なる素材の研磨調整部材のリングを、ウェーハの研磨狙い目厚さ寸法に対応する高さ位置に配置して、磨耗性の大なる素材の研磨によって摩擦抵抗値が変化するようにしたことを特徴とする半導体ウェーハの両面研磨装置(請求項2)および前記研磨調整部材が、シリコン部材にポリシリコンが被覆されているものである請求項2記載の半導体ウェーハの両面研磨装置(請求項3)である。   In this invention, a carrier plate in which a wafer is inserted in a hole is sandwiched between polishing cloths affixed to opposite surfaces of a rotatable upper surface plate and a lower surface plate, so that the polishing cloth of the upper surface plate and the lower surface plate are This is a method of polishing both sides of the wafer by rotating the surface plate and the carrier plate relatively while pressing the polishing cloth against the wafer. The carrier plate is more wearable than the wafer around the hole for inserting the wafer. The ring of the material polishing adjustment member is placed at a height corresponding to the target polishing thickness dimension of the wafer, and the wafer is polished to a predetermined target thickness dimension during polishing, resulting in high wear resistance. A double-side polishing method for a semiconductor wafer characterized in that a polishing end point of a wafer is detected by detecting a time point when a frictional resistance value is changed by polishing of a material to be rotated. Possible An upper surface plate and a lower surface plate each having a polishing cloth affixed to the two opposing surfaces, a carrier plate provided with a hole for inserting a wafer between the upper and lower surface plates, and provided around the carrier plate A wafer double-side polishing apparatus comprising a sun gear that meshes with a gear and rotates a carrier plate, and an internal gear that surrounds the carrier plate and revolves the carrier plate. A ring of a polishing adjustment member made of a material that is more wearable than the wafer is placed at a height position corresponding to the target thickness of the wafer, and friction is caused by polishing the material that is more wearable. A double-side polishing apparatus for a semiconductor wafer (Claim 2) and the polishing adjusting member, wherein the resistance value is changed, A double-sided polishing apparatus for semiconductor wafers according to claim 2, wherein the silicon member in which polysilicon is coated (claim 3).

この発明の半導体ウェーハの両面研磨方法によれば、ウェーハ表面に酸化膜、その他のデバイス構造が形成されていないために、研磨中に研磨条件が何ら変化しないベアウェーハの研磨においても、ウェーハの研磨終点の判定を容易にすることが可能である。   According to the semiconductor wafer double-side polishing method of the present invention, since the oxide film and other device structures are not formed on the wafer surface, the polishing of the wafer is performed even in the polishing of the bare wafer where the polishing conditions do not change at all during polishing. It is possible to easily determine the end point.

また、研磨時の摩擦抵抗の差を検知し厚さ調整部材の機能を有する研磨調整部材のリングは、その表面にウェーハよりも研磨性の大なる軟質の素材が被覆されているため、研磨終点検出の際に研磨調整部材が研磨布に押圧されても、研磨布の形状が変化することなく研磨加工を終了することができる。   Also, the ring of the polishing adjusting member that detects the difference in frictional resistance during polishing and functions as a thickness adjusting member is coated with a soft material that is more abrasive than the wafer. Even if the polishing adjusting member is pressed against the polishing cloth at the time of detection, the polishing process can be completed without changing the shape of the polishing cloth.

図1はこの発明の一実施例の研磨装置の側断面図、図2はウェーハを挿入したキャリアプレートと、それに噛合するサンギアおよびインターナルギヤとの関係を概念的に示した模式図である。この発明のウェーハ両面研磨装置は、キャリアプレートの構成に特徴があって、その他の構成は従来の装置と同様である。   FIG. 1 is a side sectional view of a polishing apparatus according to an embodiment of the present invention. FIG. 2 is a schematic view conceptually showing the relationship between a carrier plate into which a wafer is inserted and a sun gear and an internal gear meshing with the carrier plate. The wafer double-side polishing apparatus of the present invention is characterized by the structure of the carrier plate, and the other structures are the same as those of the conventional apparatus.

この研磨装置は、図1に示すように、図示しない駆動原によって回転する回転軸10を中心にして、上定盤11と下定盤12を対向して回転可能に設置されている。この上定盤11と下定盤12には、ウェーハの両面を研磨するように、内側に対向してそれぞれに研磨布13,14が貼付されている。   As shown in FIG. 1, the polishing apparatus is installed so that an upper surface plate 11 and a lower surface plate 12 face each other about a rotating shaft 10 that is rotated by a driving source (not shown). On the upper surface plate 11 and the lower surface plate 12, polishing cloths 13 and 14 are attached to the upper surface plate 11 and the lower surface plate 12, respectively, facing the inside so as to polish both surfaces of the wafer.

また、上定盤11と下定盤12には、それぞれ孔15,16が穿設されていて、この各孔15,16にプローブ17,18が挿入されている。このプローブ17,18の先端にはそれぞれに研磨布19,20が貼着されていて、先端がそれぞれ上定盤11、下定盤12の対向面に貼着されている研磨布13,14と同一面をなすようにしてある。プローブ17,18の研磨中における温度変化は、図示しない温度検知によって検知されるようになっている。21は研磨液をキャリアプレートの研磨面に供給するための研磨液供給管である。   The upper surface plate 11 and the lower surface plate 12 have holes 15 and 16, respectively, and probes 17 and 18 are inserted into the holes 15 and 16, respectively. Polishing cloths 19 and 20 are attached to the tips of the probes 17 and 18, respectively, and the tips are the same as the polishing cloths 13 and 14 attached to the opposing surfaces of the upper surface plate 11 and the lower surface plate 12, respectively. It has a surface. A temperature change during polishing of the probes 17 and 18 is detected by temperature detection (not shown). 21 is a polishing liquid supply pipe for supplying the polishing liquid to the polishing surface of the carrier plate.

さらに、上定盤11と下定盤12の対向面に設けた研磨布13,14の間には複数のキャリアプレート30が、上下の定盤で挟まれて押圧されるようにして設けられている。このキャリアプレート30の外周に設けられているギア31は、図2に示すようにして回転軸10の周囲に設けられたサンギア32に噛合されているとともに、外側ではインターナルギヤ40とも噛合するようになっている。このインターナルギヤ40は図示しない駆動源によって回転し、これによって研磨布13,14は自転しながらキャリアプレート30が公転するようになっている。なお、図2ではキャリアプレート30は1個しか図示されていないが、実際は回転軸10との位置関係を図2に示したと同じようにして回転軸10の周りに複数個が回転するようにしてある。   Further, a plurality of carrier plates 30 are provided between the polishing cloths 13 and 14 provided on the opposing surfaces of the upper surface plate 11 and the lower surface plate 12 so as to be sandwiched and pressed between the upper and lower surface plates. . The gear 31 provided on the outer periphery of the carrier plate 30 is meshed with a sun gear 32 provided around the rotating shaft 10 as shown in FIG. 2 and meshes with an internal gear 40 on the outside. It has become. The internal gear 40 is rotated by a drive source (not shown), so that the carrier plate 30 revolves while the polishing pads 13 and 14 rotate. Although only one carrier plate 30 is shown in FIG. 2, the positional relationship with the rotary shaft 10 is actually set to be rotated around the rotary shaft 10 in the same manner as shown in FIG. is there.

このキャリアプレート30には、それぞれに複数の孔33,33…が穿設されていて、この孔33,33…にウェーハ50,50,…が挿入されている。このキャリアプレート30は、例えばエポキシ樹脂などの合成樹脂で、その厚さはここに挿入されているウェーハ50の研磨仕上がり狙い目厚さ(例えば725μm)よりは厚さを薄くしておく(例えば500μm)。   A plurality of holes 33, 33... Are formed in the carrier plate 30, and the wafers 50, 50,. The carrier plate 30 is made of a synthetic resin such as an epoxy resin, and the thickness thereof is set to be thinner (for example, 500 μm) than the target thickness (for example, 725 μm) of the polishing finish of the wafer 50 inserted therein. ).

さらに、このキャリアプレート30には、その表側および裏側でウェーハ50,50の挿入孔33,33…の外周に、図3,図4に示すように、研磨調整部材のリング34が固着されている。このリング34は、図4に示すように、ウェーハ50の研磨狙い目厚さ寸法に対応するように位置して、キャリアプレート30のウェーハ挿入孔33の上下の外周に着脱可能に段差を有して配置されている。そして、リング34の表面はキャリアプレート表面と同一面となるようにしておく。図4においてウェーハ50の上下の破線は、ウェーハの研磨狙い目厚さを示したものである。   Further, as shown in FIGS. 3 and 4, a ring 34 of a polishing adjusting member is fixed to the carrier plate 30 around the insertion holes 33, 33... Of the wafers 50, 50 on the front side and the back side. . As shown in FIG. 4, the ring 34 is positioned so as to correspond to the target polishing thickness of the wafer 50, and has a detachable step on the upper and lower outer periphery of the wafer insertion hole 33 of the carrier plate 30. Are arranged. The surface of the ring 34 is made to be flush with the carrier plate surface. In FIG. 4, the upper and lower broken lines of the wafer 50 indicate the target polishing thickness of the wafer.

ここに用いるリング34の材質は、被研磨材料であるウェーハよりも磨耗性の大きい素材(例えば、高純度ポリシリコン等)を加工して用いることが好ましい。より好ましくは、その材質がシリコンで構成されているリングであって、その表面にはポリシリコンが被膜されていることが好ましい。このリング34の厚さは特に限定されないが、作業性、強度等を得るうえで250〜400μm程度であることが好ましい。なお、図4では、リング34がキャリアプレート30のウェーハ挿入孔33の上下の外周に着脱可能に配置されている形態を示したが、図5に示すようにウェーハ挿入孔33の外周全体がリング34であってもかまわない。   As the material of the ring 34 used here, it is preferable to process and use a material (for example, high-purity polysilicon) having a higher wear property than the wafer as the material to be polished. More preferably, the material is a ring made of silicon, and the surface thereof is preferably coated with polysilicon. The thickness of the ring 34 is not particularly limited, but is preferably about 250 to 400 μm for obtaining workability, strength, and the like. 4 shows a form in which the ring 34 is detachably disposed on the upper and lower outer periphery of the wafer insertion hole 33 of the carrier plate 30, but as shown in FIG. 5, the entire outer periphery of the wafer insertion hole 33 is the ring. It may be 34.

いずれにしても、図4および図5に示すように、リング34の配置または厚さをキャリアプレート30の厚さよりも大きくすることで、キャリアプレート自体の平坦度をよくしなくとも、リング34の厚さを均一に加工することで足りる。   In any case, as shown in FIG. 4 and FIG. 5, the arrangement or thickness of the ring 34 is made larger than the thickness of the carrier plate 30, so that the flatness of the carrier plate itself is not improved. It is sufficient to process the thickness uniformly.

次に、この研磨装置の動作を説明する。図1および図2に示すように、研磨液供給管21から研磨液を供給しつつ、研磨定盤11,12でこの間にあるキャリアプレート30を所定の圧力で押付けながら、サンギア32とインターナルギア40を用いて相対的に回転して、キャリアプレート30に保持されてウェーハ50を研磨する。   Next, the operation of this polishing apparatus will be described. As shown in FIGS. 1 and 2, while supplying the polishing liquid from the polishing liquid supply pipe 21, while pressing the carrier plate 30 between them with the polishing surface plates 11 and 12 with a predetermined pressure, the sun gear 32 and the internal gear 40 are used. The wafer 50 is polished while being held by the carrier plate 30 and rotated relatively.

即ち、回転軸10の回転を行うと同時にインターナルギヤ40を図示しない駆動装置で回転軸10を中心にして回転軸と同じ方向に回転して、キャリアプレート30が自転しながら回転軸10を中心にして公転するようにする。この状態にすると、回転軸10を中心にして回転する上下の定盤の研磨布13,14は、自転をしながら回転軸10の周りを公転しているキャリアプレート30に挿入されているウェーハ50を研磨する。研磨開始時までは、ウェーハ50はキャリアプレート30の厚さよりも厚いので(図4参照)、この研磨加工によって厚さの厚いウェーハ50から研磨が進行し、さらにウェーハ50の磨耗が進んでいくと全てのウェーハ50の厚さが狙い目厚さで均一となる。さらに研磨が進むと、ウェーハ50の上面がキャリアプレート30のキャリア挿入孔33の外周に配置されている研磨調整部材のリング34の表面高さの位置と一致するようになる。また、キャリアプレートの下面についても同じような位置までウェーハが研磨されて、同様の状態となる。   That is, while rotating the rotating shaft 10, the internal gear 40 is rotated around the rotating shaft 10 in the same direction as the rotating shaft by a driving device (not shown), and the carrier plate 30 rotates while the rotating shaft 10 is centered. To revolve. In this state, the upper and lower surface plate polishing cloths 13 and 14 rotating around the rotation shaft 10 are inserted into the carrier plate 30 revolving around the rotation shaft 10 while rotating. To polish. Until the polishing is started, the wafer 50 is thicker than the thickness of the carrier plate 30 (see FIG. 4). As a result of this polishing process, polishing proceeds from the thick wafer 50 and further wear of the wafer 50 progresses. The thickness of all the wafers 50 becomes uniform at the target thickness. As the polishing further proceeds, the upper surface of the wafer 50 coincides with the position of the surface height of the ring 34 of the polishing adjusting member disposed on the outer periphery of the carrier insertion hole 33 of the carrier plate 30. Further, the wafer is polished to the same position on the lower surface of the carrier plate, and the same state is obtained.

この段階までウェーハの研磨が進行すると、それまでの研磨布とウェーハとの摩擦抵抗は、研磨布とキャリアプレートの表面に配置したリング34との摩擦抵抗も加わって摩擦抵抗値が変化する。この摩擦抵抗の変化は定盤に組み込んだプロ−グ先端の温度変化によって検知されて、ウェーハの研磨終点として捉え、その時点で自動的に研磨を終了する。その結果、ウェーハは常に加工キャリアプレートと同厚で仕上がりばらつきがなく、均一の研磨ウェーハが得られるものである。また、リング34が軟質な素材であるので研磨終点時研磨布の形状を悪化させることがないため、ウェーハ外周部の形状もフラットになり平坦度が良好になるものである。さらに、研磨調整部材にポリシリコンを用いた場合は、ポリシリコンのゲッタリング力によって研磨中の金属汚染をゲッタリングする効果もある。   When the polishing of the wafer proceeds up to this stage, the frictional resistance between the polishing cloth and the wafer up to that point is changed by the addition of the frictional resistance between the polishing cloth and the ring 34 arranged on the surface of the carrier plate. This change in frictional resistance is detected by a temperature change at the tip of the probe incorporated in the surface plate, and is taken as the polishing end point of the wafer, and polishing is automatically terminated at that point. As a result, the wafer is always the same thickness as the processed carrier plate and there is no variation in the finish, and a uniform polished wafer can be obtained. Further, since the ring 34 is a soft material, the shape of the polishing cloth at the polishing end point is not deteriorated, so that the shape of the outer peripheral portion of the wafer becomes flat and the flatness is improved. Further, when polysilicon is used for the polishing adjusting member, there is an effect of gettering metal contamination during polishing by the gettering force of the polysilicon.

本発明の効果を確認するために、図1に示す研磨装置で8インチウェーハを20枚研磨し、得られたウェーハの平坦度(TTV)をそれぞれ評価した。また、研磨調整部材のリングを用いていない従来の方法で研磨したものを比較例として示した。

Figure 2006108125
In order to confirm the effect of the present invention, 20 8-inch wafers were polished by the polishing apparatus shown in FIG. 1, and the flatness (TTV) of the obtained wafers was evaluated. A comparative example of polishing by a conventional method not using a ring of a polishing adjusting member is shown.
Figure 2006108125

この発明になるウェーハ研磨終点検出方法に用いる装置の横断面を概念的に示した説明図。Explanatory drawing which showed notionally the cross section of the apparatus used for the wafer grinding | polishing endpoint detection method which becomes this invention. 図1に示すウェーハ研磨装置のキャリアプレートと、中心軸とインターナルギヤとの配置関係を概略的に示す説明図。FIG. 2 is an explanatory view schematically showing a positional relationship among a carrier plate, a central axis and an internal gear of the wafer polishing apparatus shown in FIG. 1. 図3はキャリアプレートと、ウェーハ挿入孔の外周に研磨調整材のリングが固着されたキャリアプレートの正面図。FIG. 3 is a front view of the carrier plate and a carrier plate in which a ring of a polishing adjusting material is fixed to the outer periphery of the wafer insertion hole. キャリアプレートのウェーハ挿入孔の上下外周に配置した研磨調整材のリングとウェーハの高さ位置関係を模式的に示した模式図。The schematic diagram which showed typically the height positional relationship of the ring of the grinding | polishing adjustment material arrange | positioned in the upper and lower outer periphery of the wafer insertion hole of a carrier plate, and a wafer. キャリアプレートのウェーハ挿入孔の外周全体に配置した研磨調整材のリングとウェーハの高さ位置関係を模式的に示した模式図。The schematic diagram which showed typically the height positional relationship of the ring of the grinding | polishing adjustment material arrange | positioned to the whole outer periphery of the wafer insertion hole of a carrier plate, and a wafer.

符号の説明Explanation of symbols

10…回転軸、11…上定盤、12…下定盤、13,14…研磨布、15,16…孔、17,18…プローグ、21…研磨液供給管、30…キャリアプレート、32…サンギア、40…インターナルギア、50…ウェーハ、34…研磨調整部材のリング。   DESCRIPTION OF SYMBOLS 10 ... Rotary shaft, 11 ... Upper surface plate, 12 ... Lower surface plate, 13, 14 ... Polishing cloth, 15, 16 ... Hole, 17, 18 ... Prog, 21 ... Polishing liquid supply pipe, 30 ... Carrier plate, 32 ... Sun gear 40 ... Internal gear, 50 ... Wafer, 34 ... Ring adjusting member ring.

Claims (3)

回転可能な上定盤と下定盤の対向面に貼付した研磨布の間に、ウェーハが孔に挿入されているキャリアプレートを挟持して、上定盤の研磨布と下定盤の研磨布をウェーハに押圧しながら定盤とキャリアプレートを相対的に回転してウェーハを両面研磨する方法であって、キャリアプレートのウェーハを挿入する孔の周囲に、ウェーハよりも磨耗性の大なる素材の研磨調整部材のリングを、ウェーハの研磨狙い目厚さ寸法に対応する高さ位置に配置しておき、研磨中にウェーハが所定の狙い目厚さ寸法まで研磨されて、磨耗性の大なる素材の研磨によって摩擦抵抗値が変化した時点を検出してウェーハの研磨終点を検出するようにしたことを特徴とする半導体ウェーハの両面研磨方法。   Hold the carrier plate in which the wafer is inserted in the hole between the polishing cloth affixed to the opposite surface of the upper and lower surface plates, and place the polishing cloth on the upper surface plate and the lower surface plate on the wafer. The wafer is double-side polished by rotating the surface plate and the carrier plate relatively while pressing the wafer, and the polishing adjustment of the material with higher wear resistance than the wafer around the hole for inserting the wafer in the carrier plate The ring of the member is placed at a height corresponding to the target thickness dimension of the wafer to be polished, and the wafer is polished to a predetermined target thickness dimension during polishing to polish a material with high wear characteristics. A double-side polishing method for a semiconductor wafer, characterized in that a polishing end point of a wafer is detected by detecting a point in time when a frictional resistance value changes. 回転軸に固定して回転可能としかつ対向する面にそれぞれ研磨布を貼り付けた上定盤および下定盤と、この上下の定盤の間にあってウェーハを挿入する孔が設けられているキャリアプレートと、このキャリアプレートの周囲に設けたギアと噛合してキャリアプレートを回転させるサンギアと、さらにキャリアプレートの全てを囲繞してキャリアプレートを公転させるインターナルギヤとからなるウェーハの両面研磨装置であって、キャリアプレートのウェーハを挿入する孔の周囲に、ウェーハよりも磨耗性の大なる素材の研磨調整部材のリングを、ウェーハの研磨狙い目厚さ寸法に対応する高さ位置に配置して、磨耗性の大なる素材の研磨によって摩擦抵抗値が変化するようにしたことを特徴とする半導体ウェーハの両面研磨装置。   An upper surface plate and a lower surface plate, each of which is fixed to a rotating shaft and is rotatable and has an abrasive cloth affixed to the opposite surface, and a carrier plate provided with a hole for inserting a wafer between the upper and lower surface plates A wafer double-side polishing apparatus comprising: a sun gear that meshes with a gear provided around the carrier plate to rotate the carrier plate; and an internal gear that surrounds the carrier plate and revolves the carrier plate. A ring of a polishing adjustment member made of a material that is more wearable than the wafer is placed around the hole for inserting the wafer in the carrier plate at a height corresponding to the target thickness of the wafer to be worn. A double-side polishing apparatus for a semiconductor wafer, characterized in that the frictional resistance value is changed by polishing a material having high properties. 前記研磨調整部材が、シリコン部材にポリシリコンが被覆されているものである請求項2記載の半導体ウェーハの両面研磨装置。   3. The double-side polishing apparatus for a semiconductor wafer according to claim 2, wherein the polishing adjusting member is a silicon member coated with polysilicon.
JP2004288255A 2004-09-30 2004-09-30 Double-sided polishing method of semiconductor wafer, and polishing equipment for use therein Pending JP2006108125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004288255A JP2006108125A (en) 2004-09-30 2004-09-30 Double-sided polishing method of semiconductor wafer, and polishing equipment for use therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004288255A JP2006108125A (en) 2004-09-30 2004-09-30 Double-sided polishing method of semiconductor wafer, and polishing equipment for use therein

Publications (1)

Publication Number Publication Date
JP2006108125A true JP2006108125A (en) 2006-04-20

Family

ID=36377534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004288255A Pending JP2006108125A (en) 2004-09-30 2004-09-30 Double-sided polishing method of semiconductor wafer, and polishing equipment for use therein

Country Status (1)

Country Link
JP (1) JP2006108125A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100311312A1 (en) * 2009-06-03 2010-12-09 Masanori Furukawa Double-side polishing apparatus and method for polishing both sides of wafer
JP2012232353A (en) * 2011-04-28 2012-11-29 Sumco Corp Method and device for polishing workpiece

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100311312A1 (en) * 2009-06-03 2010-12-09 Masanori Furukawa Double-side polishing apparatus and method for polishing both sides of wafer
US8485864B2 (en) * 2009-06-03 2013-07-16 Fujikoshi Machinery Corp. Double-side polishing apparatus and method for polishing both sides of wafer
JP2012232353A (en) * 2011-04-28 2012-11-29 Sumco Corp Method and device for polishing workpiece

Similar Documents

Publication Publication Date Title
JP4730844B2 (en) Method for simultaneously polishing both surfaces of a plurality of semiconductor wafers and semiconductor wafer
JP5635957B2 (en) Polishing method of polishing object and polishing pad
TW471994B (en) System and method for controlled polishing and planarization of semiconductor wafers
JP5924409B2 (en) Work polishing method and work polishing apparatus
KR101256310B1 (en) Method and apparatus for trimming the working layers of a double-side grinding apparatus
JP4369122B2 (en) Polishing pad and polishing pad manufacturing method
JP6579056B2 (en) Wafer double-side polishing method
TW201243277A (en) Polishing pad wear detecting apparatus
TW200824841A (en) Polishing pad with window having multiple portions
JP2007049146A (en) Polishing pad, method of manufacturing same, and chemimechanical polishing device therewith
WO2006001340A1 (en) Both-side polishing carrier and production method therefor
KR20030040204A (en) Mirror chamfered wafer, mirror chamfering polishing cloth, and mirror chamfering polishing machine and method
JP3991598B2 (en) Wafer polishing method
JP2006231470A (en) Sizing method and device of double-sided polishing machine
JP2008068338A (en) Polisher, polishing method and manufacturing method of semiconductor device
US20150306727A1 (en) Polishing method and holder
JP2007266068A (en) Polishing method and device
JP2006108125A (en) Double-sided polishing method of semiconductor wafer, and polishing equipment for use therein
JPWO2009035073A1 (en) Polishing apparatus, polishing method, and substrate manufacturing method for polishing a substrate using the polishing method
JP4749700B2 (en) Polishing cloth, wafer polishing apparatus and wafer manufacturing method
JP4992306B2 (en) Work carrier, manufacturing method thereof and double-side polishing machine
CN108153111A (en) Form the substrate and detection method of template
JP2008036802A (en) Double-sided polishing device and method for detecting overlap of workpiece and carrier in double-sided polishing device
JP2005005315A (en) Method for polishing wafer
JP4388454B2 (en) Work holding plate, semiconductor wafer manufacturing method and polishing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711