JP2006107873A - Steel sheet for bottom plate of battery, surface-treated steel sheet for bottom plate of battery, and battery using it - Google Patents

Steel sheet for bottom plate of battery, surface-treated steel sheet for bottom plate of battery, and battery using it Download PDF

Info

Publication number
JP2006107873A
JP2006107873A JP2004291380A JP2004291380A JP2006107873A JP 2006107873 A JP2006107873 A JP 2006107873A JP 2004291380 A JP2004291380 A JP 2004291380A JP 2004291380 A JP2004291380 A JP 2004291380A JP 2006107873 A JP2006107873 A JP 2006107873A
Authority
JP
Japan
Prior art keywords
battery
bottom plate
steel sheet
nickel
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004291380A
Other languages
Japanese (ja)
Other versions
JP4885436B2 (en
Inventor
Hiroyasu Ito
博康 伊藤
Tatsuo Tomomori
龍夫 友森
Yoshitaka Honda
義孝 本田
Eiji Yamane
栄治 山根
Eiji Okamatsu
栄次 岡松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2004291380A priority Critical patent/JP4885436B2/en
Publication of JP2006107873A publication Critical patent/JP2006107873A/en
Application granted granted Critical
Publication of JP4885436B2 publication Critical patent/JP4885436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-treated steel sheet for a bottom plate excelling in strength, and to provide a bottom plate of a battery and a battery using it. <P>SOLUTION: This steel sheet comprising 0.0-0.60 wt.% of C, 0.80-3.0 wt.% of Si, 0.3-3.0 wt.% of Mn, 0.0-0.06 wt.% of P, 0.0-0.06 wt.% of S, 0.0-0.1 wt.% of Al, 0.0010-0.0150 wt.% of N, the remainder of Fe and inevitable impurities is characterized by including either an iron-nickel alloy layer or a nickel layer as the foremost layer and either an iron-nickel alloy layer or a nickel layer and an iron-nickel alloy layer as its lower layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電池の底板用鋼板、電池の底板用表面処理鋼板、それを用いた電池に係り、特にアルカリマンガン電池やニッケル−カドミウム電池などの底板用鋼板、底板用表面処理鋼板およびこれを用いた電池に関する。   The present invention relates to a steel plate for a bottom plate of a battery, a surface-treated steel plate for a bottom plate of a battery, and a battery using the same, particularly a steel plate for a bottom plate such as an alkaline manganese battery or a nickel-cadmium battery, a surface-treated steel plate for a bottom plate, and the like. Related to the battery.

アルカリマンガン電池やニッケル−カドミウム電池の外筒用鋼板は、耐食性と加工性が求められており、従来それらを満たすものとしてNiめっき層又はFe−Ni合金めっき層を形成しためっき鋼板が一般に用いられている(例えば、特許文献1、2参照)。これらのめっき鋼板による電池管筒は、絞り成形加工により行なわれており、薄肉化が図られている。しかしながら、底板(封口板)の場合は、封口圧力に耐えうるような高強度が求められるため、オーステナイト系ステンレス鋼板や厚肉のニッケルめっき鋼板が用いられている(例えば、特許文献3参照)。ステンレス鋼板は高強度の点で優れるが、表面に強固な酸化物ができるため接触抵抗が高く、且つ高価であるという欠点があり、また、ニッケルめっき鋼板は、高強度を維持するために通常0.4〜0.8mmと厚くなっている。このため、従来、アルカリマンガン電池やニッケル−カドミウム電池などの底板は、経済性の点から、板厚を薄肉化して、少ない材料で封口圧力に耐えうるような高強度を有し、且つ電池用として耐食性、スポット溶接性を有する材料が求められている。   Steel plates for outer cylinders of alkaline manganese batteries and nickel-cadmium batteries are required to have corrosion resistance and workability. Conventionally, plated steel sheets with Ni plating layers or Fe-Ni alloy plating layers are generally used to satisfy them. (For example, see Patent Documents 1 and 2). Battery tubes made of these plated steel sheets are formed by drawing and are made thinner. However, in the case of a bottom plate (sealing plate), an austenitic stainless steel plate or a thick nickel-plated steel plate is used because high strength that can withstand the sealing pressure is required (see, for example, Patent Document 3). The stainless steel plate is excellent in terms of high strength, but has the disadvantages of high contact resistance due to the formation of a strong oxide on the surface and high cost, and the nickel-plated steel plate is usually 0 in order to maintain high strength. It is as thick as 4-0.8mm. For this reason, conventionally, bottom plates such as alkaline manganese batteries and nickel-cadmium batteries have a high strength that can withstand sealing pressure with a small amount of material by reducing the thickness of the plate from the viewpoint of economy, and for batteries. Therefore, a material having corrosion resistance and spot weldability is required.

特許第3292033号掲載公報Patent No. 3292033 publication 特開2004−218043号公報JP 2004-218043 A 特開2003−263975号公報JP 2003-263975 A

板厚を薄肉化して少ない材料で封口圧力に耐えうるようにするには、圧延率を上げ強度を強くする方法があり、それにめっきを施したままで使用されている。しかしこの方法は、めっきのままでは硬度が硬いため、底板等への加工後の耐食性が劣る結果となる。また、めっきのままであるためスポット溶接の範囲が狭いという問題があった。この耐食性とスポット溶接性を改善するためにはニッケルめっき後に加熱処理を施すことが有効であるが、加熱すると母材の強度が不足するという問題があった。
本発明はこれらの点に鑑みてなされたものであり、強度があり、耐食性、スポット溶接性を有する電池の底板用表面処理鋼板、当該表面処理鋼板に紫外線硬化樹脂を被覆した電池の底板およびこの底板を用いた電池とを提供することを技術的課題とする。
In order to reduce the thickness of the plate so that it can withstand the sealing pressure with a small amount of material, there is a method of increasing the rolling rate and increasing the strength, and it is used while being plated. However, this method is hard as it is plated, resulting in poor corrosion resistance after processing to the bottom plate or the like. Moreover, since it is still plating, there existed a problem that the range of spot welding was narrow. In order to improve the corrosion resistance and spot weldability, it is effective to perform heat treatment after nickel plating, but there is a problem that the strength of the base material is insufficient when heated.
The present invention has been made in view of these points, and has a strength, corrosion resistance, and spot weldability. The surface-treated steel sheet for a battery bottom plate, the battery-treated bottom plate coated with an ultraviolet curable resin on the surface-treated steel sheet, and It is a technical problem to provide a battery using a bottom plate.

前記課題を解決するために、請求項1に記載の本発明の電池の底板用鋼板は、重量%で、C:0.04〜0.60%、Si:0.80〜3.0%、Mn:0.3〜3.0%、P:≦0.06%、S≦0.06%、Al:≦0.1%、N:0.0010〜0.0150%、残部Feおよび不可避的な不純物よりなることを特徴とする。本発明の底板用鋼板は、前記成分を採用することによって、安価で高い調質度を有し電池底板に最適な高強度鋼板を提供することができる。
請求項2記載の電池の底板用表面処理鋼板は、重量%で、C:0.04〜0.60%、Si:0.80〜3.0%、Mn:0.3〜3.0%、P:≦0.06%、S≦0.06%、Al:≦0.1%、N:0.0010〜0.0150%、残部Feおよび不可避的な不純物よりなる鋼板において、最表層として鉄−ニッケル合金層を有することを特徴とする。
請求項3記載の電池の底板用表面処理鋼板は、重量%で、C:0.04〜0.60%、Si:0.80〜3.0%、Mn:0.3〜3.0%、P:≦0.06%、S≦0.06%、Al:≦0.1%、N:0.0010〜0.0150%、残部Feおよび不可避的な不純物よりなる鋼板において、最表層として鉄−ニッケル合金層とニッケル層を有する最表層にニッケル層、その下層に鉄−ニッケル合金層を有することを特徴とする。
請求項4記載の電池の底板用表面処理鋼板は、重量%で、C:0.04〜0.60%、Si:0.80〜3.0%、Mn:0.3〜3.0%、P:≦0.06%、S≦0.06%、Al:≦0.1%、N:0.0010〜0.0150%、残部Feおよび不可避的な不純物よりなる鋼板において、最表層としてニッケル層及び鉄−ニッケル合金層を有することを特徴とする。
In order to solve the above-mentioned problem, the steel plate for the bottom plate of the battery according to the present invention according to claim 1 is, by weight percent, C: 0.04 to 0.60%, Si: 0.80 to 3.0%, Mn: 0.3 to 3.0%, P: ≦ 0.06%, S ≦ 0.06%, Al: ≦ 0.1%, N: 0.0010 to 0.0150%, balance Fe and inevitable It consists of various impurities. The steel plate for a bottom plate of the present invention can provide a high-strength steel plate that is inexpensive and has a high tempering degree and is optimal for a battery bottom plate by employing the above components.
The surface-treated steel sheet for the bottom plate of the battery according to claim 2 is C: 0.04 to 0.60%, Si: 0.80 to 3.0%, Mn: 0.3 to 3.0% by weight. , P: ≦ 0.06%, S ≦ 0.06%, Al: ≦ 0.1%, N: 0.0010 to 0.0150%, and the outermost layer in the steel sheet composed of the balance Fe and inevitable impurities It has an iron-nickel alloy layer.
The surface-treated steel sheet for the bottom plate of the battery according to claim 3 is, by weight, C: 0.04 to 0.60%, Si: 0.80 to 3.0%, Mn: 0.3 to 3.0%. , P: ≦ 0.06%, S ≦ 0.06%, Al: ≦ 0.1%, N: 0.0010 to 0.0150%, and the outermost layer in the steel sheet composed of the balance Fe and inevitable impurities It has a nickel layer in the outermost layer having an iron-nickel alloy layer and a nickel layer, and an iron-nickel alloy layer in the lower layer.
The surface-treated steel sheet for the bottom plate of the battery according to claim 4 is, by weight, C: 0.04 to 0.60%, Si: 0.80 to 3.0%, Mn: 0.3 to 3.0%. , P: ≦ 0.06%, S ≦ 0.06%, Al: ≦ 0.1%, N: 0.0010 to 0.0150%, and the outermost layer in the steel sheet composed of the balance Fe and inevitable impurities It has a nickel layer and an iron-nickel alloy layer.

請求項2〜4の各底板用表面処理鋼板は、それぞれ請求項1の鋼板に、Niめっきした後、熱処理による拡散処理をすることによって得ることができる。ニッケルめっき後の熱処理温度、熱処理時間を適正に制御することによって、前記請求項2〜4の底板用表面処理鋼板を得ることができ、熱処理温度が高く熱処理時間が長いほど拡散処理が進みFe−Ni合金層ができる。したがって、熱処理温度を高く熱処理時間を長くすることによって、請求項3、請求項4、請求項2の順に当該底板用表面処理鋼板を得ることができる。   Each surface-treated steel sheet for a bottom plate according to claims 2 to 4 can be obtained by subjecting the steel sheet according to claim 1 to Ni plating and then performing a diffusion treatment by heat treatment. By appropriately controlling the heat treatment temperature and heat treatment time after nickel plating, the surface-treated steel sheet for the bottom plate according to claims 2 to 4 can be obtained, and the diffusion treatment proceeds as the heat treatment temperature is higher and the heat treatment time is longer. A Ni alloy layer is formed. Therefore, the surface-treated steel sheet for bottom plate can be obtained in the order of claim 3, claim 4, and claim 2 by increasing the heat treatment temperature and lengthening the heat treatment time.

本発明の電池の底板用表面処理鋼板は、以上のような鋼成分及び表面層を有することによって、抗張力が450MPa以上、伸びが15%以上の高強度を有することができ、板厚を0.2〜0.6mmと薄くした電池の底板用表面処理鋼を得ることができる。そして、本発明の電池は、前記のような底板用鋼板を電池の底板として採用したものであり、耐食性に優れた電池をより安価に得ることができる。   The surface-treated steel sheet for the bottom plate of the battery of the present invention can have a high strength with a tensile strength of 450 MPa or more and an elongation of 15% or more by having the steel components and the surface layer as described above. Surface-treated steel for the bottom plate of the battery thinned to 2 to 0.6 mm can be obtained. And the battery of this invention employ | adopts the above steel plates for baseplates as a baseplate of a battery, and can obtain the battery excellent in corrosion resistance more cheaply.

このように形成されている本発明によれば、薄くて高強度で、耐食性がよく、かつスポット溶接性を有する高品質の電池の底板を得ることができ、底板を薄肉化して材料をより低減化することができる。
更に、本発明の電池は、上記電池の底板を有することにより、高品質で、かつ薄くて高強度で安価な底板を有する電池を得ることができる。
According to the present invention thus formed, it is possible to obtain a high-quality battery bottom plate that is thin, high-strength, good in corrosion resistance, and has spot weldability, and the bottom plate is thinned to further reduce the material. Can be
Furthermore, since the battery of the present invention has the bottom plate of the battery, it is possible to obtain a battery having a bottom plate of high quality, thin, high strength and low cost.

以下、本発明の実施の形態を説明する。本発明における電池の底板用表面処理鋼板の母材となる鋼板としては、重量%で、C:0.04〜0.60%、Si:0.80〜3.0%、Mn:0.3〜3.0%、P:≦0.06%、S≦0.06%、Al:≦0.1%、N:0.0010〜0.0150%、残部Feおよび不可避的な不純物よりなる鋼板が好適に用いられる。前記化学成分の意義は次の通りである。   Embodiments of the present invention will be described below. As a steel plate used as the base material of the surface-treated steel sheet for the bottom plate of the battery according to the present invention, the weight percentage is C: 0.04 to 0.60%, Si: 0.80 to 3.0%, Mn: 0.3. ~ 3.0%, P: ≤ 0.06%, S ≤ 0.06%, Al: ≤ 0.1%, N: 0.0010 to 0.0150%, balance Fe and unavoidable impurities Are preferably used. The significance of the chemical component is as follows.

Cは原板に高い調質度のため、Cは0.04%以上あることが望ましい。一方でC成分が0.60%を超えると炭化物析出量が増大し原板の加工性の低下をもたらすと同時に、冷間圧延の負荷の増大、形状の劣化、連続焼鈍工程での通板性阻害等、生産性低下の原因となる。そのため本発明ではC成分の上限値を0.60%とする。
Siは鋼中では大きな固溶強化能を持ち、高強度を得るのに有効な元素である。したがって、0.8%以上は必要である。また、材質強化面では多い程良いが、冷間圧延の負荷の増大、形状の劣化を招くため上限値を3.0%とする。
Since C has a high tempering degree on the original plate, C is preferably 0.04% or more. On the other hand, if the C component exceeds 0.60%, the amount of precipitated carbide increases and the workability of the original sheet decreases, and at the same time, the load of cold rolling increases, the shape deteriorates, and the plateability in the continuous annealing process is inhibited Etc., causing a decrease in productivity. Therefore, in the present invention, the upper limit value of the C component is set to 0.60%.
Si has a large solid solution strengthening ability in steel and is an effective element for obtaining high strength. Therefore, 0.8% or more is necessary. Further, the higher the material strengthening surface, the better. However, the upper limit is set to 3.0% in order to increase the cold rolling load and deteriorate the shape.

Mnは不純物であるSによる熱延中の赤熱脆性を防止するために必要な成分であると同時に、上記のCと同様に原板に高い調質度を与えるため、Mn成分は0.3%以上とする。しかし、ここでもC同様に、多過ぎると冷間圧延の負荷の増大、スラブ圧延中の割れ発生、形状の劣化、連続焼鈍工程での通板性阻害等、生産性低下の原因となるため、上限値を3.0%とする。   Mn is a component necessary for preventing red heat embrittlement during hot rolling due to the impurity S, and at the same time, in the same way as C, in order to give a high tempering degree to the original plate, the Mn component is 0.3% or more And However, as is the case with C here, too much load of cold rolling, crack generation during slab rolling, deterioration of shape, threadability hindrance in continuous annealing process, etc., cause productivity reduction, The upper limit is set to 3.0%.

Pは結晶粒微細化成分であり、また原板の強度を高めることから一定の割合で添加されるが、一方で耐食性を阻害する。本発明用途としては、Pが0.06%を超えると耐食性、特に耐孔明性が著しく低下するため上限値を0.06%とする。   P is a crystal grain refining component and is added at a certain ratio because it increases the strength of the original plate, but it inhibits corrosion resistance. In the present invention, when P exceeds 0.06%, the corrosion resistance, particularly the hole resistance, is remarkably lowered, so the upper limit is made 0.06%.

Sは熱延中において赤熱脆性を生じる不純物成分であり、極力少ないことが望ましいが、鉄鋼石等からの混入を完全に防止することができず、工程中の脱硫も困難なことからある程度の残留もやむをえない。少量の残留Sによる赤熱脆性はMnにより軽減できるため、S成分の上限値は0.06%とする。   S is an impurity component that causes red hot brittleness during hot rolling, and it is desirable that it be as small as possible. However, it cannot completely prevent contamination from steel stones, and it is difficult to desulfurize during the process. Unavoidable. Since red heat brittleness due to a small amount of residual S can be reduced by Mn, the upper limit value of the S component is set to 0.06%.

Alは製鋼に際し脱酸剤として鋼浴中に添加されるが、0.10%以上になると連続鋳造時に酸化抑制剤、および、連続鋳造での鋳型への焼き付き防止剤として使用する鋳型パウダー中の酸素と過剰Alが反応し、本来のパウダー効果を阻害する。したがって、Al量は0.10%以下とする。   Al is added to the steel bath as a deoxidizer during steelmaking. However, when it becomes 0.10% or more, it is an oxidation inhibitor at the time of continuous casting and a mold powder used as an anti-seizure agent for the mold in continuous casting. Oxygen and excess Al react to inhibit the original powder effect. Therefore, the Al content is 0.10% or less.

NはC,Mnと同様に原板に高い調質度を与える。耐力強化のために必要な成分であるが、0.001%より少なくすることは製鋼上の困難を生じ、また一方0.0150%を超える添加は製鋼時に添加するフェロ窒化物の歩留の低下が著しく、安定性に欠けると同時に、プレス成形時の異方性を著しく劣化させる。さらに連続鋳造片の表面に割れが生じ、鋳造欠陥となるため本発明ではN成分範囲を0.001〜0.0160%とする。   N, like C and Mn, gives a high degree of tempering to the original plate. Although it is a necessary component for strengthening the yield strength, if it is less than 0.001%, it causes difficulty in steelmaking, while addition over 0.0150% reduces the yield of ferronitride added during steelmaking. And is not stable, and at the same time, the anisotropy during press molding is significantly deteriorated. Further, since cracks are generated on the surface of the continuous cast piece, resulting in casting defects, the N component range is set to 0.001 to 0.0160% in the present invention.

以上のような化学成分を有する鋼板(母材となるスラブ)を、熱間圧延、巻取り、1次冷間圧延、ニッケルめっき、焼鈍(めっき後の拡散処理)を行って、目的とする電池の底板用表面処理鋼板を得る。あるいは、ニッケルめっき直後に焼鈍をせずに、2次冷間圧延、調質圧延を経て熱処理(拡散処理)するようにしてもよい。それらの各工程は次のようにして行なう。
熱間圧延
熱間圧延工程におけるスラブ加熱温度は本発明において特定するものではないが、熱間仕上圧延温度の安定的確保の見地から1100℃以上とするのが望ましい。熱間圧延仕上温度をAr点以下にすると、熱間鋼帯の結晶組織が混粒化するとともに粗大化し、目的の強度が得られないので熱間圧延仕上温度はAr点以上とするのが望ましい。
The steel sheet (slab serving as a base material) having the above chemical components is subjected to hot rolling, winding, primary cold rolling, nickel plating, annealing (diffusion treatment after plating), and the intended battery A surface-treated steel sheet for bottom plate is obtained. Or you may make it heat-process (diffusion process) through secondary cold rolling and temper rolling, without annealing immediately after nickel plating. Each of these steps is performed as follows.
Hot rolling Although the slab heating temperature in a hot rolling process is not specified in this invention, it is desirable to set it as 1100 degreeC or more from the viewpoint of ensuring stable hot finishing rolling temperature. If the hot rolling finish temperature is 3 points or less, the crystal structure of the hot steel strip is mixed and coarsened, and the desired strength cannot be obtained. Therefore, the hot rolling finish temperature is 3 points or more. Is desirable.

巻き取り温度は本発明において特定するものではないが、結晶粒粗大化を抑制するために巻取温度は700℃以下とするのが望ましい。   The coiling temperature is not specified in the present invention, but the coiling temperature is preferably 700 ° C. or lower in order to suppress the coarsening of crystal grains.

1次冷間圧延
上記の成分系で熱延された鋼板を1次冷間圧延するが、この冷間圧延率は、成分とともに本発明の重要な強度因子であり、目的の強度を得るために、50〜90%で行う。
Primary cold rolling The steel sheet hot-rolled in the above component system is subjected to primary cold rolling, and this cold rolling rate is an important strength factor of the present invention together with the components, in order to obtain the desired strength. 50-90%.

ニッケルめっき
上記のように50〜90%の1次冷間圧延を施した材料は、次の焼鈍を行う前にニッケルめっきを施す。また、後の行程である焼鈍あるいは2次冷間圧延後に行っても良いが、この場合、ニッケルめっき後、鉄−ニッケル合金層を形成するために、さらに熱処理による拡散処理を施す必要がある。Niめっき後の拡散処理により、最表層にニッケル層が残ると、このニッケルが柔らかくなり、その後の加工を受けた場合に望ましい状態になる。ニッケルめっきは、上記鋼板を、常法により、アルカリ電解脱脂、水洗、硫酸浸漬、水洗後の前処理を行った後、無光沢ニッケルめっき、光沢ニッケルめっきあるいは鉄−ニッケル合金めっきにより行なった。鉄−ニッケルめっきを行う場合、下層としてニッケルあるいはニッケル系の合金めっきを行うとより好ましい。ニッケルめっきを行う場合、鉄−ニッケル合金層を得る方法として、よく知られたワット浴、スルファミン酸浴を使って、無光沢ニッケルめっきあるいは、光沢剤をメッキ浴に添加して作製した光沢ニッケルめっきを行い、熱処理により得られても良い。ニッケルめっき層の厚みは、0.5〜7μmの範囲が良い。より好ましくは、1〜4μmの範囲が良い。
また、ニッケルめっき浴に鉄を添加して作製した鉄−ニッケル合金めっきから得られても良い。この場合、鉄−ニッケルめっき層の厚みは、少なくとも0.1μm以上あれば良い。厚くても、特性には問題がないが、あまり厚くすると不経済である。経済的に、7μm以下であれば良い。
Nickel plating The material subjected to 50 to 90% primary cold rolling as described above is subjected to nickel plating before the next annealing. Further, it may be carried out after annealing or secondary cold rolling, which is a subsequent process, but in this case, in order to form an iron-nickel alloy layer after nickel plating, it is necessary to further carry out a diffusion treatment by heat treatment. If the nickel layer remains on the outermost layer by the diffusion treatment after the Ni plating, the nickel becomes soft and is in a desirable state when subjected to subsequent processing. Nickel plating was performed by matte nickel plating, bright nickel plating, or iron-nickel alloy plating after the above steel plate was subjected to alkaline electrolytic degreasing, water washing, sulfuric acid immersion, and pretreatment after water washing by a conventional method. When performing iron-nickel plating, it is more preferable to perform nickel or nickel-based alloy plating as the lower layer. When performing nickel plating, as a method for obtaining an iron-nickel alloy layer, the well-known Watt bath or sulfamic acid bath is used, and the bright nickel plating produced by adding a brightening agent to the plating bath. And may be obtained by heat treatment. The thickness of the nickel plating layer is preferably in the range of 0.5 to 7 μm. More preferably, the range of 1 to 4 μm is good.
Moreover, you may obtain from the iron-nickel alloy plating produced by adding iron to a nickel plating bath. In this case, the thickness of the iron-nickel plating layer may be at least 0.1 μm or more. Even if it is thick, there is no problem in the characteristics, but if it is too thick, it is uneconomical. Economically, it may be 7 μm or less.

焼鈍
上記のように50〜90%の冷間圧延を施した材料は、クリーニング工程で脱脂を施した後、あるいはニッケルめっきを行った後、連続焼鈍で680℃以上または、バッチ焼鈍で500℃以上で焼鈍する。ニッケルめっき後の焼鈍は、Niの拡散処理も兼ねており、焼鈍することによりNiがFe中に拡散し、鉄−ニッケル合金層が形成される。特に焼鈍温度を調節することにより、ニッケルめっき後の表面層の合金化を制御でき、焼鈍温度を例えば連続焼鈍で比較的低い温度で焼鈍することによって、表面に最表層にニッケル層、その下層にFe−Ni合金層を形成することができ、それ以上の温度で焼鈍することによって最表層にニッケル層とFe−Ni合金層が形成され、さらに焼鈍温度を高めることによって最表層全面鉄−ニッケル合金層が形成される。したがって、後の行程で熱処理を施さない場合、前記のように焼鈍温度を制御して、最表層に全面、鉄−ニッケル合金層の形成、あるいは最表層にニッケル層が一部あるいは全面残るようにする。
Annealing 50 to 90% cold-rolled material as described above, after degreasing in the cleaning process or after nickel plating, continuous annealing at 680 ° C or higher, or batch annealing at 500 ° C or higher Annealing. The annealing after the nickel plating also serves as a diffusion treatment of Ni. By annealing, Ni diffuses into Fe and an iron-nickel alloy layer is formed. In particular, by adjusting the annealing temperature, alloying of the surface layer after nickel plating can be controlled, and by annealing the annealing temperature at a relatively low temperature, for example, by continuous annealing, the nickel layer on the surface and the lower layer on the surface An Fe-Ni alloy layer can be formed, and by annealing at a temperature higher than that, a nickel layer and an Fe-Ni alloy layer are formed on the outermost layer, and by further raising the annealing temperature, the entire outermost layer iron-nickel alloy A layer is formed. Therefore, when heat treatment is not performed in the subsequent process, the annealing temperature is controlled as described above so that the entire surface is formed on the outermost layer, the iron-nickel alloy layer is formed, or the nickel layer is partially or entirely left on the outermost layer. To do.

2次冷間圧延
焼鈍後の2次冷間圧延率が高くなると強度は増し、望ましいが、伸びが小さくなるとともに耐食性が劣化するので、2次冷間圧延を行う場合は、7%以下とする。その後、必要により調質圧延により表面粗度を付与する。
Secondary cold rolling When the secondary cold rolling rate after annealing increases, the strength increases and is desirable. However, the elongation decreases and the corrosion resistance deteriorates. Therefore, when secondary cold rolling is performed, the strength is 7% or less. . Then, if necessary, surface roughness is imparted by temper rolling.

熱処理
ニッケルめっき後の熱処理(焼鈍)を施してない場合に、2次冷間圧延後に熱処理を行う。熱処理として、前記箱型焼鈍あるいは連続焼鈍のどちらの方法も適用できる。この場合、最表層に軟質ニッケル層がある方が耐食性の面では好ましいが、厚すぎても経済的に好ましくない。最表層に全面、鉄−ニッケル合金層あるいはニッケル層ができも良いし、鉄−ニッケル合金層とニッケル層が混在しても良い。
上記のような工程を経ることによって、抗張力が450MPa以上、伸びが15%以上という高強度及び加工性に優れた電池の底板用表面処理鋼板を得ることができる。底板用表面処理鋼板は、特に限定されないが、高強度を有するので従来の電池の底板に比べて薄肉化することが可能となり、0.2〜0.6mmの範囲が好適に選択できる。
Heat treatment When heat treatment (annealing) after nickel plating is not performed, heat treatment is performed after secondary cold rolling. As the heat treatment, either the box annealing method or the continuous annealing method can be applied. In this case, it is preferable in terms of corrosion resistance to have a soft nickel layer as the outermost layer, but it is not economically preferable if it is too thick. An entire surface, an iron-nickel alloy layer or a nickel layer may be formed on the outermost layer, or an iron-nickel alloy layer and a nickel layer may be mixed.
By passing through the above processes, it is possible to obtain a surface-treated steel sheet for a bottom plate of a battery excellent in high strength and workability having a tensile strength of 450 MPa or more and an elongation of 15% or more. The surface-treated steel sheet for the bottom plate is not particularly limited, but has a high strength, so that it can be made thinner than the conventional battery bottom plate, and a range of 0.2 to 0.6 mm can be suitably selected.

本発明について、さらに、以下の実施例を参照して具体的に説明する。   The present invention will be further specifically described with reference to the following examples.

表1に示す化学成分を有する熱間圧延鋼を用いて、1次冷間圧延、ニッケルめっき、焼鈍、さらに一部のものには2次冷間圧延、調質圧延等を行った。実施例及び比較例の鋼成分、各工程での条件は表1に示す。
ニッケルめっきは、常法により、アルカリ電解脱脂、水洗、硫酸浸漬、水洗後の前処理を行った後、通常の無光沢ニッケルめっきまたは半光沢ニッケルめっきを行った。また、無光沢ニッケルめっきまたは半光沢めっきを下層として、上層として光沢ニッケルめっきの2層めっきを行なった。
Using the hot rolled steel having the chemical components shown in Table 1, primary cold rolling, nickel plating, annealing, and some of them were subjected to secondary cold rolling, temper rolling, and the like. Table 1 shows the steel components of Examples and Comparative Examples and the conditions in each step.
Nickel plating was performed by ordinary methods such as alkaline electrolytic degreasing, water washing, sulfuric acid immersion, and pretreatment after water washing, followed by normal matte nickel plating or semi-bright nickel plating. In addition, two-layer plating was performed, with matte nickel plating or semi-gloss plating as the lower layer and bright nickel plating as the upper layer.

1)無光沢ニッケルめっき
下記の硫酸ニッケル浴を用いて無光沢ニッケルめっきを行った。
浴組成
硫酸ニッケル(NiSO・6HO) 300g/L
塩化ニッケル(NiCl・6HO) 45g/L
硼酸 (HBO) 30g/L
浴のpH: 4(硫酸で調整)
撹拌: 空気撹拌
浴温度: 60℃
アノードは、Sペレット(INCO社製商品名、球状)をチタンバスケットに装填してポリプロピレン製バッグで覆ったものを使用。
1) Matte nickel plating Matte nickel plating was performed using the following nickel sulfate bath.
Bath composition nickel sulfate (NiSO 4 · 6H 2 O) 300g / L
Nickel chloride (NiCl 2 · 6H 2 O) 45g / L
Boric acid (H 3 BO 3 ) 30 g / L
Bath pH: 4 (adjusted with sulfuric acid)
Stirring: Air stirring Bath temperature: 60 ° C
The anode uses S pellets (trade name, manufactured by INCO, spherical) loaded in a titanium basket and covered with a polypropylene bag.

2)半光沢ニッケルめっき
下記の硫酸ニッケル浴を用いて半光沢ニッケルめっきを行った。
浴組成
硫酸ニッケル(NiSO・6HO) 300g/L
塩化ニッケル(NiCl・6HO) 45g/L
硼酸 (HBO) 30g/L
不飽和アルコールのポリオキシエチレン付加物 3.0g/L
不飽和カルボン酸ホルムアルデヒド 3.0g/L
浴のpH: 4(硫酸で調整)
撹拌: 空気撹拌
浴温度: 60℃
3)光沢ニッケルめっき
硫酸ニッケル浴に光沢剤としてサッカリンを適宜添加して光沢ニッケルめっきを行った。
浴組成
硫酸ニッケル(NiSO・6HO) 300g/L
塩化ニッケル(NiCl・6HO) 45g/L
硼酸 (HBO) 30g/L
サッカリン 3.0g/L
浴のpH: 4(硫酸で調整)
撹拌: 空気撹拌
浴温度: 60℃
アノードは、Sペレット(INCO社製商品名、球状)をチタンバスケットに装填してポリプロピレン製バッグで覆ったものを使用。
2) Semi-bright nickel plating Semi-bright nickel plating was performed using the following nickel sulfate bath.
Bath composition nickel sulfate (NiSO 4 · 6H 2 O) 300g / L
Nickel chloride (NiCl 2 · 6H 2 O) 45g / L
Boric acid (H 3 BO 3 ) 30 g / L
Polyoxyethylene adduct of unsaturated alcohol 3.0g / L
Unsaturated carboxylic acid formaldehyde 3.0g / L
Bath pH: 4 (adjusted with sulfuric acid)
Stirring: Air stirring Bath temperature: 60 ° C
3) Bright nickel plating Bright nickel plating was performed by appropriately adding saccharin as a brightening agent to a nickel sulfate bath.
Bath composition nickel sulfate (NiSO 4 · 6H 2 O) 300g / L
Nickel chloride (NiCl 2 · 6H 2 O) 45g / L
Boric acid (H 3 BO 3 ) 30 g / L
Saccharin 3.0 g / L
Bath pH: 4 (adjusted with sulfuric acid)
Stirring: Air stirring Bath temperature: 60 ° C
The anode uses S pellets (trade name, manufactured by INCO, spherical) loaded in a titanium basket and covered with a polypropylene bag.

実施例1〜8は無光沢ニッケルめっきおよび半光沢めっきを1.0μm〜5.0μm行った。比較例1〜6、8は無光沢めっきまたは半光沢めっきを2.0μm行い、比較例7は半光沢1.0μmに続いて光沢めっきを1.0μm行い2層めっきとした。また、比較例9,10は下地に無光沢めっきを1.0μm実施し続いて光沢めっきを1.0μm行った。実施例1〜2および比較例6は、熱間圧延鋼板を1次冷間圧延、ニッケルめっき、焼鈍、2次冷間圧延の順に処理をした。実施例3〜4、実施例6〜9、比較例1〜3については、熱間圧延鋼板を1次冷間圧延、ニッケルめっき、焼鈍、調質圧延の順に処理をした。比較例4,7及び10は、熱間圧延鋼板を1次冷間圧延、焼鈍、2次冷間圧延、ニッケルめっき、調質圧延の順に処理をした。実施例5と比較例5と8は、1次冷間圧延、焼鈍、調質圧延、ニッケルめっき、焼鈍、調質圧延の順に処理をした。比較例9は、比較例10において2次冷間圧延の代わりに調質圧延を行なった。   In Examples 1 to 8, matte nickel plating and semi-gloss plating were performed at 1.0 to 5.0 μm. In Comparative Examples 1 to 6 and 8, matte plating or semi-gloss plating was performed by 2.0 μm, and in Comparative Example 7 semi-gloss 1.0 μm, followed by gloss plating by 1.0 μm to form a two-layer plating. In Comparative Examples 9 and 10, matte plating was performed at 1.0 μm on the base, followed by 1.0 μm gloss plating. In Examples 1-2 and Comparative Example 6, hot-rolled steel sheets were processed in the order of primary cold rolling, nickel plating, annealing, and secondary cold rolling. About Examples 3-4, Examples 6-9, and Comparative Examples 1-3, the hot-rolled steel plate was processed in order of primary cold rolling, nickel plating, annealing, and temper rolling. In Comparative Examples 4, 7, and 10, the hot-rolled steel sheet was processed in the order of primary cold rolling, annealing, secondary cold rolling, nickel plating, and temper rolling. Example 5 and Comparative Examples 5 and 8 were processed in the order of primary cold rolling, annealing, temper rolling, nickel plating, annealing, and temper rolling. In Comparative Example 9, temper rolling was performed instead of secondary cold rolling in Comparative Example 10.

次に示す試験方法で供試材の特性を評価し、評価結果を表2に示す。
(機械的特性)
機械特性は、供試材をJIS5号試験片サイズにカットし、抗張力(TS、MPaで表示)及び伸び(T.EL、%で表示)で評価した。TSが450MPa以上(表では○で表示)を良好とし、T.Elが15%以上(表では○で表示)を良好とした。上記数値を満たさない場合を、×(不合格)として表した。合格範囲(表では◎で表示)である。総合評価では、TSが450MPa以上で、かつT.Elが15%以上が合格範囲(表では◎で表示)である。
(耐食性)
直角折り曲げ加工を施して、恒温恒湿試験法(60℃x90%RH)で30日間試験を行い、折り曲げ部への錆発生がないものを合格(表では○で表示)とした。錆発生の場合を不合格(表では×で表示)とした。
機械的特性及び耐食性が優れる場合、実用上高強度用途として十分使えるので総合評価で合格とした。
The characteristics of the test materials are evaluated by the following test methods, and the evaluation results are shown in Table 2.
(Mechanical properties)
The mechanical properties were evaluated by measuring the tensile strength (indicated by TS and MPa) and elongation (indicated by T.EL and%) by cutting the specimen into a JIS No. 5 specimen size. A TS of 450 MPa or more (indicated by a circle in the table) is considered good. El was 15% or more (indicated by a circle in the table) as good. The case where the above numerical values were not satisfied was represented as x (failure). The acceptable range (indicated by “表” in the table). In the comprehensive evaluation, TS is 450 MPa or more and T.I. El is 15% or more of the acceptable range (indicated by “◎” in the table).
(Corrosion resistance)
A right-angle bending process was performed, and the test was performed for 30 days by a constant temperature and humidity test method (60 ° C. × 90% RH). The case where rust was generated was determined to be rejected (indicated by x in the table).
If the mechanical properties and corrosion resistance are excellent, it can be used practically as a high-strength application, so it was accepted as a comprehensive evaluation.

Figure 2006107873
Figure 2006107873

Figure 2006107873
Figure 2006107873

なお、本発明は前記実施の形態および実施例に限定されるものではなく、必要に応じて変更することができる。従来の板厚は0.4〜0.8mmと厚いが、実施例では、板厚が0.2〜0.6mmと薄くできる。
比較例1と7〜9はC量が適正範囲外であるため、比較例2、8〜10はSi量が適正範囲外であるため、および比較例3、8、10はMn量が適正範囲外であるため、総合評価が悪かった。比較例4はニッケルめっき後の拡散処理がなく、2次圧延率も高いため、総合評価が悪かった。比較例5は焼鈍温度が低く、総合評価が悪かった。比較例6は2次圧延率が高いため、総合評価が悪かった。
In addition, this invention is not limited to the said embodiment and Example, It can change as needed. Although the conventional plate thickness is as thick as 0.4 to 0.8 mm, in the embodiment, the plate thickness can be as thin as 0.2 to 0.6 mm.
In Comparative Examples 1 and 7-9, the amount of C is outside the proper range, in Comparative Examples 2, 8-10, the amount of Si is outside the proper range, and in Comparative Examples 3, 8, 10 the Mn amount is in the proper range. Since it was outside, the overall evaluation was bad. Comparative Example 4 was poor in overall evaluation because there was no diffusion treatment after nickel plating and the secondary rolling rate was high. In Comparative Example 5, the annealing temperature was low and the overall evaluation was bad. Since Comparative Example 6 had a high secondary rolling rate, the overall evaluation was poor.

本発明の電池の底板用表面処理鋼板は、高強度と加工性の機械的特性に優れ、薄肉化が可能であり、且つ耐食性に優れているので、電池の底板および電池の製造コストを低減することができ、且つ高品質の電池を提供することができ、アルカリマンガン電池やニッケル−カドミウム電池等の電池底板として産業上の利用可能性が高い。   The surface-treated steel sheet for the bottom plate of the battery of the present invention is excellent in mechanical properties such as high strength and workability, can be thinned, and has excellent corrosion resistance, thereby reducing the manufacturing cost of the bottom plate of the battery and the battery. It is possible to provide a high-quality battery, and the industrial applicability is high as a battery bottom plate of an alkaline manganese battery, a nickel-cadmium battery or the like.

Claims (7)

重量%で、C:0.04〜0.60%、Si:0.80〜3.0%、Mn:0.3〜3.0%、P:≦0.06%、S≦0.06%、Al:≦0.1%、N:0.0010〜0.0150%、残部Feおよび不可避的な不純物よりなることを特徴とする電池の底板用鋼板。   % By weight, C: 0.04 to 0.60%, Si: 0.80 to 3.0%, Mn: 0.3 to 3.0%, P: ≤ 0.06%, S ≤ 0.06 %, Al: ≦ 0.1%, N: 0.0010 to 0.0150%, the balance Fe and unavoidable impurities. 重量%で、C:0.04〜0.60%、Si:0.80〜3.0%、Mn:0.3〜3.0%、P:≦0.06%、S≦0.06%、Al:≦0.1%、N:0.0010〜0.0150%、残部Feおよび不可避的な不純物よりなる鋼板において、最表層として鉄−ニッケル合金層を有することを特徴とする電池の底板用表面処理鋼板。   % By weight, C: 0.04 to 0.60%, Si: 0.80 to 3.0%, Mn: 0.3 to 3.0%, P: ≤ 0.06%, S ≤ 0.06 %, Al: ≦ 0.1%, N: 0.0010 to 0.0150%, a steel sheet comprising the balance Fe and inevitable impurities, and having an iron-nickel alloy layer as the outermost layer Surface-treated steel sheet for bottom plate. 重量%で、C:0.04〜0.60%、Si:0.80〜3.0%、Mn:0.3〜3.0%、P:≦0.06%、S≦0.06%、Al:≦0.1%、N:0.0010〜0.0150%、残部Feおよび不可避的な不純物よりなる鋼板において、最表層としてニッケル層、その下層に鉄−ニッケル合金層を有することを特徴とする電池の底板用表面処理鋼板。   % By weight, C: 0.04 to 0.60%, Si: 0.80 to 3.0%, Mn: 0.3 to 3.0%, P: ≤ 0.06%, S ≤ 0.06 %, Al: ≦ 0.1%, N: 0.0010 to 0.0150%, balance Fe and inevitable impurities, steel layer having nickel layer as the outermost layer and iron-nickel alloy layer below it A surface-treated steel sheet for a battery bottom plate. 重量%で、C:0.04〜0.60%、Si:0.80〜3.0%、Mn:0.3〜3.0%、P:≦0.06%、S≦0.06%、Al:≦0.1%、N:0.0010〜0.0150%、残部Feおよび不可避的な不純物よりなる鋼板において、最表層としてニッケル層及び鉄−ニッケル合金層を有することを特徴とする電池の底板用表面処理鋼板。   % By weight, C: 0.04 to 0.60%, Si: 0.80 to 3.0%, Mn: 0.3 to 3.0%, P: ≤ 0.06%, S ≤ 0.06 %, Al: ≦ 0.1%, N: 0.0010 to 0.0150%, balance Fe and unavoidable impurities, steel sheet having nickel layer and iron-nickel alloy layer as outermost layer Surface-treated steel sheet for battery bottom plate. 抗張力が450MPa以上、伸びが15%以上である請求項1〜4何れかに記載の電池の底板用表面処理鋼板。   The surface-treated steel sheet for a battery bottom plate according to any one of claims 1 to 4, having a tensile strength of 450 MPa or more and an elongation of 15% or more. 板厚が0.2〜0.6mmである請求項5に記載の電池の底板用表面処理鋼板。   The surface-treated steel sheet for a battery bottom plate according to claim 5, wherein the plate thickness is 0.2 to 0.6 mm. 請求項1〜6のいずれかに記載の電池の底板を有することを特徴とする電池。   A battery comprising the bottom plate of the battery according to claim 1.
JP2004291380A 2004-10-04 2004-10-04 Steel plate for battery bottom plate, surface-treated steel plate for battery bottom plate, battery using the same Active JP4885436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004291380A JP4885436B2 (en) 2004-10-04 2004-10-04 Steel plate for battery bottom plate, surface-treated steel plate for battery bottom plate, battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004291380A JP4885436B2 (en) 2004-10-04 2004-10-04 Steel plate for battery bottom plate, surface-treated steel plate for battery bottom plate, battery using the same

Publications (2)

Publication Number Publication Date
JP2006107873A true JP2006107873A (en) 2006-04-20
JP4885436B2 JP4885436B2 (en) 2012-02-29

Family

ID=36377335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004291380A Active JP4885436B2 (en) 2004-10-04 2004-10-04 Steel plate for battery bottom plate, surface-treated steel plate for battery bottom plate, battery using the same

Country Status (1)

Country Link
JP (1) JP4885436B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347939A (en) * 1976-10-13 1978-04-28 Fuji Electrochemical Co Ltd Electric cell
JPS57137453A (en) * 1981-02-20 1982-08-25 Nippon Kokan Kk <Nkk> Steel plate having dual-phase structure and superior shearing edge workability
JPS62259342A (en) * 1986-05-06 1987-11-11 Matsushita Electric Ind Co Ltd Organic electrolyte cell
JPH0982288A (en) * 1995-09-18 1997-03-28 Toshiba Battery Co Ltd Cylindrical battery
JP2003007263A (en) * 2001-06-26 2003-01-10 Fdk Corp Alkaline manganese battery
JP2003251401A (en) * 2002-02-27 2003-09-09 Jfe Steel Kk Method for producing cold-rolled steel sheet and method for producing galvanized steel sheet
JP2004218043A (en) * 2003-01-17 2004-08-05 Nippon Steel Corp Nickel-galvanized steel sheet for battery can

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347939A (en) * 1976-10-13 1978-04-28 Fuji Electrochemical Co Ltd Electric cell
JPS57137453A (en) * 1981-02-20 1982-08-25 Nippon Kokan Kk <Nkk> Steel plate having dual-phase structure and superior shearing edge workability
JPS62259342A (en) * 1986-05-06 1987-11-11 Matsushita Electric Ind Co Ltd Organic electrolyte cell
JPH0982288A (en) * 1995-09-18 1997-03-28 Toshiba Battery Co Ltd Cylindrical battery
JP2003007263A (en) * 2001-06-26 2003-01-10 Fdk Corp Alkaline manganese battery
JP2003251401A (en) * 2002-02-27 2003-09-09 Jfe Steel Kk Method for producing cold-rolled steel sheet and method for producing galvanized steel sheet
JP2004218043A (en) * 2003-01-17 2004-08-05 Nippon Steel Corp Nickel-galvanized steel sheet for battery can

Also Published As

Publication number Publication date
JP4885436B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
EP3378965B1 (en) High-strength hot-dip galvanized steel sheet excellent in impact peeling resistance and worked portion corrosion resistance
JP4525450B2 (en) High strength and high ductility steel sheet for cans and method for producing the same
JP6428986B1 (en) Cold-rolled steel sheet for drawn cans and manufacturing method thereof
JP6729822B2 (en) Surface-treated steel sheet and method for producing surface-treated steel sheet
WO2015162849A1 (en) High-strength hot-dip galvanized steel sheet, and method for manufacturing high-strength alloyed hot-dip galvanized steel sheet
CN111989424B (en) Ni diffusion-plated steel sheet and method for producing Ni diffusion-plated steel sheet
TW200532031A (en) High strength cold rolled steel sheet and method for manufacturing the same
WO2014181728A1 (en) HOT-DIP ZINC-COATED STEEL SHEET OR ALLOYED HOT-DIP ZINC-COATED STEEL SHEET HAVING SUPERIOR STRENGTH-BENDABILITY BALANCE WITH TENSILE STRENGTH OF 1180 MPa OR MORE
JP2010037596A (en) High-strength hot-dip galvanized steel sheet having excellent appearance and method for producing the same
JP5124865B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP4698205B2 (en) Steel plate for battery case, surface-treated steel plate for battery case, battery case and battery
JP4965802B2 (en) Steel plate for lithium battery case, surface-treated steel plate for lithium battery case, battery case and lithium battery
JP4885436B2 (en) Steel plate for battery bottom plate, surface-treated steel plate for battery bottom plate, battery using the same
JP2009052108A (en) Extra-low carbon and extremely thin cold rolled steel sheet for building material, and method for producing the same
KR102416183B1 (en) Method for manufacturing Ni diffusion plated steel sheet and Ni diffusion plated steel sheet
JP2003231948A (en) Steel sheet for vessel superior in formability and characteristics at weld, and manufacturing method therefor
JP3756779B2 (en) Steel plate for thinned deep drawn ironing can with excellent workability
JP2007321180A (en) Surface-treated steel sheet for cover material for optical pickup parts, its manufacturing method, and cover material for optical pickup parts manufactured by the manufacturing method
JP2002294399A (en) High strength thin steel sheet for welded can having excellent flange formability and production method therefor
JP3680004B2 (en) Steel plate for thinned deep drawn ironing can with excellent workability
JP2006307260A (en) Steel sheet for plasma display fixing plate, method for producing steel sheet for fixing plasma display, and plasma display fixing plate
TW201730353A (en) High strength molten galvanized steel sheet having excellent impact peel-resistance and corrosion resistance on the processing parts possessing a molten galvanized layer
JP3596036B2 (en) Manufacturing method of steel plate for can-making
WO2004076703A1 (en) Steel sheet for recording medium case, method for producing same and recording medium case
JP2007204788A (en) Method for manufacturing steel sheet for battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4885436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250