JP2006105786A - X-ray inspection device - Google Patents

X-ray inspection device Download PDF

Info

Publication number
JP2006105786A
JP2006105786A JP2004292927A JP2004292927A JP2006105786A JP 2006105786 A JP2006105786 A JP 2006105786A JP 2004292927 A JP2004292927 A JP 2004292927A JP 2004292927 A JP2004292927 A JP 2004292927A JP 2006105786 A JP2006105786 A JP 2006105786A
Authority
JP
Japan
Prior art keywords
ray
afterglow
ray detector
scintillator sheet
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004292927A
Other languages
Japanese (ja)
Inventor
Seiji Ito
誠司 伊藤
Toshimichi Masaki
俊道 政木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004292927A priority Critical patent/JP2006105786A/en
Publication of JP2006105786A publication Critical patent/JP2006105786A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray inspection device constituted so as to inspect an inspection target from the X-ray transmission data of the inspection target, obtained by moving the inspection target so as to traverse the space between an X-ray source and an X-ray detector to continuously irradiate the same with X rays and capable of eliminating the occurrence of wrong decisions caused by the dynamic characteristics, based on the afterglow characteristics of a scintillator sheet used in the X-ray detector. <P>SOLUTION: The effect of the afterglow of the scintillator sheet contained in each of the pixel outputs of the X-ray detector 2 is removed by Formula (1) by using a preliminarily stored coefficient h[m] (m=1, 2, ..) and the inspection target is inspected to eliminate the occurrence of misdecision caused by the dynamic characteristics of the X-ray detector 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、医薬品や食品等をはじめとする各種製品の内部状況を非破壊のもとに検査するためのX線検査装置に関する。   The present invention relates to an X-ray inspection apparatus for inspecting the internal state of various products including pharmaceuticals and foods in a non-destructive manner.

被検査物にX線を照射して得られるX線透過データから、その対象物内に異物が混入しているか否か等を検査するX線検査装置として、従来、X線源とX線検出器を対向配置し、これらの間を横切るように被検査物を搬送することにより、被検査物のX線透視像を得て、異物の有無等の判定に供する方式のものが知られている(例えば特許文献1参照)。   Conventionally, an X-ray source and X-ray detection are used as an X-ray inspection apparatus for inspecting whether or not a foreign object is mixed in an object from X-ray transmission data obtained by irradiating the inspection object with X-rays. An apparatus is known in which an X-ray fluoroscopic image of an object to be inspected is obtained by determining the presence or absence of a foreign object by conveying the object to be inspected so as to cross between them. (For example, refer to Patent Document 1).

また、この種のX線検査装置におけるX線検出器としては、シンチレータシートとフォトダイオードアレイなどの光センサアレイを組み合わせ、X線をシンチレータシートにより光信号に変換し、その光信号を光センサアレイにより電気信号に変換する方式のものが多用されている。   Further, as an X-ray detector in this type of X-ray inspection apparatus, a scintillator sheet and a photosensor array such as a photodiode array are combined, X-rays are converted into an optical signal by the scintillator sheet, and the optical signal is converted into an optical sensor array. A method of converting into an electric signal by using the method is often used.

ところで、シンチレータシートには、X線の照射状態から照射を停止したとき、光変換出力が残る、いわゆる残光特性があることが知られている。すなわち、シンチレータシートに対して例えば図2(A)に示すようなX線の照射があった場合、同図(B)に例示するようなシンチレータシートの残光特性に起因して、フォトダイオード等の光センサアレイの出力は同図(C)に示すように、X線の入射量を正確に表すものとはならない。   By the way, it is known that the scintillator sheet has a so-called afterglow characteristic in which a light conversion output remains when irradiation is stopped from an X-ray irradiation state. That is, when the scintillator sheet is irradiated with X-rays as shown in FIG. 2A, for example, a photodiode or the like due to the afterglow characteristics of the scintillator sheet as shown in FIG. The output of the photosensor array does not accurately represent the amount of incident X-rays as shown in FIG.

このようなX線検出器の動特性の悪さに基づき、特に前記したX線源とX線検出器の間を横切るように被検査物を通過させるタイプのX線検査装置においては、被検査物のX線透視像が不鮮明となり、誤判定の原因となる場合がある。   Based on such poor dynamic characteristics of the X-ray detector, in particular, in the X-ray inspection apparatus of the type that passes the inspection object across the X-ray source and the X-ray detector, the inspection object The X-ray fluoroscopic image may become unclear and cause erroneous determination.

ここで、シンチレータシートとフォトダイオードアレイを組み合わせたX線検出器におけるシンチレータシートの残光による影響を除去する技術としては、従来、X線をパルス状に繰り返し照射したとき、パルス間のX線非照射状態におけるフォトダイオードの出力を検出し、その検出結果に基づいてシンチレータシートの残光成分を把握し、X線パルスの照射状態におけるフォトダイオードの出力から残光成分を差し引くこと技術が知られている(例えば特許文献2参照)。
特開2001−281173号公報 特開平10−85207号公報
Here, as a technique for removing the influence of the afterglow of the scintillator sheet in the X-ray detector combining the scintillator sheet and the photodiode array, conventionally, when X-rays are repeatedly irradiated in a pulse shape, the X-ray non-interval between pulses It is known to detect the output of the photodiode in the irradiation state, grasp the afterglow component of the scintillator sheet based on the detection result, and subtract the afterglow component from the output of the photodiode in the irradiation state of the X-ray pulse. (For example, refer to Patent Document 2).
JP 2001-281173 A JP-A-10-85207

ところで、上記した従来の残光除去技術は、パルス状のX線を照射する場合に限るものであり、X線源とX線検出器の間を横切るように被検査物を移動させるタイプのX線検査装置のように、X線を連続的に照射する場合には適用することができない。   By the way, the above-mentioned conventional afterglow removal technique is limited to the case of irradiating pulsed X-rays, and is a type of X that moves an object to be inspected across an X-ray source and an X-ray detector. It cannot be applied when X-rays are continuously irradiated as in a line inspection apparatus.

本発明はこのような実情に鑑みてなされたもので、X線源に対向してX線検出器を配置し、X線源からのX線を連続的に照射しながら、これらの間を横切るように被検査物を移動させるタイプのX線検査装置において、シンチレータシートの残光の影響を除去して、被検査物を透過したX線を正確に計測して判定に供することができ、もって残光に起因する誤判定の発生をなくすることのできるX線検査装置の提供をその課題としている。   The present invention has been made in view of such circumstances, and an X-ray detector is arranged opposite to the X-ray source, and the X-ray from the X-ray source is continuously irradiated while crossing between them. In the X-ray inspection apparatus of the type that moves the inspection object as described above, the influence of the afterglow of the scintillator sheet can be removed, and the X-ray transmitted through the inspection object can be accurately measured and used for determination. An object of the present invention is to provide an X-ray inspection apparatus that can eliminate erroneous determination caused by afterglow.

上記の課題を解決するため、本発明のX線検査装置は、被検査物を移動させながらX線を連続照射し、その被検査物を透過したX線を、シンチレータシートと光センサアレイからなるX線検出器で検出し、その検出出力に基づく被検査物のX線透過像を用いた画像処理により、被検査物の検査を行うX線検査装置において、上記X線検出器の各画素出力に含まれる上記シンチレータシートの残光の影響を、あらかじめ求めて記憶している係数h[m](m=1,2,・・)を用いた下記(1)式で表される差分方程式により除去すして画像処理に供する残光除去演算手段を備えていることによって特徴づけられる(請求項1)。   In order to solve the above-described problems, the X-ray inspection apparatus of the present invention comprises a scintillator sheet and an optical sensor array that continuously irradiates X-rays while moving the inspection object, and transmits X-rays transmitted through the inspection object. In an X-ray inspection apparatus that inspects an inspection object by image processing using an X-ray transmission image of the inspection object based on the detection output detected by the X-ray detector, each pixel output of the X-ray detector The effect of the afterglow of the scintillator sheet included in the difference equation represented by the following equation (1) using the coefficient h [m] (m = 1, 2,...) Obtained and stored in advance It is characterized by having an afterglow removal calculating means for removing and applying it to image processing.

Figure 2006105786
Figure 2006105786

ここで、本発明においては、上記シンチレータシートの残光特性をI=I0 ・exp(−t/τ)と近似して、上記残光除去演算手段により用いる差分方程式を、下記の(2)式とする構成(請求項2)を採用することができる。 Here, in the present invention, the afterglow characteristic of the scintillator sheet is approximated to I = I 0 · exp (−t / τ), and the difference equation used by the afterglow removal calculating means is expressed by the following (2) A configuration (claim 2) can be adopted.

Figure 2006105786
Figure 2006105786

本発明は、シンチレータシートの残光特性があらかじめ判明していれば、X線検出器の出力、つまり光センサアレイの出力からシンチレータシートの残光成分を差分方程式を用いて除去することができることを利用したものである。以下にその原理について説明する。   According to the present invention, if the afterglow characteristic of the scintillator sheet is known in advance, the afterglow component of the scintillator sheet can be removed from the output of the X-ray detector, that is, the output of the optical sensor array, using a difference equation. It is used. The principle will be described below.

シンチレータシートとフォトダイオードアレイ等の光センサアレイとからなるX線検出器において、その1つの画素に着目したとき、実際にその画素に入射するX線線量を前記図2(A)に例示するようにx(t)とすると、同図(B)に例示するようなシンチレータシートの残光特性e(t)の影響を受ける結果、画素の出力は同図(C)に示すようにy(t)となり、これらの間には、
y(t)=∫e(u)・x(t−u)du ・・(3)
の関係がある。
In an X-ray detector comprising a scintillator sheet and an optical sensor array such as a photodiode array, when attention is paid to that one pixel, the X-ray dose actually incident on that pixel is exemplified in FIG. X (t), as a result of being affected by the afterglow characteristic e (t) of the scintillator sheet as illustrated in FIG. 5B, the output of the pixel is y (t) as shown in FIG. And between these,
y (t) = ∫e (u) · x (tu) du (3)
There is a relationship.

(3)式をフーリエ変換すると、
Y(ω)=E(ω)・X(ω) ・・(4)
となるため、
X(ω)={1/E(ω)}・Y(ω) ・・(5)
より、観測信号(実際の検出器出力)をフーリエ変換し、あらかじめ求めておいた1/E(ω)を掛けたうえで、再度逆変換することにより、残光の影響のない信号x(t)を得ることができる。
When the equation (3) is Fourier transformed,
Y (ω) = E (ω) · X (ω) (4)
So that
X (ω) = {1 / E (ω)} · Y (ω) (5)
Thus, the observed signal (actual detector output) is Fourier-transformed, multiplied by 1 / E (ω) obtained in advance, and then inversely transformed again to obtain a signal x (t having no influence of afterglow. ) Can be obtained.

実際には、1/E(ω)を級数展開し、
1/E(ω)=h[0]+h[1]・exp(−jωt)+h[2]・exp(−jω2t)+・・・+h[k]・exp(−jωkt) ・・(6)
により係数h[0],h[1],h[2]・・・h[k]を求めておき、離散的にサンプリング(サンプリング周期2π/ω)された検出器出力y[n]を、
x[n]=h[0]・y[n]+h[1]・y[n−2]+h[2]・y[n−3]+・・・h[k]y[n−k] ・・(7)
の差分方程式(前記した(1)式に同じ)に基づいて、実際の検出器に入射したX線線量を表すx[n]を求めることができる。
In practice, 1 / E (ω) is expanded into a series,
1 / E (ω) = h [0] + h [1] · exp (−jωt) + h [2] · exp (−jω2t) +... + H [k] · exp (−jωkt) (6)
The coefficients h [0], h [1], h [2]... H [k] are obtained from the above, and the detector output y [n] discretely sampled (sampling period 2π / ω) is obtained.
x [n] = h [0] .y [n] + h [1] .y [n-2] + h [2] .y [n-3] +... h [k] y [n-k] (7)
X [n] representing the X-ray dose incident on the actual detector can be obtained based on the difference equation (the same as the above-described equation (1)).

ここで、請求項2に係る発明のように、シンチレータシートの残光特性を、
e(t)=exp(−t/τ) (t≧0),
e(t)=0 (t<0) ・・(8)
と近似すると、(7)式は前記した(2)式の通り簡単になり、演算処理が極めて容易となる。この近似は、現実と比較しても全く問題のない近似であり、例えばシンチレータシートとして常用されているGd2 2 Sにおいてはτは0.026程度の値となる。
Here, as in the invention according to claim 2, the afterglow characteristics of the scintillator sheet,
e (t) = exp (−t / τ) (t ≧ 0),
e (t) = 0 (t <0) (8)
(7) becomes as simple as the above-mentioned (2), and the arithmetic processing becomes extremely easy. This approximation is an approximation that has no problem at all compared to the actual situation. For example, in Gd 2 O 2 S that is commonly used as a scintillator sheet, τ has a value of about 0.026.

本発明によれば、シンチレータシートと光センサアレイを組み合わせたX線検出器における、シンチレータシートの残光特性に起因する動特性の悪さを、あらかじめ求めている係数を用いた差分方程式により補正し、補正後の値を被検査物のX線透過データとして検査のための判定に供するので、被検査物をX線源とX線検出器の間を通過させる方式のX線検査装置において、被検査物のX線透過データに含まれる誤差をなくし、常に正確な判定を行うことが可能となる。   According to the present invention, in the X-ray detector in which the scintillator sheet and the optical sensor array are combined, the bad dynamic characteristics due to the afterglow characteristics of the scintillator sheet are corrected by a difference equation using coefficients obtained in advance. Since the corrected value is used as an X-ray transmission data of the inspection object for inspection, the inspection object is inspected in an X-ray inspection apparatus of a type in which the inspection object passes between the X-ray source and the X-ray detector. An error included in the X-ray transmission data of an object is eliminated, and accurate determination can always be performed.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の実施の形態の構成図で、機械的構成を表す模式図と電気的構成を表すブロック図とを併記して示す図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of an embodiment of the present invention, and is a diagram illustrating a schematic diagram showing a mechanical configuration and a block diagram showing an electrical configuration.

X線源1はそのX線放射口に設けられているスリット(図示せず)を介してX線を放射することによってファンビーム状のX線とし、鉛直下方に向けて出力する。このX線源1の下方に対向して、1次元X線検出器2が配置されている。この1次元X線検出器2は、複数の素子からなるフォトダイオードアレイの有感面を覆うようにシンチレータシートを配した公知の構造のものであり、フォトダイオードアレイの各素子の配列方向がファンビーム状のX線の広がり方向に沿うように配置されている。   The X-ray source 1 emits X-rays through a slit (not shown) provided in the X-ray emission port to form fan beam-like X-rays, which are output vertically downward. A one-dimensional X-ray detector 2 is disposed below the X-ray source 1. The one-dimensional X-ray detector 2 has a known structure in which a scintillator sheet is arranged so as to cover a sensitive surface of a photodiode array composed of a plurality of elements, and the arrangement direction of each element of the photodiode array is a fan. It arrange | positions along the spreading direction of a beam-like X-ray.

以上のX線源1と1次元X線検出器2の間にはベルトコンベア3が設けられており、このベルトコンベア3は、被検査物Wを搭載してファンビーム状のX線の広がり方向に直交する方向に搬送する。   A belt conveyor 3 is provided between the X-ray source 1 and the one-dimensional X-ray detector 2, and the belt conveyor 3 is mounted with the inspection object W and spreads in the fan beam-shaped X-ray direction. It is conveyed in the direction orthogonal to

以上の構成により、被検査物WがX線源1と1次元X線検出器2の対向位置に差しかかった時点からそこを通過し終えるまでの1次元X線検出器2の各画素出力により、被検査物Wの全体のX線透過データが得られることになる。この1次元X線検出器2の各画素出力は画像処理装置10に取り込まれて、公知の画像処理による異物の有無判定などに供されるのであるが、この実施の形態においては、1次元X線検出器2からの各画素出力は残光除去処理演算部11によって残光除去処理が施されたうえで画像処理装置10の判定に供される。なお、その判定結果が例えば異物有りである場合には、例えばベルトコンベア3の下流側に設けられている排除装置等を駆動して該当の被検査物をライン上から規定のボックス内等に排除する。   With the above configuration, the output of each pixel of the one-dimensional X-ray detector 2 from the time when the inspection object W reaches the position where the X-ray source 1 and the one-dimensional X-ray detector 2 face each other until the inspection object W finishes passing therethrough. Thus, X-ray transmission data of the entire inspection object W can be obtained. Each pixel output of the one-dimensional X-ray detector 2 is taken into the image processing apparatus 10 and used for determination of the presence or absence of a foreign substance by known image processing. In this embodiment, the one-dimensional X-ray detector 2 is used. Each pixel output from the line detector 2 is subjected to afterglow removal processing by the afterglow removal processing calculation unit 11 and then subjected to determination by the image processing apparatus 10. If the result of the determination is, for example, that there is a foreign object, for example, an exclusion device provided on the downstream side of the belt conveyor 3 is driven to exclude the corresponding inspection object from the line into a specified box or the like. To do.

残光除去処理演算部11は例えばパーソナルコンピュータとその周辺機器によって構成され、この残光除去処理演算部11には、前記した(2)式に示される差分方程式における係数に相当するτ、並びに各画素出力のサンプリング間隔tsが、あらかじめ設定されて格納されており、その係数を用いて、各画素出力について、刻々のサンプリング値y[n],y[n−1],y[n−2],・・を(2)式によりx[n]に補正する。   The afterglow removal processing calculation unit 11 is constituted by, for example, a personal computer and its peripheral devices. The afterglow removal processing calculation unit 11 includes τ corresponding to the coefficient in the difference equation shown in the above equation (2), and each The sampling interval ts of pixel output is set and stored in advance, and the sampling value y [n], y [n−1], y [n−2] is calculated for each pixel output using the coefficient. ,... Are corrected to x [n] by equation (2).

前記したように、(2)式で得られるx[n]は、シンチレータシートの残光成分を除去した、正確に各時点におけるX線線量を表す値となり、従って画像処理装置10による判定には、シンチレータシートの残光の影響を受けていない被検査物WのX線透過データが用いられることになり、従来のようなX線検出器の動特性に起因する誤判定をなくすることができる。   As described above, x [n] obtained by the equation (2) is a value that accurately represents the X-ray dose at each time point after removing the afterglow component of the scintillator sheet. Thus, the X-ray transmission data of the inspection object W that is not affected by the afterglow of the scintillator sheet is used, and the erroneous determination caused by the dynamic characteristics of the conventional X-ray detector can be eliminated. .

ここで、以上の実施の形態においては、ファンビーム状のX線の照射領域に対応して1次元X線検出器2を配置した例を示したが、本発明はこれに限定されることなく、要はX線検出器の視野内で被検査物が相対移動するようにしたX線検査装置であれば、シンチレータシートの残光に基づくX線検出器の動特性が問題となることから、そのような相対移動を行いながら被検査物のX線透過データを用いて検査を行う他の構成のX線検査装置にも等しく適用し得ることは勿論である。   Here, in the above embodiment, the example in which the one-dimensional X-ray detector 2 is arranged corresponding to the fan beam-shaped X-ray irradiation region is shown, but the present invention is not limited to this. In short, if the X-ray inspection apparatus is such that the object to be inspected relatively moves within the field of view of the X-ray detector, the dynamic characteristics of the X-ray detector based on the afterglow of the scintillator sheet becomes a problem. Of course, the present invention can be equally applied to other configurations of X-ray inspection apparatuses that perform inspection using the X-ray transmission data of the inspection object while performing such relative movement.

また、残光除去処理演算部11による残光除去に用いる差分方程式は、上記した実施の形態のように(2)式とすることによってその演算処理が容易となるのであるが、前記した(1)式を用いてもよいことは言うまでもない。   Further, the difference equation used for afterglow removal by the afterglow removal processing calculation unit 11 can be easily calculated by using equation (2) as in the above-described embodiment. It goes without saying that the formula may be used.

本発明の実施の形態の構成図で、機械的構成を表す模式図と電気的構成を表すブロック図とを併記して示す図である。In the block diagram of embodiment of this invention, it is the figure which writes together and shows the schematic diagram showing a mechanical structure, and the block diagram showing an electric structure. シンチレータシートと光センサアレイを用いたX線検出器の動特性の説明図であり、(A)はX線検出器に入射するX線線量の時間的変化を表すグラフで、(B)はX線検出器におけるシンチレータシートの残光特性の例を示すグラフ、(C)は(B)に示される残光特性を持つシンチレータシートを用いたX線検出器に(A)で示されるX線が入射したときの出力の時間的変化を表すグラフである。It is explanatory drawing of the dynamic characteristic of the X-ray detector using a scintillator sheet | seat and an optical sensor array, (A) is a graph showing the time change of the X-ray dose which injects into an X-ray detector, (B) is X A graph showing an example of afterglow characteristics of a scintillator sheet in a line detector, (C) is an X-ray detector using the scintillator sheet having the afterglow characteristics shown in (B), and the X-rays shown in (A) are It is a graph showing the time change of the output when it injects.

符号の説明Explanation of symbols

1 X線源
2 1次元X線検出器
3 ベルトコンベア
10 画像処理装置
11 残光除去処理演算部
W 被検査物
DESCRIPTION OF SYMBOLS 1 X-ray source 2 One-dimensional X-ray detector 3 Belt conveyor 10 Image processing apparatus 11 Afterglow removal process calculating part W Inspected object

Claims (2)

被検査物を移動させながらX線を連続照射し、その被検査物を透過したX線を、シンチレータシートと光センサアレイとからなるX線検出器で検出し、その検出出力に基づく被検査物のX線透過像を用いた画像処理により、被検査物の検査を行うX線検査装置において、
上記X線検出器の各画素出力y[n](n=1,2,・・)に含まれる上記シンチレータの残光の影響を、あらかじめ求めて記憶している係数h[m](m=1,2,・・)を用いた下記(1)式で表される差分方程式により除去し、除去後の値x[n]を画像処理に供する残光除去演算手段を備えていることを特徴とするX線検査装置。
Figure 2006105786
X-rays are continuously irradiated while moving the inspection object, X-rays transmitted through the inspection object are detected by an X-ray detector comprising a scintillator sheet and an optical sensor array, and the inspection object is based on the detection output In an X-ray inspection apparatus that inspects an inspection object by image processing using an X-ray transmission image of
A coefficient h [m] (m = m = m = m) obtained in advance and storing the influence of the afterglow of the scintillator included in each pixel output y [n] (n = 1, 2,...) Of the X-ray detector. (1), and the afterglow removal calculating means for removing the value x [n] after the removal by the difference equation expressed by the following equation (1) and using it for image processing. X-ray inspection equipment.
Figure 2006105786
上記シンチレータシートの残光特性をI=I0 ・exp(−t/τ)と近似して、上記残光除去演算手段により用いる差分方程式を、下記の(2)式とすることを特徴とする請求項1に記載のX線検査装置。
Figure 2006105786
The afterglow characteristic of the scintillator sheet is approximated to I = I 0 · exp (−t / τ), and the difference equation used by the afterglow removal calculating means is expressed by the following equation (2): The X-ray inspection apparatus according to claim 1.
Figure 2006105786
JP2004292927A 2004-10-05 2004-10-05 X-ray inspection device Pending JP2006105786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004292927A JP2006105786A (en) 2004-10-05 2004-10-05 X-ray inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292927A JP2006105786A (en) 2004-10-05 2004-10-05 X-ray inspection device

Publications (1)

Publication Number Publication Date
JP2006105786A true JP2006105786A (en) 2006-04-20

Family

ID=36375703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292927A Pending JP2006105786A (en) 2004-10-05 2004-10-05 X-ray inspection device

Country Status (1)

Country Link
JP (1) JP2006105786A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100942285B1 (en) * 2009-04-21 2010-02-16 주식회사 이노메트리 X-ray inspection system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100942285B1 (en) * 2009-04-21 2010-02-16 주식회사 이노메트리 X-ray inspection system

Similar Documents

Publication Publication Date Title
US20130195244A1 (en) X-Ray Inspector
US20140328463A1 (en) Method And Device For Detecting The Structure Of Moving Single Items, In Particular For Detecting Foreign Particles In Liquid Or Paste-Like Products
JP5912427B2 (en) Non-destructive inspection apparatus and misalignment detection method using the apparatus
KR100451537B1 (en) Radiation inspection apparatus and radiation inspection method
JP2008014696A (en) Image display device and method, and unevenness inspection device and method
JP2006105786A (en) X-ray inspection device
JP7060446B2 (en) X-ray line sensor and X-ray foreign matter detection device using it
JP6450075B2 (en) X-ray inspection equipment
JP4902170B2 (en) Inspection system
JP2011085518A (en) X-ray inspection apparatus
JP5395614B2 (en) X-ray inspection equipment
JP2009080030A (en) X-ray inspection device
JP5255736B1 (en) Radioactive contamination inspection device, inspection method and inspection program
JP7051847B2 (en) X-ray in-line inspection method and equipment
WO2018092256A1 (en) Inline x-ray inspection system and imaging method for inline x-ray inspection system
JP6371572B2 (en) X-ray inspection equipment
JP3536685B2 (en) Radiation detector
JP4123816B2 (en) Method for measuring the thickness of an object to be inspected
JP5200048B2 (en) X-ray inspection equipment
JP6193854B2 (en) Processing apparatus and method for spectroscopic measurement of photon flux
US8831172B2 (en) Method for filmless radiographic inspection of components
WO2023228482A1 (en) Radiation detection device, radiation detection system, and radiation detection method
JP2011021920A (en) X-ray inspection apparatus
JP2004264144A (en) Detection method and detection device for thickness of nonwoven fabric, etc.
JP2004061479A (en) X-ray foreign matter detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A977 Report on retrieval

Effective date: 20090515

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090527

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091007