JP2006104966A - Exhaust emission control device and exhaust emission control method of internal combustion engine - Google Patents

Exhaust emission control device and exhaust emission control method of internal combustion engine Download PDF

Info

Publication number
JP2006104966A
JP2006104966A JP2004289824A JP2004289824A JP2006104966A JP 2006104966 A JP2006104966 A JP 2006104966A JP 2004289824 A JP2004289824 A JP 2004289824A JP 2004289824 A JP2004289824 A JP 2004289824A JP 2006104966 A JP2006104966 A JP 2006104966A
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
catalyst
gas purification
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2004289824A
Other languages
Japanese (ja)
Inventor
Masahito Kanae
雅人 金枝
Hidehiro Iizuka
秀宏 飯塚
Yuichi Kitahara
雄一 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004289824A priority Critical patent/JP2006104966A/en
Publication of JP2006104966A publication Critical patent/JP2006104966A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To restrain lowering in NOx purifying performance when transferring to stoichiometric (rich), in an internal combustion engine operated in a lean burn state of being leaner in fuel than the stoichiometric air-fuel ratio. <P>SOLUTION: This exhaust emission control device has an exhaust emission control catalyst capable of capturing and reducing NOx in an internal combustion engine exhaust gas passage in which exhaust gas of the lean air-fuel ratio and exhaust gas of the rich or stoichiometric air-fuel ratio flows; and purifies the captured NOx when the air-fuel ratio is stoichiometric or rich by capturing the NOx in exhaust gas to the catalyst when the air-fuel ratio is lean. A means is arranged for dropping the temperature of the exhaust gas flowing in the exhaust emission control catalyst or the temperature of the catalyst; and drops the temperature of the exhaust gas or the temperature of the catalyst before the air-fuel ratio of the exhaust gas flowing in the exhaust emission control catalyst transfers to stoichiometric or rich or in a process of transferring. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、理論空燃比よりも燃料が希薄なリーンバーン状態で運転される内燃機関の排ガス浄化装置と排ガス浄化方法に関する。   The present invention relates to an exhaust gas purification device and an exhaust gas purification method for an internal combustion engine that is operated in a lean burn state in which fuel is leaner than the stoichiometric air-fuel ratio.

近年、空燃比を燃料希薄とするリーンバーンエンジンが注目されている。ここで空燃比とはガス中の空気と燃料の比を表す。排ガスの空燃比がリーンである場合、理論空燃比(ストイキ)用エンジンの排ガス浄化に従来から使用されてきた三元触媒では、NOxを浄化するのが難しい。この為、リーンバーンエンジン用の排ガス浄化触媒が検討されている。リーンバーンエンジン用排ガス浄化触媒の1つとして、多孔質担体にアルカリ金属、アルカリ土類金属及び希土類金属の中から選ばれた少なくとも1種のNOx吸蔵元素の酸化物と触媒貴金属とを担持して、リーンの時にもNOxを浄化できるようにしたものがある(たとえば特許文献1参照)。この種のNOx捕捉機能を有するNOx浄化触媒の排ガス浄化方法としては、リーン時に排ガス中のNOxを一旦酸化して触媒に捕捉し、一定量のNOxが捕捉されたならば、空燃比をストイキもしくはリッチ(以後、ストイキ(リッチ)と記載する)に切り替えて、捕捉されたNOxを浄化する方法が知られている。   In recent years, a lean burn engine in which the air-fuel ratio is a lean fuel has attracted attention. Here, the air-fuel ratio represents the ratio of air to fuel in the gas. When the air-fuel ratio of the exhaust gas is lean, it is difficult to purify NOx with a three-way catalyst that has been conventionally used for exhaust gas purification of a stoichiometric engine. For this reason, exhaust gas purification catalysts for lean burn engines have been studied. As one of the exhaust gas purification catalysts for lean burn engines, an oxide of at least one NOx storage element selected from alkali metals, alkaline earth metals and rare earth metals and a catalyst noble metal are supported on a porous carrier. In some cases, NOx can be purified even when lean (see, for example, Patent Document 1). As an exhaust gas purification method of a NOx purification catalyst having this type of NOx trapping function, NOx in the exhaust gas is once oxidized and trapped in the catalyst during lean, and if a certain amount of NOx is trapped, the air-fuel ratio is stoichiometric or A method of purifying trapped NOx by switching to rich (hereinafter referred to as stoichiometric (rich)) is known.

しかしながら、NOx浄化触媒には良好な浄化性能を示す温度幅(温度window)があり、触媒に流入する排ガスの温度がその温度幅から外れている場合には、NOx浄化性能は低くなる。この対策として、排気通路に二次空気を吹き込むことが検討されている(たとえば特許文献2、3参照)。   However, the NOx purification catalyst has a temperature range (temperature window) showing good purification performance, and when the temperature of the exhaust gas flowing into the catalyst is out of the temperature range, the NOx purification performance is lowered. As a countermeasure, it has been studied to blow secondary air into the exhaust passage (see, for example, Patent Documents 2 and 3).

特開平11-319564号公報(要約)JP 11-319564 A (summary) 特開2002-147227号公報(要約)JP 2002-147227 A (summary) 特開2002-235532号公報(要約)JP 2002-235532 A (summary)

特許文献2には、排ガスをリッチの状態に保ちながら二次空気を供給して、ゼオライト触媒にトラップしたNOxを脱離しやすくすることが記載されている。また、特許文献3には、リーン運転中で触媒の床温度が所定温度以上のときに二次空気を供給して排ガス温度を下げ、リーン時のNOx捕捉能の低下を防止することが記載されている。   Patent Document 2 describes that secondary air is supplied while keeping exhaust gas in a rich state to facilitate desorption of NOx trapped in the zeolite catalyst. Patent Document 3 describes that during the lean operation, when the catalyst bed temperature is equal to or higher than the predetermined temperature, the secondary air is supplied to lower the exhaust gas temperature to prevent the NOx trapping ability from being lowered during lean operation. ing.

ところで、本発明者は、リーン時に捕捉したNOxを、次に空燃比をストイキ(リッチ)に切り替えて浄化しようとした時に、ストイキ(リッチ)運転の初期のNOx浄化率が低くなることを究明した。   By the way, the present inventor has found out that the NOx purification rate at the initial stage of stoichiometric (rich) operation becomes low when NOx captured at the time of leaning is next tried to purify by switching the air-fuel ratio to stoichiometric (rich). .

本発明の目的は、リーンからストイキ(リッチ)に移行した初期にNOx浄化率が低下するのを抑制できるようにした排ガス浄化装置および排ガス浄化方法を提供することにある。   An object of the present invention is to provide an exhaust gas purifying apparatus and an exhaust gas purifying method capable of suppressing a decrease in the NOx purification rate in the initial stage of transition from lean to stoichiometric (rich).

本発明は、空燃比がリーンの排ガスと空燃比がストイキ(リッチ)の排ガスとが流入する内燃機関排ガス流路に、空燃比がリーンのときに排ガス中のNOxを捕捉し、空燃比がストイキ(リッチ)のときに捕捉したNOxを還元浄化する排ガス浄化触媒を備えた排ガス浄化装置において、前記排ガス浄化触媒に流入する排ガスの温度と前記排ガス浄化触媒の温度のうち少なくとも一方を低下させる温度低下手段を備え、前記排ガス浄化触媒に流入する排ガスの空燃比がリーンの状態からストイキ(リッチ)の状態に移行する際に、前記温度低下手段により温度低下操作を行うようにしたものである。   The present invention captures NOx in the exhaust gas when the air-fuel ratio is lean and captures the NOx in the exhaust gas into the internal combustion engine exhaust gas flow path into which the exhaust gas with a lean air-fuel ratio and the exhaust gas with a stoichiometric (rich) air-fuel ratio flows. In the exhaust gas purification apparatus having an exhaust gas purification catalyst that reduces and purifies NOx captured when (rich), a temperature decrease that reduces at least one of the temperature of the exhaust gas flowing into the exhaust gas purification catalyst and the temperature of the exhaust gas purification catalyst And a temperature lowering operation is performed by the temperature lowering means when the air-fuel ratio of the exhaust gas flowing into the exhaust gas purification catalyst shifts from a lean state to a stoichiometric (rich) state.

また、本発明は、空燃比がリーンのときに排ガス中のNOxを捕捉し、空燃比がストイキまたはリッチのときに捕捉したNOxを還元浄化する排ガス浄化触媒を内燃機関排ガス流路に設置して排ガスを浄化する方法において、前記排ガス浄化触媒に流入する排ガスの空燃比をリーンの状態からストイキまたはリッチの状態に移行する際に排ガスの温度と前記排ガス浄化触媒の温度のうち少なくとも一方を低下させるようにしたことにある。   Further, the present invention provides an exhaust gas purification catalyst for capturing NOx in exhaust gas when the air-fuel ratio is lean and reducing and purifying NOx captured when the air-fuel ratio is stoichiometric or rich in the exhaust gas flow path of the internal combustion engine. In the method for purifying exhaust gas, at least one of the temperature of the exhaust gas and the temperature of the exhaust gas purification catalyst is decreased when the air-fuel ratio of the exhaust gas flowing into the exhaust gas purification catalyst is shifted from a lean state to a stoichiometric or rich state. It is in doing so.

本発明により、排ガスの空燃比がリーンからストイキ(リッチ)に移行した初期に、NOx浄化率が低下する割合を少なくすることができた。   According to the present invention, it is possible to reduce the rate at which the NOx purification rate decreases at the initial stage when the air-fuel ratio of exhaust gas shifts from lean to stoichiometric (rich).

排ガスの空燃比をリーンの状態からストイキ(リッチ)の状態に移行した初期にNOx浄化率が低下する理由としては、ストイキ(リッチ)移行時に還元剤の燃焼により触媒温度が上昇し、リーン時に捕捉したNOxが触媒から脱離することが考えられる。ストイキ(リッチ)ガス中に含まれているH,CO,炭化水素等の還元剤は、触媒上に捕捉されたNOxを還元、或いはストイキ(リッチ)ガス中に含まれているNOxを還元することに使われるが、一部は触媒上で燃焼してしまう。この燃焼により触媒の温度上昇が生じ、リーン時に触媒に捕捉されたNOxが、触媒温度が高くなることで触媒から脱離するものと推定される。 The reason why the NOx purification rate decreases in the initial stage when the air-fuel ratio of the exhaust gas shifts from the lean state to the stoichiometric (rich) state is that the catalyst temperature rises due to combustion of the reducing agent during the stoichiometric (rich) transition and is captured when lean It is considered that the NOx that has been released is desorbed from the catalyst. Reducing agents such as H 2 , CO, and hydrocarbons contained in the stoichiometric (rich) gas reduce NOx trapped on the catalyst or reduce NOx contained in the stoichiometric (rich) gas. Part of it burns on the catalyst. It is presumed that the temperature of the catalyst rises due to this combustion, and NOx trapped by the catalyst at the time of leaning is desorbed from the catalyst when the catalyst temperature rises.

本発明は、リーンからストイキ(リッチ)に移行する際に、予め排ガスの温度を下げるか、あるいは触媒の温度を下げることで、ストイキ(リッチ)に移行した当初に触媒の温度が上昇するのを抑制し、NOxが脱離しにくくしたものである。   In the present invention, when shifting from lean to stoichiometric (rich), the temperature of the exhaust gas is lowered in advance, or the temperature of the catalyst is lowered, so that the temperature of the catalyst increases at the beginning of the transition to stoichiometric (rich). It suppresses and makes NOx difficult to desorb.

排ガス温度を低下或いは触媒温度を低下させる操作は、排ガス浄化触媒に流入する排ガスの空燃比がストイキ(リッチ)に移行する前もしくは移行する途中で行うことが望ましい。これにより、ストイキ(リッチ)時に還元剤の燃焼反応が生じても触媒温度の上昇を抑えることができ、触媒から捕捉NOxが脱離するのを抑制することができる。空燃比がリーンの状態で排ガス温度または触媒温度が下がっても、リーン時に一旦捕捉されたNOxは触媒に捕捉された状態を維持し、NOxを捕捉した時点での触媒温度を超えなければ、捕捉したNOx量はほぼ維持されていると考えられるので、NOx浄化性能の低下は生じない。   The operation of lowering the exhaust gas temperature or lowering the catalyst temperature is preferably performed before or during the transition of the air-fuel ratio of the exhaust gas flowing into the exhaust gas purification catalyst to stoichiometric (rich). Thereby, even if the combustion reaction of the reducing agent occurs during stoichiometric (rich), it is possible to suppress an increase in the catalyst temperature, and it is possible to suppress the capture NOx from desorbing from the catalyst. Even if the exhaust gas temperature or the catalyst temperature drops when the air-fuel ratio is lean, the NOx once trapped during lean will remain trapped by the catalyst, and if the catalyst temperature does not exceed the catalyst temperature at which NOx was trapped, it will be trapped. Since the NOx amount is considered to be substantially maintained, the NOx purification performance does not deteriorate.

排ガス温度もしくは触媒温度を下げるタイミングは、ストイキ(リッチ)に移行する前もしくは移行している途中であることが好ましい。温度を下げる時期が早すぎると、空燃比がリーンのままで、排ガス温度または触媒温度が低くなってしまう。この場合には、貴金属によるNO酸化反応が進みにくくなり、触媒上にNOxが捕捉されにくくなって、リーン時のNOx浄化性能が低下するおそれがある。一方、温度を下げる時期が遅すぎると、還元剤の燃焼に合わせて触媒温度を下げることができず、ストイキ(リッチ)時のNOx浄化性能が低下する。温度を下げるのは、ストイキ(リッチ)に移行したときに還元剤の燃焼反応により温度が上昇するのを抑制するためであるから、できるだけ、ストイキ(リッチ)に移行する直前に温度を下げるべきである。なお、ストイキ(リッチ)に移行する途中とは、排ガスの空燃比がリーンの状態から所定の空燃比のストイキ(リッチ)になるまでの過程を意味する。通常、エンジンをリーンからストイキ(リッチ)に切り替えた場合、排ガスが所定の空燃比に移行するのに数秒ないしは数十秒かかる。この過程で温度を下げることもできる。   The timing for lowering the exhaust gas temperature or the catalyst temperature is preferably before or during the transition to stoichiometric (rich). If the time to lower the temperature is too early, the air-fuel ratio remains lean and the exhaust gas temperature or the catalyst temperature becomes low. In this case, the NO oxidation reaction by the noble metal is difficult to proceed, and NOx is hardly trapped on the catalyst, and the NOx purification performance at the time of lean may be deteriorated. On the other hand, if the timing of lowering the temperature is too late, the catalyst temperature cannot be lowered in accordance with the combustion of the reducing agent, and the NOx purification performance at the time of stoichiometric (rich) is lowered. The temperature is lowered in order to prevent the temperature from rising due to the combustion reaction of the reducing agent when shifting to stoichiometric (rich), so the temperature should be lowered as soon as possible before shifting to stoichiometric (rich). is there. Note that the process of shifting to stoichiometric (rich) means a process from when the exhaust gas air-fuel ratio becomes lean to a predetermined air-fuel ratio stoichiometric (rich). Normally, when the engine is switched from lean to stoichiometric (rich), it takes several seconds to several tens of seconds for the exhaust gas to shift to a predetermined air-fuel ratio. In this process, the temperature can be lowered.

排ガス温度或いは触媒温度が所定の温度まで下がったならば、温度低下操作は中止するか、あるいはストイキ(リッチ)の状態が終了するまで温度低下操作を続け、再びリーンに移行するときには温度低下操作を中止する。なお、温度を下げ終わってからもリーンの状態が続くと、温度の低い状態で捕捉されたNOxは、ストイキ(リッチ)に移行した際の触媒温度上昇により脱離しやすくなるので、温度を下げるタイミングは重要である。   If the exhaust gas temperature or the catalyst temperature falls to a predetermined temperature, the temperature lowering operation is stopped, or the temperature lowering operation is continued until the stoichiometric (rich) state is finished. Cancel. If the lean state continues even after the temperature has been lowered, the NOx trapped in the low temperature state is likely to be desorbed due to the catalyst temperature rise when shifting to stoichiometric (rich), so the timing to lower the temperature Is important.

温度の下げ幅は、触媒或いは排ガスの組成等にも依存するが、温度を下げる前の排ガス温度もしくは触媒温度が350℃以上の場合には40℃程度の下げ幅が好ましく、350℃以下の場合には20℃程度の下げ幅が好ましい。下げ幅が小さいとNOx脱離抑制の効果が少なく、下げ幅が大きすぎると、触媒上の貴金属による還元能力が低下してしまい、捕捉したNOxが還元されにくくなる。   The temperature decrease depends on the composition of the catalyst or exhaust gas, but if the exhaust gas temperature or catalyst temperature before the temperature decrease is 350 ° C or higher, a temperature decrease of about 40 ° C is preferable, and if it is 350 ° C or lower For this, a range of about 20 ° C. is preferable. If the reduction width is small, the effect of suppressing NOx desorption is small, and if the reduction width is too large, the reducing ability of the noble metal on the catalyst is reduced, and the trapped NOx is difficult to be reduced.

排ガス温度または触媒温度を下げる手段としては、排ガス浄化触媒に流入する排ガスに対して、空気を吹き込む、或いは水を吹き込むことが考えられる。また、内燃機関にEGR(Exhaust Gas Recirculation)を設け、排ガスの空燃比がストイキ(リッチ)に移行する前もしくは移行する途中において、エンジンの排出ガスの一部をエンジン内に再度循環させることが考えられる。ここで、EGRとは、排気ガス再循環装置のことであり、排ガスの一部を吸気系に戻し、ガソリンと空気の混合気が燃焼する時の温度を低める装置である。触媒温度を下げる手段は、上記の方法に限るものではない。これら以外に、触媒に冷却器を設置する、エンジンの回転数を低くする、ガソリンの供給量を少なくする等の方法も可能である。なお、空気を吹き込む場合には、内燃機関をリーン運転からストイキ(リッチ)運転に移行したにも拘らず、移行後の排ガスの空燃比がリーンのままであることがないように、空気吹き込み量を調整すべきである。   As means for lowering the exhaust gas temperature or the catalyst temperature, it is conceivable to blow air or blow water into the exhaust gas flowing into the exhaust gas purification catalyst. It is also conceivable that EGR (Exhaust Gas Recirculation) is provided in the internal combustion engine so that a part of the engine exhaust gas is circulated again in the engine before or during the transition of the air-fuel ratio of the exhaust gas to stoichiometric (rich). It is done. Here, EGR is an exhaust gas recirculation device that returns a part of the exhaust gas to the intake system and lowers the temperature when the mixture of gasoline and air burns. The means for lowering the catalyst temperature is not limited to the above method. In addition to these, it is possible to install a cooler on the catalyst, reduce the engine speed, reduce the amount of gasoline supplied, and the like. When air is blown in, the amount of air blown so that the air-fuel ratio of the exhaust gas after the transition does not remain lean despite the transition from lean operation to stoichiometric (rich) operation. Should be adjusted.

温度を低下させる操作は、リーン排ガスの温度が250℃以上である場合に行い、250℃よりも低い場合には行わないことが望ましい。リーン排ガスの温度が250℃よりも低いときに、空気または水を注入して触媒の温度を低めると、ストイキ(リッチ)移行時の捕捉NOxの脱離は抑えられるが、貴金属等の触媒活性成分による捕捉NOxの還元反応の性能が悪くなり、捕捉NOxの浄化性能が低下する。   The operation of lowering the temperature is desirably performed when the temperature of the lean exhaust gas is 250 ° C. or higher, and not performed when the temperature is lower than 250 ° C. When the temperature of the lean exhaust gas is lower than 250 ° C., if the temperature of the catalyst is lowered by injecting air or water, desorption of trapped NOx at the time of stoichiometric (rich) transition can be suppressed, but catalytic active components such as noble metals The performance of the reduction reaction of trapped NOx due to becomes worse, and the purification performance of trapped NOx decreases.

本発明で使用される排ガス浄化触媒は、リーン排ガス中のNOxを捕捉でき、また、排ガスの空燃比がストイキ(リッチ)に移行したときに捕捉NOxを還元浄化できるものである。このために、触媒にはNOx捕捉材とNOx酸化材およびNOx還元材が含まれる必要がある。NOx捕捉材としてアルカリ金属とアルカリ土類金属の少なくとも一方を含み、NOxの酸化材及び捕捉NOxの還元材としてPt、Pd、Rhの少なくとも一種を含むことにより、リーン時及びストイキ(リッチ)時において、高いNOx浄化性能が得られるようになる。アルカリ金属及びアルカリ土類金属は一種でも良いが、二種以上であれば更に好ましい。元素によりNOxを捕捉できる温度域が異なる為である。貴金属は一種でも良いが、二種または三種である方が好ましい。Ptは主にリーン排ガス中のNOの酸化反応に効果があり、PdとRhは主にストイキ(リッチ)時の捕捉NOxの還元反応に効果があることによる。   The exhaust gas purification catalyst used in the present invention can capture NOx in lean exhaust gas, and can reduce and purify captured NOx when the air-fuel ratio of exhaust gas shifts to stoichiometric (rich). For this reason, the catalyst needs to contain a NOx trapping material, a NOx oxidizing material, and a NOx reducing material. By containing at least one of an alkali metal and an alkaline earth metal as the NOx trapping material, and by containing at least one of Pt, Pd, and Rh as the NOx oxidizing material and the trapping NOx reducing material, at the time of lean and stoichiometric (rich) High NOx purification performance can be obtained. One kind of alkali metal and alkaline earth metal may be used, but two or more kinds are more preferable. This is because the temperature range in which NOx can be captured differs depending on the element. One kind of noble metal may be used, but two or three kinds of precious metals are preferred. Pt is mainly effective in the oxidation reaction of NO in the lean exhaust gas, and Pd and Rh are mainly effective in the reduction reaction of trapped NOx during stoichiometric (rich).

上記した成分のほかに触媒活性成分としてTiが含まれると、ストイキ(リッチ)移行時のNOx浄化性能が更に向上する。これは捕捉NOxの還元反応に効果があるためと考えられる。Ti量は触媒に含まれるアルカリ金属及びアルカリ土類金属の総量に対してモル比で0.05以上、1以下であることが望ましい。0.05よりも少ないとTiの効果が少なく、多すぎるとNOx捕捉材及び貴金属等の活性点を覆ってしまうためと考えられる。   When Ti is contained as a catalytically active component in addition to the above components, the NOx purification performance at the time of stoichiometric (rich) transition is further improved. This is considered to be due to the effect on the reduction reaction of trapped NOx. The amount of Ti is desirably 0.05 or more and 1 or less in molar ratio with respect to the total amount of alkali metal and alkaline earth metal contained in the catalyst. If the amount is less than 0.05, the effect of Ti is small, and if it is too large, the active points such as the NOx trapping material and noble metal are covered.

触媒の調製方法は、含浸法、混練法、共沈法、ゾルゲル法、イオン交換法、蒸着法等の物理的調製方法、あるいは化学反応を利用した調製方法等のいずれも適用可能である。また、触媒の出発原料には、硝酸化合物、酢酸化合物、錯体化合物、水酸化物、炭酸化合物、有機化合物などの種々の化合物、あるいは金属及び金属酸化物をいずれも用いることができる。   As a method for preparing the catalyst, any of a physical preparation method such as an impregnation method, a kneading method, a coprecipitation method, a sol-gel method, an ion exchange method, and a vapor deposition method, a preparation method using a chemical reaction, and the like can be applied. Further, various compounds such as nitric acid compounds, acetic acid compounds, complex compounds, hydroxides, carbonic acid compounds, organic compounds, or metals and metal oxides can be used as starting materials for the catalyst.

触媒は、触媒活性成分のみで構成してもよいが、多孔質担体上に触媒活性成分を担持した方が望ましい。多孔質担体上に触媒活性成分が担持されることで、触媒活性成分の高分散化が進み、ストイキ(リッチ)移行時のNOx浄化性能が向上する。多孔質担体は、更にコージェライト、SiCまたはステンレス等の基材上に担持することができる。この場合、基材1リットルに対して多孔質担体の担持量が50g以上、400g以下であると、ストイキ(リッチ)移行時のNOx浄化性能が高くなる。多孔質担体の担持量が50gよりも少ないと多孔質担体の効果は少なく、400gよりも多いと多孔質担体自体の比表面積が低下し、また基材がハニカム形状の場合には目詰まりしやすくなる。多孔質担体としては、アルミナが最適であるが、チタニア、シリカ、シリカ−アルミナ、ジルコニア、マグネシア等の金属酸化物或いは複合酸化物等を用いることもできる。アルミナが良いのは、耐熱性が高く、またNOx捕捉材あるいは貴金属等触媒活性成分の分散を高める作用があるためと考えられる。   The catalyst may be composed of only the catalytically active component, but it is desirable to support the catalytically active component on the porous carrier. By supporting the catalytically active component on the porous carrier, the highly active dispersion of the catalytically active component proceeds, and the NOx purification performance at the time of the stoichiometric (rich) transition is improved. The porous carrier can be further supported on a substrate such as cordierite, SiC or stainless steel. In this case, when the loading amount of the porous carrier is 50 g or more and 400 g or less with respect to 1 liter of the base material, the NOx purification performance at the time of the stoichiometric (rich) transition becomes high. When the amount of the porous carrier supported is less than 50 g, the effect of the porous carrier is small. When the amount of the porous carrier exceeds 400 g, the specific surface area of the porous carrier itself decreases, and when the substrate has a honeycomb shape, clogging easily occurs. Become. As the porous carrier, alumina is optimal, but metal oxides or composite oxides such as titania, silica, silica-alumina, zirconia, and magnesia can also be used. Alumina is preferred because of its high heat resistance and the effect of increasing the dispersion of catalytic active components such as NOx trapping materials or noble metals.

触媒の形状は任意でよい。触媒活性成分を担持した多孔質担体を、ハニカム形状をした基材にコーティングして得られるハニカム形状を始めとして、ペレット状、板状、粒状、粉末状等の任意の形状で使用できる。ハニカム形状の場合には、コ−ジェライトの基材が最適であるが、触媒温度が高くなる場合には、触媒活性成分と反応しにくい材料、例えば金属基材を用いるのがよい。また、担体自身をハニカムにして、それに触媒活性成分を担持することもできる。   The shape of the catalyst may be arbitrary. In addition to a honeycomb shape obtained by coating a porous carrier carrying a catalytically active component on a substrate having a honeycomb shape, it can be used in any shape such as a pellet shape, a plate shape, a granular shape, and a powder shape. In the case of a honeycomb shape, a cordierite base material is optimal, but when the catalyst temperature becomes high, it is preferable to use a material that does not easily react with the catalytically active component, for example, a metal base material. Further, the carrier itself can be made into a honeycomb and the catalytically active component can be supported thereon.

温度の下げ幅および温度を下げるタイミングは重要であり、これらの決定に際しては、NOx浄化触媒から流出する排ガスのNOx濃度を参考にするのが良い。また、このために、NOx浄化触媒が流出する排ガスのNOx濃度を検出するNOxセンサを設けるのがよい。排ガス流路のNOx浄化触媒の後段に設置されたNOxセンサによりNOx量を計測することで、該NOx量が最も少なくなるような排ガス温度或いは触媒温度の下げ幅を決めることができる。   The temperature decrease range and the temperature decrease timing are important. In determining these, it is preferable to refer to the NOx concentration of the exhaust gas flowing out from the NOx purification catalyst. For this purpose, a NOx sensor for detecting the NOx concentration of the exhaust gas from which the NOx purification catalyst flows out may be provided. By measuring the amount of NOx with a NOx sensor installed at the subsequent stage of the NOx purification catalyst in the exhaust gas flow path, it is possible to determine the exhaust gas temperature or the catalyst temperature decrease range that minimizes the NOx amount.

図5は、エンジン99の排ガス流路20におけるNOx捕捉還元機能を有する排ガス浄化触媒12の上流側に温度低下装置30として、排ガス中に空気または水を吹き込む手段を設けた例を示す。リーン雰囲気での燃焼を止め、ストイキ(リッチ)雰囲気にする際に、温度低下装置30から室温の空気もしくは水を吹き込む。空気吹き込みの場合には、排ガスとの温度差により排ガス浄化触媒12に流入する排ガスの温度を下げることができる。また、水を吹き込む場合には、水の気化熱により排ガス浄化触媒30に流入する排ガスの温度を下げることができる。   FIG. 5 shows an example in which means for blowing air or water into the exhaust gas is provided as the temperature lowering device 30 on the upstream side of the exhaust gas purification catalyst 12 having the NOx trapping and reducing function in the exhaust gas flow path 20 of the engine 99. When the combustion in the lean atmosphere is stopped and the stoichiometric (rich) atmosphere is obtained, room temperature air or water is blown from the temperature lowering device 30. In the case of air blowing, the temperature of the exhaust gas flowing into the exhaust gas purification catalyst 12 can be lowered due to the temperature difference with the exhaust gas. When water is blown in, the temperature of the exhaust gas flowing into the exhaust gas purification catalyst 30 can be lowered by the heat of vaporization of water.

図6は、EGR(Exhaust Gas Recirculation)35を設け、排ガス流路20の排ガスの一部を吸気系40に戻して、ガソリンと空気の混合気が燃焼する時の温度を低めたものである。リーン運転を止め、ストイキ(リッチ)運転に移行する直前にエンジン99の排ガスの一部をエンジン内に再度循環させることで、排ガス浄化触媒12に流入する排ガスの温度を下げることができる。ストイキ(リッチ)移行時にのみ排ガスが循環されるように、EGR35と排ガス流路及び吸気系との間には弁36,37が設けられている。   FIG. 6 is provided with an EGR (Exhaust Gas Recirculation) 35 and a part of the exhaust gas in the exhaust gas passage 20 is returned to the intake system 40 to lower the temperature when the mixture of gasoline and air burns. The temperature of the exhaust gas flowing into the exhaust gas purification catalyst 12 can be lowered by stopping the lean operation and circulating a part of the exhaust gas of the engine 99 again in the engine immediately before shifting to the stoichiometric (rich) operation. Valves 36 and 37 are provided between the EGR 35 and the exhaust gas flow path and the intake system so that the exhaust gas is circulated only at the time of the stoichiometric (rich) transition.

図7は、排ガス流路20における排ガス浄化触媒12の後段にNOxセンサ10を設けた場合を示している。ここでは温度低下装置は図示するのを省略した。空燃比がストイキ(リッチ)に移行する前もしくは移行する途中での排ガス浄化触媒の温度の下げ幅が大きいと、貴金属による捕捉NOxの還元反応が進みにくくなりNOx浄化性能の低下が生じやすい。一方、温度の下げ幅が小さいと、ストイキ(リッチ)に移行したときに触媒温度が上昇してしまい、やはりNOx浄化性能の低下が生じやすい。排ガス浄化触媒12の後段に含まれる排ガス中のNOx量を計測することで、NOx量が最も少なくなるように排ガス浄化触媒の温度の下げ幅を決めることができる。また、温度を下げるタイミングの最適化を行うことができる。   FIG. 7 shows a case where the NOx sensor 10 is provided at the subsequent stage of the exhaust gas purification catalyst 12 in the exhaust gas passage 20. Here, the illustration of the temperature lowering device is omitted. If the temperature reduction range of the exhaust gas purification catalyst is large before or during the transition of the air-fuel ratio to stoichiometric (rich), the reduction reaction of the trapped NOx by the noble metal is difficult to proceed and the NOx purification performance is likely to deteriorate. On the other hand, if the temperature decrease range is small, the catalyst temperature rises when shifting to stoichiometric (rich), and the NOx purification performance is likely to be lowered. By measuring the amount of NOx in the exhaust gas contained in the subsequent stage of the exhaust gas purification catalyst 12, the temperature reduction range of the exhaust gas purification catalyst can be determined so that the amount of NOx is minimized. In addition, the timing for lowering the temperature can be optimized.

図8は、本発明の排ガス浄化装置を備えた内燃機関の一実施態様を示す全体構成図である。本実施例では、リーンバーン可能なエンジン99、エアクリーナ1、エアフローセンサ2、スロットバルブ3等を擁する吸気系、酸素濃度センサ−(又はA/Fセンサ)7、排ガス浄化触媒12、排ガス浄化触媒入口のガス温度を計測する温度センサ8、空気吹き込み装置9、NOxセンサ10等を擁する排気系及び制御ユニット(ECU:Engine Control Unit)11等が備えられている。ECUは入出力インターフェイスとしてのI/O、LSI、演算処理装置MPU、多数の制御プログラムを記憶させた記憶装置RAM及びROM、タイマーカウンタ等により構成されている。   FIG. 8 is an overall configuration diagram showing an embodiment of an internal combustion engine equipped with the exhaust gas purifying apparatus of the present invention. In this embodiment, a lean burnable engine 99, an air cleaner 1, an air flow sensor 2, an intake system having a slot valve 3, etc., an oxygen concentration sensor (or A / F sensor) 7, an exhaust gas purification catalyst 12, an exhaust gas purification catalyst inlet An exhaust system and a control unit (ECU: Engine Control Unit) 11 having a temperature sensor 8 for measuring the gas temperature, an air blowing device 9, a NOx sensor 10 and the like are provided. The ECU includes an I / O as an input / output interface, an LSI, an arithmetic processing unit MPU, a storage device RAM and ROM storing a number of control programs, a timer counter, and the like.

本実施例では、エンジンへの吸入空気はエアクリーナ1によってろ過された後、エアフローセンサ2により計量され、スロットバルブ3を経て、さらにインジェクタ5から燃料噴射を受け、混合気としてエンジン99に供給される。エアフローセンサ信号或いはその他のセンサ信号はECU11へ入力される。ECU11では内燃機関の運転状態及び排ガス浄化触媒の状態を評価して運転空燃比を決定し、インジェクタ5の噴射時間等を制御して混合気の燃料濃度を所定値に設定する。シリンダに吸入された混合気はECU11からの信号で制御される点火プラグ6により着火され燃焼する。燃焼排ガスは排気系に導かれる。排気系に導かれた排ガスは、ストイキ運転時には排ガス浄化触媒12の持つ三元触媒機能によりNOx、HC、COが浄化され、リ−ン運転時にはNOx捕捉機能によりNOxが捕捉され、かつ燃焼機能によりHC、COが浄化される。ECU11の判定及び制御信号により、排ガス浄化触媒のNOx浄化能力が常時判定され、リーン運転からストイキ(リッチ)運転に移行する段階になったならば、ECUから空気吹き込み装置9に対して空気を吹き込む指令が出る。これにより、ストイキ(リッチ)時のNOx浄化性能の低下を抑制する。さらにNOxセンサ10を用いて、排ガス浄化触媒12から流出する排ガス中のNOx濃度を常時モニタリングすることで、空気吹き込み装置9による空気吹き込み量、時間及びインジェクタ5の噴射量、時間を最適化し、排出NOx量を低減することができる。以上の操作により、リ−ン運転及びストイキ(リッチ)運転を行う全ての内燃機関に対し、NOxの排出量を効果的に低減することが可能である。   In this embodiment, the intake air to the engine is filtered by the air cleaner 1, then measured by the air flow sensor 2, passed through the slot valve 3, further receives fuel injection from the injector 5, and is supplied to the engine 99 as an air-fuel mixture. . An airflow sensor signal or other sensor signal is input to the ECU 11. The ECU 11 evaluates the operating state of the internal combustion engine and the state of the exhaust gas purification catalyst to determine the operating air-fuel ratio, and controls the injection time of the injector 5 to set the fuel concentration of the air-fuel mixture to a predetermined value. The air-fuel mixture sucked into the cylinder is ignited and burned by a spark plug 6 controlled by a signal from the ECU 11. The combustion exhaust gas is guided to the exhaust system. The exhaust gas introduced to the exhaust system is purified by NOx, HC, CO by the three-way catalyst function of the exhaust gas purification catalyst 12 during stoichiometric operation, and is captured by the NOx trapping function during lean operation, and by the combustion function HC and CO are purified. Based on the determination and control signal of the ECU 11, the NOx purification ability of the exhaust gas purification catalyst is always determined, and when it is in the stage of shifting from lean operation to stoichiometric (rich) operation, air is blown into the air blowing device 9 from the ECU. A command is issued. This suppresses a decrease in NOx purification performance during stoichiometric (rich). Further, by constantly monitoring the NOx concentration in the exhaust gas flowing out from the exhaust gas purification catalyst 12 using the NOx sensor 10, the air blowing amount and time by the air blowing device 9 and the injection amount and time of the injector 5 are optimized and discharged. The amount of NOx can be reduced. By the above operation, it is possible to effectively reduce the NOx emission amount for all internal combustion engines that perform lean operation and stoichiometric (rich) operation.

以下、実験結果について説明する。
[排ガス浄化触媒の調製法]
以下の方法により、排ガス浄化触媒A,B,C及びDを調製した。
Hereinafter, experimental results will be described.
[Method for preparing exhaust gas purification catalyst]
Exhaust gas purification catalysts A, B, C and D were prepared by the following method.

排ガス浄化触媒Aの調製:アルミナ粉末及びアルミナの前駆体からなり硝酸酸性に調製したスラリーを、コージェライト製ハニカム(400セル/inc)にコーティングした後、乾燥焼成して、ハニカムの見掛けの容積1リットルあたりアルミナが1.9molコーティングされたアルミナコートハニカムを得た。このアルミナコートハニカムに、ジニトロジアンミンPt硝酸溶液とジニトロジアンミンPd硝酸溶液と硝酸Rh溶液と硝酸Naと酢酸Kの混合溶液を含浸し、200℃で乾燥し、続いて600℃で1時間焼成した。以上により、ハニカム1リットルに対してアルミナが190g、元素換算でNaが12.4g、Kが15.6g、Rhが0.139g、Ptが2.792g、Pdが1.35g含有された触媒を得た。 Preparation of exhaust gas purification catalyst A: A slurry made of alumina powder and an alumina precursor and made acidic with nitric acid was coated on a cordierite honeycomb (400 cells / inc 2 ), dried and fired, and the apparent volume of the honeycomb An alumina-coated honeycomb coated with 1.9 mol of alumina per liter was obtained. This alumina-coated honeycomb was impregnated with a dinitrodiammine Pt nitric acid solution, a dinitrodiammine Pd nitric acid solution, a nitric acid Rh solution, a mixed solution of Na nitrate and acetic acid K, dried at 200 ° C., and then fired at 600 ° C. for 1 hour. As described above, a catalyst containing 190 g of alumina, 12.4 g of Na, 15.6 g of K, 15.6 g of K, 0.139 g of Rh, 2.792 g of Pt, and 1.35 g of Pd per liter of honeycomb. Obtained.

排ガス浄化触媒Bの調製:排ガス浄化触媒Aと同様の方法で、コージェライト製ハニカム1リットルに対してアルミナが190g、元素換算でNaが8.2g、Kが10.4g、Rhが0.046g、Ptが0.93g、Pdが0.45g含有された触媒を得た。   Preparation of exhaust gas purification catalyst B: In the same manner as exhaust gas purification catalyst A, 190 g of alumina, 8.2 g of Na in terms of element, 10.4 g of K, 0.046 g of Rh in terms of element A catalyst containing 0.93 g of Pt and 0.45 g of Pd was obtained.

排ガス浄化触媒Cの調製:排ガス浄化触媒Aと同様の方法で、コージェライト製ハニカム1リットルに対してアルミナが190g、元素換算でNaが18.2g、Rhが0.139g、Ptが2.792gおよびTiが含有された触媒を得た。Ti原料にはTiOゾルを用い、Ti含有量は元素換算でNaに対してモル(mol)比で0〜1.0とした。 Preparation of exhaust gas purification catalyst C: In the same manner as exhaust gas purification catalyst A, 190 g of alumina, 18.2 g of Na, 0.139 g of Rh, and 2.792 g of Pt in terms of elements with respect to 1 liter of honeycomb made of cordierite A catalyst containing Ti and Ti was obtained. TiO 2 sol was used as the Ti raw material, and the Ti content was 0 to 1.0 in terms of elements (mol) with respect to Na.

排ガス浄化触媒Dの調製:排ガス浄化触媒Aにおいて、Al量をコージェライト製ハニカム1リットルに対して50g〜400gまで変化させた触媒を調製した。
[触媒性能評価方法]
容量6ccの排ガス浄化触媒A、B、Cお呼びDのいずれか1種を石英ガラス製反応管中に固定し、自動車のエンジンが理論空燃比で運転されているときの排ガスを想定したストイキモデルガスと、自動車のエンジンがリ−ンバ−ン運転を行っているときの排ガスを想定したリーンモデルガスを交互に流通させた。また、反応管は電気炉中に導入し、ガス温度を制御できるようにした。ストイキモデルガスの組成は、NOx:1000ppm、C:600ppm、CO:0.5%、CO:5%、O:0.5%、H:0.3%、HO:10%、N:残部である。リ−ンモデルガスの組成は、NOx:600ppm、C:500ppm、CO:0.1%、CO:10%、O:5%、HO:10%、N:残部である。
[実験1:触媒温度低減効果の検討]
反応管内に排ガス浄化触媒Aを固定し、反応管を流通するガスの温度が500℃となるように電気炉の出力を調整して、ストイキモデルガス、リーンモデルガスの順で各3分間流通させた後、電気炉の出力を止め、その後、ストイキモデルガスを3分間流通させた。これを実施例1とする。
Preparation of exhaust gas purification catalyst D: In the exhaust gas purification catalyst A, a catalyst was prepared in which the amount of Al 2 O 3 was changed from 50 g to 400 g with respect to 1 liter of cordierite honeycomb.
[Catalyst performance evaluation method]
A stoichiometric model gas that assumes exhaust gas when an automobile engine is operated at a stoichiometric air-fuel ratio by fixing any one of exhaust gas purifying catalysts A, B, C and nominal D having a capacity of 6 cc in a quartz glass reaction tube. And the lean model gas which assumed the exhaust gas when the engine of the car is performing the lean burn operation was circulated alternately. The reaction tube was introduced into an electric furnace so that the gas temperature could be controlled. The composition of the stoichiometric model gas is NOx: 1000 ppm, C 3 H 6 : 600 ppm, CO: 0.5%, CO 2 : 5%, O 2 : 0.5%, H 2 : 0.3%, H 2 O : 10%, N 2 : balance. The composition of the lean model gas is NOx: 600 ppm, C 3 H 6 : 500 ppm, CO: 0.1%, CO 2 : 10%, O 2 : 5%, H 2 O: 10%, N 2 : balance. .
[Experiment 1: Examination of catalyst temperature reduction effect]
The exhaust gas purification catalyst A is fixed in the reaction tube, the output of the electric furnace is adjusted so that the temperature of the gas flowing through the reaction tube is 500 ° C., and the stoichiometric model gas and the lean model gas are allowed to flow for 3 minutes each. After that, the output of the electric furnace was stopped, and then the stoichiometric model gas was circulated for 3 minutes. This is Example 1.

一方、反応管内に排ガス浄化触媒Aを固定し、ガスの温度を500℃に設定した状態で、ストイキモデルガス、リーンモデルガスおよびストイキモデルガスの順で各3分間づつ流通させた。この実験では電気炉の出力は止めない。これを比較例1とする。   On the other hand, with the exhaust gas purification catalyst A fixed in the reaction tube and the gas temperature set to 500 ° C., the stoichiometric model gas, the lean model gas, and the stoichiometric model gas were circulated for 3 minutes each in this order. The power of the electric furnace is not stopped in this experiment. This is referred to as Comparative Example 1.

図1に、下記の式で求めたNOx浄化率とガス流通時間との関係を示す。
NOx浄化率(%)=((触媒に流入したNOx量)−(触媒から流出したNOx量))÷(触媒に流入したNOx量)×100
実施例1の場合は、ストイキに移行してから約1分後にガス温度は460℃にまで低下していた。図1より、実施例1の方が比較例1の場合よりもストイキ移行後のNOx浄化率が高く、ストイキ移行直前にガス温度を低下させると、触媒流通後の排ガス中のNOx量を減少できることが明らかとなった。
[実験2:触媒温度低減効果の検討]
反応管内に排ガス浄化触媒Bを固定し、反応管を流通するガスの温度を400℃に設定した状態で、ストイキモデルガス、リーンモデルガスの順で各3分間流通させた後、電気炉の出力を止める、或いは電気炉を開放し、ストイキモデルガスを3分間流通させた。これを実施例2とする。
FIG. 1 shows the relationship between the NOx purification rate obtained by the following formula and the gas circulation time.
NOx purification rate (%) = ((NOx amount flowing into the catalyst) − (NOx amount flowing out from the catalyst)) ÷ (NOx amount flowing into the catalyst) × 100
In the case of Example 1, the gas temperature was reduced to 460 ° C. about 1 minute after the shift to stoichiometry. As shown in FIG. 1, the NOx purification rate after the stoichiometric transition is higher in the first embodiment than in the comparative example 1, and the NOx amount in the exhaust gas after the catalyst circulation can be reduced by reducing the gas temperature immediately before the stoichiometric transition. Became clear.
[Experiment 2: Examination of catalyst temperature reduction effect]
After the exhaust gas purification catalyst B is fixed in the reaction tube and the temperature of the gas flowing through the reaction tube is set to 400 ° C., the stoichiometric model gas and the lean model gas are circulated for 3 minutes in this order, and then the output of the electric furnace Or the electric furnace was opened and stoichiometric model gas was circulated for 3 minutes. This is Example 2.

一方、反応管内に排ガス浄化触媒Bを固定し、ガスの温度を400℃に設定した状態で、ストイキモデルガス、リーンモデルガスおよびストイキモデルガスの順で各3分間づつ流通させた。この実験では電気炉の出力は止めない。これを比較例2とする。   On the other hand, with the exhaust gas purification catalyst B fixed in the reaction tube and the gas temperature set at 400 ° C., the stoichiometric model gas, the lean model gas, and the stoichiometric model gas were circulated for 3 minutes each in this order. The power of the electric furnace is not stopped in this experiment. This is referred to as Comparative Example 2.

実施例2の場合は、ストイキに移行してから1分後にガス温度は320℃〜380℃にまで低下していた。以上の実施例1と比較例2について、リーンからストイキに移行して1分後のNOx浄化率を、下記の式により求めた。   In the case of Example 2, the gas temperature was lowered to 320 ° C. to 380 ° C. 1 minute after the transition to stoichiometry. For Example 1 and Comparative Example 2 described above, the NOx purification rate one minute after shifting from lean to stoichiometric was determined by the following equation.

ストイキNOx浄化率(%)=((ストイキに移行し1分後に触媒に流入したNOx量)−(ストイキに移行し1分後に触媒から流出したNOx量))÷(ストイキに移行し1分後に触媒に流入したNOx)×100
図2に、ストイキに移行し1分後のガス温度とNOx浄化率との関係を示す。ガス温度が400℃のときのNOx浄化率が比較例2のものである。図2より、ストイキに移行し1分後のガス温度が低いほど、ストイキNOx浄化率は高くなっており、これより、ストイキに移行しながらガス温度を低下させると、触媒流通後の排ガスのNOx量を減少できることが明らかとなった。
[実験3:Ti共存効果の検討]
反応管内に排ガス浄化触媒Cを固定し、反応管を流通するガスの温度を400℃に設定した状態で、ストイキモデルガス、リーンモデルガスの順で各3分間流通させた後、電気炉の出力を止めてストイキモデルガスを3分間流通させた。リーンからストイキに移行して1分後にガス温度は380℃にまで低下していた。リーンからストイキに移行し1分後の排ガス浄化触媒CのストイキNOx浄化率とTi量との関係を図3に示す。図3より、Tiを添加すると、ストイキ1分後のNOx浄化率は向上することが分かった。なお、リーンでのNOx浄化率は、Ti量の多少にかかわらず、ほぼ一定であった。図3の結果から、アルカリ量に対してmol比でTi量が0.05以上1.0以下の場合、ストイキに移行直後のストイキNOx浄化率が高くなることが明らかとなった。
[実験4:アルミナ量の検討]
反応管内に排ガス浄化触媒Dを固定し、反応管を流通するガスの温度を400℃に設定した状態で、ストイキモデルガス、リーンモデルガスの順で各3分間流通させた後、電気炉の出力を止めてストイキモデルガスを3分間流通させた。ストイキに移行し1分後にガス温度は380℃にまで低下していた。ストイキに移行し1分後のNOx浄化率とAl量との関係を図4に示す。図4より、アルミナ量が増加するに従い、ストイキ1分後のNOx浄化性能は向上することが分かった。アルミナ量が50g以上では、ストイキNOx浄化率は20%を超えていた。なお、リーンでのNOx浄化率もアルミナ量が増加するに従い、改善される傾向にあった。以上より、アルミナ量がハニカム1リットル対して50g以上400g以下の場合には、ストイキに移行直後のNOx浄化率が高くなり、リーンでのNOx浄化活性の向上とも併せて触媒流通後の排ガス中のNOx量が低くなることは明らかである。
Stooki NOx purification rate (%) = ((NOx amount flowing into the catalyst 1 minute after shifting to stoichiometric) − (NOx amount flowing into the catalyst 1 minute after flowing to stoichiometric)) ÷ (1 minute after shifting to stoichiometric NOx flowing into the catalyst) x 100
FIG. 2 shows the relationship between the gas temperature one minute after the transition to stoichiometry and the NOx purification rate. The NOx purification rate when the gas temperature is 400 ° C. is that of Comparative Example 2. From FIG. 2, the stoichiometric NOx purification rate increases as the gas temperature one minute after the transition to stoichiometry is lower. From this, when the gas temperature is lowered while shifting to the stoichiometry, the NOx of the exhaust gas after the catalyst circulation It became clear that the amount could be reduced.
[Experiment 3: Examination of Ti coexistence effect]
After the exhaust gas purification catalyst C is fixed in the reaction tube and the temperature of the gas flowing through the reaction tube is set to 400 ° C., the stoichiometric model gas and the lean model gas are circulated for 3 minutes in this order, and then the output of the electric furnace The stoichiometric model gas was circulated for 3 minutes. One minute after moving from lean to stoichiometric, the gas temperature had dropped to 380 ° C. FIG. 3 shows the relationship between the stoichiometric NOx purification rate of the exhaust gas purification catalyst C and the Ti amount one minute after shifting from lean to stoichiometric. FIG. 3 shows that the addition of Ti improves the NOx purification rate after 1 minute of stoichiometry. Note that the lean NOx purification rate was substantially constant regardless of the amount of Ti. From the results of FIG. 3, it was found that when the Ti amount is 0.05 or more and 1.0 or less in mol ratio with respect to the alkali amount, the stoichiometric NOx purification rate immediately after the transition to stoichiometry becomes high.
[Experiment 4: Examination of alumina content]
After the exhaust gas purification catalyst D is fixed in the reaction tube and the temperature of the gas flowing through the reaction tube is set to 400 ° C., the stoichiometric gas and the lean model gas are circulated for 3 minutes each in this order, and then the output of the electric furnace The stoichiometric model gas was circulated for 3 minutes. One minute after the transition to stoichiometry, the gas temperature had dropped to 380 ° C. FIG. 4 shows the relationship between the NOx purification rate and the amount of Al 2 O 3 after 1 minute from the transition to stoichiometry. From FIG. 4, it was found that the NOx purification performance after 1 minute of stoichiometry improves as the amount of alumina increases. When the amount of alumina was 50 g or more, the stoichiometric NOx purification rate exceeded 20%. Note that the lean NOx purification rate also tended to improve as the amount of alumina increased. From the above, when the amount of alumina is 50 g or more and 400 g or less with respect to 1 liter of honeycomb, the NOx purification rate immediately after the transition to stoichiometry increases, and in addition to the improvement of lean NOx purification activity, It is clear that the amount of NOx is lowered.

本発明は、低燃費で、排ガス浄化性能が優れた内燃機関の実現に大きく貢献するものであり、産業上の利用可能性は大きい。   The present invention greatly contributes to the realization of an internal combustion engine with low fuel consumption and excellent exhaust gas purification performance, and has a great industrial applicability.

NOx浄化率とガス流通時間との関係を示す特性図。The characteristic view which shows the relationship between NOx purification rate and gas distribution time. ストイキに移行し1分後のNOx浄化率とガス温度との関係を示す特性図。The characteristic view which shows the relationship between NOx purification rate and gas temperature 1 minute after moving to stoiki. ストイキに移行し1分後のNOx浄化率とTi/Na比との関係を示す特性図。The characteristic view which shows the relationship between the NOx purification rate and Ti / Na ratio 1 minute after moving to stoiki. ストイキに移行し1分後のNOx浄化率とアルミナ量との関係を示す特性図。The characteristic view which shows the relationship between the NOx purification rate 1 minute after moving to stoiki and the amount of alumina. 排ガス流路の排ガス浄化触媒上流側に温度低下手段として空気または水を吹き込む手段を備えた排ガス浄化装置の概略図。1 is a schematic view of an exhaust gas purification apparatus provided with means for blowing air or water as temperature lowering means upstream of an exhaust gas purification catalyst in an exhaust gas flow path. エンジン排ガスを吸気系に戻すためのEGRを備えた排ガス浄化装置の概略図。Schematic of the exhaust gas purification apparatus provided with EGR for returning engine exhaust gas to an intake system. 排ガス流路の排ガス浄化触媒よりも後段にNOxセンサを備えた排ガス浄化装置の概略図。Schematic of the exhaust gas purification apparatus provided with the NOx sensor in the back | latter stage rather than the exhaust gas purification catalyst of an exhaust gas flow path. 本発明の排ガス浄化装置を備えた内燃機関の概略図。1 is a schematic view of an internal combustion engine equipped with an exhaust gas purification apparatus of the present invention.

符号の説明Explanation of symbols

9…空気吹き込み装置、10…NOxセンサ、12…排ガス浄化触媒、20…排ガス流路、30…温度低下装置、35…EGR、99…エンジン。   DESCRIPTION OF SYMBOLS 9 ... Air blowing apparatus, 10 ... NOx sensor, 12 ... Exhaust gas purification catalyst, 20 ... Exhaust gas flow path, 30 ... Temperature reduction apparatus, 35 ... EGR, 99 ... Engine.

Claims (13)

空燃比がリーンの排ガスと空燃比がリッチ或いはストイキの排ガスとが流入する内燃機関排ガス流路に、空燃比がリーンのときに排ガス中のNOxを捕捉し、空燃比がストイキまたはリッチのときに捕捉したNOxを還元浄化する排ガス浄化触媒を備えた排ガス浄化装置において、前記排ガス浄化触媒に流入する排ガスの温度と前記排ガス浄化触媒の温度のうち少なくとも一方を低下させる温度低下手段を備え、排ガスの空燃比がリーンの状態からストイキまたはリッチの状態に移行する際に前記温度低下手段により温度低下操作が行われるようにしたことを特徴とする内燃機関の排ガス浄化装置。   When the air-fuel ratio is lean, NOx in the exhaust gas is captured in the internal combustion engine exhaust gas flow path into which the exhaust gas with lean air-fuel ratio and the exhaust gas with rich or stoichiometric air-fuel ratio flows, and when the air-fuel ratio is stoichiometric or rich In the exhaust gas purification apparatus having an exhaust gas purification catalyst for reducing and purifying the trapped NOx, the exhaust gas purification device comprises a temperature reduction means for reducing at least one of the temperature of the exhaust gas flowing into the exhaust gas purification catalyst and the temperature of the exhaust gas purification catalyst, An exhaust gas purifying apparatus for an internal combustion engine, wherein a temperature lowering operation is performed by the temperature lowering means when the air-fuel ratio shifts from a lean state to a stoichiometric or rich state. 請求項1において、前記温度低下手段は、前記排ガス浄化触媒に流入する排ガスに対して空気または水を注入する操作を行うものであることを特徴とする内燃機関の排ガス浄化装置。   2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the temperature lowering means performs an operation of injecting air or water into the exhaust gas flowing into the exhaust gas purification catalyst. 請求項1において、前記温度低下手段は、エンジンの排出ガスの一部をエンジン内に再度循環させる操作を行うものであることを特徴とする内燃機関の排ガス浄化装置。   2. An exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the temperature lowering means performs an operation of circulating a part of the exhaust gas of the engine again in the engine. 請求項1において、前記温度低下手段は、前記排ガス浄化触媒に流入する排ガスの空燃比がリーンの状態からストイキまたはリッチの状態に移行する前あるいは移行する途中で温度低下操作を開始するものであることを特徴とする内燃機関の排ガス浄化装置。   2. The temperature reduction means according to claim 1, wherein the temperature reduction means starts the temperature reduction operation before or during the transition of the air-fuel ratio of the exhaust gas flowing into the exhaust gas purification catalyst from the lean state to the stoichiometric or rich state. An exhaust gas purification apparatus for an internal combustion engine characterized by the above. 請求項1において、前記排ガス浄化触媒は、触媒活性成分としてアルカリ金属とアルカリ土類金属から選ばれた少なくとも1つ、及びPt,Pd,Rhから選ばれた少なくとも1つを含むことを特徴とする内燃機関の排ガス浄化装置。   2. The exhaust gas purifying catalyst according to claim 1, wherein the exhaust gas purifying catalyst includes at least one selected from alkali metals and alkaline earth metals and at least one selected from Pt, Pd, and Rh as catalytic active components. An exhaust gas purification device for an internal combustion engine. 請求項5において、前記排ガス浄化触媒は、触媒活性成分として更にTiを含むことを特徴とする内燃機関の排ガス浄化装置。   6. The exhaust gas purifying apparatus for an internal combustion engine according to claim 5, wherein the exhaust gas purifying catalyst further contains Ti as a catalytic active component. 請求項5または6において、前記排ガス浄化触媒における触媒活性成分が多孔質担体の表面に担持されており、かつ前記多孔質担体としてアルミナを含むことを特徴とする内燃機関の排ガス浄化装置。   7. The exhaust gas purifying apparatus for an internal combustion engine according to claim 5, wherein the catalytically active component in the exhaust gas purifying catalyst is supported on a surface of a porous carrier, and alumina is contained as the porous carrier. 請求項1において、前記温度低下手段は、前記排ガス浄化触媒から流出する排ガスのNOx濃度に応じて温度の下げ幅もしくは温度を下げるタイミングを変更する機能を備えていることを特徴とする内燃機関の排ガス浄化装置。   2. The internal combustion engine according to claim 1, wherein the temperature reduction means has a function of changing a temperature reduction width or a temperature reduction timing in accordance with a NOx concentration of exhaust gas flowing out from the exhaust gas purification catalyst. Exhaust gas purification device. 空燃比がリーンのときに排ガス中のNOxを捕捉し、空燃比がストイキまたはリッチのときに捕捉したNOxを還元浄化する排ガス浄化触媒を内燃機関排ガス流路に設置して排ガスを浄化する方法において、前記排ガス浄化触媒に流入する排ガスの空燃比がリーンの状態からストイキまたはリッチの状態に移行する際に、前記排ガス浄化触媒に流入する排ガスの温度と前記排ガス浄化触媒の温度のうち少なくとも一方を低下させるようにしたことを特徴とする内燃機関の排ガス浄化方法。   In a method for purifying exhaust gas by installing an exhaust gas purification catalyst in an exhaust gas flow path of an internal combustion engine that captures NOx in exhaust gas when the air-fuel ratio is lean and reduces and purifies NOx captured when the air-fuel ratio is stoichiometric or rich When the air-fuel ratio of the exhaust gas flowing into the exhaust gas purification catalyst shifts from a lean state to a stoichiometric or rich state, at least one of the temperature of the exhaust gas flowing into the exhaust gas purification catalyst and the temperature of the exhaust gas purification catalyst is An exhaust gas purification method for an internal combustion engine, characterized in that the exhaust gas is reduced. 請求項9において、前記排ガス浄化触媒に流入する排ガスに対して外部より空気または水を注入して排ガスの温度を下げることを特徴とする内燃機関の排ガス浄化方法。   The exhaust gas purification method for an internal combustion engine according to claim 9, wherein the temperature of the exhaust gas is lowered by injecting air or water from the outside to the exhaust gas flowing into the exhaust gas purification catalyst. 請求項9において、エンジンの排出ガスの一部をエンジン内に再度循環させることにより排ガスの温度を下げることを特徴とする内燃機関の排ガス浄化方法。   The exhaust gas purification method for an internal combustion engine according to claim 9, wherein the temperature of the exhaust gas is lowered by circulating a part of the exhaust gas of the engine again in the engine. 請求項9において、前記排ガス浄化触媒に流入する排ガスの空燃比がリーンの状態からストイキまたはリッチの状態に移行する前或いは移行する途中で、前記排ガスの温度と前記排ガス浄化触媒の温度のうち少なくとも一方を低下させるようにしたことを特徴とする内燃機関の排ガス浄化方法。   In Claim 9, before or during the transition of the air-fuel ratio of the exhaust gas flowing into the exhaust gas purification catalyst from the lean state to the stoichiometric or rich state, at least of the temperature of the exhaust gas and the temperature of the exhaust gas purification catalyst An exhaust gas purification method for an internal combustion engine, wherein one of the two is reduced. 請求項9において、前記排ガス浄化触媒から流出する排ガスのNOx量に応じて、前記排ガス浄化触媒に流入する排ガスの温度の下げ幅もしくは下げるタイミングを変化させるようにしたことを特徴とする内燃機関の排ガス浄化方法。
10. The internal combustion engine according to claim 9, wherein the temperature reduction width or timing of the exhaust gas flowing into the exhaust gas purification catalyst is changed according to the NOx amount of the exhaust gas flowing out from the exhaust gas purification catalyst. Exhaust gas purification method.
JP2004289824A 2004-10-01 2004-10-01 Exhaust emission control device and exhaust emission control method of internal combustion engine Abandoned JP2006104966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004289824A JP2006104966A (en) 2004-10-01 2004-10-01 Exhaust emission control device and exhaust emission control method of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004289824A JP2006104966A (en) 2004-10-01 2004-10-01 Exhaust emission control device and exhaust emission control method of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006104966A true JP2006104966A (en) 2006-04-20

Family

ID=36375008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004289824A Abandoned JP2006104966A (en) 2004-10-01 2004-10-01 Exhaust emission control device and exhaust emission control method of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006104966A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160064422A (en) * 2014-11-28 2016-06-08 현대중공업 주식회사 Apparatus for controlling supplying of reducing agent in selective catalytic reduction system
US11808227B2 (en) 2021-11-24 2023-11-07 Kabushiki Kaisha Toyota Jidoshokki Control unit for internal combustion engine system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200049A (en) * 1994-11-25 1996-08-06 Toyota Motor Corp Exhaust emission control device
JP2001214734A (en) * 2000-02-03 2001-08-10 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2002339736A (en) * 2001-03-15 2002-11-27 Isuzu Motors Ltd Nitrogen oxide storage reduction type catalyst, exhaust emission control system having the catalyst, and exhaust emission control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200049A (en) * 1994-11-25 1996-08-06 Toyota Motor Corp Exhaust emission control device
JP2001214734A (en) * 2000-02-03 2001-08-10 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2002339736A (en) * 2001-03-15 2002-11-27 Isuzu Motors Ltd Nitrogen oxide storage reduction type catalyst, exhaust emission control system having the catalyst, and exhaust emission control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160064422A (en) * 2014-11-28 2016-06-08 현대중공업 주식회사 Apparatus for controlling supplying of reducing agent in selective catalytic reduction system
US11808227B2 (en) 2021-11-24 2023-11-07 Kabushiki Kaisha Toyota Jidoshokki Control unit for internal combustion engine system

Similar Documents

Publication Publication Date Title
US6729125B2 (en) Exhaust gas purifying system
US9810120B2 (en) Exhaust gas purifying system
US6276132B1 (en) Exhaust gas purifying system
WO2007138874A1 (en) NOx REDUCTION CATALYST, NOx REDUCTION CATALYST SYSTEM, AND METHOD FOR REDUCING NOx
KR100370486B1 (en) Internal combustion engine exhaust gas purification apparatus, exhaust gas purification process and exhaust gas purification catalyst
MX2013003568A (en) Lean nox trap type exhaust gas purification catalyst and exhaust gas purification system.
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
JP4852595B2 (en) Exhaust gas purification catalyst
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP2003144926A (en) Catalyst for cleaning exhaust gas of internal combustion engine, exhaust gas cleaning method and exhaust gas cleaning apparatus
JP4254208B2 (en) Internal combustion engine exhaust gas purification device, purification method and catalyst
JP3965793B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP2006104966A (en) Exhaust emission control device and exhaust emission control method of internal combustion engine
JP3925015B2 (en) Internal combustion engine exhaust gas purification device, purification method, and purification catalyst
JP2002168117A (en) Exhaust emission control system
JP4039128B2 (en) Exhaust gas purification catalyst, exhaust gas purification method and exhaust gas purification device for internal combustion engine
JP4073168B2 (en) Exhaust gas purification method for internal combustion engine, exhaust gas purification device, and exhaust gas purification catalyst
JP2004100483A (en) Exhaust gas cleaning method
EP2788118B1 (en) Exhaust gas cleaning catalyst apparatus with control unit, exhaust gas cleaning method using said apparatus
JPH11247654A (en) Exhaust emission control device using nox stored and reduced type three-way catalyst
JP3825264B2 (en) Internal combustion engine exhaust gas purification catalyst, internal combustion engine using the same, and exhaust gas purification method therefor
JP2011136278A (en) Exhaust gas treatment catalyst, exhaust gas cleaning method using the same, and exhaust gas cleaning apparatus
JP3812791B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2005090426A (en) Exhaust emission control system
JP2003200061A (en) Exhaust gas purifying catalyst and exhaust gas purifying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20091002