JP2006104605A - Functional fiber having photocatalyst activity - Google Patents

Functional fiber having photocatalyst activity Download PDF

Info

Publication number
JP2006104605A
JP2006104605A JP2004291378A JP2004291378A JP2006104605A JP 2006104605 A JP2006104605 A JP 2006104605A JP 2004291378 A JP2004291378 A JP 2004291378A JP 2004291378 A JP2004291378 A JP 2004291378A JP 2006104605 A JP2006104605 A JP 2006104605A
Authority
JP
Japan
Prior art keywords
fiber
fine particles
metal oxide
oxide fine
functional fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004291378A
Other languages
Japanese (ja)
Other versions
JP4560778B2 (en
Inventor
Yoshihiro Watanabe
義弘 渡辺
Koichi Tanaka
孝一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP2004291378A priority Critical patent/JP4560778B2/en
Priority to KR1020067017526A priority patent/KR101250109B1/en
Priority to CN2005800070484A priority patent/CN1930331B/en
Priority to PCT/JP2005/017271 priority patent/WO2006038452A1/en
Publication of JP2006104605A publication Critical patent/JP2006104605A/en
Application granted granted Critical
Publication of JP4560778B2 publication Critical patent/JP4560778B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Catalysts (AREA)
  • Multicomponent Fibers (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a functional fiber sufficiently utilizing photocatalyst functions of a metal oxide having a photocatalyst activity and having various functions such as deodorizing, antimicrobial, mildewproofing and anti-staining properties. <P>SOLUTION: The functional fiber is characterized as follows. The fiber has a multilayer structure comprising porous layers and dense layers alternately arranged and metal oxide fine particles having the photocatalyst activity are contained in the dense layers. The pore surface area of the fiber is preferably within the range of 10-40 m<SP>2</SP>/g and the metal oxide fine particles are preferably titanium oxide. The particle diameter of the metal oxide fine particles is preferably 10-100 nm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光触媒活性を有する機能性繊維に関する。さらに、詳細には、光触媒活性を十分活用でき、消臭性、抗菌・抗黴性、防汚性などさまざまな機能を有する機能性繊維に関する。 The present invention relates to a functional fiber having photocatalytic activity. More specifically, the present invention relates to a functional fiber that can fully utilize the photocatalytic activity and has various functions such as deodorizing property, antibacterial / antifungal property, and antifouling property.

近年、酸化チタン等の光触媒活性を有する金属化合物が注目を集めており、消臭、抗菌、抗黴、防汚など種々の用途への応用が提案されている。かかる光触媒活性を有する金属化合物を含有せしめた繊維製品も提案されている。しかしながら、光触媒活性を有する金属化合物は、母体となる繊維自体を劣化させる、あるいは繊維中に含有されたものは、その機能を発現できないなどの問題があり、光触媒活性を十分活用できる繊維は未だに得られていないのが現状である。 In recent years, metal compounds having photocatalytic activity such as titanium oxide have attracted attention, and application to various uses such as deodorizing, antibacterial, antifungal and antifouling has been proposed. A fiber product containing a metal compound having such photocatalytic activity has also been proposed. However, metal compounds having photocatalytic activity have problems such as degradation of the base fiber itself, or those contained in the fiber cannot exhibit their functions, and fibers that can fully utilize the photocatalytic activity have not yet been obtained. The current situation is not.

例えば、消臭機能を例にとってみると、従来の光触媒活性を有さないものであれば、吸着剤を繊維に担持させた消臭性繊維、あるいはミクロボイドを有する活性炭繊維などが提案されている。これらの繊維は悪臭成分を吸着剤やミクロボイド内に吸着しているため、飽和吸着量を超えると悪臭を除去できなくなるという問題を有している。 For example, taking the deodorizing function as an example, as long as it does not have a conventional photocatalytic activity, a deodorizing fiber in which an adsorbent is supported on the fiber or an activated carbon fiber having a microvoid has been proposed. Since these fibers adsorb malodorous components in adsorbents and microvoids, there is a problem that malodorous odors cannot be removed when the saturated adsorption amount is exceeded.

そこで近年、酸化チタン等の光触媒活性を有する金属酸化物等を繊維に含有せしめた消臭性繊維が提案されている。例えば、特許文献1には、光触媒と吸着剤を含有してなる消臭性繊維が開示されており、芯部より鞘部の光触媒濃度が高い芯鞘型の構造を有する繊維が好ましいとしている。かかる繊維によると、悪臭成分は光触媒により分解されるため、飽和吸着量を超えると悪臭を除去できなくなるという問題は解消される。しかしながら、かかる芯鞘構造の繊維では、繊維表面にしか悪臭成分が吸着しないため吸着能力に乏しく、従って光触媒機能を有効に利用しているとは言い難い。 In recent years, deodorant fibers have been proposed in which metal oxides having photocatalytic activity such as titanium oxide are contained in the fibers. For example, Patent Document 1 discloses a deodorizing fiber containing a photocatalyst and an adsorbent, and a fiber having a core-sheath structure in which the concentration of the photocatalyst in the sheath is higher than that in the core is preferable. According to such a fiber, since the malodorous component is decomposed by the photocatalyst, the problem that the malodor cannot be removed when the saturated adsorption amount is exceeded is solved. However, in such a core-sheath structure fiber, malodorous components are adsorbed only on the surface of the fiber, so that the adsorption capacity is poor, and therefore it cannot be said that the photocatalytic function is effectively utilized.

光触媒機能を活用するため、多孔質繊維中に光触媒活性を有する金属酸化物等を含有させるという提案もある(例えば、特許文献2)。 この方法によると、繊維の表面積が増え、表層部に存在する金属酸化物が増えるため、光触媒機能を有効に利用することができるように思えるが、紡績加工性(静電気発生)、染色性(発色性)等に難点があり、さらに、表層部の金属酸化物微粒子は、紡績、染色等の工程、あるいは洗濯等で容易に脱落してしまうため、やはり十分な消臭効果が得られないという問題がある。 In order to utilize the photocatalytic function, there is also a proposal to include a metal oxide having photocatalytic activity in a porous fiber (for example, Patent Document 2). According to this method, the surface area of the fiber increases and the metal oxide present in the surface layer increases, so it seems that the photocatalytic function can be used effectively, but spinning processability (electrostatic generation), dyeability (color development) In addition, the metal oxide fine particles in the surface layer portion easily fall off during spinning, dyeing, or the like, or washing, so that a sufficient deodorizing effect cannot be obtained. There is.

一方、光触媒は母体である繊維自体も分解してしまうため、繊維が変色したり、強度が低下するという問題もある。そのため、特許文献3においては、酸化チタンと酸化ケイ素を含有する複合金属酸化微粒子を用いている。かかる微粒子を用いることによって、繊維の変色や強度低下をある程度抑えることができている。しかしながら、かかる特殊な微粒子を用いることによって、コストが高くなること、また消臭能力に対しては該微粒子の量が多いほうが好ましく、量を増やすと依然として、繊維が変色したり強度が低下したりするという問題がある。
特開平8−284011号公報 特開平10−57816号公報 特開2004−162245号公報
On the other hand, since the photocatalyst also degrades the base fiber itself, there is a problem that the fiber is discolored or the strength is lowered. Therefore, in Patent Document 3, composite metal oxide fine particles containing titanium oxide and silicon oxide are used. By using such fine particles, discoloration and strength reduction of the fiber can be suppressed to some extent. However, the use of such special fine particles increases the cost, and it is preferable that the amount of the fine particles is large for the deodorizing ability. If the amount is increased, the fiber is still discolored or the strength is decreased. There is a problem of doing.
JP-A-8-284011 JP-A-10-57816 JP 2004-162245 A

本発明は、上記従来の問題点に鑑みなされたものであり、その課題は、光触媒機能を十分活用できる機能性繊維を提供することにある。 This invention is made | formed in view of the said conventional problem, The subject is providing the functional fiber which can fully utilize a photocatalytic function.

本発明者は、上述の目的を達成するために鋭意検討を進めた結果、以下に示す本発明に到達した。 As a result of diligent studies to achieve the above-mentioned object, the present inventor has reached the present invention shown below.

(1)多孔質層と緻密層が交互に配列した多層構造繊維であって、かつ、光触媒活性を有する金属酸化物微粒子が緻密層に含有されていることを特徴とする機能性繊維。
(2)繊維の細孔表面積が10〜40m/gの範囲であることを特徴とする(1)記載の機能性繊維。
(3)金属酸化物微粒子が酸化チタンであることを特徴とする(1)または(2)に記載の機能性繊維。
(4)金属酸化物微粒子の粒子径が10〜100nmの範囲であることを特徴とする(1)〜(3)のいずれかに記載の機能性繊維。
(5)繊維の母体100重量部に対して、金属酸化物微粒子が1〜10重量部含有されていることを特徴とする(1)〜(4)のいずれかに記載の機能性繊維。
(6)アクリロニトリル系重合体からなる多層構造繊維であることを特徴とする請求項(1)〜(5)のいずれかに記載の機能性繊維。
(1) A functional fiber characterized in that it is a multilayer structure fiber in which a porous layer and a dense layer are alternately arranged, and metal oxide fine particles having photocatalytic activity are contained in the dense layer.
(2) The functional fiber according to (1), wherein the pore surface area of the fiber is in the range of 10 to 40 m 2 / g.
(3) The functional fiber according to (1) or (2), wherein the metal oxide fine particles are titanium oxide.
(4) The functional fiber according to any one of (1) to (3), wherein the particle diameter of the metal oxide fine particles is in the range of 10 to 100 nm.
(5) The functional fiber according to any one of (1) to (4), wherein 1 to 10 parts by weight of metal oxide fine particles are contained with respect to 100 parts by weight of the fiber matrix.
(6) The functional fiber according to any one of (1) to (5), wherein the functional fiber is a multilayer structure fiber made of an acrylonitrile-based polymer.

本発明の機能性繊維は、光触媒活性を有する金属酸化物微粒子が、多孔質層と緻密層が交互に配列した多層構造繊維の緻密層に含有されているため、紡績性、染色性などの加工性に優れており、かつ光触媒機能が有効に活用できる。そのため、さまざまな種類の悪臭を効果的に分解して消臭することができ、さらに、抗菌性、抗黴性、防汚性など、種々の機能を有していることから、多様な用途に応用できる。 In the functional fiber of the present invention, metal oxide fine particles having photocatalytic activity are contained in a dense layer of a multilayer structure fiber in which a porous layer and a dense layer are alternately arranged. The photocatalytic function can be effectively utilized. Therefore, various kinds of bad odors can be effectively decomposed and deodorized, and furthermore, since they have various functions such as antibacterial properties, anti-fouling properties, and antifouling properties, they can be used in various applications. Can be applied.

以下に本発明を詳細に説明する。まず、本発明において、母体となる繊維は、多孔質層と緻密層が繊維断面方向に交互に配列した多層構造繊維である。多層構造繊維の層数としては、一層の多孔質層と一層の緻密層からなる二層以上の多層構造を有するものであり、三層以上の場合は、かかる多孔質層と緻密層が交互に配列している必要がある。
さらに、光触媒活性を有する金属酸化物微粒子は緻密層側に含有されている必要がある。緻密層側に含有されていれば、多孔質層側にも含有されていても構わないが、多孔質層側の微粒子は脱落しやすいため、また、緻密層側に含有されていれば十分な機能が得られるため、コストの面からも緻密層側にのみ含有せしめる方が好ましい。
The present invention is described in detail below. First, in the present invention, the base fiber is a multilayer structure fiber in which porous layers and dense layers are alternately arranged in the fiber cross-sectional direction. As the number of layers of the multilayer structure fiber, it has a multilayer structure of two or more layers composed of one porous layer and one dense layer. In the case of three or more layers, the porous layer and the dense layer are alternately arranged. Must be arranged.
Furthermore, the metal oxide fine particles having photocatalytic activity must be contained on the dense layer side. If it is contained on the dense layer side, it may be contained also on the porous layer side, but the fine particles on the porous layer side are easy to fall off, and if it is contained on the dense layer side, it is sufficient. From the viewpoint of cost, it is preferable to contain only in the dense layer side in order to obtain the function.

本発明において母体となる繊維は多孔質層と緻密層が交互に配列した多層構造繊維であるが、該繊維の細孔表面積は10〜40m/gの範囲であることが好ましく、更に好ましくは20〜40m/gの範囲である。該繊維の細孔表面積が10m/g未満の場合は、悪臭成分の吸着面積が小さくなるなど、光触媒機能を十分活用できない場合がある。また、40m/gを超える場合には紡績性(静電気)、染色性(発色性)等の加工性に難を生ずる可能性がある。 In the present invention, the base fiber is a multilayer structure fiber in which a porous layer and a dense layer are alternately arranged, and the pore surface area of the fiber is preferably in the range of 10 to 40 m 2 / g, more preferably. The range is 20 to 40 m 2 / g. When the pore surface area of the fiber is less than 10 m 2 / g, the photocatalytic function may not be sufficiently utilized, for example, the adsorption area of malodorous components becomes small. Moreover, when it exceeds 40 m < 2 > / g, there exists a possibility of producing difficulty in workability, such as spinnability (electrostatic property) and dyeability (coloring property).

光触媒活性を有する金属酸化物微粒子は、紫外線照射によりその表面で電子と正孔が発生し、周囲の水や酸素から強力な酸化力を有する活性酸素を発生させる物質である。具体的には、Se、Ge、Si、Ti、Zn、Cu、Al、Sn、Ga、In、P、As、Sb、C、Cd、S、Te、Ni、Fe、Co、Ag、Mo、Sr、W、Cr、Ba、Pb等の酸化物などの化合物であって水に不溶のものが挙げられる。これらの中でも酸化チタン、酸化亜鉛及び酸化タングステンから選ばれる1種を単独で又は2種以上を組み合わせたものが好適であり、さらに、安全性や価格の面から酸化チタンを用いるのが好ましい。 The metal oxide fine particles having photocatalytic activity are substances that generate electrons and holes on the surface thereof by ultraviolet irradiation and generate active oxygen having strong oxidizing power from surrounding water and oxygen. Specifically, Se, Ge, Si, Ti, Zn, Cu, Al, Sn, Ga, In, P, As, Sb, C, Cd, S, Te, Ni, Fe, Co, Ag, Mo, Sr , W, Cr, Ba, Pb and other compounds such as oxides which are insoluble in water. Among these, one selected from titanium oxide, zinc oxide and tungsten oxide alone or in combination of two or more is preferable, and titanium oxide is preferably used from the viewpoint of safety and price.

また、光触媒活性を有する金属酸化物微粒子の粒子径は、特に限定されるものではないが、平均一次粒子径として10〜100nmの範囲にあることが好ましく、更に好ましくは15〜50nm、より好ましくは15〜30nmの範囲である。無論、平均一次粒子径が小さいほど光触媒としての活性は高いわけであるが、平均一次粒子径が10nm未満の場合、繊維に含有させる際の取り扱い性(粉塵)、及び分散性(凝集性)に問題を生ずる可能性がある。一方、平均一次粒子径が100nmを超える場合には、十分な機能が得られない可能性がある。 Further, the particle diameter of the metal oxide fine particles having photocatalytic activity is not particularly limited, but the average primary particle diameter is preferably in the range of 10 to 100 nm, more preferably 15 to 50 nm, more preferably. It is the range of 15-30 nm. Of course, the smaller the average primary particle diameter is, the higher the activity as a photocatalyst is. However, when the average primary particle diameter is less than 10 nm, the handleability (dust) and dispersibility (aggregation) when contained in the fiber are improved. May cause problems. On the other hand, when the average primary particle diameter exceeds 100 nm, there is a possibility that a sufficient function cannot be obtained.

光触媒活性を有する金属酸化物微粒子の量は、必要とされる消臭性、抗菌・抗黴性、防汚性等の能力に応じて広い範囲から選択できる。該微粒子の量が少ないと、必要な能力が得られない場合があり、また多すぎると能力としては優れているものの、母体繊維を劣化させたり、繊維の物性を損なう恐れがあるため、繊維の母体100重量部に対して1〜10重量部であることが好ましく、より好ましくは1.5〜5重量部である。 The amount of the metal oxide fine particles having photocatalytic activity can be selected from a wide range according to the required deodorizing properties, antibacterial / antifungal properties, antifouling properties and the like. If the amount of the fine particles is small, the required ability may not be obtained. If the amount is too large, the ability is excellent, but the base fiber may be deteriorated or the physical properties of the fiber may be impaired. The amount is preferably 1 to 10 parts by weight, more preferably 1.5 to 5 parts by weight, based on 100 parts by weight of the base material.

上述したように本発明の機能性繊維は、多孔質層と緻密層が交互に配列した多層構造繊維であり、同種あるいは異種の重合体からなる所謂複合繊維である。かかる重合体は、繊維を形成しうるものであれば、単独重合体でも共重合体でもよく、例えば、ポリエステル繊維、ポリアミド繊維、ポリオレフィン系繊維、エチレン−ビニルアルコール系共重合体繊維、ポリ塩化ビニル系繊維、ポリ塩化ビニリデン系繊維、ポリウレタン繊維、アクリル系繊維、ポリビニルアルコール系繊維、ポリクラール繊維、フッ素系繊維、蛋白−アクリロニトリル共重合体系繊維、ポリグリコール酸繊維、フェノール樹脂繊維などの合成繊維、アセテート繊維などの半合成繊維、レーヨン、キュプラなどの再生繊維を形成する重合体が例示される。中でも、アクリロニトリル系重合体からなるアクリル系繊維は、光触媒活性に対し耐性が高いことから、本発明繊維の母体繊維として最も好適なものである。 As described above, the functional fiber of the present invention is a multi-layer structure fiber in which a porous layer and a dense layer are alternately arranged, and is a so-called composite fiber made of the same or different polymers. Such a polymer may be a homopolymer or a copolymer as long as it can form fibers, such as polyester fibers, polyamide fibers, polyolefin fibers, ethylene-vinyl alcohol copolymer fibers, polyvinyl chloride. Fiber, polyvinylidene chloride fiber, polyurethane fiber, acrylic fiber, polyvinyl alcohol fiber, polyclar fiber, fluorine fiber, protein-acrylonitrile copolymer fiber, polyglycolic acid fiber, synthetic resin such as phenol resin fiber, acetate Examples thereof include polymers forming semi-synthetic fibers such as fibers and regenerated fibers such as rayon and cupra. Among them, acrylic fiber made of acrylonitrile polymer is most suitable as a base fiber of the fiber of the present invention because it has high resistance to photocatalytic activity.

多層構造繊維を得るための手段としては、それ自体公知の複合繊維の製造方法(サイドバイサイド型、ランダム複合型)から任意に選択出来るが、好ましくは特公昭59−7802号公報記載のような2成分の紡糸原液を任意のエレメント数を設置した登録商標名Kenics Mixer(米国ケニックス社製)、ISG Mixerを通過させた後、口金導入孔の分流板で複合流を導き吐出するいわゆるランダム複合型を採用することによって本発明の目的を有利に達成することが出来る。 The means for obtaining the multilayer structure fiber can be arbitrarily selected from known composite fiber production methods (side-by-side type, random composite type), but preferably two components as described in JP-B-59-7802 The so-called random composite type is used, in which the stock solution of Kenys Mixer (manufactured by Kenix, USA) and ISG Mixer, which has an arbitrary number of elements, are passed through the spinning stock solution and the composite flow is guided and discharged by the flow dividing plate of the die introduction hole. By doing so, the object of the present invention can be advantageously achieved.

また、本発明の機能性繊維は、多孔質層と緻密層を有することが必要である。かかる構造の繊維は、公知の多孔質繊維を製造する方法と、通常の緻密繊維を製造する技術を組み合わせることによって得ることができる。例えば多孔質層側の紡糸原液に母体繊維となる重合体と相溶性の低い重合体を添加し、相分離によりキャピラリー状の多孔質構造を得る方法、非揮発性溶媒を多孔質層側の紡糸原液に添加し、紡糸後に該溶媒を抽出することにより多孔質構造を得る方法、また、製造工程中の膨潤ゲルトウに水溶性化合物を充填し、乾燥、後処理の後で充填物を溶出させ多孔質を得る方法、あるいは緻密化条件の異なる同種又は異種の重合体を用い、一方の重合体のみが緻密化する条件で処理を行う方法等を挙げることができる。   Further, the functional fiber of the present invention needs to have a porous layer and a dense layer. The fiber having such a structure can be obtained by combining a known method for producing porous fibers and a technique for producing ordinary dense fibers. For example, a method of adding a polymer having low compatibility with the polymer serving as the base fiber to the spinning solution on the porous layer side to obtain a capillary porous structure by phase separation, spinning a non-volatile solvent on the porous layer side A method for obtaining a porous structure by adding to the stock solution and extracting the solvent after spinning, and filling the swollen gel tow during the production process with a water-soluble compound, followed by drying and post-treatment to elute the packed material and make it porous Examples thereof include a method for obtaining quality, or a method in which the same or different polymers having different densification conditions are used, and the treatment is carried out under the condition that only one polymer is densified.

以下に、本発明の機能性繊維の製法の一例として、アクリロニトリル含有量の異なる2種類の重合体を用いたアクリル系繊維の製法について詳述する。まず、ポリアクリロニトリル系重合体としては、単独重合体、公知のモノマーとの共重合体を用いることができるが、混在して繊維を構成する2種類の重合体共にアクリロニトリル(以下、ANともいう)比率が60重量%以上、より好ましくは80重量%以上であることが望ましい。また2種類の重合体のアクリロニトリル含有量の差は、同じ紡糸条件で、一方を多孔質層、他方を緻密層とするためには、それぞれの緻密化条件にある程度の差が必要となるため、その差が1重量%以上、好ましくは2重量%以上であるものが好ましい。 Below, the manufacturing method of the acrylic fiber using two types of polymers from which acrylonitrile content differs as an example of the manufacturing method of the functional fiber of this invention is explained in full detail. First, as the polyacrylonitrile-based polymer, a homopolymer or a copolymer with a known monomer can be used, but acrylonitrile (hereinafter also referred to as AN) is used for both of the two types of polymers that are mixed to form a fiber. It is desirable that the ratio is 60% by weight or more, more preferably 80% by weight or more. Also, the difference in the acrylonitrile content of the two types of polymers requires a certain degree of difference in the respective densification conditions in order to make one porous layer and the other dense layer under the same spinning conditions. It is preferable that the difference is 1% by weight or more, preferably 2% by weight or more.

共重合に用いられるコモノマーとしては重合性不飽和ビニル化合物など、アクリロニトリルと共重合するものであれば特に制限はなく、例えばアルキルアクリレート、アルキルメタクリレート、アクリル酸、メタクリル酸、メタクリロニトリル、アクリルアミド、塩化ビニル、臭化ビニル、フッ化ビニル、塩化ビニリデン、臭化ビニリデン、スチレン、スチレンスルホン酸、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸塩、アリルスルホン酸塩、メタリルスルホン酸塩、エチレン、プロピレン等を使用することができる。 The comonomer used for copolymerization is not particularly limited as long as it is copolymerizable with acrylonitrile, such as a polymerizable unsaturated vinyl compound. For example, alkyl acrylate, alkyl methacrylate, acrylic acid, methacrylic acid, methacrylonitrile, acrylamide, chloride Vinyl, vinyl bromide, vinyl fluoride, vinylidene chloride, vinylidene bromide, styrene, styrene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, styrene sulfonate, allyl sulfonate, methallyl sulfonate, ethylene, Propylene or the like can be used.

以上のような2種類のアクリロニトリル系重合体を混在させ繊維を形成させる方法としては、2種類のアクリロニトリル系重合体をそれぞれ単独にポリアクリロニトリルの溶剤に溶解した後、その重合体溶液を特定の紡糸装置・口金に導きサイドバイサイド型とする方法、2種類の重合体溶液を原液多層形成装置を通して紡糸口金に導きランダム複合型とする方法などが挙げられる。中でもランダム複合型が2層を超える多層構造の繊維が得られるため推奨される。なお、光触媒活性を有する金属酸化物微粒子は、緻密層側の重合体溶液に添加、あるいは重合体に添加して紡糸原液を作成する。 As a method of forming a fiber by mixing the two kinds of acrylonitrile polymers as described above, after dissolving two kinds of acrylonitrile polymers individually in a solvent of polyacrylonitrile, the polymer solution is subjected to specific spinning. Examples thereof include a method of introducing a side-by-side type into an apparatus / die, and a method of introducing a random composite type by introducing two types of polymer solutions into a spinning die through an undiluted multilayer forming apparatus. Above all, the random composite type is recommended because it can obtain a fiber having a multilayer structure exceeding two layers. The metal oxide fine particles having photocatalytic activity are added to the polymer solution on the dense layer side or added to the polymer to prepare a spinning dope.

かかるランダム複合型のアクリル系繊維の製造は、例えば以下のようにして行われる。まず、それぞれの重合体を溶剤に溶解して2種の紡糸原液(a,b)とする。この2種の原液a,bは原液多層形成装置に導かれる。かかる装置の例としてはスタティックミキサーである登録商標名Kenics
mixer,あるいはISG mixer等が挙げられるが、該装置は原液を通過させることにより供給側の原液層数の2〜10倍の原液層数として出口側から送出するものである。かかる装置を複数段使用することで形成される原液の層数は自由に設定できる。
Such a random composite type acrylic fiber is manufactured, for example, as follows. First, the respective polymers are dissolved in a solvent to obtain two spinning stock solutions (a, b). These two types of stock solutions a and b are guided to a stock solution multilayer forming apparatus. An example of such an apparatus is the registered trade name Kenics, which is a static mixer.
A mixer, an ISG mixer, and the like can be mentioned, and the apparatus sends the stock solution from the outlet side as the number of stock solution layers 2 to 10 times the number of stock solution layers on the supply side. The number of layers of the stock solution formed by using a plurality of such devices can be freely set.

原液多層形成装置の出口側には紡糸口金を装着する。a,b,a,b‥‥の如くにn層に形成された原液がホール数Hを持つ紡糸口金に供給される場合、紡出孔1ホールに供給される原液層数は平均的にはn/H0.5に比例する。比例係数は原液多層形成装置や紡糸口金の形状(紡出孔の配置)、該口金の取り付け方向等の装置条件に依存するので、1本の繊維の断面に要求される層の数に応じてこれらの条件を適合させるのである。 A spinneret is mounted on the outlet side of the stock solution multilayer forming apparatus. When the stock solution formed in the n layer as a, b, a, b,... is supplied to a spinneret having a hole number H, the number of stock solution layers supplied to one hole of the spinning hole is on average. It is proportional to n / H 0.5 . The proportionality coefficient depends on the apparatus conditions such as the stock solution multilayer forming apparatus, the shape of the spinneret (arrangement of spinning holes), the direction of attachment of the base, and so on, depending on the number of layers required for the cross section of one fiber These conditions are met.

紡糸口金から吐出された紡糸原液は凝固、水洗、延伸の各工程を経て、続いて湿熱処理を行う。この際、一方が緻密層、他方が多孔質層となるように、凝固条件、湿熱処理条件を設定する。なおここでいう湿熱処理とは、飽和水蒸気や過熱水蒸気の雰囲気下で加熱を行う処理を意味する。その後、多孔質層が緻密化しない温度で乾燥することにより、本発明にかかる機能性繊維が得られる。 The spinning dope discharged from the spinneret is subjected to coagulation, water washing and stretching processes, followed by wet heat treatment. At this time, solidification conditions and wet heat treatment conditions are set so that one is a dense layer and the other is a porous layer. In addition, the wet heat treatment here means a treatment in which heating is performed in an atmosphere of saturated steam or superheated steam. Thereafter, the functional fiber according to the present invention is obtained by drying at a temperature at which the porous layer is not densified.

なお、AN含有率が同じであっても、例えば一方のAN系重合体のコモノマーを親水性のものとし、他方を疎水性のものとするように、異なるコモノマーを用いることによって、本発明の機能性繊維を得ることができる。   Even if the AN content is the same, the function of the present invention can be achieved by using different comonomers so that, for example, one comonomer of one AN polymer is hydrophilic and the other is hydrophobic. Can be obtained.

かくして得られる本発明の機能性繊維は、光触媒活性を有する金属酸化物微粒子が、多孔質層と緻密層が交互に配列した多層構造繊維の緻密層に含有されている。そのため、多孔質層に空気中の悪臭成分や菌などが吸着され、該多孔質層に接する緻密層の光触媒活性を有する金属酸化物により分解されることによって、優れた機能を有するものと考えられる。さらに、光触媒活性を有する金属酸化物微粒子が、緻密層に含有されているため、該微粒子の染色時の脱落を抑えることができ、また優れた洗濯耐久性を有している。加えて、多孔質層のみの繊維の場合に惹起される静電気の発生による紡績性の悪化や染色性の悪化も抑えることができる。   The functional fiber of the present invention thus obtained contains metal oxide fine particles having photocatalytic activity in a dense layer of a multilayer structure fiber in which a porous layer and a dense layer are alternately arranged. Therefore, it is considered that the porous layer has an excellent function by adsorbing malodorous components and bacteria in the air and decomposing by the metal oxide having photocatalytic activity of the dense layer in contact with the porous layer. . Furthermore, since the metal oxide fine particles having photocatalytic activity are contained in the dense layer, the fine particles can be prevented from falling off during dyeing, and have excellent washing durability. In addition, it is possible to suppress deterioration of spinnability and dyeability due to generation of static electricity caused in the case of a fiber having only a porous layer.

以下、本発明を実施例に基づいて説明するが、本発明は実施例に限定されるものではない。なお、以下の実施例に記載の%あるいは部は、特に断りのない限り重量%あるいは重量部である。また、実施例及び比較例中で用いた評価試験の方法は以下の通りである。 EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to an Example. In the following examples, “%” or “part” means “% by weight” or “part by weight” unless otherwise specified. The evaluation test methods used in the examples and comparative examples are as follows.

(消臭性能評価)
試料綿0.1gを1.5L容のテドラーバッグ(登録商標)に入れ、初期濃度50体積ppmになるようにアセトアルデヒドガスを入れて密閉した。反射板付ブラックライト蛍光ランプ(松下電器産業株式会社製、20ワット形FL20S・BLB)2本を平行に取り付けた光源を用い、テドラーバッグ(登録商標)から20〜30cmの距離で紫外線を照射した。紫外線強度は、紫外線強度計を用いて0.25mW/cmの条件となるように、光源からの距離を調整した。20時間紫外線を照射後、アセトアルデヒド検知管でテドラーバッグ(登録商標)中の残留アセトアルデヒドガス濃度を測定し、次式に従いガス残消臭率(%)を算出した。
ガス消臭率(%)=〔(初期濃度−残留ガス濃度)/初期濃度〕×100
同様の方法で、アンモニアガス初期濃度300体積ppm、酢酸ガス初期濃度100体積ppm、硫化水素ガス初期濃度15体積ppm、トリメチルアミンガス初期濃度80体積ppmの条件で各残留ガス濃度を測定し、各々のガス消臭率(%)を上記と同様にして算出した。
(Deodorization performance evaluation)
A sample cotton (0.1 g) was put in a 1.5 L Tedlar bag (registered trademark), and acetaldehyde gas was put therein so as to have an initial concentration of 50 ppm by volume. Ultraviolet rays were irradiated at a distance of 20 to 30 cm from a Tedlar bag (registered trademark) using a light source in which two black light fluorescent lamps with reflectors (Matsushita Electric Industrial Co., Ltd., 20 watt type FL20S / BLB) were attached in parallel. The distance from the light source was adjusted so that the ultraviolet intensity was 0.25 mW / cm 2 using an ultraviolet intensity meter. After irradiation with ultraviolet rays for 20 hours, the residual acetaldehyde gas concentration in the Tedlar bag (registered trademark) was measured with an acetaldehyde detector tube, and the residual gas deodorization rate (%) was calculated according to the following formula.
Gas deodorization rate (%) = [(initial concentration−residual gas concentration) / initial concentration] × 100
In the same manner, each residual gas concentration was measured under the conditions of ammonia gas initial concentration 300 volume ppm, acetic acid gas initial concentration 100 volume ppm, hydrogen sulfide gas initial concentration 15 volume ppm, and trimethylamine gas initial concentration 80 volume ppm. The gas deodorization rate (%) was calculated in the same manner as described above.

(抗菌性試験)
試験株:黄色葡萄状球菌Stapylococcus aureus
ATCC 6538P
試験方法:繊維製品衛生加工協議会(SEK)で定める方法により、滅菌試料布に試験菌のブイヨン懸濁液を注加し、密閉容器中で37℃、18時間紫外線を照射(180〜200μW/cm)しながら培養し、培養後の生菌数を計測し、植菌数Aに対する同様の試験による標準布の菌数Bと試料布の菌数Cから、静菌活性値=(logB−logA)−(logC−logA)の式で求める静菌活性値を用いる。一般に静菌活性値が2.2以上であれば抗菌性能があると見なされるが3.0以上が好ましい。なお、試料布は、洗濯耐久性を評価するため、洗濯10回後の物を用いた。洗濯方法は以下のとおりである。
(Antimicrobial test)
Test strain: Staphylococcus aureus
ATCC 6538P
Test method: In accordance with a method defined by the Textile Products Sanitary Processing Council (SEK), a bouillon suspension of a test bacterium is poured into a sterilized sample cloth and irradiated with ultraviolet rays in a sealed container at 37 ° C. for 18 hours (180 to 200 μW / cm 2 ), and the number of viable bacteria after the cultivation was measured. From the number B of the standard cloth and the number C of the sample cloth by the same test for the inoculated number A, the bacteriostatic activity value = (log B− The bacteriostatic activity value calculated | required by the formula of logA)-(logC-logA) is used. Generally, if the bacteriostatic activity value is 2.2 or more, it is considered that there is antibacterial performance, but 3.0 or more is preferable. In addition, in order to evaluate washing durability, the thing after 10 times of washing was used for the sample cloth. The washing method is as follows.

(洗濯方法)
洗濯条件JIS−L−0213の103法(家庭用洗濯機用)に従い、洗剤として第一工業製薬(株)製モノゲンユニを使用して洗濯を繰り返す(10回)。
(Washing method)
Washing conditions According to JIS-L-0213 method 103 (for household washing machines), washing is repeated using Monogen Uni manufactured by Daiichi Kogyo Seiyaku Co., Ltd. as a detergent (10 times).

(細孔表面積評価)
繊維10mgを短繊維状にカットし、島津製作所製MICROMERITICS Auto Pore IVにて水銀圧4.14×10−2〜4.14×10MPaまで評価した。得られる細孔表面積(A1)は繊維間空隙を含むため、次式により繊維間空隙分(A2)を減じたものを繊維の細孔表面積とした。
繊維の細孔表面積=A1−A2
A1:水銀圧4.14×10−2〜4.14×10MPaの細孔表面積
A2:水銀圧4.14×10−2〜1.38MPaの細孔表面積
(Pore surface area evaluation)
Cut the fibers 10mg to short fibers, it was evaluated by Shimadzu MICROMERITICS Auto Pore IV to mercury pressure 4.14 × 10 -2 ~4.14 × 10 2 MPa. Since the obtained pore surface area (A1) includes inter-fiber voids, the pore surface area of the fiber was determined by subtracting the inter-fiber void (A2) according to the following formula.
Fiber pore surface area = A1-A2
A1: pore surface area of the mercury pressure 4.14 × 10 -2 ~4.14 × 10 2 MPa A2: pore surface area of the mercury pressure 4.14 × 10 -2 ~1.38MPa

(多層化層数評価)
繊維200本を引き揃え蝋で固めた後、ライカ社製ミクロトーム2065を用い繊維断面方向に厚さ50nmの薄片試料を作成した。作成した薄片試料をNikon社製光学顕微鏡AFX−IIにて観察、繊維一本当りの層数を数え、200本の平均層数を多層化層数とした。なお、薄片試料を染料等で薄く色づけするとより容易に層数を数えることが出来る。
(Evaluation of the number of multilayered layers)
After 200 fibers were drawn and hardened with wax, a thin sample with a thickness of 50 nm was prepared in the fiber cross-sectional direction using a microtome 2065 manufactured by Leica. The prepared flake sample was observed with an optical microscope AFX-II manufactured by Nikon, the number of layers per fiber was counted, and the average number of 200 layers was defined as the number of multilayered layers. Note that the number of layers can be more easily counted by thinly coloring the thin sample with a dye or the like.

(実施例1)
アクリロニトリル、アクリル酸メチル、メタリルスルホン酸ソーダからなるアクリロニトリル含有率が90重量%のアクリロニトリル共重合体からなる紡糸原液(I)及び、アクリロニトリル、アクリル酸メチル、メタリルスルホン酸ソーダからなるアクリロニトリル含有率が88重量%のアクリロニトリル共重合体と平均一次粒子径15nmの酸化チタン微粒子(テイカ株式会社製TK522)からなる紡糸原液(II)をISG Mixer(理論原液層数432)に1:1の割合で供給して多層化混合し、紡出孔29221ホールを有する紡糸口金を介して湿式紡糸に供した。ここで、アクリロニトリル系共重合体の溶媒としては、ロダン酸ソーダ水溶液を用いた。また、酸化チタン微粒子は紡糸原液(II)のアクリロニトリル重合体100重量部に対して、5重量%となるよう調整した。
凝固液には12重量%濃度のロダン酸ソーダ水溶液を1.5℃で用いた。次いで水洗、熱延伸を施し、得られた繊維を乾燥することなく弛緩状態で115℃のスチーム処理を行い、さらに110℃で15分間乾燥し、ランダム複合型のアクリル繊維である本発明の機能性繊維を得た。更に得られた機能性繊維をCIBA GEIGY社製Maxilon Blue GRL300を用い常法に従って染色し評価用機能性繊維を得た。
Example 1
Spinning stock solution (I) composed of acrylonitrile copolymer consisting of acrylonitrile, methyl acrylate, sodium methallyl sulfonate and 90% by weight acrylonitrile content, and acrylonitrile content percentage consisting of acrylonitrile, methyl acrylate, sodium methallyl sulfonate A spinning stock solution (II) consisting of 88% by weight of acrylonitrile copolymer and titanium oxide fine particles (TK522 manufactured by Teika Co., Ltd.) having an average primary particle size of 15 nm in an ISG Mixer (theoretical stock solution layer number 432) at a ratio of 1: 1. The mixture was supplied, mixed and mixed, and subjected to wet spinning through a spinneret having 29221 holes. Here, a sodium rhodanate aqueous solution was used as a solvent for the acrylonitrile copolymer. The titanium oxide fine particles were adjusted to 5% by weight with respect to 100 parts by weight of the acrylonitrile polymer of the spinning dope (II).
As the coagulation liquid, a 12% by weight sodium rhodate aqueous solution was used at 1.5 ° C. Next, washing with water and hot drawing are performed, and the obtained fiber is subjected to steam treatment at 115 ° C. in a relaxed state without drying, and further dried at 110 ° C. for 15 minutes to be a random composite type acrylic fiber. Fiber was obtained. Furthermore, the functional fiber obtained was dyed in accordance with a conventional method using Maxilon Blue GRL300 manufactured by CIBA GEIGY to obtain a functional fiber for evaluation.

実施例1で得られた評価用機能性繊維について、各悪臭成分に対するガス消臭率を評価したところ、アセトアルデヒドガス、アンモニアガス、酢酸ガス、硫化水素ガス、トリメチルアミンガスの全てにおいて、消臭率100%であった。なお、細孔表面積、多層化層数は表1に示した。 About the functional fiber for evaluation obtained in Example 1, when the gas deodorization rate with respect to each malodor component was evaluated, the deodorization rate was 100 in all of acetaldehyde gas, ammonia gas, acetic acid gas, hydrogen sulfide gas, and trimethylamine gas. %Met. The pore surface area and the number of multilayered layers are shown in Table 1.

表1の結果からも明らかなように、実施例1に係わる消臭性繊維は、光触媒活性を有する金属酸化物微粒子が、多孔質層と緻密層が交互に配列した多層構造繊維の緻密層に含有されているため、光触媒機能を有効に活用し、さまざまな種類の悪臭を効果的に分解して消臭することができる。 As is clear from the results in Table 1, the deodorant fiber according to Example 1 is a dense layer of multilayer structure fiber in which metal oxide fine particles having photocatalytic activity are alternately arranged with a porous layer and a dense layer. Since it is contained, it is possible to effectively utilize the photocatalytic function and effectively decompose and deodorize various types of bad odors.

(比較例1)
実施例1の紡糸原液(II)に代えて、アクリロニトリル、アクリル酸メチル、メタリルスルホン酸ソーダからなるアクリロニトリル含有率が88重量%のアクリロニトリル共重合体からなる紡糸原液(III)を用いた以外は、実施例1と同一の方法で評価用繊維を得た。
(Comparative Example 1)
Instead of the spinning stock solution (II) of Example 1, a spinning stock solution (III) comprising an acrylonitrile copolymer having an acrylonitrile content of 88% by weight comprising acrylonitrile, methyl acrylate and sodium methallyl sulfonate was used. Evaluation fibers were obtained in the same manner as in Example 1.

(比較例2)
実施例1で用いた紡糸原液(I)に代えて、アクリロニトリル、アクリル酸メチル、メタリルスルホン酸ソーダからなるアクリロニトリル含有率が90重量%のアクリロニトリル共重合体と平均一次粒子径15nmの酸化チタン微粒子(テイカ株式会社製TK522)からなる紡糸原液(IV)を用い、また、実施例1で用いた紡糸原液(II)に代えて、紡糸原液(III)を用いる他は、実施例1と同一の方法で評価用繊維を得た。なお、酸化チタン微粒子は紡糸原液(IV)のアクリロニトリル重合体100重量部に対して、5重量%となるよう調整した。
(Comparative Example 2)
Instead of the spinning dope (I) used in Example 1, an acrylonitrile copolymer consisting of acrylonitrile, methyl acrylate and sodium methallyl sulfonate having an acrylonitrile content of 90% by weight and fine titanium oxide particles having an average primary particle size of 15 nm The same as in Example 1, except that the spinning stock solution (IV) made of (TK522 manufactured by Teika Co., Ltd.) was used and the spinning stock solution (III) was used instead of the spinning stock solution (II) used in Example 1. The fiber for evaluation was obtained by the method. The titanium oxide fine particles were adjusted to 5% by weight with respect to 100 parts by weight of the acrylonitrile polymer of the spinning dope (IV).

(比較例3)
実施例1で用いた紡糸原液(I)に代えて、紡糸原液(II)を用いる他は、実施例1と同一の方法で評価用繊維を得た。
(Comparative Example 3)
An evaluation fiber was obtained in the same manner as in Example 1 except that the spinning dope (II) was used instead of the spinning dope (I) used in Example 1.

(比較例4)
比較例2で用いた紡糸原液(II)に代えて、紡糸原液(IV)を用いる他は、比較例2と同一の方法で繊維の作成を試みたが、十分な熱延伸が出来ず脆い繊維しか得られなかったため、評価用繊維を得ることが出来なかった。
(Comparative Example 4)
An attempt was made to produce fibers by the same method as in Comparative Example 2 except that the spinning dope (IV) was used in place of the spinning dope (II) used in Comparative Example 2, but the fibers were brittle due to insufficient heat drawing. Since it was only obtained, the evaluation fiber could not be obtained.

実施例1、比較例1〜3で得られた各繊維について、アセトアルデヒドガス消臭率、細孔表面積、及び多層化層数を評価し、その結果を表1に示した。 About each fiber obtained in Example 1 and Comparative Examples 1-3, the acetaldehyde gas deodorization rate, the pore surface area, and the number of multilayered layers were evaluated, and the results are shown in Table 1.

Figure 2006104605
Figure 2006104605

表1の結果からも明らかなように、比較例1では光触媒活性を有する酸化チタン微粒子が繊維に含有されていないため、十分な消臭性能が得られなかった。比較例2では光触媒活性を有する酸化チタン微粒子を多孔質層に含有させているため、染色時に微粒子が脱落してしまい十分な消臭性能が得られなかった。また、比較例3では全体が緻密層であるため悪臭成分の吸着能力に乏しく十分な消臭性能が得られなかった。 As is clear from the results in Table 1, in Comparative Example 1, since the titanium oxide fine particles having photocatalytic activity were not contained in the fiber, sufficient deodorizing performance could not be obtained. In Comparative Example 2, since the titanium oxide fine particles having photocatalytic activity were contained in the porous layer, the fine particles dropped off during dyeing, and sufficient deodorizing performance was not obtained. Further, in Comparative Example 3, since the whole was a dense layer, the adsorption ability of malodorous components was poor and sufficient deodorizing performance could not be obtained.

(実施例2)
凝固液として12重量%濃度のロダン酸ソーダを5℃で用いる他は、実施例1と同一の方法で評価用の機能性繊維を得た。
(Example 2)
Functional fibers for evaluation were obtained in the same manner as in Example 1 except that 12% by weight sodium rhodanate was used as the coagulation liquid at 5 ° C.

(実施例3)
実施例1で用いたテイカ株式会社製酸化チタンTK522に代えて、平均一次粒子径5nmの酸化チタン微粒子(テイカ株式会社製酸化チタンAMT100)を用いる他は、実施例1と同一の方法で評価用の機能性繊維を得た。
(Example 3)
For evaluation in the same manner as in Example 1, except that titanium oxide fine particles having an average primary particle diameter of 5 nm (titanium oxide AMT100 manufactured by Teika Co., Ltd.) are used in place of the titanium oxide TK522 manufactured by Teika Co., Ltd. used in Example 1. Of functional fibers.

(実施例4)
実施例1で用いたテイカ株式会社製酸化チタンTK522に代えて、平均一次粒子径30nmの酸化チタン微粒子(テイカ株式会社製酸化チタンAMT600)を用いる他は、実施例1と同一の方法で評価用の機能性繊維を得た。
Example 4
For evaluation in the same manner as in Example 1 except that titanium oxide fine particles (titanium oxide AMT600 manufactured by Teika Co., Ltd.) having an average primary particle diameter of 30 nm are used in place of the titanium oxide TK522 manufactured by Teika Co., Ltd. used in Example 1. Of functional fibers.

(実施例5)
実施例1で用いた紡糸原液(II)に代えて、酸化チタン微粒子が紡糸原液(II)中のアクリロニトリル共重合体100重量部に対して、1重量部となるように調整した紡糸原液(V)を用いる他は、実施例1と同一の方法で評価用の機能性繊維を得た。
(Example 5)
In place of the spinning dope (II) used in Example 1, the spinning dope (V) adjusted such that the titanium oxide fine particles were 1 part by weight with respect to 100 parts by weight of the acrylonitrile copolymer in the spinning dope (II). The functional fiber for evaluation was obtained by the same method as in Example 1 except that (1) was used.

実施例2〜5で得られた評価用の機能性繊維についてアセトアルデヒドガス消臭率を評価し、その結果を表1に併記した。 The functional fiber for evaluation obtained in Examples 2 to 5 was evaluated for acetaldehyde gas deodorization rate, and the results are also shown in Table 1.

表の結果からも明らかなように、実施例2〜5の機能性繊維は比較例1〜3のものに比べて、良好なアセトアルデヒドガス消臭率を示した。ただし、実施例2の機能性繊維は紡績時カーディング等で静電気が発生しやすく、紡績等の加工性に劣るものであったが、消臭性能は優れており、加工時の温湿度、もしくは、混率等の適正化により十分実用可能なものであった。また、実施例3の機能性繊維を作成するにあたっては、酸化チタン微粒子の水分散液を作成する際、酸化チタン微粒子が粉塵となりやすく防塵マスク等の装着が必要であり、また、酸化チタン微粒子が一次粒子にまで分散しにくく分散にかなりの時間が必要であるなど作業性、生産性に若干の問題はあるものの、優れた消臭性能を有していた。 As is clear from the results of the table, the functional fibers of Examples 2 to 5 showed better acetaldehyde gas deodorization rate than those of Comparative Examples 1 to 3. However, the functional fiber of Example 2 was prone to static electricity due to carding during spinning, etc., and was inferior in processability such as spinning, but had excellent deodorizing performance, temperature and humidity during processing, or It was sufficiently practical by optimizing the mixing ratio. Further, in preparing the functional fiber of Example 3, when preparing an aqueous dispersion of titanium oxide fine particles, the titanium oxide fine particles are likely to become dust, and it is necessary to wear a dust mask or the like. Although there were some problems in workability and productivity, such as being difficult to disperse to primary particles and requiring a considerable amount of time for dispersion, it had excellent deodorizing performance.

(実施例6)
実施例1で得られた機能性繊維を通常の3.3dtexアクリロニトリル繊維(東洋紡績(株)エクスラン K8−3.3)と50重量%対50重量%の比率で常法に従って混紡し、メートル番手48番手双糸の紡績糸を作製し、12ゲージ2プライで天竺の編地に形成した。かかる編地を試料布として抗菌性を評価したところ、静菌活性値は4.6と、優れた抗菌性を示した。
(Example 6)
The functional fiber obtained in Example 1 was blended with ordinary 3.3 dtex acrylonitrile fiber (Toyobo Co., Ltd. Exlan K8-3.3) at a ratio of 50% by weight to 50% by weight according to a conventional method, A 48th-ply spun yarn was produced and formed into a knitted fabric with 12 gauge 2 plies. When the antibacterial activity was evaluated using such a knitted fabric as a sample fabric, the bacteriostatic activity value was 4.6, indicating an excellent antibacterial property.

(実施例7)
実施例2で得られた機能性繊維を通常の3.3dtexアクリロニトリル繊維(東洋紡績(株)エクスラン K8−3.3)と40重量%対60重量%の比率で常法に従って混紡し、メートル番手48番手双糸の紡績糸を作製し、12ゲージ2プライで天竺の編地に形成した。かかる編地を試料布として抗菌性を評価したところ、静菌活性値は4.6と、優れた抗菌性を示した。
(Example 7)
The functional fiber obtained in Example 2 was blended with ordinary 3.3 dtex acrylonitrile fiber (Toyobo Co., Ltd. Exlan K8-3.3) at a ratio of 40% by weight to 60% by weight according to a conventional method, A 48th-ply spun yarn was produced and formed into a knitted fabric with 12 gauge 2 plies. When the antibacterial activity was evaluated using such a knitted fabric as a sample fabric, the bacteriostatic activity value was 4.6, indicating an excellent antibacterial property.

Claims (6)

多孔質層と緻密層が交互に配列した多層構造繊維であって、かつ、光触媒活性を有する金属酸化物微粒子が緻密層に含有されていることを特徴とする機能性繊維。 A functional fiber, which is a multilayer structure fiber in which a porous layer and a dense layer are alternately arranged, and metal oxide fine particles having photocatalytic activity are contained in the dense layer. 繊維の細孔表面積が10〜40m/gの範囲であることを特徴とする請求項1記載の機能性繊維。 The functional fiber according to claim 1, wherein the pore surface area of the fiber is in the range of 10 to 40 m 2 / g. 金属酸化物微粒子が酸化チタンであることを特徴とする請求項1または2に記載の機能性繊維。 The functional fiber according to claim 1 or 2, wherein the metal oxide fine particles are titanium oxide. 金属酸化物微粒子の粒子径が10〜100nmの範囲であることを特徴とする請求項1〜3のいずれかに記載の機能性繊維。 The functional fiber according to any one of claims 1 to 3, wherein the particle diameter of the metal oxide fine particles is in the range of 10 to 100 nm. 繊維の母体100重量部に対して、金属酸化物微粒子が1〜10重量部含有されていることを特徴とする請求項1〜4のいずれかに記載の機能性繊維。 The functional fiber according to any one of claims 1 to 4, wherein 1 to 10 parts by weight of metal oxide fine particles are contained with respect to 100 parts by weight of the base of the fiber. アクリロニトリル系重合体からなる多層構造繊維であることを特徴とする請求項1〜5のいずれかに記載の機能性繊維。 The functional fiber according to any one of claims 1 to 5, wherein the functional fiber is a multilayer structure fiber made of an acrylonitrile-based polymer.
JP2004291378A 2004-10-04 2004-10-04 Functional fiber with photocatalytic activity Expired - Fee Related JP4560778B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004291378A JP4560778B2 (en) 2004-10-04 2004-10-04 Functional fiber with photocatalytic activity
KR1020067017526A KR101250109B1 (en) 2004-10-04 2005-09-20 Functional fiber having photocatalyst activity and fiber structure containing the same
CN2005800070484A CN1930331B (en) 2004-10-04 2005-09-20 Functional fiber having photocatalyst activity and fiber structure containing the same
PCT/JP2005/017271 WO2006038452A1 (en) 2004-10-04 2005-09-20 Functional fiber having photocatalyst activity and fiber structure containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004291378A JP4560778B2 (en) 2004-10-04 2004-10-04 Functional fiber with photocatalytic activity

Publications (2)

Publication Number Publication Date
JP2006104605A true JP2006104605A (en) 2006-04-20
JP4560778B2 JP4560778B2 (en) 2010-10-13

Family

ID=36374672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004291378A Expired - Fee Related JP4560778B2 (en) 2004-10-04 2004-10-04 Functional fiber with photocatalytic activity

Country Status (2)

Country Link
JP (1) JP4560778B2 (en)
CN (1) CN1930331B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265811A (en) * 2005-02-28 2006-10-05 Japan Exlan Co Ltd Volatile organic compound removing fiber
JP2014074243A (en) * 2012-10-03 2014-04-24 Japan Exlan Co Ltd Photocatalyst inclusion fiber and fiber structure including the fiber

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101143314B (en) * 2007-08-07 2010-05-19 东华大学 Method for preparing titanium oxide cloth with fabric structure
KR101946383B1 (en) * 2015-09-14 2019-02-12 (주)엘지하우시스 Photo catalyst functional non-woven fabric and method of manufacturing the same
RU2715533C1 (en) * 2016-04-27 2020-02-28 Торэй Индастриз, Инк. Porous fibre, adsorbing material and cleaning column

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367577B2 (en) * 1981-08-17 1988-12-26 Japan Exlan Co Ltd
JPH08284011A (en) * 1995-02-15 1996-10-29 Takeda Chem Ind Ltd Deodorizing fiber and its production
JPH1037023A (en) * 1996-07-17 1998-02-10 Kuraray Co Ltd Deodorizing fiber
JP2000045126A (en) * 1998-07-28 2000-02-15 Japan Exlan Co Ltd Improved acrylic composite fiber and its production
JP3162211B2 (en) * 1992-10-23 2001-04-25 日本バイリーン株式会社 Porous fiber
JP2003040705A (en) * 2001-07-26 2003-02-13 Nichimo Co Ltd Rod material having pollution-preventing function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367577B2 (en) * 1981-08-17 1988-12-26 Japan Exlan Co Ltd
JP3162211B2 (en) * 1992-10-23 2001-04-25 日本バイリーン株式会社 Porous fiber
JPH08284011A (en) * 1995-02-15 1996-10-29 Takeda Chem Ind Ltd Deodorizing fiber and its production
JPH1037023A (en) * 1996-07-17 1998-02-10 Kuraray Co Ltd Deodorizing fiber
JP2000045126A (en) * 1998-07-28 2000-02-15 Japan Exlan Co Ltd Improved acrylic composite fiber and its production
JP2003040705A (en) * 2001-07-26 2003-02-13 Nichimo Co Ltd Rod material having pollution-preventing function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265811A (en) * 2005-02-28 2006-10-05 Japan Exlan Co Ltd Volatile organic compound removing fiber
JP4560795B2 (en) * 2005-02-28 2010-10-13 日本エクスラン工業株式会社 Volatile organic compound removal fiber structure
JP2014074243A (en) * 2012-10-03 2014-04-24 Japan Exlan Co Ltd Photocatalyst inclusion fiber and fiber structure including the fiber

Also Published As

Publication number Publication date
CN1930331B (en) 2012-02-22
JP4560778B2 (en) 2010-10-13
CN1930331A (en) 2007-03-14

Similar Documents

Publication Publication Date Title
EP0783048B1 (en) Method for producing fine metallic particles-containing fibers
JP3215318B2 (en) Deodorant fiber and method for producing the same
JP4560787B2 (en) Deodorant fiber structure
JP4560778B2 (en) Functional fiber with photocatalytic activity
KR100464166B1 (en) Method for manufacturing of mult filament yarn with isolation function of antibacterial purifying, anrifouling, ultraviolet and electromagnetic waves
JP4560795B2 (en) Volatile organic compound removal fiber structure
EP3862470B1 (en) Polyvinyl alcohol fiber
KR101250109B1 (en) Functional fiber having photocatalyst activity and fiber structure containing the same
JP2013204199A (en) Ethylene-vinyl alcohol-based fiber having antimicrobial property and fiber assembly
JP3720466B2 (en) Deodorant fiber
JP4560791B2 (en) Method for imparting antifouling property to the entire fiber structure
JP3338604B2 (en) Method for producing deodorant / antibacterial acrylic synthetic fiber
JP3979545B2 (en) Functional fiber and production method thereof
JP2004316053A (en) Functional fiber structure using nanoporous fiber
JPH09157978A (en) Textile product comprising deodorizing/antimicrobial acrylic synthetic fiber
JP3658463B2 (en) Deodorant fiber product and its manufacturing method
JP2004339616A (en) Special cross-section fiber
JP3905823B2 (en) Deodorant composite fiber
JP2016017245A (en) Ethylene-vinyl alcohol-based fiber and yarn having deodorizing properties, and fiber product
JPS63190013A (en) Deodorant fiberus structure
JP6008240B2 (en) Functional acrylonitrile fiber, fiber structure containing the fiber, and method for producing the same
JPH02300315A (en) Deodorizing acrylic conjugate fiber and production thereof
JPH1025663A (en) Deodorant fiber product
JP2004169216A (en) Deodorizing fiber
JPH0987924A (en) Deodorizing/antimicrobial acrylic synthetic yarn and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100525

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100525

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4560778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees