JP2006104543A - Method for reforming surface quality of copper wire or copper alloy wire used for manufacturing ultrafine wire - Google Patents

Method for reforming surface quality of copper wire or copper alloy wire used for manufacturing ultrafine wire Download PDF

Info

Publication number
JP2006104543A
JP2006104543A JP2004295049A JP2004295049A JP2006104543A JP 2006104543 A JP2006104543 A JP 2006104543A JP 2004295049 A JP2004295049 A JP 2004295049A JP 2004295049 A JP2004295049 A JP 2004295049A JP 2006104543 A JP2006104543 A JP 2006104543A
Authority
JP
Japan
Prior art keywords
wire
copper
copper alloy
plating
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004295049A
Other languages
Japanese (ja)
Inventor
Masaru Saito
勝 斎藤
Tsuyoshi Yamada
剛志 山田
Shoji Mimura
彰治 味村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2004295049A priority Critical patent/JP2006104543A/en
Publication of JP2006104543A publication Critical patent/JP2006104543A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for reforming the surface quality of a copper wire or a copper alloy wire for manufacturing an ultrafine wire with a diameter of 20 μm or less, which does not form surface defects such as a scratch, a crack and a stamp of a copper powder on the surface of a wire, and does not cause the breaking of the wire when drawing the wire into the ultrafine wire. <P>SOLUTION: The method for reforming the surface quality of the copper wire or the copper alloy wire for manufacturing the ultrafine wire comprises the steps of: dissolving and removing the surface defect of the copper wire or the copper alloy wire; and plating it with copper or a copper alloy. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、20μm以下の極細線を製造するための銅線或いは銅合金線であって、伸線加工による断線を防止した銅線或いは銅合金線の表面性状の改質方法に関する。   The present invention relates to a method for modifying the surface properties of a copper wire or a copper alloy wire, which is a copper wire or a copper alloy wire for producing an ultrafine wire having a thickness of 20 μm or less, and prevents disconnection due to wire drawing.

各種の電子機器類の内部配線として使用されるワイヤ・ケーブルは、電子機器類の小型化や軽量化等に伴い、導体はより細線化が要求されている。このような極細線は、通常ダイスを用いたキャプスタン型伸線機によって製造されているが、供給される銅線、銅合金線の表面性状によっては伸線時に断線が生じる。すなわち、銅線、銅合金線の表面に異物や表面欠陥が存在すると、伸線時にダイス引抜き張力に耐え切れずに断線が生じる。このために、ダイスの形状、潤滑油の種類や伸線機の改良等が検討されている。また銅線、銅合金線等についても、前記線材の機械的特性や表面の皮むき処理等の表面性状の改質が行われている。しかしながら、導体径が20μm以下のような極細線を得ようとする場合には、特に表面欠陥は大きな要因となっていた。すなわち、銅線、銅合金線の線材表面の傷、ひび割れ、銅粉のスタンプ等が問題となる。またこれらの表面欠陥は、伸線時の断線の問題のみならずその上に金属めっき層を形成した場合に密着性を低下させる等の問題もあった。   Wires and cables used as internal wiring of various electronic devices are required to have finer conductors as the electronic devices become smaller and lighter. Such an extra fine wire is usually manufactured by a capstan type wire drawing machine using a die, but depending on the surface properties of the supplied copper wire or copper alloy wire, disconnection occurs at the time of drawing. That is, if there is a foreign object or surface defect on the surface of a copper wire or copper alloy wire, the wire will not be able to withstand the die pulling tension during wire drawing, resulting in disconnection. For this reason, improvement of the shape of a die, the kind of lubricating oil, a wire drawing machine, etc. are examined. In addition, with respect to copper wires, copper alloy wires, and the like, surface properties such as mechanical properties and surface peeling treatment of the wires have been modified. However, surface defects are a major factor especially when trying to obtain ultrafine wires with a conductor diameter of 20 μm or less. That is, scratches, cracks, copper powder stamps, and the like on the surface of copper wires and copper alloy wires are problematic. Further, these surface defects have problems such as not only a disconnection problem at the time of wire drawing but also a decrease in adhesion when a metal plating layer is formed thereon.

このような問題点を解決するために、伸線加工の途中に皮剥き工程を加えたり、引抜き張力の調整、ダイス形状の検討や潤滑油の性状等が検討されているが、20μm以下の極細線に於いてより解決策が望まれていた。このような技術に関して特許文献1が見られる。すなわち、導電性金属素線に金属Aまたは樹脂Aを前記導電性金属素線の線径の1〜100%の厚さに層状に被覆する工程、前記被覆素線を縮径加工する工程、前記縮径加工後の被覆素線の被覆層を除去する工程、前記被覆層を除去した素線(極細線)に金属Bまたは樹脂Bを層状に被覆する工程からなるもので、このように導電性金属素線に特定厚さの金属または樹脂層を形成した後に縮径することによって、導電性金属素線に表面傷が生じたり異物が混入したりすることがないとしている。しかしながらこのような製造方法では、金属Aまたは樹脂Aを被覆する前に表面欠陥を除去することが行われないので、特に15μm以下に伸線加工しようとすると断線が生じる可能性が高く、また表面が清浄でないために金属Aまたは樹脂Bが密着されず、断線防止の効果が少ない可能性がある。さらに、金属Aまたは樹脂Aの除去工程を必要とするので、コストの面からも好ましいとは言えなかった。さらに、金属Aまたは樹脂Aを除去した後の導電性金属素線の表面は、伸線加工した場合にダイス圧縮時の変形能の不均一性から表面荒れを起こす可能性があり、後工程に表面平滑化のための伸線を要する場合も考えられる。
特開2002−208323号公報
In order to solve such problems, a peeling process is added in the middle of wire drawing processing, adjustment of drawing tension, examination of die shape and properties of lubricating oil, etc. have been studied. More solutions on the line were desired. Patent document 1 is seen regarding such a technique. That is, a step of coating a conductive metal element with a metal A or a resin A in a layered form to a thickness of 1 to 100% of the wire diameter of the conductive metal element, a step of reducing the diameter of the coated element wire, It consists of a step of removing the coating layer of the coated wire after the diameter reduction processing, and a step of coating the elemental wire (extra fine wire) from which the coating layer has been removed with a layer of metal B or resin B. By reducing the diameter after forming a metal or resin layer having a specific thickness on the metal strand, the conductive metal strand does not cause surface flaws or foreign matter mixed therein. However, in such a manufacturing method, since surface defects are not removed before coating with metal A or resin A, disconnection is particularly likely to occur when wire drawing is performed to 15 μm or less. Is not clean, the metal A or the resin B is not in close contact, and there is a possibility that the effect of preventing disconnection is small. Furthermore, since the removal process of the metal A or the resin A is required, it cannot be said that it is preferable from the viewpoint of cost. Furthermore, the surface of the conductive metal wire after the removal of the metal A or the resin A may cause surface roughness due to non-uniformity of deformability at the time of die compression when drawn. It may be considered that wire drawing for surface smoothing is required.
JP 2002-208323 A

よって本発明が解決しようとする課題は、極細線製造用の銅線或いは銅合金線であって、線材表面に傷、ひび割れ、銅粉のスタンプ等の表面欠陥がなく、極細線の伸線加工時に断線等が生じることがない、20μm以下の極細線を製造するための銅線或いは銅合金線の表面性状改質方法を提供することにある。   Therefore, the problem to be solved by the present invention is a copper wire or a copper alloy wire for producing an ultrafine wire, and the wire surface has no surface defects such as scratches, cracks, stamps of copper powder, and the like. An object of the present invention is to provide a method for modifying the surface properties of a copper wire or a copper alloy wire for producing an ultrafine wire having a thickness of 20 μm or less, which does not sometimes cause disconnection or the like.

前記解決しようとする課題は、請求項1に記載するように、極細線を製造するための銅線或いは銅合金線であって、前記銅線或いは銅合金線の表面欠陥を溶解除去し、続いて銅めっき処理または銅合金めっき処理を行う極細線製造用の銅線或いは銅合金線の表面性状改質方法とすることによって、解決される。   The problem to be solved is a copper wire or a copper alloy wire for manufacturing an extra fine wire as claimed in claim 1, wherein surface defects of the copper wire or the copper alloy wire are dissolved and removed. This is solved by adopting a method for modifying the surface properties of a copper wire or copper alloy wire for producing an ultrafine wire that performs copper plating or copper alloy plating.

また請求項2に記載するように、絶縁材料からなる隔壁によって電解研磨処理槽とめっき処理槽の2つに区分され、それぞれに銅イオンを含有する電解液が充填された電解浴槽であって、前記電解研磨処理槽にはマイナス側に接続された電極(陰極)が、前記めっき処理槽にはプラス側に接続された電極(陽極)が配置され、この状態で前記銅線或いは銅合金線を電解研磨処理槽、続いてめっき処理槽中を連続して通過させることによって、銅線或いは銅合金線の表面を電解研磨処理し続いて銅めっき処理または銅合金めっき処理を行う請求項1に記載する極細線製造用の銅線或いは銅合金線の表面性状改質方法とすることによって、解決される。   Moreover, as described in claim 2, the electrolytic bath is divided into two parts, an electrolytic polishing treatment tank and a plating treatment tank, by a partition made of an insulating material, each filled with an electrolytic solution containing copper ions, An electrode (cathode) connected to the negative side is disposed in the electrolytic polishing treatment tank, and an electrode (anode) connected to the positive side is disposed in the plating treatment tank. In this state, the copper wire or the copper alloy wire is disposed. The electrolytic polishing treatment tank and then the plating treatment tank are continuously passed, whereby the surface of the copper wire or the copper alloy wire is subjected to the electrolytic polishing treatment and subsequently the copper plating treatment or the copper alloy plating treatment is performed. This is solved by using a method for modifying the surface properties of a copper wire or copper alloy wire for producing ultrafine wires.

さらに請求項3に記載するように、前記表面欠陥の溶解除去が、酸溶解処理である請求項1に記載される極細線製造用の銅線或いは銅合金線の表面性状改質方法とすることによって、解決される。   Furthermore, as described in claim 3, the surface defect modification method of the copper wire or the copper alloy wire for producing the ultrafine wire according to claim 1, wherein the dissolution removal of the surface defect is an acid dissolution treatment. It is solved by.

以上の本発明によれば、銅線或いは銅合金線の表面欠陥を溶解除去した後、ついで銅めっき処理または銅合金めっき処理を行う極細線製造用の銅線或いは銅合金線の表面性状改質方法としたので、線材表面に傷、ひび割れ、銅粉のスタンプ等の表面欠陥がなく、極細線の伸線加工時に断線等が生じることが極めて少ない銅線或いは銅合金線が得られる。特に、めっき処理によって形成した銅または銅合金層には伸線加工時に有害となる表面欠陥が極めて少ないので、良好な伸線性を与えることから表面性状の改質に寄与している。このため、20μm以下の極細線を製造するための銅線或いは銅合金線として好ましい。また、前記表面性状改質処理方法は、連続工程で行うので汚染の問題や外傷を防止でき、さらに比較的簡単な工程で行えるのでコスト的にも有用である。   According to the present invention described above, after surface defects of the copper wire or copper alloy wire are dissolved and removed, the surface property modification of the copper wire or copper alloy wire for producing an ultrafine wire is then performed. Since the method is used, a copper wire or a copper alloy wire is obtained that is free from surface defects such as scratches, cracks, and copper powder stamps on the surface of the wire, and that disconnection or the like hardly occurs during wire drawing of ultrafine wires. In particular, the copper or copper alloy layer formed by the plating process has very few surface defects that are harmful during the wire drawing process, which contributes to the modification of the surface properties because it provides good wire drawing. For this reason, it is preferable as a copper wire or a copper alloy wire for producing an extra fine wire of 20 μm or less. Further, since the surface property modification treatment method is performed in a continuous process, it is possible to prevent contamination problems and trauma, and it can be performed in a relatively simple process.

また、電解研磨処理槽とめっき処理槽の2つに区分され、それぞれに銅イオンを含有する電解液が充填された電解浴槽中に、前記電解研磨処理槽には(陰極)が、前記めっき処理槽には(陽極)が配置され、この状態で銅線或いは銅合金線を電解研磨処理ついでめっき処理を連続して行うので、線材表面に傷、ひび割れ、銅粉のスタンプ等の表面欠陥がなく、極細線の伸線加工時に断線等が生じることが極めて少ない銅線或いは銅合金線が得られる。また、前述のめっき処理によって形成した銅または銅合金層は、伸線加工時に有害となる表面欠陥が極めて少ないので良好な伸線性を与え、20μm以下の極細線を製造するための銅線或いは銅合金線として好ましい。さらに、連続工程で表面性状の改質処理を行うので、汚染の問題や外傷を防止でき、さらには比較的簡単な工程で連続して行えるのでコスト的にも有用である。また、このような表面性状改質方法に於いては、電解研磨処理槽とめっき処理槽のそれぞれの槽内で陽極から溶け出した銅イオンは陰極に於いて析出することになり、電解液中の組成が変化して電解液の抵抗値が変動することもないので、安定して極細線製造用の銅線或いは銅合金線が得られる。   Also, the electropolishing bath is divided into two, an electropolishing bath and a plating bath, each filled with an electrolytic solution containing copper ions. (Anode) is placed in the tank, and in this state, copper wire or copper alloy wire is continuously electropolished and then plated, so there are no surface defects such as scratches, cracks, and stamps of copper powder on the wire surface. Thus, a copper wire or a copper alloy wire can be obtained in which disconnection or the like hardly occurs at the time of drawing the ultrafine wire. Further, the copper or copper alloy layer formed by the above-described plating treatment gives excellent wire drawing because there are very few surface defects that are harmful at the time of wire drawing, and copper wire or copper for producing ultrafine wires of 20 μm or less. Preferred as an alloy wire. Furthermore, since the surface property modification treatment is performed in a continuous process, it is possible to prevent contamination problems and trauma, and it is also useful in terms of cost because it can be performed continuously in a relatively simple process. Further, in such a surface property modification method, copper ions dissolved from the anode in each of the electrolytic polishing bath and the plating bath are deposited at the cathode, Therefore, the resistance value of the electrolytic solution does not change and the copper wire or copper alloy wire for producing the ultrafine wire can be obtained stably.

さらに、銅線或いは銅合金線の表面欠陥の溶解除去を酸溶解処理とすることによって、比較的簡単な方法で傷、ひび割れ、銅粉のスタンプ等の表面欠陥を除去でき、またその上に良好なめっき層を形成できるので、極細線の伸線加工時に断線等が生じることがない銅線或いは銅合金線が得られる。そして、めっき処理によって形成した銅または銅合金層には伸線加工時に有害となる表面欠陥がないので良好な伸線性を与え、20μm以下の極細線を製造するための銅線或いは銅合金線として好ましい。また、連続工程で表面性状の改質処理を行うので、汚染の問題や外傷を防止できると共に、コスト的にも実用的である。   In addition, by dissolving and removing the surface defects of copper wire or copper alloy wire with acid dissolution treatment, surface defects such as scratches, cracks, stamps of copper powder, etc. can be removed by a relatively simple method, and on top of that, good Since a simple plating layer can be formed, a copper wire or a copper alloy wire that does not cause disconnection or the like during the drawing process of an ultrafine wire is obtained. The copper or copper alloy layer formed by plating does not have surface defects that are harmful during wire drawing, so it provides good wire drawing, and as a copper wire or copper alloy wire for producing ultrafine wires of 20 μm or less. preferable. Further, since the surface property modification treatment is performed in a continuous process, contamination problems and trauma can be prevented, and the cost is practical.

以下に本発明を詳細に説明する。請求項1に記載される発明は、極細線を製造するための銅線或いは銅合金線であって、前記銅線或いは銅合金線の表面欠陥を溶解除去し、続いて銅めっき処理または銅合金めっき処理(以下銅めっき処理等)を行う極細線製造用の銅線或いは銅合金線(以下銅線等)の表面性状改質方法であって、導体径が20μm以下のような極細線を得ようとする場合に問題となっていた、表面欠陥である銅線等の線材表面の傷、ひび割れ、銅粉のスタンプ等を比較的簡単な工程で除去することができる。すなわち、線径が0.1〜1.5mm程度の銅線等における表面の傷、ひび割れ、銅粉のスタンプ等の表面欠陥を、電解研磨処理(アノード溶解)、硝酸水溶液、硫酸と過酸化水素水の混合液等の酸溶液等によってまず溶解除去し、さらにその表面に銅或いは銅合金のめっき層(以下銅めっき層等)を形成することで、銅めっき層等の密着状態が良好で加工性に優れ、伸線加工による欠陥がない状態にすることができる。これは、めっき処理によって形成した銅めっき層等には伸線加工時に有害となる表面欠陥がないので、良好な伸線性を与えることから表面性状の改質に寄与しているためである。このため、その後に行う伸線加工処理によって、20μm以下の極細線を製造しても断線を生じることが極めて少なくなる。また、連続工程で行うので汚染の問題や外傷を防止でき、さらに比較的簡単な工程で行えるので、コスト的にも有用である。   The present invention is described in detail below. The invention described in claim 1 is a copper wire or a copper alloy wire for producing an extra fine wire, wherein surface defects of the copper wire or the copper alloy wire are dissolved and removed, followed by a copper plating treatment or a copper alloy. A method for modifying the surface properties of a copper wire or a copper alloy wire (hereinafter referred to as copper wire) for the production of an ultrafine wire that is subjected to plating treatment (hereinafter referred to as copper plating treatment or the like), and obtaining an ultrafine wire having a conductor diameter of 20 μm or less. The scratches, cracks, copper powder stamps, and the like on the surface of the wire, which are surface defects, which have been a problem when trying to do so, can be removed by a relatively simple process. That is, surface defects such as surface scratches, cracks, copper powder stamps, etc. in copper wires having a wire diameter of about 0.1 to 1.5 mm are treated with electrolytic polishing (anodic dissolution), nitric acid aqueous solution, sulfuric acid and hydrogen peroxide. First, it is dissolved and removed with an acid solution such as a mixed solution of water, and further, a copper or copper alloy plating layer (hereinafter referred to as a copper plating layer) is formed on the surface thereof. It is excellent in the property and it can be made into the state without the defect by wire drawing. This is because the copper plating layer or the like formed by the plating process has no surface defects that are harmful during the wire drawing process, and thus contributes to the modification of the surface properties because it provides good wire drawing properties. For this reason, even if an ultrafine wire of 20 μm or less is manufactured by a subsequent wire drawing process, the occurrence of disconnection is extremely reduced. Further, since it is performed in a continuous process, it is possible to prevent contamination problems and trauma, and it can be performed in a relatively simple process.

また請求項2に記載する発明は、前述の極細線製造用の銅線等の表面性状改質方法における好ましい方法で、絶縁材料からなる隔壁によって電解研磨処理槽とめっき処理槽の2つに区分され、それぞれに銅イオンを含有する電解液が充填された電解浴槽であって、前記電解研磨処理槽にはマイナス側に接続された電極(陰極)が、前記めっき処理槽にはプラス側に接続された電極(陽極)が配置され、この状態で銅線等を電解研磨処理槽、ついでめっき処理槽中を連続して通過させることによって、前記銅線等の表面を電解研磨(アノード溶解)処理し次に銅めっき処理等を行う極細線製造用の銅線等の表面性状改質方法である。なお、銅線等7としては、純銅線或いは錫入り銅合金線(例えば0.3質量%Sn−Cu合金線)、銀入り銅合金線(例えば1質量%Ag−Cu合金線)等の銅合金線が使用でき、その線径はおおよそ0.1〜1.5mm程度のものとするのが好ましい。   Further, the invention described in claim 2 is a preferable method in the surface property modification method for the copper wire or the like for manufacturing the ultrafine wire described above, and is divided into an electrolytic polishing treatment tank and a plating treatment tank by partition walls made of an insulating material. Each of which is filled with an electrolytic solution containing copper ions, and the electrode (cathode) connected to the negative side is connected to the electropolishing bath, and the positive side is connected to the plating bath In this state, the surface of the copper wire or the like is subjected to electrolytic polishing (anodic dissolution) treatment by continuously passing the copper wire or the like through the electrolytic polishing bath and then through the plating bath. Then, a surface property modification method for a copper wire or the like for manufacturing an ultrafine wire, in which a copper plating treatment or the like is performed next. As the copper wire 7, copper such as pure copper wire, tin-containing copper alloy wire (for example, 0.3 mass% Sn—Cu alloy wire), silver-containing copper alloy wire (for example, 1 mass% Ag—Cu alloy wire), etc. An alloy wire can be used, and the wire diameter is preferably about 0.1 to 1.5 mm.

図1を用いて説明する。符号1は、本発明の極細線製造用の銅線等の表面性状改質方法に用いられる無接点給電方式の表面性状改質装置の概略を示し、通常塩化ビニル樹脂やFRPなどの電気絶縁体材料等で作られる。また、前記と同様の電気絶縁材料材料からなる隔壁2によって、電解研磨処理槽3とめっき処理槽4に区分されている。そして、電解研磨処理槽3およびめっき処理槽4には、それぞれの電解液5、5′が充填されている。さらに電解研磨処理槽3およびめっき処理槽4中には、電極6、6′が配置され、電解研磨処理槽3中の電極(陰極)6はマイナス側に、めっき処理槽4中の電極(陽極)6′はプラス側に接続される。前記電極6には銅、ステンレス等が使用され、アノード溶解された銅が金属銅として表面に析出付着する。一方、電極6′は陽極(アノード)に接続され、通電によって溶出した銅は銅線等の表面に析出してめっき層を形成する。このような目的から電極6′には、溶解性に優れる含リン銅合金が主に使われるが、無酸素銅や電解銅も使用できる。そして、表面性状を改質処理する銅線等7は、電解研磨処理槽3側から順にめっき処理槽4側に移動しながら処理できるようになっている。   This will be described with reference to FIG. Reference numeral 1 denotes an outline of a contact-less power supply type surface property reforming apparatus used in a surface property modification method for copper wire or the like for manufacturing ultrafine wires according to the present invention, and is usually an electrical insulator such as vinyl chloride resin or FRP. Made of materials. Moreover, it is divided into an electropolishing treatment tank 3 and a plating treatment tank 4 by a partition wall 2 made of the same electrically insulating material as described above. The electrolytic polishing tank 3 and the plating tank 4 are filled with respective electrolytic solutions 5 and 5 '. Further, electrodes 6 and 6 ′ are arranged in the electrolytic polishing tank 3 and the plating tank 4, and the electrode (cathode) 6 in the electrolytic polishing tank 3 is on the negative side, and the electrode (anode) in the plating tank 4 is on the negative side. ) 6 'is connected to the plus side. The electrode 6 is made of copper, stainless steel or the like, and the anode-dissolved copper is deposited on the surface as metallic copper. On the other hand, the electrode 6 'is connected to an anode (anode), and copper eluted by energization is deposited on the surface of a copper wire or the like to form a plating layer. For this purpose, the electrode 6 'is mainly made of a phosphorus-containing copper alloy having excellent solubility, but oxygen-free copper or electrolytic copper can also be used. And the copper wire etc. 7 which modify the surface properties can be processed while moving sequentially from the electrolytic polishing bath 3 side to the plating bath 4 side.

また、前記電解液5、5′としては銅イオンを含有するものであれば良く、具体的には、硫酸銅水溶液、硼弗化銅水溶液、ピロリン酸銅水溶液等が使用される。中でも硫酸銅水溶液は、電流効率に優れ排水処理も容易なため好ましい。なお、銅合金めっき層を形成させるためには、電解研磨処理槽3とめっき処理槽4の間に、電解研磨処理槽3からの電解液の持込を防止する水洗槽を設け、めっき処理槽4に銅合金めっき液と銅合金めっき用の陽極(アノード)を配置して本発明の表面性状改質処理方法を実施すれば、銅線等に銅合金のめっき層を形成することができる。そして、このように電解液中には銅イオンが含有されているので、電解研磨処理槽3およびめっき処理槽4に於けるそれぞれ陽極に於いて溶け出した銅イオンは、陰極に金属析出するためバランスしており電解液の抵抗値が変動することも少なく、安定して極細線製造用の銅線等が得られる。なお、以上の説明では隔壁2によって、電解研磨処理槽3とめっき処理槽4に区分された電解槽としたが、それぞれが独立した槽3、4であって、銅線等7が内部を連続して通過できるようにした槽としてもよい。   The electrolytic solutions 5 and 5 'may be any one containing copper ions. Specifically, an aqueous copper sulfate solution, an aqueous copper borofluoride solution, an aqueous copper pyrophosphate solution, or the like is used. Of these, an aqueous copper sulfate solution is preferred because of its excellent current efficiency and easy drainage treatment. In order to form a copper alloy plating layer, a water rinsing tank is provided between the electrolytic polishing tank 3 and the plating tank 4 to prevent the electrolytic solution from being brought in from the electrolytic polishing tank 3, and the plating tank If a copper alloy plating solution and an anode (anode) for copper alloy plating are arranged in 4 and the surface property modification treatment method of the present invention is carried out, a copper alloy plating layer can be formed on a copper wire or the like. Since the electrolytic solution contains copper ions in this way, the copper ions dissolved in the anode in the electrolytic polishing tank 3 and the plating tank 4 are deposited on the cathode. The balance is balanced, and the resistance value of the electrolytic solution hardly fluctuates, and a copper wire or the like for manufacturing an ultrafine wire can be obtained stably. In the above description, the electrolytic cell is divided into the electrolytic polishing tank 3 and the plating tank 4 by the partition wall 2, but the tanks 3 and 4 are independent from each other, and the copper wire 7 is continuous inside. It is good also as the tank which enabled it to pass.

以上の表面性状の改質方法によって、銅線等7はまずその表面が電解研磨されて、表面の傷、ひび割れ、銅粉のスタンプ等の表面欠陥が除去される。ついで、表面が電解研磨処理された銅線等7上には、銅或いは銅合金めっき層が形成される。このよう表面性状改質方法とすることによって、得られた表面はきれいであるため、めっき層の密着性に優れ、付着させためっき層は加工性が優れているので伸線用線材としての加工性が向上し、また伸線加工時に有害となる表面欠陥がないので良好な伸線性を有するものである。このため、伸線加工処理によって極細線を製造しても断線を生じることが極めて少なく、20μm以下の極細線を製造するための銅線或いは銅合金線として好ましい。より詳細に説明すると、まず電解研磨処理槽3中では、配置した電極6が陰極(カソード)となり、表面性状を改質しようとする銅線等7が陽極(アノード)となって無接点の電解処理が行われ、銅線等7の表面からは銅が溶出すると同時に傷、ひび割れ、銅粉のスタンプ等の表面欠陥が溶解除去されることになる。なお、表面欠陥の厚さは通常数十μm程度であるのでこの厚さを除去できれば良く、電解研磨処理の条件は処理時間により異なるが、実用的には電流密度を5A/dm以上で上限は通常100A/dm程度までで行われる。 By the above surface property modification method, the surface of the copper wire or the like 7 is first electropolished to remove surface defects such as surface scratches, cracks, and copper powder stamps. Then, a copper or copper alloy plating layer is formed on the copper wire or the like 7 whose surface has been subjected to electropolishing treatment. By using the surface property modification method in this way, the surface obtained is clean, so the adhesion of the plating layer is excellent, and the attached plating layer is excellent in workability, so that it can be processed as a wire rod for wire drawing. As a result, there is no surface defect that is harmful during the wire drawing process, and the wire has good wire drawing. For this reason, even if an ultrafine wire is manufactured by wire drawing processing, disconnection is very rare, and it is preferable as a copper wire or a copper alloy wire for manufacturing an ultrafine wire of 20 μm or less. In more detail, first, in the electropolishing treatment tank 3, the arranged electrode 6 becomes a cathode (cathode), and the copper wire or the like 7 whose surface properties are to be modified becomes an anode (anode), so that contactless electrolysis is performed. As a result of the treatment, copper is eluted from the surface of the copper wire or the like 7 and at the same time, surface defects such as scratches, cracks, and stamps of copper powder are dissolved and removed. Since the thickness of the surface defect is usually about several tens of μm, it is sufficient that this thickness can be removed. The conditions of the electropolishing process vary depending on the processing time, but practically the current density is 5 A / dm 2 or more and the upper limit. Is usually performed up to about 100 A / dm 2 .

ついで、めっき処理槽4中では銅線等が陰極(カソード)となる電解処理が行われ、その表面に銅或いは銅合金のめっき層を形成させることができる。そしてこのめっき層の厚さは数十μm程度あれば、その後の伸線加工に於いても断線を生じることがなくなる。また、前記めっき処理槽の電流密度は通常10A/dm以上とされる。このような条件で前述の厚さのめっき層を十分に密着させて形成することができ、また析出した銅は伸線加工での断線の原因となるような不純物、異物や欠陥などを含まない銅表面を形成できる。このように、電解研磨処理槽3とめっき処理槽4のいずれに於いても、表面性状を改質処理する銅線等7は無接点給電方式の表面性状改質方法とすることができることになる。なお、以上の本発明の表面性状改質処理方法に於いても、銅線等7は通常、電解研磨処理前に伸線油等の除去処理が、めっき処理後には電解液除去のための水洗や湯洗、乾燥等の処理等が行われる。 Then, in the plating tank 4, electrolytic treatment is performed in which the copper wire or the like serves as a cathode (cathode), and a plated layer of copper or a copper alloy can be formed on the surface thereof. If the thickness of this plating layer is about several tens of μm, disconnection will not occur in the subsequent wire drawing. The current density in the plating tank is usually 10 A / dm 2 or more. Under such conditions, the plating layer having the above-mentioned thickness can be formed by sufficiently adhering, and the deposited copper does not contain impurities, foreign matters, defects, etc. that cause disconnection in wire drawing. A copper surface can be formed. Thus, in both the electrolytic polishing tank 3 and the plating tank 4, the copper wire 7 for modifying the surface properties can be a contactless power supply surface property modifying method. . In the surface property modification treatment method of the present invention described above, the copper wire 7 is usually subjected to a removal treatment such as wire drawing oil before the electropolishing treatment, and water washing for removing the electrolyte solution after the plating treatment. Processing such as hot water washing, drying, etc. is performed.

さらに本発明は請求項3に記載されるように、前記表面欠陥の溶解除去が、酸溶解処理である極細線製造用の銅線等の表面性状改質方法としても、前述と同様の効果が得られる。このような処理方法は、比較的簡単な工程で行えるので装置のコストが少なくてすみ実用的である。図2によって説明する。この発明では銅線等7の表面欠陥の溶解除去は、8で示す酸溶解槽で行われる。すなわち、硝酸水溶液、硫酸と過酸化水素水の混合液や塩化第二鉄水溶液等を充填した槽中を通過させることによって、銅線等7の傷、ひび割れ、銅粉のスタンプ等の表面欠陥を除去するものである。図1の電解研磨処理槽3に該当する部分である。通常この酸溶解槽8の後には水洗槽9が設けられる。そしてこの酸溶解槽8によって、極細線製造用の銅線等7は表面欠陥を数十μm程度溶解除去される。なお、ここで用いる銅線等7もその外径が、0.1〜1.5mm程度のものがよい。そして、水洗槽9、続いて電極6′を配置しためっき処理槽4が配置されている。このめっき処理槽4には、電解液5′として硫酸銅水溶液、硼弗化銅水溶液、ピロリン酸銅水溶液等の銅イオンを含有する水溶性の電解液が使用される。中でも硫酸銅水溶液は、電流効率に優れ排水処理も容易なため好ましい。   Furthermore, as described in claim 3, the present invention provides the same effect as described above even when the surface defects are dissolved and removed by a surface property modification method such as a copper wire for manufacturing an ultrafine wire, which is an acid dissolution treatment. can get. Since such a processing method can be performed by a relatively simple process, the cost of the apparatus is small and practical. This will be described with reference to FIG. In the present invention, the surface defects of the copper wire 7 and the like are dissolved and removed in an acid dissolution tank indicated by 8. That is, by passing through a tank filled with nitric acid aqueous solution, sulfuric acid and hydrogen peroxide solution mixture or ferric chloride aqueous solution etc., surface defects such as copper wire 7 scratches, cracks, copper powder stamps etc. To be removed. This is a portion corresponding to the electrolytic polishing tank 3 of FIG. Usually, a water washing tank 9 is provided after the acid dissolution tank 8. Then, the acid dissolution tank 8 dissolves and removes surface defects of the copper wires 7 for producing the fine wires by several tens of μm. In addition, the copper wire etc. 7 used here has an outer diameter of about 0.1 to 1.5 mm. And the water-washing tank 9 and the plating process tank 4 which has arrange | positioned electrode 6 'are arrange | positioned next. In the plating tank 4, a water-soluble electrolytic solution containing copper ions such as a copper sulfate aqueous solution, a copper borofluoride aqueous solution, or a copper pyrophosphate aqueous solution is used as the electrolytic solution 5 ′. Of these, an aqueous copper sulfate solution is preferred because of its excellent current efficiency and easy drainage treatment.

そして、前記電極6′はプラス側に接続され、前記銅線等7は給電ロール等の接触型の給電部材10によってマイナス側に接続されて陰極を形成する。このような状態で、表面性状を改質処理する銅線等7は、酸溶解槽8側から順にめっき処理槽4側に移動しながら処理される。めっき層の厚さは、通常数十μm程度形成すればよい。このような極細線製造用の銅線等の表面性状改質方法とすることによって、比較的簡単な方法で傷、ひび割れ、銅粉のスタンプ等の表面欠陥を酸溶解除去でき、続いて設けるめっき層も確実に密着して形成される。このことにより、伸線加工時に断線等が生じることが極めて少なく、20μm以下の極細線を製造するのに好ましい銅線等を得ることができる。また、比較的簡単な連続工程で表面性状の改質処理を行うので、汚染の問題や外傷を防止できると共にコスト的にも実用的である。   The electrode 6 'is connected to the positive side, and the copper wire 7 is connected to the negative side by a contact type power supply member 10 such as a power supply roll to form a cathode. In such a state, the copper wire or the like 7 whose surface properties are modified is processed while moving in order from the acid dissolution tank 8 side to the plating treatment tank 4 side. What is necessary is just to form the thickness of a plating layer normally about several tens of micrometers. By adopting such a surface property modification method for copper wires for the production of ultrafine wires, surface defects such as scratches, cracks, and stamps of copper powder can be removed by acid dissolution with a relatively simple method, followed by plating. The layers are also formed in close contact with each other. This makes it possible to obtain a copper wire and the like preferable for producing an ultrafine wire of 20 μm or less, with extremely few occurrences of disconnection or the like during wire drawing. Further, since the surface property modification treatment is performed in a relatively simple continuous process, it is possible to prevent contamination problems and trauma, and is practical in terms of cost.

実験例によって本発明の効果を確認した。図1並びに図2に示した表面性状改質装置を用い、種々の条件で処理した外径0.18mmの銅線(純銅線)および錫―銅合金線(Sn0.3質量%Cu)、並びに処理を全く行わない同様の外径の銅線1.0kg(長さ約4.4km)を、外径15μmまでダイヤモンドダイスによる伸線加工を行った場合に発生する断線発生率(%)を測定して評価した。なお、断線発生率は、表面性状の改質処理を行わない例である実験例1および5を100%とした場合に対する相対的な頻度を発生率として示したものである。また、それぞれの表面性状の改質処理条件は以下のとおりである。   The effects of the present invention were confirmed by experimental examples. A copper wire (pure copper wire) and a tin-copper alloy wire (Sn 0.3 mass% Cu) with an outer diameter of 0.18 mm treated under various conditions using the surface property reformer shown in FIG. 1 and FIG. Measures the rate of occurrence of disconnection (%) that occurs when a copper wire with the same outer diameter without any treatment (1.0 kg in length) is drawn with a diamond die to an outer diameter of 15 μm. And evaluated. The disconnection occurrence rate indicates a relative frequency as an occurrence rate with respect to a case where Experimental Examples 1 and 5 which are examples in which the surface property modification treatment is not performed is 100%. In addition, the conditions for modifying the surface properties are as follows.

図1の装置を用いた表面性状改質処理方法の場合は、外径0.18mmの純銅線(純度99.9%)並びに錫−銅合金(Sn0.3質量%Cu合金)を、1Lの純水中に250gの硫酸銅および硫酸70gを溶解した電解液を充填し、ステンレス製の電極(マイナス側に接続)を配置した電解研磨処理槽、前記電解液と同じ液を充填し、0.05質量%のリンを含有するリン銅合金の電極(プラス側に接続)を配置しためっき処理槽を連続的に通過させて、表面性状の改質処理を行った。なお電解研磨処理条件は、電解液の攪拌(約2m/secのポンプ攪拌)、電解液の温度が50℃、線材の電解電流密度が20A/dm、浸漬時間4分30秒で、線材表面層の除去厚さは20μmある。まためっき処理条件は、めっき液の攪拌(約2m/secのポンプ攪拌)、めっき液の温度が50℃、電解電流密度が40A/dm、浸漬時間は2分15秒で、線速1m/minおよび5m/min、銅めっき厚さは20μmおよび4μmである。(実験例2および3) In the case of the surface property modification treatment method using the apparatus of FIG. 1, a pure copper wire (purity 99.9%) having an outer diameter of 0.18 mm and a tin-copper alloy (Sn 0.3 mass% Cu alloy) An electrolytic polishing bath in which 250 g of copper sulfate and 70 g of sulfuric acid are dissolved in pure water and filled with a stainless steel electrode (connected to the negative side) is filled with the same solution as the electrolyte. The surface property modification treatment was performed by continuously passing through a plating treatment tank in which an electrode (connected to the plus side) of a phosphor copper alloy containing 05% by mass of phosphorus was disposed. The electrolytic polishing treatment conditions were: electrolyte stirring (approximately 2 m / sec pump stirring), electrolyte temperature of 50 ° C., wire current density of 20 A / dm 2 , dipping time of 4 minutes and 30 seconds, wire surface The removal thickness of the layer is 20 μm. The plating treatment conditions were stirring of the plating solution (pump stirring of about 2 m / sec), the temperature of the plating solution was 50 ° C., the electrolytic current density was 40 A / dm 2 , the immersion time was 2 minutes and 15 seconds, and the linear velocity was 1 m / second. min and 5 m / min, and copper plating thicknesses are 20 μm and 4 μm. (Experimental examples 2 and 3)

また、図2の装置を用いた表面性状改質処理方法の場合は、外径0.18mmの純銅線(純度99.9%)および錫−銅合金(Sn0.3質量%Cu合金)を線速1m/minで、40容量%硝酸水溶液を充填した長さ4.4mの酸溶解槽ついで水洗槽、図1で使用した電解液と同様の電解液を充填し、0.05質量%のリンを含有するリン銅合金の電極(プラス側に接続)を配置しためっき処理槽を連続的に通過させて、表面性状を改質処理した。なお酸溶解処理条件は、液温(室温)で表面層の除去厚は20μmである。まためっき処理条件は、めっき液の攪拌(約5m/secのポンプ攪拌)、めっき液の温度が50℃、電解電流密度が40A/dm、浸漬時間は2分15秒で銅めっき厚さは20μmである。(実験例4および7)さらに、比較のために電解研磨処理や酸溶解除去処理、並びにめっき処理を全く行わない場合の純銅線および錫―銅合金線(Sn0.3質量%Cu線)について、実験例1および実験例5として記載した。結果は、いずれも表1に記載した。 Further, in the case of the surface property modification treatment method using the apparatus of FIG. 2, a pure copper wire (purity 99.9%) having an outer diameter of 0.18 mm and a tin-copper alloy (Sn 0.3 mass% Cu alloy) are drawn. At a speed of 1 m / min, a 4.4 m long acid dissolution tank filled with a 40% by volume nitric acid aqueous solution, followed by a water washing tank, an electrolyte similar to the electrolyte used in FIG. The surface properties were reformed by continuously passing through a plating bath in which an electrode (connected to the plus side) of a phosphorous copper alloy containing bismuth was disposed. The acid dissolution treatment conditions are a liquid temperature (room temperature), and the removal thickness of the surface layer is 20 μm. The plating treatment conditions were: plating solution stirring (about 5 m / sec pump stirring), plating solution temperature of 50 ° C., electrolytic current density of 40 A / dm 2 , immersion time of 2 minutes and 15 seconds, and copper plating thickness 20 μm. (Experimental examples 4 and 7) Further, for comparison, pure copper wire and tin-copper alloy wire (Sn 0.3 mass% Cu wire) when no electrolytic polishing treatment, acid dissolution removal treatment, and plating treatment are performed at all. It described as Experimental Example 1 and Experimental Example 5. The results are shown in Table 1.

Figure 2006104543
Figure 2006104543

表1から明らかなとおり、実験例1および5の本発明の表面性状の改質処理を行わない場合と比べて、実験例2〜4、6および7に記載する表面性状を改質処理した銅線等を用いて、15μmまで伸線加工しても断線が殆ど発生しないことがわかった。すなわち、実験例2のように純銅線を使用し、硫酸銅水溶液を用いた電解研磨理処理槽の電流密度が20A/dm、めっき処理槽の電流密度が40A/dm、銅めっき層の厚さが20μm、線速が1m/minの改質処理した場合には、断線発生率が3%と殆どなかった。また、同様の条件で前記電解研磨処理に代えて硝酸溶解処理を行った場合も、実験例4に記載されるように断線の発生率は4%と殆どなかった。また、実験例6および7に記載するように、錫―銅合金線を用いて実験例2および4と同様の条件で電解研磨処理およびめっき処理、或いは硝酸水溶液溶解処理およびめっき処理を行った場合も、伸線加工による断線の発生率は4%程度と殆ど断線を生じなかった。なお実験例3のように純銅線を使用し、硫酸銅水溶液の電解研磨理処理槽の電流密度が20A/dm、めっき処理槽の電流密度が40A/dmで、銅めっき層の厚さを4μm、線速を5m/minとした場合には、断線の発生率が55%と改質効果が小さかった。 As is apparent from Table 1, compared with the case where the surface property modification treatment of the present invention of Experimental Examples 1 and 5 is not performed, the copper subjected to the modification treatment of the surface properties described in Experimental Examples 2 to 4, 6 and 7 It was found that disconnection hardly occurred even when a wire was drawn to 15 μm using a wire or the like. That is, as in Experimental Example 2, a pure copper wire was used, the current density of the electrolytic polishing treatment bath using an aqueous copper sulfate solution was 20 A / dm 2 , the current density of the plating bath was 40 A / dm 2 , and the copper plating layer When the reforming process was performed with a thickness of 20 μm and a linear velocity of 1 m / min, the disconnection occurrence rate was almost 3%. In addition, when nitric acid dissolution treatment was performed instead of the electrolytic polishing treatment under the same conditions, the occurrence rate of disconnection was almost 4% as described in Experimental Example 4. In addition, as described in Experimental Examples 6 and 7, when an electropolishing treatment and a plating treatment, or a nitric acid aqueous solution dissolution treatment and a plating treatment were performed under the same conditions as in Experimental Examples 2 and 4 using a tin-copper alloy wire However, the occurrence rate of wire breakage due to wire drawing was about 4%, and almost no wire breakage occurred. It should be noted that pure copper wire was used as in Experimental Example 3, the current density of the electrolytic polishing treatment bath of copper sulfate aqueous solution was 20 A / dm 2 , the current density of the plating bath was 40 A / dm 2 , and the thickness of the copper plating layer Was 4 μm and the linear velocity was 5 m / min, the rate of occurrence of disconnection was 55%, and the reforming effect was small.

以上のような銅線等の表面性状の改質方法によれば、伸線加工によっても断線することなく、20μm以下の極細線を効率よく製造でき、小型の電子機器等用の極細線として使用できる。またその表面性状の改質処理方法も比較的簡単なため低コストで実用的である。   According to the method for modifying the surface properties of copper wires and the like as described above, an ultrafine wire of 20 μm or less can be efficiently produced without being disconnected even by wire drawing, and used as an ultrafine wire for a small electronic device or the like. it can. The surface property modification treatment method is also relatively simple and practical at a low cost.

本発明の表面性状改質処理方法に使用される無接点給電方式の表面性状改質処理装置の概略を示す断面図である。It is sectional drawing which shows the outline of the surface property modification processing apparatus of the non-contact electric power feeding system used for the surface property modification processing method of this invention. 本発明の表面性状改質処理装置の別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the surface property modification processing apparatus of this invention.

符号の説明Explanation of symbols

1 表面性状改質処理装置
2 隔壁
3 電解研磨処理槽
4 めっき処理槽
5、5′ 電解液
6、6′ 電極
7 銅または銅合金線
8 酸溶解槽
9 水洗槽
10給電部材
DESCRIPTION OF SYMBOLS 1 Surface property modification processing apparatus 2 Partition 3 Electropolishing processing tank 4 Plating processing tank 5, 5 'Electrolytic solution 6, 6' Electrode 7 Copper or copper alloy wire 8 Acid dissolution tank 9 Washing tank 10 Feeding member

Claims (3)

極細線を製造するための銅線或いは銅合金線であって、前記銅線或いは銅合金線の表面欠陥を溶解除去し、続いて銅めっき処理または銅合金めっき処理を行うことを特徴とする極細線製造用の銅線或いは銅合金線の表面性状改質方法。   A copper wire or a copper alloy wire for producing an extra fine wire, wherein the surface defect of the copper wire or the copper alloy wire is dissolved and removed, followed by a copper plating treatment or a copper alloy plating treatment. A method for modifying the surface properties of copper wire or copper alloy wire for wire production. 前記極細線製造用の銅線或いは銅合金線の表面性状改質方法が、絶縁材料からなる隔壁によって電解研磨処理槽とめっき処理槽の2つに区分され、それぞれに銅イオンを含有する電解液が充填された電解浴槽であって、前記電解研磨処理槽にはマイナス側に接続された電極(陰極)が、前記めっき処理槽にはプラス側に接続された電極(陽極)が配置され、この状態で前記銅線或いは銅合金線を電解研磨処理槽、続いてめっき処理槽中を連続して通過させることによって、銅線或いは銅合金線の表面を電解研磨処理し、続いて銅めっき処理または銅合金めっき処理を行うことを特徴とする請求項1に記載される極細線製造用の銅線或いは銅合金線の表面性状改質方法。   The method for modifying the surface properties of the copper wire or copper alloy wire for producing the ultrafine wire is divided into an electrolytic polishing treatment tank and a plating treatment tank by partition walls made of an insulating material, and each contains an electrolytic solution containing copper ions. The electrolytic polishing bath is provided with an electrode (cathode) connected to the negative side, and the plating bath is provided with an electrode (anode) connected to the positive side. The surface of the copper wire or copper alloy wire is electropolished by continuously passing the copper wire or copper alloy wire through the electrolytic polishing treatment tank and then the plating treatment tank in the state, and then the copper plating treatment or The method for modifying the surface properties of a copper wire or a copper alloy wire for producing an ultrafine wire according to claim 1, wherein a copper alloy plating treatment is performed. 前記表面欠陥の溶解除去が、酸溶解処理であることを特徴とする請求項1に記載される極細線製造用の銅線或いは銅合金線の表面性状改質方法。   The method for modifying the surface properties of a copper wire or a copper alloy wire for producing an ultrafine wire according to claim 1, wherein the dissolution and removal of the surface defects is an acid dissolution treatment.
JP2004295049A 2004-10-07 2004-10-07 Method for reforming surface quality of copper wire or copper alloy wire used for manufacturing ultrafine wire Pending JP2006104543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004295049A JP2006104543A (en) 2004-10-07 2004-10-07 Method for reforming surface quality of copper wire or copper alloy wire used for manufacturing ultrafine wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004295049A JP2006104543A (en) 2004-10-07 2004-10-07 Method for reforming surface quality of copper wire or copper alloy wire used for manufacturing ultrafine wire

Publications (1)

Publication Number Publication Date
JP2006104543A true JP2006104543A (en) 2006-04-20

Family

ID=36374615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004295049A Pending JP2006104543A (en) 2004-10-07 2004-10-07 Method for reforming surface quality of copper wire or copper alloy wire used for manufacturing ultrafine wire

Country Status (1)

Country Link
JP (1) JP2006104543A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117937333A (en) * 2024-03-22 2024-04-26 合肥工业大学 Wire stripping device and method for multi-main-wire ultrafine wire harness multi-main-wire metal shielding layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117937333A (en) * 2024-03-22 2024-04-26 合肥工业大学 Wire stripping device and method for multi-main-wire ultrafine wire harness multi-main-wire metal shielding layer
CN117937333B (en) * 2024-03-22 2024-06-14 合肥工业大学 Wire stripping device and method for multi-main-wire ultrafine wire harness multi-main-wire metal shielding layer

Similar Documents

Publication Publication Date Title
JP6445895B2 (en) Sn plating material and method for producing the same
WO2007145164A1 (en) Rolled copper or copper alloy foil with roughened surface and method of roughening rolled copper or copper alloy foil
JP5862917B2 (en) Method for electroplating long conductive substrate, method for producing copper-coated long conductive substrate using this method, and roll-to-roll type electroplating apparatus
JP2012089481A (en) Anisotropic conductive member
JP4076751B2 (en) Electro-copper plating method, phosphor-containing copper anode for electrolytic copper plating, and semiconductor wafer plated with these and having less particle adhesion
JP5344151B2 (en) Method for producing Cu-Ag alloy wire and Cu-Ag alloy wire
JP2003534459A (en) Cathode for electrochemical regeneration of permanganate etching solution
JP4034095B2 (en) Electro-copper plating method and phosphorous copper anode for electro-copper plating
JP5402517B2 (en) Copper material for plating, method for producing copper material for plating, and method for producing copper plated material
JPH0214020A (en) Metal fiber obtained by drawing metal bundle
WO2013111642A1 (en) Bonding wire and method for manufacturing same
JPH06235086A (en) Lead steel wire for electronic parts and its production
JP2006104543A (en) Method for reforming surface quality of copper wire or copper alloy wire used for manufacturing ultrafine wire
JP5481179B2 (en) Method for stripping Sn plating layer of Cu-based material
JP2013049903A (en) Method for manufacturing aluminum anodic oxide coating being superior in productivity and having high voltage endurance
JP3959680B2 (en) Etching method of aluminum electrolytic capacitor anode foil
JP2013143490A (en) Method for electroplating long conductive substrate and method for manufacturing copper clad laminate
JP2008095203A (en) Electrolytic copper plating method
JP6532550B2 (en) Method of manufacturing a wire made of a first metal, having a sheath layer made of a second metal
JP2002140935A (en) Extrafine wire and its manufacturing method, metal plated extrafine wire and its manufacturing method, and resin coated extrafine wire and its manufacturing method
JP2007092167A (en) Etching method for forming etching pits
JP2003105581A (en) Method and apparatus for electrolytic deposition of tin alloy
TWI749886B (en) Method for roughening surface of lead frame and electrochemical device
JP2005232484A (en) Terminal, and component and product having the same
JP2005220374A (en) Terminal, and component and product having the same