JP2006102608A - Defoaming method and apparatus - Google Patents

Defoaming method and apparatus Download PDF

Info

Publication number
JP2006102608A
JP2006102608A JP2004291293A JP2004291293A JP2006102608A JP 2006102608 A JP2006102608 A JP 2006102608A JP 2004291293 A JP2004291293 A JP 2004291293A JP 2004291293 A JP2004291293 A JP 2004291293A JP 2006102608 A JP2006102608 A JP 2006102608A
Authority
JP
Japan
Prior art keywords
defoaming
state
liquid
stirring
processing liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004291293A
Other languages
Japanese (ja)
Other versions
JP4342414B2 (en
Inventor
Hiroshi Matsuo
洋 松尾
Yoshihiro Kitamura
喜弘 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004291293A priority Critical patent/JP4342414B2/en
Publication of JP2006102608A publication Critical patent/JP2006102608A/en
Application granted granted Critical
Publication of JP4342414B2 publication Critical patent/JP4342414B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for defoaming a liquid to be treated, permitting ready and reliable formation of a good coated surface, independent of the type of the liquid and inclusion conditions of bubbles, by detecting the defoamed conditions of the liquid during defoaming treatment. <P>SOLUTION: A concentration meter 25 for dissolved oxygen, a density meter 26 and a bubble detector 27 based on a near IR transmitted/diffused light system are arranged in a closed container 3 so as to measure the concentration of dissolved oxygen in a liquid 2 under defoaming treatment, the specific gravity of the liquid and the output of the transmitted/diffused light in the container 3. The measurements are judged whether to reach predetermined threshold values. When the measurements reach the values, the apparatus stops stirring of the liquid 2 with an external blade 4 for promotion of defoaming and an internal blade 5 for blending stirring. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、粘着層を有する粘着テープ等の製造工程において、粘着テープに塗布する前工程として粘着剤の処理液に含まれる気泡を脱泡する際に、脱泡処理中の処理液の脱泡状態を検出するとともに所定の設定脱泡状態へと移行するように処理液にかかる圧力や攪拌手段を自動制御する脱泡方法及び脱泡装置に関する。   The present invention provides a defoaming treatment liquid during defoaming treatment when defoaming bubbles contained in the treatment liquid of the pressure sensitive adhesive as a pre-process applied to the pressure sensitive adhesive tape in a production process of an adhesive tape having an adhesive layer. The present invention relates to a defoaming method and a defoaming device for automatically controlling pressure applied to a processing liquid and stirring means so as to detect a state and shift to a predetermined set defoaming state.

一般に、粘着テープ等の粘着剤に用いられる合成樹脂等の粘度の高い液体は、その製造過程で気泡を含むことが多く、更にその粘度が高いために一旦含まれた気泡は抜けにくくなっている。そして、前記気泡を含む液体を対象物に塗布した場合には、塗布面にピンホール、ストリーク、クレーター、泡はげ等の塗布むらが発生することとなっていた。
ここで、従来より前記液体から気泡を取り除く脱泡方法として種々の方法が提案されているが、特に減圧法と呼ばれる脱泡方法は、液体を減圧下に置くことにより液体内の気泡を膨張させ、気泡の発生を促進する方法である。
そして、前記減圧法を行う脱泡装置として例えば特開2003−103110号公報には、減圧タンク内に液剤を導入した後に減圧下で液体を撹拌し、液中の泡を膨張、浮上させ、浮上してきた泡をセンサーで検出するとともに、センサーからの信号に基づき、タンク上部に備えたエアノズルから、浮上してきた泡に向けて圧力空気を噴射して泡を破壊する脱泡装置が記載されている。
特開2003−103110号公報(第4頁〜第5頁、図1)
In general, liquids with high viscosity such as synthetic resins used for pressure-sensitive adhesives such as pressure-sensitive adhesive tapes often contain bubbles in the production process, and the bubbles once contained are difficult to escape due to their high viscosity. . When a liquid containing bubbles is applied to an object, uneven coating such as pinholes, streaks, craters, and bubble peeling occurs on the application surface.
Here, various methods have been proposed as defoaming methods for removing bubbles from the liquid. In particular, a defoaming method called a depressurization method expands bubbles in a liquid by placing the liquid under reduced pressure. This is a method for promoting the generation of bubbles.
As a defoaming apparatus for performing the depressurization method, for example, in Japanese Patent Application Laid-Open No. 2003-103110, after introducing a liquid agent into a depressurization tank, the liquid is stirred under reduced pressure to expand and float the bubbles in the liquid. A defoaming device is described in which bubbles are detected by a sensor, and on the basis of a signal from the sensor, a pressure air is jetted from the air nozzle provided at the upper part of the tank toward the rising bubbles to destroy the bubbles. .
Japanese Patent Laying-Open No. 2003-103110 (pages 4 to 5, FIG. 1)

しかしながら、前記した特許文献1に記載された脱泡装置を始め従来の脱泡装置及び脱泡方法では、処理液の脱泡を効率的に行うことは可能となっているが、脱泡処理中の処理液が必要な脱泡状態となっているか否かを確認することはできなかった。即ち、処理液の種類や気泡の混入状態に応じて、その都度脱泡するのに必要な時間を使用者の経験等から推定し、脱泡を行っていた。ここで、前記脱泡処理の時間が不十分であると塗布面にピンホール、ストリーク、クレーター、泡はげ等の塗布むらが発生し、その一方で、脱泡処理を過剰に行うと作業の効率が悪くなってしまう。
更に、脱泡処理を行う処理液は一種類に限られるものではなく、例えばアクリルポリマー系、アクリルエマルジョン系、UV硬化系等多数の種類が存在し、その種類によっても最適な脱泡処理の時間が異なる。また、同じ種類の処理液であっても気泡の混入する量が異なる場合があり、一義的にその時間を決定することは難しい。従って、それらの最適な脱泡処理時間を導くためには数多くの実験が必要となり、時間的及び金銭的な負担が大きかった。
また、脱泡処理工程内での品質保証がなされないので、後の検査工程で気泡不良が発覚した場合には生産ラインを停止し、脱泡操作側の不具合か、或いは塗布操作側の不具合かを調査し、再調整する必要があった。
However, in the conventional defoaming apparatus and the defoaming method described in Patent Document 1 described above, it is possible to efficiently defoam the treatment liquid. It was not possible to confirm whether or not the treatment liquid was in the required defoamed state. That is, depending on the type of treatment liquid and the state of air bubble mixing, the time required for defoaming is estimated from the user's experience and the like, and defoaming is performed. Here, if the time for the defoaming treatment is insufficient, coating unevenness such as pinholes, streaks, craters, foam baldness, etc. occurs on the coating surface. On the other hand, if the defoaming treatment is excessive, the work efficiency is increased. Will get worse.
Furthermore, the processing liquid for performing the defoaming treatment is not limited to one type. For example, there are many types such as an acrylic polymer type, an acrylic emulsion type, a UV curing type, and the optimum defoaming time depending on the type. Is different. In addition, even in the case of the same type of processing liquid, the amount of bubbles mixed in may be different, and it is difficult to uniquely determine the time. Therefore, in order to derive the optimum defoaming processing time, many experiments are required, and time and money burdens are large.
In addition, since quality assurance is not performed within the defoaming process, if a bubble defect is detected in the subsequent inspection process, the production line is stopped, whether it is a problem on the defoaming operation side or a problem on the coating operation side. It was necessary to investigate and readjust.

本発明は前記従来における問題点を解消するためになされたものであり、処理液の脱泡状態を検出して攪拌手段や処理液にかかる圧力を自動制御することにより、処理液の種類や気泡の混入状態に左右されることなく、短時間で処理液の適切な脱泡を行うことが可能な脱泡方法及び脱泡装置を提供することを目的とする。   The present invention has been made to solve the above-described conventional problems, and by detecting the defoaming state of the processing liquid and automatically controlling the pressure applied to the stirring means and the processing liquid, the type of processing liquid and bubbles It is an object of the present invention to provide a defoaming method and a defoaming device capable of performing appropriate defoaming of a treatment liquid in a short time without being influenced by the state of contamination of the liquid.

前記目的を達成するため本願の請求項1に係る脱泡方法は、気泡が混入した処理液を所定の圧力に減圧された状態に置くとともに攪拌手段で攪拌することにより、前記処理液を気泡と液体とに分離する脱泡方法において、前記処理液の脱泡状態を検出するとともに、検出された脱泡状態が予め設定された所定の設定脱泡状態へと移行するように前記圧力及び/又は前記攪拌手段を自動制御することを特徴とする。   In order to achieve the above object, the defoaming method according to claim 1 of the present application is arranged such that the processing liquid in which bubbles are mixed is placed in a state where the pressure is reduced to a predetermined pressure and is stirred by a stirring means, whereby the processing liquid is separated from the bubbles. In the defoaming method for separating into a liquid, the pressure and / or the defoaming state of the treatment liquid is detected and the detected defoaming state shifts to a preset predetermined defoaming state. The stirring means is automatically controlled.

また、請求項2に係る脱泡方法は、請求項1に記載の脱泡方法において、前記検出された処理液の脱泡状態に基づいて前記圧力及び/又は前記攪拌手段を制御することを特徴とする。   The defoaming method according to claim 2 is characterized in that, in the defoaming method according to claim 1, the pressure and / or the stirring means is controlled based on the detected defoaming state of the processing liquid. And

また、請求項3に係る脱泡方法は、請求項1又は請求項2に記載の脱泡方法において、前記検出される脱泡状態は、前記処理液の溶存酸素濃度、密度比重及び透過散乱光出力のいずれかの値、或いは全ての値に基づいて判定されることを特徴とする。   The defoaming method according to claim 3 is the defoaming method according to claim 1 or 2, wherein the defoamed state detected is the dissolved oxygen concentration, density specific gravity and transmitted scattered light of the treatment liquid. It is determined based on any value or all values of the output.

また、請求項4に係る脱泡装置は、処理液を封入する密閉容器と、前記密閉容器内を減圧する減圧手段と、前記密閉容器内に封入された処理液を攪拌する攪拌手段と、を有する脱泡装置において、所定の脱泡状態を設定する設定手段と、前記処理液の脱泡状態を検出する検出手段と、前記検出手段により検出された脱泡状態が前記設定手段により設定された設定脱泡状態へと移行するように前記減圧手段及び/又は前記攪拌手段を自動制御する自動制御手段と、を備えることを特徴とする。   Further, the defoaming apparatus according to claim 4 includes: a sealed container that encloses the processing liquid; a decompression unit that depressurizes the inside of the sealed container; and an agitation unit that stirs the processing liquid enclosed in the sealed container. In the defoaming apparatus, the setting means for setting a predetermined defoaming state, the detection means for detecting the defoaming state of the processing liquid, and the defoaming state detected by the detection means are set by the setting means. And an automatic control means for automatically controlling the pressure reducing means and / or the stirring means so as to shift to a set defoaming state.

また、請求項5に係る脱泡装置は、請求項4に記載の脱泡装置において、前記自動制御手段は、前記検出手段の検出結果に基づいて前記減圧手段及び/又は前記攪拌手段を制御することを特徴とする。   The defoaming apparatus according to claim 5 is the defoaming apparatus according to claim 4, wherein the automatic control means controls the decompression means and / or the stirring means based on a detection result of the detection means. It is characterized by that.

また、請求項6に係る脱泡装置は、請求項4又は請求項5に記載の脱泡装置において、前記検出手段は、溶存酸素濃度計、密度比重計及び近赤外線透過散乱光方式気泡検出器のいずれか、或いは全てを備えたことを特徴とする。   The defoaming apparatus according to claim 6 is the defoaming apparatus according to claim 4 or 5, wherein the detection means includes a dissolved oxygen concentration meter, a density specific gravity meter, and a near-infrared transmitted / scattered light bubble detector. Any or all of these are provided.

前記構成を有する請求項1に係る脱泡方法では、処理液の脱泡状態を検出するとともに、検出された脱泡状態が予め設定された所定の設定脱泡状態へと移行するように圧力及び/又は攪拌手段を自動制御するので、処理液の種類や気泡の混入状態に左右されることなく、短時間で且つ確実に良好な塗布面を得ることができる。従って、従来技術の安全性を加味した脱泡時間設定による脱泡操作と比較し、確実に脱泡補償ができ、良好な再現性とともに生産ラインにおける脱泡処理工程での品質保証の実現が可能となる。そして、効率的な脱泡操作と管理体制の構築により塗布工程での気泡欠陥ロスが激減し、生産歩留の向上を図ることができる。   In the defoaming method according to claim 1 having the above-described configuration, the pressure and the defoaming state of the treatment liquid are detected, and the detected defoaming state is shifted to a preset predetermined defoaming state. Since the agitation means is automatically controlled, a good coated surface can be obtained reliably in a short time without being influenced by the type of treatment liquid or the state of mixing of bubbles. Therefore, compared with the conventional defoaming operation by setting the defoaming time taking into account the safety, defoaming compensation can be ensured, and quality assurance can be realized in the defoaming process in the production line with good reproducibility. It becomes. And by the efficient defoaming operation and the construction of a management system, the loss of bubble defects in the coating process is drastically reduced, and the production yield can be improved.

また、請求項2に係る脱泡方法では、検出された処理液の脱泡状態に基づいて圧力及び/又は攪拌手段をフィードバック制御するので、現在の処理液の脱泡状況に応じた適切な制御を行うことが可能となる。従って、より確実で且つ短時間の脱泡処理を行うことができる。   Further, in the defoaming method according to claim 2, since the pressure and / or the agitation unit is feedback controlled based on the detected defoaming state of the processing liquid, appropriate control according to the current defoaming state of the processing liquid is performed. Can be performed. Therefore, the defoaming process can be performed more reliably and in a short time.

また、請求項3に係る脱泡方法では、脱泡状態を処理液の溶存酸素濃度、密度比重及び透過散乱光出力のいずれかの値、或いは全ての値に基づいて判定するので、処理液の溶存酸素濃度、比重、透過散乱光出力の各測定値から、脱泡処理する処理液の種類や現在の状況に基づいて最適な測定データを参照することが可能となる。従って、処理液の種類や状況に左右されることなく正確な脱泡状態を検出することが可能となる。   Further, in the defoaming method according to claim 3, since the defoaming state is determined based on any or all values of the dissolved oxygen concentration, density specific gravity and transmitted scattered light output of the treatment liquid, From the measured values of dissolved oxygen concentration, specific gravity, and transmitted scattered light output, it is possible to refer to optimum measurement data based on the type of processing liquid to be defoamed and the current situation. Therefore, it is possible to detect an accurate defoaming state without being influenced by the type and situation of the processing liquid.

また、請求項4に係る脱泡装置では、処理液の脱泡状態を検出するとともに、検出された脱泡状態が予め設定された所定の設定脱泡状態へと移行するように圧力及び/又は攪拌手段を自動制御するので、処理液の種類や気泡の混入状態に左右されることなく、短時間で且つ確実に良好な塗布面を得ることができる。従って、従来技術の安全性を加味した脱泡時間設定による脱泡操作と比較し、確実に脱泡補償ができ、良好な再現性とともに生産ラインにおける脱泡処理工程での品質保証の実現が可能となる。そして、効率的な脱泡操作と管理体制の構築により塗布工程での気泡欠陥ロスが激減し、生産歩留の向上を図ることができる。   Further, in the defoaming apparatus according to claim 4, while detecting the defoaming state of the treatment liquid, the pressure and / or so that the detected defoaming state shifts to a predetermined set defoaming state set in advance. Since the agitation means is automatically controlled, a good coated surface can be reliably obtained in a short time without being influenced by the type of processing liquid or the state of mixing of bubbles. Therefore, compared with the conventional defoaming operation by setting the defoaming time taking into account the safety, defoaming compensation can be ensured, and quality assurance can be realized in the defoaming process in the production line with good reproducibility. It becomes. And by the efficient defoaming operation and the construction of a management system, the loss of bubble defects in the coating process is drastically reduced, and the production yield can be improved.

また、請求項5に係る脱泡装置では、検出された処理液の脱泡状態に基づいて圧力及び/又は攪拌手段をフィードバック制御するので、現在の処理液の脱泡状況に応じた適切な制御を行うことが可能となる。従って、より確実で且つ短時間の脱泡処理を行うことができる。   Further, in the defoaming apparatus according to claim 5, since the pressure and / or the stirring means is feedback controlled based on the detected defoaming state of the processing liquid, appropriate control according to the current defoaming state of the processing liquid is performed. Can be performed. Therefore, the defoaming process can be performed more reliably and in a short time.

更に、請求項6に係る脱泡装置では、溶存酸素濃度計、密度比重計及び近赤外線透過散乱光方式気泡検出器により脱泡状態を検出するので、処理液の溶存酸素濃度、比重、透過散乱光出力の各測定値から、脱泡処理する処理液の種類や現在の状況に基づいて最適な測定データを参照することが可能となる。従って、処理液の種類や状況に左右されることなく正確な脱泡状態を検出することが可能となる。   Furthermore, in the defoaming apparatus according to claim 6, since the defoaming state is detected by the dissolved oxygen concentration meter, the density / specific gravity meter, and the near-infrared transmission / scattering light type bubble detector, the dissolved oxygen concentration, the specific gravity, and the transmission / scattering of the treatment liquid. It is possible to refer to the optimum measurement data from each measured value of the optical output based on the type of processing liquid to be defoamed and the current situation. Therefore, it is possible to detect an accurate defoaming state without being influenced by the type and situation of the processing liquid.

以下、本発明に係る脱泡方法、及び前記脱泡方法により脱泡を行う脱泡装置について具体化した実施形態に基づき図面を参照しつつ詳細に説明する。先ず、本実施形態に係る脱泡装置1の概略構成について図1に基づき説明する。図1は本実施形態に係る脱泡装置の概略図である。   Hereinafter, a defoaming method according to the present invention and a defoaming apparatus for defoaming by the defoaming method will be described in detail with reference to the drawings. First, a schematic configuration of the defoaming apparatus 1 according to the present embodiment will be described with reference to FIG. FIG. 1 is a schematic view of a defoaming apparatus according to this embodiment.

図1に示すように、本実施形態に係る脱泡装置1は、脱泡処理を行う処理液2が封入される密閉容器3と、密閉容器3の内壁面近傍の液体を撹拌する脱泡促進用外羽根4と、密閉容器3の中心部に位置する処理液2を撹拌する配合攪拌用内羽根5と、脱泡促進用外羽根4及び配合攪拌用内羽根5を回転駆動させる駆動モータ6と、密閉容器3に連結した排気パイプ7の端部に設けられ密閉容器3内部の気圧を大気圧に開放するリークバルブ8と、空気の排気を行う真空ポンプ9と、真空ポンプ9と密閉容器3とを連結する吸引パイプ10と、吸引パイプ10を開閉する吸引バルブ11と、密閉容器3にこれから脱泡処理を行う処理液2を供給する為の供給パイプ12と、供給パイプ12を開閉する供給バルブ13と、密閉容器3内の脱泡処理済の処理液を排出するドレンパイプ14と、ドレンパイプ14を開閉するドレンバルブ15とから基本的に構成されている。   As shown in FIG. 1, the defoaming apparatus 1 according to this embodiment includes a sealed container 3 in which a treatment liquid 2 for performing a defoaming process is sealed, and defoaming promotion for stirring the liquid near the inner wall surface of the sealed container 3. The outer blade 4 for mixing, the inner blade 5 for mixing and stirring the processing liquid 2 located in the central portion of the sealed container 3, and the driving motor 6 that rotationally drives the outer blade 4 for promoting defoaming and the inner blade 5 for mixing and stirring. A leak valve 8 provided at the end of the exhaust pipe 7 connected to the sealed container 3 to release the atmospheric pressure inside the sealed container 3 to atmospheric pressure, a vacuum pump 9 for exhausting air, the vacuum pump 9 and the sealed container 3, a suction valve 11 for opening and closing the suction pipe 10, a supply pipe 12 for supplying the processing liquid 2 to be defoamed to the sealed container 3, and opening and closing the supply pipe 12. Supply valve 13 and defoaming treatment in sealed container 3 A drain pipe 14 for discharging the treatment liquid, and is essentially composed of a drain valve 15 for opening and closing the drain pipe 14.

また、密閉容器3は、すり鉢形状の液体タンク20と、液体タンク20の上面に取り付けられる容器蓋21からなり、本脱泡装置1で処理液2を脱泡処理中においては、液体タンク20は容器蓋21により密閉される。そして、容器蓋21の上面には密閉容器3内の圧力を測定する圧力計22が設けられており、一方、液体タンク20の側面には密閉容器3内の処理液2の一部を導くための測定パイプ23が設けられている。更に、測定パイプ23の途中には、導かれた処理液2の脱泡状態を検出するための溶存酸素濃度計25、密度比重計26及び近赤外線透過散乱光方式気泡検出器27がそれぞれ設けられている。ここで、前記3つの測定装置25〜27は測定パイプ23により導入した処理液2を測定対象とするので、減圧操作により発生する気泡の影響を受け難く、正確な値を測定することが可能となっている。   The sealed container 3 includes a mortar-shaped liquid tank 20 and a container lid 21 attached to the upper surface of the liquid tank 20. When the processing liquid 2 is being defoamed by the defoaming apparatus 1, the liquid tank 20 is Sealed by the container lid 21. A pressure gauge 22 for measuring the pressure in the sealed container 3 is provided on the upper surface of the container lid 21, while a part of the processing liquid 2 in the sealed container 3 is guided to the side surface of the liquid tank 20. The measurement pipe 23 is provided. Further, a dissolved oxygen concentration meter 25, a density specific gravity meter 26, and a near-infrared transmitted / scattered light bubble detector 27 for detecting the defoamed state of the guided processing liquid 2 are provided in the middle of the measurement pipe 23, respectively. ing. Here, since the three measurement devices 25 to 27 measure the treatment liquid 2 introduced by the measurement pipe 23, it is difficult to be affected by bubbles generated by the decompression operation, and an accurate value can be measured. It has become.

溶存酸素濃度計25は、処理液2の現在の溶存酸素濃度(mg/L)を測定する測定器である。また、密度比重計26は、処理液2の現在の比重を測定する測定器である。また、近赤外線透過散乱光方式気泡検出器27は、処理液2の現在の透過散乱光出力(±V)を測定する測定器である。ここで、処理液2の脱泡状態をより正確に確認するためには、本実施形態に係る脱泡装置1のように、全ての測定装置(溶存酸素濃度計25、密度比重計26及び近赤外線透過散乱光方式気泡検出器27)を設けることが最適ではあるが、3つの測定装置25〜27の内、いずれか1つ又は2つの測定装置のみを設けることとしても良い。その際には測定対象となる処理液2の揮発性や粘着性等の外乱の影響が少ない溶存酸素濃度計25を含めるのが望ましい。
また、測定の際に、密度比重計26では揮発性に対するベース比重変化を考慮することが必要であり、近赤外線透過散乱光方式気泡検出器27では粒子分散系に対する粒子系の検量値が必要となる。このように、処理液2の種類や状況によって脱泡状況の測定に適した装置は変化するものであり、本実施形態のように全ての測定装置により計測を行い、脱泡状態の判断に使用する測定値をその中から、その都度選択するのが良い。
The dissolved oxygen concentration meter 25 is a measuring device that measures the current dissolved oxygen concentration (mg / L) of the treatment liquid 2. The density specific gravity meter 26 is a measuring device that measures the current specific gravity of the processing liquid 2. The near-infrared transmitted / scattered light bubble detector 27 is a measuring instrument that measures the current transmitted / scattered light output (± V) of the treatment liquid 2. Here, in order to confirm the defoaming state of the treatment liquid 2 more accurately, as in the defoaming apparatus 1 according to the present embodiment, all the measuring apparatuses (the dissolved oxygen concentration meter 25, the density specific gravity meter 26, Although it is optimal to provide the infrared transmission / scattering light type bubble detector 27), only one or two of the three measuring devices 25 to 27 may be provided. In that case, it is desirable to include a dissolved oxygen concentration meter 25 that is less affected by disturbances such as volatility and adhesiveness of the treatment liquid 2 to be measured.
In the measurement, the density hydrometer 26 needs to consider the change in the base specific gravity with respect to volatility, and the near-infrared transmitted / scattered light bubble detector 27 needs a particle calibration value for the particle dispersion system. Become. As described above, the apparatus suitable for the measurement of the defoaming state varies depending on the type and the situation of the treatment liquid 2, and the measurement is performed by all the measuring apparatuses as in the present embodiment and used for the determination of the defoaming state. It is better to select the measurement value to be used from there.

そして、圧力計22、溶存酸素濃度計25、密度比重計26及び近赤外線透過散乱光方式気泡検出器27は後述の制御回路51に接続されており、各測定装置22、25〜27の測定結果は制御回路51に対して送信される。また、その測定結果を後述のように操作パネル52に設けられたモニター53に表示する。更に、制御回路51は、受信した測定結果と記憶されたプログラムに従って後述のように駆動モータ6、真空ポンプ9、リークバルブ8、及び吸引バルブ11の動作を制御する。
尚、本実施形態に係る溶存酸素濃度計25、密度比重計26及び近赤外線透過散乱光方式気泡検出器27は市販されている一般の測定装置であり、その構造は既に公知であるので、ここではその詳細な説明は省略する。
The pressure gauge 22, the dissolved oxygen concentration meter 25, the density specific gravity meter 26, and the near-infrared transmitted / scattered light type bubble detector 27 are connected to a control circuit 51 to be described later, and the measurement results of the measuring devices 22, 25-27. Is transmitted to the control circuit 51. The measurement result is displayed on a monitor 53 provided on the operation panel 52 as will be described later. Further, the control circuit 51 controls the operations of the drive motor 6, the vacuum pump 9, the leak valve 8, and the suction valve 11 as described later according to the received measurement result and the stored program.
Note that the dissolved oxygen concentration meter 25, the density specific gravity meter 26, and the near-infrared transmission / scattering light type bubble detector 27 according to the present embodiment are commercially available general measuring devices, and their structures are already known, so here Then, the detailed description is abbreviate | omitted.

また、脱泡促進用外羽根4及び配合攪拌用内羽根5は、密閉容器3内の処理液2を撹拌する撹拌羽根である。脱泡促進用外羽根4は密閉容器3内周面近傍の処理液2を撹拌し、配合攪拌用内羽根5は密閉容器3の中心部の処理液2を撹拌する。そして、この両者の羽根は図1に示すように同一の回転軸で、且つ互いに反対方向に回転する。また、脱泡促進用外羽根4及び配合攪拌用内羽根5は、それぞれ、容器蓋21の上部に取り付けられた駆動モータ6の回転駆動力によって回転駆動される。
駆動モータ6は後述の駆動回路50を介して制御回路51に接続されており、制御回路51は、各測定装置22、25〜27の測定値と記憶されたプログラムに従って後述のように駆動モータ6の動作を制御する。
The defoaming promotion outer blade 4 and the blending stirring inner blade 5 are stirring blades for stirring the treatment liquid 2 in the sealed container 3. The outer blade 4 for promoting defoaming stirs the processing liquid 2 in the vicinity of the inner peripheral surface of the sealed container 3, and the inner blade 5 for blending stirring stirs the processing liquid 2 at the center of the sealed container 3. The two blades rotate on the same rotation axis and in opposite directions as shown in FIG. The defoaming promotion outer blade 4 and the blending stirring inner blade 5 are each driven to rotate by the rotational driving force of the drive motor 6 attached to the upper part of the container lid 21.
The drive motor 6 is connected to a control circuit 51 via a drive circuit 50 described later. The control circuit 51 drives the drive motor 6 as described later according to the measured values of the measuring devices 22, 25 to 27 and stored programs. To control the operation.

また、容器蓋21には、排気パイプ7及び吸引パイプ10が連結された分岐管が連結されている。ここで、排気パイプ7にはリークバルブ8が介在され、その先端部は大気中に開放されている。一方、吸引パイプ10の先端部は真空ポンプ9に連結されており、その間には吸引バルブ11が介在している。そして、リークバルブ8を開放することによって密閉容器3内の圧力を大気圧に戻し、また、吸引バルブ11を開放することによって密閉容器3内の圧力を減圧することができる。従って、リークバルブ8及び吸引バルブ11の開閉動作によって、密閉容器3内の圧力を調節することが可能となる。
また、真空ポンプ9、リークバルブ8及び吸引バルブ11は後述の駆動回路50を介して制御回路51に接続されており、制御回路51は、記憶されたプログラムに従って後述のように真空ポンプ9、リークバルブ8及び吸引バルブ11の動作を制御する。
Further, a branch pipe to which the exhaust pipe 7 and the suction pipe 10 are connected is connected to the container lid 21. Here, a leak valve 8 is interposed in the exhaust pipe 7 and its tip is open to the atmosphere. On the other hand, the tip of the suction pipe 10 is connected to a vacuum pump 9, and a suction valve 11 is interposed between them. The pressure in the sealed container 3 can be returned to atmospheric pressure by opening the leak valve 8, and the pressure in the sealed container 3 can be reduced by opening the suction valve 11. Therefore, the pressure in the sealed container 3 can be adjusted by opening and closing the leak valve 8 and the suction valve 11.
The vacuum pump 9, the leak valve 8 and the suction valve 11 are connected to a control circuit 51 via a drive circuit 50 which will be described later. The control circuit 51 is connected to the vacuum pump 9 and leak as described later according to a stored program. The operation of the valve 8 and the suction valve 11 is controlled.

また、制御回路51は、予め設定されたプログラムに従って制御動作を行うCPUと、及び記憶手段であるROMやRAMを備える。
ROMは、各装置及びユニットの制御行うための各種プログラム、その他制御上必要な各種のデータが格納されている。そして、CPUは、かかるROMに記憶されている各種プログラムやデータに基づいて各種の演算を行うものである。
RAMは、CPUで演算された各種データを一時的に記憶しておくメモリである。
The control circuit 51 includes a CPU that performs a control operation according to a preset program, and a ROM or RAM that is a storage unit.
The ROM stores various programs for controlling each device and unit and other various data necessary for control. The CPU performs various calculations based on various programs and data stored in the ROM.
The RAM is a memory that temporarily stores various data calculated by the CPU.

そして、制御回路51には駆動モータ6の回転を制御するとともに、真空ポンプ9の駆動、リークバルブ8及び吸引バルブ11の開閉動作を制御する駆動回路50が接続されており、かかる駆動回路50は制御回路51からの制御信号に基づき駆動モータ6等を制御する。   The control circuit 51 is connected to a drive circuit 50 that controls the rotation of the drive motor 6 and also controls the drive of the vacuum pump 9 and the opening / closing operation of the leak valve 8 and the suction valve 11. Based on the control signal from the control circuit 51, the drive motor 6 and the like are controlled.

更に、圧力計22、溶存酸素濃度計25、密度比重計26及び近赤外線透過散乱光方式気泡検出器27がそれぞれ制御回路51に接続されており、各測定装置22、25〜27の測定結果が制御回路51に対して送信され、制御回路51は、送信された情報に基づいて各周辺機器の制御を行う。   Furthermore, a pressure gauge 22, a dissolved oxygen concentration meter 25, a density specific gravity meter 26, and a near-infrared transmitted / scattered light type bubble detector 27 are connected to the control circuit 51, and the measurement results of the measuring devices 22, 25 to 27 are obtained. The information is transmitted to the control circuit 51, and the control circuit 51 controls each peripheral device based on the transmitted information.

また、制御回路51には、操作パネル52が接続されており、かかる操作パネル52は、使用する処理液の種類に基づいて使用者が脱泡処理の各条件(脱泡処理時の密閉容器3内の圧力、並びに後述の溶存酸素濃度、比重、透過散乱光出力の各しきい値)の設定を行うものである。
更に、制御回路51には、操作パネル52の一面に設置されたモニター53が接続されており、かかるモニター53は、圧力計22、溶存酸素濃度計25、密度比重計26及び近赤外線透過散乱光方式気泡検出器27の各測定装置の測定結果を使用者に対して表示する表示装置である。
In addition, an operation panel 52 is connected to the control circuit 51, and the operation panel 52 is operated by the user according to each condition of the defoaming process (the sealed container 3 at the time of the defoaming process) based on the type of the processing liquid to be used. And the threshold values of dissolved oxygen concentration, specific gravity, and transmitted scattered light output described later) are set.
In addition, a monitor 53 installed on one surface of the operation panel 52 is connected to the control circuit 51. The monitor 53 includes a pressure gauge 22, a dissolved oxygen concentration meter 25, a density specific gravity meter 26, and a near infrared transmission scattered light. It is a display device that displays the measurement result of each measurement device of the method bubble detector 27 to the user.

尚、本実施形態では使用者が脱泡処理の各条件(脱泡処理時の密閉容器3内の圧力、並びに後述の溶存酸素濃度、比重、透過散乱光出力の各しきい値)の設定を具体的な数値をもって行うこととしているが、使用される処理液2の種類に基づいてそれぞれ最適な条件を予め設定しておき、操作パネル52では処理液2の種類のみを選択することによって自動的に最適な条件により脱泡処理を行うように制御することも可能である。尚、具体的な制御処理については、図2のフローチャートを用いて後に詳細に説明する。   In this embodiment, the user sets each condition of the defoaming process (the pressure in the sealed container 3 at the time of the defoaming process, and the threshold values of the dissolved oxygen concentration, specific gravity, and transmitted scattered light output described later). Although specific values are set, optimum conditions are set in advance based on the type of the processing liquid 2 to be used, and the operation panel 52 automatically selects only the type of the processing liquid 2. It is also possible to control to perform the defoaming process under the optimum conditions. Specific control processing will be described later in detail using the flowchart of FIG.

次に、前記構成を有する脱泡装置1による脱泡動作について説明する。ここで、本実施形態に係る脱泡装置1は、処理液2に対する脱泡操作を操作パネル52で運転モードを選択することにより行う。運転モードには「(1)手動:全て使用者による任意の設定に基づいて行う」、「(2)半自動:設定した脱泡状態になるまで減圧度と攪拌速度を指定して行う」、「(3)全自動:設定した脱泡状態になるまで各測定装置の測定値にもとづいて、減圧度と攪拌回転数をフィードバック制御して行う」の3種類があり、制御回路51のプログラムを変更することによって容易に追加及び修正が可能となっている。   Next, the defoaming operation by the defoaming apparatus 1 having the above configuration will be described. Here, the defoaming apparatus 1 according to the present embodiment performs a defoaming operation on the treatment liquid 2 by selecting an operation mode on the operation panel 52. The operation mode includes “(1) Manual: All based on any setting by the user”, “(2) Semi-automatic: Perform by specifying the degree of decompression and stirring speed until the set defoaming state”, “ (3) Fully automatic: There are three types of “adjusting the degree of decompression and stirring speed based on the measured values of each measuring device until the set defoaming state is achieved”, and the program of the control circuit 51 is changed. Thus, additions and modifications can be easily made.

ここで、以下に動作モードとして「(3)全自動:設定した脱泡状態になるまで各測定装置の測定値にもとづいて、減圧度と攪拌回転数をフィードバック制御して行う」を選択した際における脱泡操作を例にして説明する。図2は本実施形態に係る脱泡装置1の動作フローを示している。   Here, when “(3) Fully automatic: Perform feedback control of the degree of vacuum and the number of rotations of stirring based on the measured values of each measuring device until the set defoaming state” is selected as the operation mode below. An example of the defoaming operation will be described. FIG. 2 shows an operation flow of the defoaming apparatus 1 according to this embodiment.

先ず、ステップ(以下、Sと略記する)1では、操作パネル52において溶存酸素濃度計25、密度比重計26及び近赤外線透過散乱光方式気泡検出器27により測定される溶存酸素濃度、比重、透過散乱光出力の各しきい値を設定する。ここでしきい値とは、各測定装置25〜27の測定値がしきい値の値以上又は以下となった際に攪拌処理を終了する条件値である。ここで、設定するしきい値は、溶存酸素濃度、比重、透過散乱光出力のいずれか一つであっても良いし、3つ全てにおいて設定しても良い。3つ全てに設定した場合には、測定された溶存酸素濃度、比重、透過散乱光出力が全てしきい値の条件を満たした際に攪拌を停止させることとなる。一方、一又は二のしきい値のみを設定すれば、脱泡処理する処理液2の種類や現在の状況に基づいて最適な測定値(溶存酸素濃度、比重、透過散乱光出力のいずれか)のみを参照してその攪拌の終了条件とすることが可能となる。従って、処理液の種類や状況に左右されることなく正確な脱泡状態を検出することが可能となる。   First, in step (hereinafter abbreviated as S) 1, the dissolved oxygen concentration, specific gravity, and transmission measured by the dissolved oxygen concentration meter 25, density specific gravity meter 26, and near-infrared transmitted / scattered light bubble detector 27 on the operation panel 52. Set each threshold value of scattered light output. Here, the threshold value is a condition value for ending the agitation process when the measured values of the measuring devices 25 to 27 are greater than or less than the threshold value. Here, the threshold value to be set may be any one of the dissolved oxygen concentration, specific gravity, and transmitted scattered light output, or may be set for all three. When all three are set, stirring is stopped when the measured dissolved oxygen concentration, specific gravity, and transmitted scattered light output all satisfy the threshold conditions. On the other hand, if only one or two threshold values are set, the optimum measured value (either dissolved oxygen concentration, specific gravity, or transmitted scattered light output) based on the type of processing liquid 2 to be defoamed and the current situation It becomes possible to set the end condition of the stirring with reference to only. Therefore, it is possible to detect an accurate defoaming state without being influenced by the type and situation of the processing liquid.

続いて、容器蓋21で液体タンク20を密閉し、その後、供給バルブ13を開放することによって密閉容器3内に脱泡処理すべき処理液2を投入する(S2)。次に、操作パネル52の運転開始ボタン(図示せず)を操作すると、駆動回路50を介してリークバルブ8が閉じられるとともに吸引バルブ11が開く。その後、真空ポンプ9を作動させて(S3)吸引パイプ10から吸引し、密閉容器3内を予め設定された所定の圧力(例えば50kPa)以下になるまで減圧する(S4:NO)。
尚、密閉容器3内の圧力は圧力計22で随時測定され、制御回路51は設定された圧力に一定に維持するように吸引バルブ11を開閉して自動制御する。
Subsequently, the liquid tank 20 is sealed with the container lid 21, and then the treatment liquid 2 to be defoamed is introduced into the sealed container 3 by opening the supply valve 13 (S2). Next, when an operation start button (not shown) on the operation panel 52 is operated, the leak valve 8 is closed and the suction valve 11 is opened via the drive circuit 50. Thereafter, the vacuum pump 9 is operated (S3), and suction is performed from the suction pipe 10, and the inside of the sealed container 3 is depressurized until a predetermined pressure (for example, 50 kPa) or less is set (S4: NO).
The pressure in the sealed container 3 is measured at any time by the pressure gauge 22, and the control circuit 51 automatically controls by opening and closing the suction valve 11 so as to keep the set pressure constant.

そして、密閉容器3内の圧力が設定圧力(例えば50kPa)以下になると(S4:YES)、駆動モータ6を駆動し、脱泡促進用外羽根4及び配合攪拌用内羽根5を所定の第1回転速度(例えば120rpm)で回転させ、処理液2を撹拌する(S5)。ここで、減圧状態で処理液2が撹拌されると、液体中に含まれる気泡が膨張するとともに、液面に向けて浮上する。   When the pressure in the sealed container 3 becomes a set pressure (for example, 50 kPa) or less (S4: YES), the drive motor 6 is driven, and the defoaming promotion outer blade 4 and the blending stirring inner blade 5 are set to a predetermined first. The processing liquid 2 is stirred at a rotation speed (for example, 120 rpm) (S5). Here, when the treatment liquid 2 is agitated in a reduced pressure state, bubbles contained in the liquid expand and float toward the liquid surface.

そして、攪拌開始時から所定時間(本実施形態では1秒)経過したか否か判定し(S6)、所定時間経過した後には(S6:YES)、溶存酸素濃度計25、密度比重計26及び近赤外線透過散乱光方式気泡検出器27によって、現在の処理液2の溶存酸素濃度、比重、透過散乱光出力の各値が測定される(S7)。その結果、S8において各測定値が前記S1で設定されたしきい値の条件を満たしているか否かが判定される。
尚、溶存酸素濃度、比重、透過散乱光出力の各測定値はモニター53にリアルタイムで表示されるとともに、そのデータは制御回路51の記憶領域に記憶される。本実施形態では1秒間隔で測定することとしているが、その測定間隔は1秒に限ることなく、0.5秒間隔や10秒間隔で行っても良い。
Then, it is determined whether or not a predetermined time (1 second in this embodiment) has elapsed since the start of stirring (S6). After the predetermined time has elapsed (S6: YES), the dissolved oxygen concentration meter 25, the density specific gravity meter 26, and Each value of the dissolved oxygen concentration, specific gravity, and transmitted scattered light output of the current treatment liquid 2 is measured by the near-infrared transmitted / scattered light bubble detector 27 (S7). As a result, in S8, it is determined whether or not each measured value satisfies the threshold condition set in S1.
The measured values of dissolved oxygen concentration, specific gravity, and transmitted scattered light output are displayed on the monitor 53 in real time, and the data is stored in the storage area of the control circuit 51. In this embodiment, the measurement is performed at intervals of 1 second, but the measurement interval is not limited to 1 second, and may be performed at intervals of 0.5 seconds or 10 seconds.

設定されたしきい値の条件をクリアした場合(S8:YES)には、駆動モータ6の駆動を停止させ、脱泡促進用外羽根4及び配合攪拌用内羽根5による処理液2の撹拌を停止させる(S9)。その後、真空ポンプ9の運転を停止し(S10)、吸引バルブ11を閉じるとともにリークバルブを開放し、密閉容器3内を大気圧に戻す(S11)。
そして、大気圧に戻ったことを圧力計22により確認した後にドレンバルブ15を開け、密閉容器3内の処理液2をドレンパイプ14を介して排出する。
When the set threshold value condition is cleared (S8: YES), the drive of the drive motor 6 is stopped and the treatment liquid 2 is stirred by the defoaming promoting outer blade 4 and the blending stirring inner blade 5. Stop (S9). Thereafter, the operation of the vacuum pump 9 is stopped (S10), the suction valve 11 is closed and the leak valve is opened, and the inside of the sealed container 3 is returned to atmospheric pressure (S11).
Then, after confirming that the pressure has returned to atmospheric pressure with the pressure gauge 22, the drain valve 15 is opened, and the processing liquid 2 in the sealed container 3 is discharged through the drain pipe 14.

一方、設定されたしきい値の条件をクリアしない場合(S8:NO)には、継続して攪拌をおこなうとともに、制御回路51の記憶領域に記憶されたカウンタnの値を読み出して「+1」し、再び記憶領域に格納する(S13)。ここで、カウンタnの値は脱泡装置1の脱泡処理開始時において「0」に初期化されている。   On the other hand, if the set threshold value condition is not cleared (S8: NO), stirring is continued and the value of the counter n stored in the storage area of the control circuit 51 is read out to “+1”. Then, it is stored again in the storage area (S13). Here, the value of the counter n is initialized to “0” when the defoaming apparatus 1 starts the defoaming process.

次に、S14においてカウンタnのカウント値が「180」以上となっているか否かが判定される。カウント値が「180」未満である場合(S14:NO)には、S6へと戻り、前回の溶存酸素濃度、比重及び透過散乱光出力の測定時(S7)から所定時間経過したか否かが判断される。   Next, in S14, it is determined whether or not the count value of the counter n is “180” or more. When the count value is less than “180” (S14: NO), the process returns to S6, and whether or not a predetermined time has elapsed since the previous measurement of dissolved oxygen concentration, specific gravity, and transmitted scattered light output (S7). To be judged.

一方、カウント値が「180」以上である場合(S14:YES)には、更にS15において、カウンタnのカウント値が「360」以上となっているか否かが判定される。ここで、カウンタ値が「360」未満である場合(S15:NO)には、制御回路51は駆動モータ6の回転駆動を制御し、脱泡促進用外羽根4及び配合攪拌用内羽根5の回転速度を第1回転速度の1.5倍の第2回転速度(例えば180rpm)で回転させ、処理液2を撹拌する(S16)。即ち、これら一連の処理は、溶存酸素濃度計25、密度比重計26及び近赤外線透過散乱光方式気泡検出器27の測定結果を攪拌速度にフィードバック制御するものであり、所定時間以上攪拌してもしきい値に到達しない場合に回転速度を上げることにより、確実で且つ短時間の脱泡操作が可能となる。   On the other hand, if the count value is “180” or more (S14: YES), it is further determined in S15 whether the count value of the counter n is “360” or more. Here, when the counter value is less than “360” (S15: NO), the control circuit 51 controls the rotational drive of the drive motor 6, and the defoaming promotion outer blade 4 and the mixing and stirring inner blade 5 are controlled. The rotation speed is rotated at a second rotation speed (for example, 180 rpm) that is 1.5 times the first rotation speed, and the processing liquid 2 is stirred (S16). In other words, these series of processes control the measurement results of the dissolved oxygen concentration meter 25, the density specific gravity meter 26, and the near-infrared transmitted / scattered light bubble detector 27 to the stirring speed, and may be stirred for a predetermined time or longer. By increasing the rotation speed when the threshold value is not reached, a defoaming operation can be performed reliably and in a short time.

また、カウント値が「360」以上である場合(S17:YES)には、制御回路51は駆動モータ6の回転駆動を制御し、脱泡促進用外羽根4及び配合攪拌用内羽根5の回転速度を第1回転速度の2倍の第3回転速度(例えば240rpm)で回転させ、処理液2を撹拌する(S17)。従って、所定時間以上攪拌してもしきい値に到達しない場合に更に回転速度を上げることにより、確実で且つ短時間の脱泡操作が可能となる。   In addition, when the count value is “360” or more (S17: YES), the control circuit 51 controls the rotation drive of the drive motor 6, and the rotation of the outer bubble 4 for promoting defoaming and the inner blade 5 for mixing and stirring is rotated. The speed is rotated at a third rotation speed (for example, 240 rpm) that is twice the first rotation speed, and the treatment liquid 2 is stirred (S17). Therefore, if the threshold is not reached even after stirring for a predetermined time or more, the defoaming operation can be performed reliably and in a short time by further increasing the rotational speed.

本実施形態に係る脱泡装置で設定可能な運転モードには、上記説明した「(3)全自動:設定した脱泡状態になるまで各測定装置の測定値にもとづいて、減圧度と攪拌回転数をフィードバック制御して行う」モードの他に、「(1)手動:全て使用者による任意の設定に基づいて行う」、「(2)半自動:設定した脱泡状態になるまで減圧度と攪拌速度を指定して行う」の2種類があるが、「(1)手動:全て使用者による任意の設定に基づいて行う」モードに関しては従来の脱泡装置の脱泡動作と同一であるのでここではその説明は省略する。
また、「(2)半自動:設定した脱泡状態になるまで減圧度と攪拌速度を指定して行う」モードに関しては、フィードバック制御(S16、S17)を行わない点を除けば、前記した「(3)全自動:設定した脱泡状態になるまで各測定装置の測定値にもとづいて、減圧度と攪拌回転数をフィードバック制御して行う」モードと同じ脱泡動作であるので、同様にここではその説明は省略する。
The operation modes that can be set by the defoaming apparatus according to the present embodiment include the above-described “(3) Fully automatic: Depressurization degree and stirring rotation based on the measured values of each measuring apparatus until the set defoaming state is reached. “(1) Manual: All based on any setting by the user”, “(2) Semi-automatic: Depressurization and agitation until set defoaming state, in addition to“ feedback control of number ”mode There are two types: “Specify the speed”, but the “(1) Manual: All based on any setting by the user” mode is the same as the defoaming operation of the conventional defoaming device. Then, the explanation is omitted.
In addition, regarding the “(2) Semi-automatic: Specifying the degree of decompression and stirring speed until the set defoaming state is specified” mode, except that the feedback control (S16, S17) is not performed, “(( 3) Fully automatic: The defoaming operation is the same as in the mode “feedback control of the degree of decompression and the stirring rotation speed based on the measured value of each measuring device until the set defoaming state is reached. The description is omitted.

また、供給バルブ13及びドレンバルブ15を制御回路51と電気回路で結ばれた自動制御弁とすれば、脱泡処理が終了した後に、ドレンバルブ15を解放して密閉容器3から脱泡処理済の処理液2を排出するとともに、供給バルブ13から新たな処理液2を導入することも自動制御で可能となる。   Further, if the supply valve 13 and the drain valve 15 are automatic control valves connected to the control circuit 51 by an electric circuit, after the defoaming process is completed, the drain valve 15 is released and the defoaming process is completed from the sealed container 3. It is possible to discharge the processing liquid 2 and introduce a new processing liquid 2 from the supply valve 13 by automatic control.

次に、処理液2として密度比重30%の気泡が混入した水系粘着剤(アクリルエマルジョン:ベース50%、粘度1〜10Pa・s)20Lを前記脱泡装置1に投入して脱泡処理を行った際における溶存酸素濃度計25、密度比重計26及び近赤外線透過散乱光方式気泡検出器27による測定結果を5分毎にサンプリングし、更に、各状態での処理液2をそれぞれ塗布面に対して手塗りすることにより塗布面の表面状態の確認を行った結果について示す。また、モニター53で行われる減圧設定・表示は時間の影響を確認するために、絶対圧10kPa以下で一定保持して行っている。図3は前記条件で行った処理液の測定データを示したグラフである。   Next, 20 L of water-based pressure-sensitive adhesive (acrylic emulsion: base 50%, viscosity 1 to 10 Pa · s) mixed with bubbles having a density / specific gravity of 30% as the treatment liquid 2 is put into the defoaming apparatus 1 for defoaming treatment. The measurement results obtained by the dissolved oxygen concentration meter 25, the density specific gravity meter 26, and the near-infrared transmitted / scattered light bubble detector 27 are sampled every 5 minutes, and the treatment liquid 2 in each state is sampled on the coating surface. The result of confirming the surface state of the coated surface by hand coating is shown. Further, the decompression setting / display performed on the monitor 53 is carried out while maintaining a constant absolute pressure of 10 kPa or less in order to confirm the influence of time. FIG. 3 is a graph showing measurement data of the treatment liquid performed under the above conditions.

ここで、図3に示すように前記条件による脱泡処理における(1)脱泡処理前、(2)処理開始から5分後、(3)処理開始から10分後、(4)処理開始から15分後、(5)処理開始から20分後の各処理液の溶存酸素濃度、比重及び透過散乱光出力の各測定値は、処理時間が長くなるほど溶存酸素濃度は0(mg/L)、比重は1、透過散乱光出力は0(±V)に近くなっており、処理液2中の気泡が減少していることがわかる。
そして、(1)〜(5)における処理液2を塗布した塗布面の表面状態を確認すると、(3)〜(5)の処理液においてピンホール、ストリーク、クレーター、泡はげ等の塗布むらが発生せず、良好な塗布面が得られた。即ち、図3の斜線部の範囲内(図3の溶存酸素濃度0.0〜0.5(mg/L)、比重0.98〜1.00、透過散乱光出力0.0〜0.5(±V))に溶存酸素濃度、比重及び透過散乱光出力の各測定値が到達した状態まで脱泡処理を行うことによって、処理液2の種類や気泡の混入の程度に左右されることなく、安定した脱泡操作を行うことが可能である。
従って、本測定に使用した水系粘着剤(アクリルエマルジョン系:ベース50%、粘度1〜10Pa・s)では、斜線部の範囲内を規定するしきい値(溶存酸素濃度0.5、比重0.98、透過散乱光出力0.5)を予め設定し(図2、S1)、脱泡処理中の溶存酸素濃度、比重及び透過散乱光出力を測定するとともに(S7)、各測定値がしきい値に到達した後に攪拌を終了する(S9)ことによって、複数回の脱泡処理において短時間の処理時間による確実な脱泡を補償できる。そして、良好な再現性とともに生産ラインにおける脱泡処理工程での品質保証の実現が可能となる。
同様にアクリルポリマー系、UV硬化系の他の溶液に対しても、同様の測定を行うことにより、必要なしきい値を求めることが可能である。そして、そのしきい値を設定して脱泡装置1の前述した脱泡の自動制御処理を行うことにより、確実に脱泡補償ができ、良好な再現性とともに生産ラインにおける脱泡処理工程での品質保証の実現が可能となる。
Here, as shown in FIG. 3, (1) before the defoaming process, (2) 5 minutes after the start of the process, (3) 10 minutes after the start of the process, and (4) from the start of the process as shown in FIG. After 15 minutes, (5) the measured values of dissolved oxygen concentration, specific gravity, and transmitted scattered light output of each treatment solution 20 minutes after the start of treatment, the dissolved oxygen concentration is 0 (mg / L) as the treatment time increases. The specific gravity is 1, the transmitted scattered light output is close to 0 (± V), and it can be seen that the bubbles in the treatment liquid 2 are reduced.
And if the surface state of the coating surface which apply | coated the processing liquid 2 in (1)-(5) is confirmed, in the processing liquid of (3)-(5), application | coating nonuniformity, such as a pinhole, a streak, a crater, and a bubble baldness, will be carried out. It did not occur and a good coated surface was obtained. That is, within the shaded area in FIG. 3 (dissolved oxygen concentration in FIG. 3 0.0 to 0.5 (mg / L), specific gravity 0.98 to 1.00, transmitted scattered light output 0.0 to 0.5. By performing defoaming until the measured values of dissolved oxygen concentration, specific gravity, and transmitted scattered light output reach (± V)), it does not depend on the type of processing liquid 2 or the degree of mixing of bubbles. It is possible to perform a stable defoaming operation.
Therefore, in the water-based pressure-sensitive adhesive (acrylic emulsion system: base 50%, viscosity 1 to 10 Pa · s) used for this measurement, the threshold value (dissolved oxygen concentration 0.5, specific gravity 0. 98, transmitted scattered light output 0.5) is set in advance (FIG. 2, S1), and dissolved oxygen concentration, specific gravity and transmitted scattered light output during defoaming treatment are measured (S7), and each measured value is a threshold. By ending stirring after reaching the value (S9), reliable defoaming due to a short treatment time can be compensated for in a plurality of defoaming treatments. And it becomes possible to realize quality assurance in the defoaming process in the production line with good reproducibility.
Similarly, it is possible to obtain a necessary threshold value by performing the same measurement on other solutions of an acrylic polymer system and a UV curing system. And by setting the threshold value and performing the aforementioned defoaming automatic control process of the defoaming apparatus 1, defoaming compensation can be reliably performed, and the defoaming process step in the production line can be performed with good reproducibility. Quality assurance can be realized.

以上詳細に説明した通り、本実施形態に係る脱泡装置1及びその脱泡方法では、溶存酸素濃度計25、密度比重計26及び近赤外線透過散乱光方式気泡検出器27を設け、密閉容器3内で脱泡処理中の処理液2の溶存酸素濃度、比重及び透過散乱光出力の各測定値を測定するとともに、測定した測定値が設定したしきい値に到達したか否かを判定し、到達した際に脱泡促進用外羽根4及び配合攪拌用内羽根5による処理液2の撹拌を停止させるので、処理液2の種類や気泡の混入状態に左右されることなく、短時間で且つ確実に良好な塗布面を得ることができる。従って、従来技術の安全性を加味した脱泡時間設定による脱泡操作と比較し、確実に脱泡補償ができ、良好な再現性とともに生産ラインにおける脱泡処理工程での品質保証の実現が可能となる。そして、効率的な脱泡操作と管理体制の構築により塗布工程での気泡欠陥ロスが激減し、生産歩留の向上が図れる。
また、検出された処理液の脱泡状態に基づいて脱泡促進用外羽根4及び配合攪拌用内羽根5の攪拌速度をフィードバック制御するので、現在の処理液2の脱泡状況に応じた適切な制御を行うことが可能となる。従って、より確実で且つ短時間の脱泡処理を行うことができる。
更に、本実施形態に係る脱泡装置1は、溶存酸素濃度計25、密度比重計26及び近赤外線透過散乱光方式気泡検出器27をそれぞれ設け、処理液2の溶存酸素濃度、比重、透過散乱光出力の各測定値から、脱泡処理する処理液2の種類や現在の状況に基づいて最適な測定データを参照することが可能である。従って、処理液の種類や状況に左右されることなく正確な脱泡状態を検出することが可能となる。
As described above in detail, in the defoaming apparatus 1 and the defoaming method according to the present embodiment, the dissolved oxygen concentration meter 25, the density specific gravity meter 26, and the near-infrared transmitted scattered light type bubble detector 27 are provided, and the sealed container 3 And measuring each measured value of dissolved oxygen concentration, specific gravity and transmitted scattered light output of the treatment liquid 2 during the defoaming process, and determine whether or not the measured value has reached the set threshold value, Since the stirring of the processing liquid 2 by the outer blade 4 for promoting defoaming and the inner blade 5 for mixing and stirring is stopped when it reaches, it does not depend on the type of the processing liquid 2 or the state of mixing of bubbles, and in a short time A good coated surface can be obtained with certainty. Therefore, compared with the conventional defoaming operation by setting the defoaming time taking into account the safety, defoaming compensation can be ensured, and quality assurance can be realized in the defoaming process in the production line with good reproducibility. It becomes. And by the efficient defoaming operation and the construction of the management system, the bubble defect loss in the coating process is drastically reduced, and the production yield can be improved.
In addition, since the agitation speed of the defoaming promotion outer blade 4 and the mixing and agitation inner blade 5 is feedback controlled based on the detected defoaming state of the processing liquid, it is appropriate for the current defoaming condition of the processing liquid 2 It is possible to perform simple control. Therefore, the defoaming process can be performed more reliably and in a short time.
Furthermore, the defoaming apparatus 1 according to the present embodiment is provided with a dissolved oxygen concentration meter 25, a density specific gravity meter 26, and a near-infrared transmission / scattering light type bubble detector 27, respectively, and the dissolved oxygen concentration, specific gravity, and transmission scattering of the treatment liquid 2 are provided. It is possible to refer to the optimum measurement data from each measurement value of the optical output based on the type of the treatment liquid 2 to be defoamed and the current situation. Therefore, it is possible to detect an accurate defoaming state without being influenced by the type and situation of the processing liquid.

尚、本発明は前記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。
例えば、前記本実施形態においては、脱泡処理中の処理液2の溶存酸素濃度、比重及び透過散乱光出力の各測定値が所定のしきい値に達していない場合(S8:NO)に攪拌速度を上昇させ脱泡を促進することとしているが、更に吸引バルブ11の開放を制御し、密閉容器3内の圧力を減圧することとしても良い。それにより、所定時間内にしきい値に達しない処理液中の気泡をより膨張させ、脱泡を促進することが可能となる。
Note that the present invention is not limited to the above-described embodiment, and various improvements and modifications can be made without departing from the scope of the present invention.
For example, in the present embodiment, stirring is performed when the measured values of the dissolved oxygen concentration, specific gravity, and transmitted scattered light output of the treatment liquid 2 during the defoaming process do not reach predetermined threshold values (S8: NO). Although the speed is increased to promote defoaming, the opening of the suction valve 11 may be further controlled to reduce the pressure in the sealed container 3. As a result, bubbles in the processing liquid that do not reach the threshold value within a predetermined time can be further expanded to promote defoaming.

また、本実施形態では、脱泡処理を行う際に操作パネル52によってしきい値を設定することとしているが、制御回路51の記憶領域には予め処理液の種類に応じたしきい値を設定しておき、操作パネル52では脱泡処理する処理液2の種類のみを選択することとしても良い。それにより、選択された処理液の種類に応じて攪拌速度や密閉容器3内の圧力を最適な値に調整し、脱泡処理を行うことができる。   In the present embodiment, the threshold value is set by the operation panel 52 when performing the defoaming process. However, a threshold value corresponding to the type of the processing liquid is set in the storage area of the control circuit 51 in advance. The operation panel 52 may select only the type of the processing liquid 2 to be defoamed. Thereby, the defoaming process can be performed by adjusting the stirring speed and the pressure in the sealed container 3 to optimum values according to the type of the selected processing liquid.

本発明は、脱泡処理中の処理液の脱泡状態を検出することにより、処理液の種類や気泡の混入状態に左右されることなく、短時間で且つ確実に良好な塗布面を得ることができる脱泡方法及び脱泡装置を提供することができる。   By detecting the defoaming state of the processing liquid during the defoaming process, the present invention reliably obtains a good coated surface in a short time without being influenced by the type of the processing liquid or the state of mixing of bubbles. It is possible to provide a defoaming method and a defoaming apparatus that can perform the defoaming.

本実施形態に係る脱泡装置の概略図である。It is the schematic of the defoaming apparatus which concerns on this embodiment. 本実施形態に係る脱泡装置の動作フローを示す説明図である。It is explanatory drawing which shows the operation | movement flow of the defoaming apparatus which concerns on this embodiment. 本実施形態に係る脱泡装置で脱泡処理を行った際の処理液の測定データを示したグラフである。It is the graph which showed the measurement data of the process liquid at the time of performing a defoaming process with the defoaming apparatus which concerns on this embodiment.

符号の説明Explanation of symbols

1 脱泡装置
2 処理液
3 密閉装置
4 脱泡促進用外羽根
5 配合攪拌用内羽根
6 駆動モータ
9 真空ポンプ
11 吸引バルブ
22 圧力計
25 溶存酸素濃度計
26 密度比重計
27 近赤外線透過散乱光方式気泡検出器
51 制御回路
52 操作パネル
DESCRIPTION OF SYMBOLS 1 Defoaming device 2 Processing liquid 3 Sealing device 4 Outer blade for promoting defoaming 5 Inner blade for mixing and stirring 6 Drive motor 9 Vacuum pump 11 Suction valve 22 Pressure gauge 25 Dissolved oxygen concentration meter 26 Density specific gravity meter 27 Near infrared transmission scattered light Bubble detector 51 Control circuit 52 Operation panel

Claims (6)

気泡が混入した処理液を所定の圧力に減圧された状態に置くとともに攪拌手段で攪拌することにより、前記処理液を気泡と液体とに分離する脱泡方法において、
前記処理液の脱泡状態を検出するとともに、検出された脱泡状態が予め設定された所定の設定脱泡状態へと移行するように前記圧力及び/又は前記攪拌手段を自動制御することを特徴とする脱泡方法。
In the defoaming method of separating the processing liquid into bubbles and liquid by placing the processing liquid mixed with bubbles in a state where the pressure is reduced to a predetermined pressure and stirring with stirring means,
The degassing state of the treatment liquid is detected, and the pressure and / or the stirring means is automatically controlled so that the detected defoaming state shifts to a preset predetermined defoaming state. Defoaming method.
前記検出された処理液の脱泡状態に基づいて前記圧力及び/又は前記攪拌手段を制御することを特徴とする請求項1に記載の脱泡方法。   The defoaming method according to claim 1, wherein the pressure and / or the stirring unit is controlled based on the detected defoaming state of the processing liquid. 前記検出される脱泡状態は、前記処理液の溶存酸素濃度、密度比重及び透過散乱光出力のいずれかの値、或いは全ての値に基づいて判定されることを特徴とする請求項1又は請求項2に記載の脱泡方法。   2. The detected defoaming state is determined based on any one or all values of dissolved oxygen concentration, density specific gravity and transmitted scattered light output of the treatment liquid. Item 3. The defoaming method according to Item 2. 処理液を封入する密閉容器と、
前記密閉容器内を減圧する減圧手段と、
前記密閉容器内に封入された処理液を攪拌する攪拌手段と、を有する脱泡装置において、
所定の脱泡状態を設定する設定手段と、
前記処理液の脱泡状態を検出する検出手段と、
前記検出手段により検出された脱泡状態が前記設定手段により設定された設定脱泡状態へと移行するように前記減圧手段及び/又は前記攪拌手段を自動制御する自動制御手段と、を備えることを特徴とする脱泡装置。
A sealed container for enclosing the processing solution;
Decompression means for decompressing the inside of the sealed container;
In the defoaming device having a stirring means for stirring the processing liquid sealed in the sealed container,
Setting means for setting a predetermined defoaming state;
Detecting means for detecting a defoamed state of the treatment liquid;
Automatic control means for automatically controlling the pressure reducing means and / or the stirring means so that the defoamed state detected by the detecting means shifts to the set defoamed state set by the setting means. Defoaming device characterized.
前記自動制御手段は、前記検出手段の検出結果に基づいて前記減圧手段及び/又は前記攪拌手段を制御することを特徴とする請求項4に記載の脱泡装置。   The defoaming apparatus according to claim 4, wherein the automatic control unit controls the decompression unit and / or the stirring unit based on a detection result of the detection unit. 前記検出手段は、溶存酸素濃度計、密度比重計及び近赤外線透過散乱光方式気泡検出器のいずれか、或いは全てを備えたことを特徴とする請求項4又は請求項5に記載の脱泡装置。   The defoaming device according to claim 4 or 5, wherein the detection means includes any one or all of a dissolved oxygen concentration meter, a density specific gravity meter, and a near-infrared transmitted / scattered light bubble detector. .
JP2004291293A 2004-10-04 2004-10-04 Defoaming method and defoaming apparatus Expired - Fee Related JP4342414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004291293A JP4342414B2 (en) 2004-10-04 2004-10-04 Defoaming method and defoaming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004291293A JP4342414B2 (en) 2004-10-04 2004-10-04 Defoaming method and defoaming apparatus

Publications (2)

Publication Number Publication Date
JP2006102608A true JP2006102608A (en) 2006-04-20
JP4342414B2 JP4342414B2 (en) 2009-10-14

Family

ID=36372910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004291293A Expired - Fee Related JP4342414B2 (en) 2004-10-04 2004-10-04 Defoaming method and defoaming apparatus

Country Status (1)

Country Link
JP (1) JP4342414B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100938279B1 (en) * 2008-01-07 2010-01-22 최쌍석 Wet cyclone apparatus for efficiently separating solid from liquid
KR20120026079A (en) 2009-06-05 2012-03-16 닛토덴코 가부시키가이샤 Adhesive optical film, method for producing the adhesive optical film, image display device, adhesive coating liquid and method for producing the adhesive coating liquid
CN104857743A (en) * 2014-02-21 2015-08-26 中国石油化工股份有限公司 Polymer solution sealed deoxygenation device and method
CN105396333A (en) * 2015-12-09 2016-03-16 江阴乐圩光电股份有限公司 A vacuum defoaming machine for slurry
CN105396332A (en) * 2015-12-09 2016-03-16 江阴乐圩光电股份有限公司 A vertical defoaming machine
JP2016536481A (en) * 2013-09-02 2016-11-24 海斯摩爾生物科技有限公司 High-viscosity pure chitosan spinning solution combined air bubble removal method
KR101747053B1 (en) * 2013-08-13 2017-06-14 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 Defoaming device
CN107899457A (en) * 2017-11-28 2018-04-13 锦乔生物科技有限公司 Folliculus device and its application method are defoamed in a kind of mixing plant
JP2020171908A (en) * 2019-04-10 2020-10-22 大阪サニタリー株式会社 High-viscosity liquid automatic preparation device and preparation method
JP2021031501A (en) * 2019-08-13 2021-03-01 株式会社カネカ Polymer production system and polymer production process
JP7441018B2 (en) 2018-10-02 2024-02-29 四国計測工業株式会社 Stirring device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100938279B1 (en) * 2008-01-07 2010-01-22 최쌍석 Wet cyclone apparatus for efficiently separating solid from liquid
KR20120026079A (en) 2009-06-05 2012-03-16 닛토덴코 가부시키가이샤 Adhesive optical film, method for producing the adhesive optical film, image display device, adhesive coating liquid and method for producing the adhesive coating liquid
CN102439496A (en) * 2009-06-05 2012-05-02 日东电工株式会社 Adhesive optical film, method for producing the adhesive optical film, image display device, adhesive coating liquid and method for producing the adhesive coating liquid
KR101747053B1 (en) * 2013-08-13 2017-06-14 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 Defoaming device
JP2016536481A (en) * 2013-09-02 2016-11-24 海斯摩爾生物科技有限公司 High-viscosity pure chitosan spinning solution combined air bubble removal method
CN104857743A (en) * 2014-02-21 2015-08-26 中国石油化工股份有限公司 Polymer solution sealed deoxygenation device and method
CN104857743B (en) * 2014-02-21 2017-01-18 中国石油化工股份有限公司 Polymer solution sealed deoxygenation device and method
CN105396332A (en) * 2015-12-09 2016-03-16 江阴乐圩光电股份有限公司 A vertical defoaming machine
CN105396333A (en) * 2015-12-09 2016-03-16 江阴乐圩光电股份有限公司 A vacuum defoaming machine for slurry
CN107899457A (en) * 2017-11-28 2018-04-13 锦乔生物科技有限公司 Folliculus device and its application method are defoamed in a kind of mixing plant
JP7441018B2 (en) 2018-10-02 2024-02-29 四国計測工業株式会社 Stirring device
JP2020171908A (en) * 2019-04-10 2020-10-22 大阪サニタリー株式会社 High-viscosity liquid automatic preparation device and preparation method
JP2021031501A (en) * 2019-08-13 2021-03-01 株式会社カネカ Polymer production system and polymer production process
JP7296273B2 (en) 2019-08-13 2023-06-22 株式会社カネカ Polymer production system and polymer production method

Also Published As

Publication number Publication date
JP4342414B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
JP4342414B2 (en) Defoaming method and defoaming apparatus
EP3171179B1 (en) Liquid stirring method
JP2008058163A (en) Automalyzer
JP2007078524A (en) Corrosion testing device
JPH10300626A (en) Method and system for inspecting leakage
CN110361439A (en) Gas concentration measuring apparatus and its control method
EP0346083B1 (en) Apparatus for detecting ingredient in urine, and a toilet stool equipped with a urine detecting device
CN106391606A (en) Detection instrument and reaction container cleaning method thereof
TWI410287B (en) Liquid processing device and processing liquid supply method
JP3615954B2 (en) In-tank liquid level detector for substrate processing equipment
JP2010267181A (en) Device for diluting chemical agent
JPH0845816A (en) Liquid supply device
JP2003190867A (en) Liquid applying apparatus
JP3825451B2 (en) Method and apparatus for leak inspection of contents filled container
JPH06229892A (en) Sampling monitoring device
JP3845309B2 (en) Particle size distribution measuring device and defoaming method of particle size distribution measuring device
JP2004309338A (en) Apparatus for chemical analysis
JP2003294773A (en) Clinical examination automatic analyzer, cleaning method for clinical examination automatic analyzer
JPH0464026B2 (en)
JPH0714886Y2 (en) Ultrasonic inspection device
KR20230091811A (en) Electrolytic processing device equipped with an electrolyte mixer
JP3031834B2 (en) Liquid bubble removal device
JPS6362507A (en) Automatic vacuum defoamer
JPH07333189A (en) Error factor detecting method of automatic analyzer
JP2003277997A (en) Plating solution control device, plating apparatus provided therewith, and method for preparing composition of plating solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090416

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150717

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees