JP2006102607A - Apparatus for multi-stage filtration apparatus and its operation method - Google Patents

Apparatus for multi-stage filtration apparatus and its operation method Download PDF

Info

Publication number
JP2006102607A
JP2006102607A JP2004291292A JP2004291292A JP2006102607A JP 2006102607 A JP2006102607 A JP 2006102607A JP 2004291292 A JP2004291292 A JP 2004291292A JP 2004291292 A JP2004291292 A JP 2004291292A JP 2006102607 A JP2006102607 A JP 2006102607A
Authority
JP
Japan
Prior art keywords
stage
membrane
hollow fiber
module
fiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004291292A
Other languages
Japanese (ja)
Other versions
JP4526915B2 (en
Inventor
Takayoshi Ito
孝良 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2004291292A priority Critical patent/JP4526915B2/en
Publication of JP2006102607A publication Critical patent/JP2006102607A/en
Application granted granted Critical
Publication of JP4526915B2 publication Critical patent/JP4526915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-stage filtration apparatus permitting an improvement in the recovery of the filtrate and the enrichment factor of the concentrate. <P>SOLUTION: In the apparatus internal pressure type hollow-thread membrane modules for continuous separation into the concentrate and the filtrate through circulation filtration are arranged in a multi-stage way, and the concentrate produced in an earlier stage is concentrated further in a later stage. The inside diameter of the hollow-thread membrane of the module arranged in a later stage is set to be thicker than that of the module arranged in an earlier stage. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は醗酵液や糖液等の高粘性液を循環濾過により濃縮液と透過液に連続的に分離するための多段膜濾過装置に関する。   The present invention relates to a multistage membrane filtration apparatus for continuously separating a highly viscous liquid such as a fermentation liquid or a sugar liquid into a concentrated liquid and a permeated liquid by circulation filtration.

高粘性液である糖液を例にとると、ブドウ糖あるいはその異性化糖は、コーンスターチ等の澱粉を原料に、酵素液化、酵素糖化工程を経ることによって得られる糖液を濾過等により精製することによって得られる。濾過には従来より珪藻土濾過法が用いられているが、珪藻土濾過は大量の珪藻土を必要とし、同時に分離捕捉された糖液中の不純物を含むスラッジが大量に排出される問題がある。スラッジは焼却処理ができないため産業廃棄物として埋め立て処分する必要があり、環境保全の観点からも珪藻土濾過法に代わる濾過技術が待ち望まれてきた。   Taking a sugar solution that is a highly viscous liquid as an example, glucose or its isomerized sugar is obtained by purifying the sugar solution obtained by subjecting starch such as corn starch to the enzyme liquefaction and enzyme saccharification processes by filtration or the like. Obtained by. Conventionally, diatomaceous earth filtration is used for filtration, but diatomaceous earth filtration requires a large amount of diatomaceous earth, and at the same time, there is a problem that a large amount of sludge containing impurities in sugar solution separated and captured is discharged. Since sludge cannot be incinerated, it must be disposed of as landfill as industrial waste. From the viewpoint of environmental protection, a filtration technique replacing the diatomaceous earth filtration method has been awaited.

近年、代替技術として膜濾過法が提案され、一部では実用化されるまでに至っている。特開平10−304899号公報(特許文献1)、特開2002−112800号公報(特許文献2)、特開2003−259900号公報(特許文献3)には膜モジュールを多段に配設した糖液処理用膜濾過装置が開示されている。これらの装置は膜モジュールを多段に構成し、糖液の回収率を順次高めることによって、特に前段における膜モジュールの透過能力を高め、全体として必要な膜モジュールの本数を抑え装置の小型化を可能にするものである。   In recent years, membrane filtration has been proposed as an alternative technique, and some have been put into practical use. JP-A-10-304899 (Patent Document 1), JP-A-2002-112800 (Patent Document 2) and JP-A-2003-259900 (Patent Document 3) disclose a sugar solution in which membrane modules are arranged in multiple stages. A membrane filtration device for processing is disclosed. These devices consist of multi-stage membrane modules, and by increasing the recovery rate of the sugar solution sequentially, the permeability of the membrane modules in the previous stage is increased, and the number of membrane modules required as a whole can be reduced and the device can be downsized. It is to make.

ところが、これらは前段及び後段ともに同じ膜モジュールが配設されてなる膜濾過装置であり、中空糸膜モジュールを用いる場合は後段における単位モジュール当たりの透過能力が著しく低下するので効率が悪く、回収率にも限界がある。糖液の回収率は一般的に98%以上が求められるが、通常、未精製の糖液は0.2から0.3wt%の不溶物を含むため、最終的に濃縮度が50倍程度、すなわち回収率が98%程度になると不純物の乾燥重量は15wt%近くに達し、濃縮液(循環液)の粘性が著しく上昇する。循環濾過において、膜モジュールの透過能力の低下(ファウリング)を抑制し、透過能力を上げるためには可能な限りモジュール内線速を大きくすることが肝要である。   However, these are membrane filtration devices in which the same membrane module is disposed in both the front and rear stages. When a hollow fiber membrane module is used, the permeation capacity per unit module in the rear stage is remarkably reduced, resulting in poor efficiency and recovery rate. There are also limitations. The recovery rate of the sugar solution is generally required to be 98% or more, but normally, since the unpurified sugar solution contains 0.2 to 0.3 wt% insoluble matter, the concentration is finally about 50 times. That is, when the recovery rate reaches about 98%, the dry weight of impurities reaches nearly 15 wt%, and the viscosity of the concentrated liquid (circulating liquid) increases remarkably. In the circulation filtration, it is important to increase the linear velocity in the module as much as possible in order to suppress the decrease (fouling) of the permeability of the membrane module and increase the permeability.

しかしながら、中空糸膜モジュールにあっては、循環液の粘性が高くなるとモジュール内線速を大きくとることが難しくなる。中空糸膜モジュールは単位容積当たりの膜面積を大きくとることができるので透過能力が高い利点がある一方、粘性が高い液に対してはモジュール内線速を大きくすると圧力損失(循環差圧)が大きくなり、モジュールの最高使用圧力を越えてしまうので取り得るモジュール内線速の範囲が狭いという弱点がある。そのため、高粘性液に対しては効率が悪く、回収率にも影響する。また、モジュール内線速が小さくなると中空糸膜が閉塞し易くなり、一旦中空糸内が閉塞すると薬液洗浄等による透過能力の回復が困難となる。
特開平10−304899号公報 特開2002−112800号公報 特開2003−259900号公報
However, in the hollow fiber membrane module, it becomes difficult to increase the linear velocity in the module when the viscosity of the circulating fluid increases. The hollow fiber membrane module has the advantage of high permeation capacity because the membrane area per unit volume can be increased. On the other hand, for liquids with high viscosity, increasing the linear velocity in the module increases the pressure loss (circulation differential pressure). Therefore, since the maximum operating pressure of the module is exceeded, there is a weak point that the range of the linear speed that can be taken is narrow. Therefore, it is inefficient for highly viscous liquids and affects the recovery rate. Further, when the linear velocity in the module is reduced, the hollow fiber membrane is easily blocked, and once the inside of the hollow fiber is blocked, it becomes difficult to recover the permeation ability by chemical cleaning or the like.
JP-A-10-304899 JP 2002-112800 A JP 2003-259900 A

本発明は透過液の回収率及び濃縮液の濃縮度を高めることができる多段膜濾過装置及びその運転方法を提供することを目的とする。   An object of this invention is to provide the multistage membrane filtration apparatus which can raise the collection | recovery rate of a permeate, and the concentration of a concentrate, and its operating method.

本発明は以下の通りである。
1.循環濾過により濃縮液と透過液に連続的に分離するための内圧型中空糸膜モジュールが多段に配設され、前段の濃縮液を後段でさらに濃縮する多段膜濾過装置において、後段に配するモジュールの中空糸膜の内径を前段に配するモジュールの中空糸膜の内径よりも太くすることを特徴とする多段膜濾過装置。
2.前段に配する中空糸膜モジュールと後段に配する中空糸膜モジュールの膜孔径が同じであることを特徴とする1.に記載の多段膜濾過装置。
3.前段に配する中空糸膜モジュールと後段に配する中空糸膜モジュールの膜材質が同じであることを特徴とする1.または2.に記載の多段膜濾過装置。
4.内圧型中空糸膜モジュールで循環濾過により濃縮液と透過液に連続的に分離する方法であって、前段の膜モジュールの濃縮液を後段の膜モジュールで濾過する際に、後段の膜モジュールとして、前段の膜モジュールよりも中空糸膜内径の太いものを用いることを特徴とする多段膜濾過装置の運転方法
The present invention is as follows.
1. A module that is arranged in a subsequent stage in a multistage membrane filtration device in which internal pressure type hollow fiber membrane modules for continuous separation into a concentrate and a permeate by circulation filtration are arranged in multiple stages, and the concentrated liquid in the previous stage is further concentrated in the subsequent stage. A multi-stage membrane filtration apparatus characterized in that the inner diameter of the hollow fiber membrane is made larger than the inner diameter of the hollow fiber membrane of the module disposed in the previous stage.
2. 1. The membrane pore diameter of the hollow fiber membrane module arranged in the front stage and the hollow fiber membrane module arranged in the rear stage are the same. The multistage membrane filtration apparatus described in 1.
3. 3. The multistage membrane filtration device according to 1 or 2, wherein the membrane material of the hollow fiber membrane module disposed in the front stage is the same as that of the hollow fiber membrane module disposed in the rear stage.
4). This is a method of continuously separating concentrate and permeate by circulating filtration with an internal pressure type hollow fiber membrane module, and when filtering the concentrate of the membrane module of the previous stage with the membrane module of the latter stage, as the membrane module of the latter stage, Method of operating a multistage membrane filtration device using a hollow fiber membrane having a larger inner diameter than the membrane module in the previous stage

本発明により膜モジュ−ル本数をより少なくすることができ、装置が小型化可能であり、かつ、透過液の回収率や濃縮液の濃縮度を高めることができる。   According to the present invention, the number of membrane modules can be further reduced, the apparatus can be miniaturized, and the recovery rate of the permeate and the concentration of the concentrate can be increased.

循環濾過を用いた多段膜濾過装置は、例えば図1に示すように膜モジュール、タンク、ポンプ等から構成され、原液タンクに導かれた原液は供給ポンプにより前段の膜濾過装置に供給され、循環ポンプ1により循環濾過され、濃縮液と透過液に分離される。ついで濃縮液は連続的に後段の膜濾過装置に送られ、循環ポンプ2によって循環濾過され、濃縮液と透過液に分離される。そして、後段の膜濾過装置からの濃縮液は連続的に次工程に導かれ、前段の膜濾過装置及び後段の膜濾過装置からの透過液は連続的に透過液タンクに導かれる。図2は前段の濃縮液を一旦タンクで受けた後、供給ポンプ2によって後段の膜濾過装置に送るものであり、構成は異なるが原液を連続的に濃縮液と透過液に分離する点において相違はなく、図1、図2ともバッチ処理とは処理形態を異にするものである。本発明は上記のような多段膜濾過装置において後段の膜濾過装置に配する中空糸膜モジュールの膜の内径を前段に配する中空糸膜モジュールの膜の内径よりも太く構成するものである。   A multistage membrane filtration apparatus using circulation filtration is composed of, for example, a membrane module, a tank, a pump and the like as shown in FIG. 1, and the stock solution led to the stock solution tank is supplied to the preceding membrane filtration device by a supply pump, and circulated. It is circulated and filtered by the pump 1 and separated into a concentrate and a permeate. Next, the concentrated solution is continuously sent to the subsequent membrane filtration device, and is circulated and filtered by the circulation pump 2 to be separated into the concentrated solution and the permeated solution. The concentrated liquid from the subsequent membrane filtration apparatus is continuously guided to the next step, and the permeated liquid from the preceding membrane filtration apparatus and the subsequent membrane filtration apparatus is continuously guided to the permeate tank. FIG. 2 shows a case where the first-stage concentrated liquid is once received in the tank and then sent to the second-stage membrane filtration apparatus by the supply pump 2. The difference is that the stock solution is continuously separated into the concentrated liquid and the permeated liquid, although the configuration is different. No, both FIG. 1 and FIG. 2 are different from the batch processing. In the multistage membrane filtration apparatus as described above, the inner diameter of the membrane of the hollow fiber membrane module disposed in the subsequent membrane filtration apparatus is configured to be larger than the inner diameter of the membrane of the hollow fiber membrane module disposed in the previous stage.

本発明における適性な中空糸膜の内径はそれぞれの対象液毎、各々の回収率即ち、所定の濃縮度におけるそれぞれの膜モジュールのモジュール内線速と透過能力の関係を把握して決定すればよく、特に限定されものではない。一般に内径が太くなるとモジュール内線速を大きく取れ、単位膜面積当たりの透過能力を高めることができる。同時に回収率や濃縮度もより高めることができるが、単位容積当たりの膜面積が減少し、実質的な透過能力を減じることにもつながるので上記、濃縮度とモジュール内線速、透過能力の関係を基に適性化するのが好ましい。なお、膜濾過装置の段数が増える程膜モジュール当たりの透過能力が増し、濾過の効率は上がるが、一方で装置が複雑になるので、必要な膜モジュールの推算本数にもよるが、2〜5段に設定することが好ましい。   The inner diameter of the suitable hollow fiber membrane in the present invention may be determined by grasping the relationship between the permeation rate and the permeation capacity of each membrane module at each recovery rate, that is, each membrane module at a predetermined concentration, There is no particular limitation. In general, when the inner diameter is increased, the linear velocity in the module can be increased, and the permeation capacity per unit membrane area can be increased. At the same time, the recovery rate and concentration can be further increased, but the membrane area per unit volume decreases, leading to a substantial decrease in permeation capacity. It is preferred to adapt to the group. As the number of membrane filtration devices increases, the permeation capacity per membrane module increases and the filtration efficiency increases. However, since the device becomes complicated, it depends on the required number of membrane modules. It is preferable to set the stage.

ところで、本発明における後段とは最終段のことであり、例えば段数が2段の時は2段目の中空糸膜の内径を1段目よりも太いものにすれば良い。また、段数が3段であれば2段目、3段目と順番に内径を太くすることでも良く、前段の内径と後段の内径の比(後段の内径/前段の内径)は好ましくは1.2〜3、より好ましくは1.4〜2である。また、膜モジュールの前段と後段の配設本数は同数でも、後段が少本数でもよく、特に限定されない。   By the way, the latter stage in the present invention is the last stage. For example, when the number of stages is two, the inner diameter of the second stage hollow fiber membrane may be made thicker than the first stage. If the number of stages is three, the inner diameter may be increased in the order of the second and third stages, and the ratio of the inner diameter of the previous stage to the inner diameter of the rear stage (the inner diameter of the rear stage / the inner diameter of the front stage) is preferably 1. It is 2-3, More preferably, it is 1.4-2. Further, the number of membrane modules arranged at the front and rear stages may be the same or the number of rear stages may be small, and is not particularly limited.

本発明の装置に用いられる中空糸膜モジュールの種類は、透過液を必要とする場合と濃縮液を必要とする場合、それぞれの目的に応じてUF、MF等を用いることができるが、前段と後段では膜の孔径及び/又は材質を同じにすることが好ましい。孔径や材質が同じであるとリーク率(阻止率)が一定になり、洗浄するための適性な薬剤や薬剤濃度が等しくなるため、取り扱いが簡便となり好ましい。中空糸膜の材質は特に限定されないが、通常、膜濾過装置にかける原液及び循環液の温度は膜濾過前後の工程の温度に合わせることが望まれるので、温度が高い場合は当然ながら耐熱性のものを選定することが好ましい。   The types of hollow fiber membrane modules used in the apparatus of the present invention can be UF, MF, etc. depending on the purpose when a permeate is required and when a concentrate is required. In the subsequent stage, it is preferable that the pore diameter and / or material of the membrane be the same. It is preferable that the pore diameter and the material are the same because the leak rate (blocking rate) is constant and the appropriate chemicals and chemical concentrations for cleaning are equal, so that handling is simple. The material of the hollow fiber membrane is not particularly limited, but it is usually desired that the temperature of the undiluted solution and the circulating solution applied to the membrane filtration device is matched to the temperature of the process before and after membrane filtration. It is preferable to select one.

また、前段と後段の中空糸膜モジュールの長さは後段のモジュールを短くすることでも本発明の目的を達成することもできるが、詳細には上述のように所定の回収率に高めるまでの過程におけるそれぞれの膜モジュールの透過能力、さらには取り得るモジュール内線速によって決定することが好ましい。
本発明の装置は必要に応じて逆洗を行ったり、加水操作、加水工程を付加することもできる。なお、加水による濾過(ダイアフィルトレーション)を付加する場合はさらに段数が1段追設されることになるので、濃縮の最終段に加え、ダイアフィルトレーションを太い中空糸内径の膜モジュールとすることが好ましい。
In addition, the length of the front and rear hollow fiber membrane modules can achieve the object of the present invention by shortening the rear module, but in detail, the process until increasing to a predetermined recovery rate as described above It is preferable to determine the permeation capacity of each of the membrane modules in FIG.
The apparatus of the present invention can be backwashed as necessary, or can be added with a hydration operation or hydration process. In addition, when adding filtration by hydration (diafiltration), the number of stages is further increased by one, so in addition to the final stage of concentration, diafiltration is performed with a membrane module having a thick hollow fiber inner diameter. It is preferable to do.

以下、実施例により本発明を詳細に説明する。
(実施例1)
前段の膜モジュールとして旭化成ケミカルズ(株)製、商品名マイクローザMFモジュールUSW−543(中空糸膜内径1.4mm、公称孔径0.1μm、膜面積8.6m、最高使用圧力0.3MPa、モジュール長1172mm)を用いた膜濾過装置の原液タンクに未精製のブドウ糖液(糖度計で測定した糖度30.9%、温度70℃〜80℃、SS0.24wt%)を連続的に供給しながら、入口圧力0.25MPa、出口圧力0.01MPaで循環濾過を行い、透過液を透過液タンクに、濃縮液を前段濃縮液タンクに連続的に抜き出した。透過液と濃縮液の液量比率を19:1に保つことにより回収率を95%(濃縮度20倍)に設定した。この時の透過能力は835L/hr(97L/hr/m)であった。また、循環液量から算出されるモジュール内線速は1.29m/secであった。次いで、後段の膜モジュールとして旭化成ケミカルズ(株)製、商品名マイクローザMFモジュールUMW−553(中空糸膜内径2.6mm、公称孔径0.2μm、膜面積5m、最高使用圧力0.3MPa、モジュール長1172mm)を用いた膜濾過装置に前段の膜濾過装置より得られた濃縮液を供給し、入口圧力0.25MPa、出口圧力0.01MPaの条件で循環濾過を行った。透過液と濃縮液の液量比率を1.5:1に保つことにより、前段を含めた全回収率を98%(濃縮度50倍)に設定し、透過液を透過液タンクに、濃縮液を連続的に装置外に抜き出した。この時の透過能力は335L/hr(67L/hr/m)であった。また、循環液量から算出されるモジュール内線速は0.74m/secであった。濾過後、前段及び後段の膜モジュールを装置から取り外してモジュールの開口端部を観察したが、閉塞している中空糸はなかった。
Hereinafter, the present invention will be described in detail by way of examples.
Example 1
Asahi Kasei Chemicals Co., Ltd. product name, Microza MF module USW-543 (hollow fiber membrane inner diameter 1.4 mm, nominal pore diameter 0.1 μm, membrane area 8.6 m 2 , maximum working pressure 0.3 MPa, While continuously supplying unpurified glucose liquid (sugar content 30.9%, temperature 70 ° C. to 80 ° C., SS 0.24 wt% measured with a saccharimeter) to a stock solution tank of a membrane filtration apparatus using a module length of 1172 mm) Then, circulation filtration was performed at an inlet pressure of 0.25 MPa and an outlet pressure of 0.01 MPa, and the permeate was continuously withdrawn into the permeate tank and the concentrate was withdrawn into the preceding concentrate tank. The recovery rate was set to 95% (concentration 20 times) by keeping the liquid volume ratio of the permeate and the concentrate at 19: 1. The transmission capability at this time was 835 L / hr (97 L / hr / m 2 ). The in-module linear velocity calculated from the circulating fluid amount was 1.29 m / sec. Subsequently, asahi Kasei Chemicals Co., Ltd., trade name Microza MF module UMW-553 (hollow fiber membrane inner diameter 2.6 mm, nominal pore diameter 0.2 μm, membrane area 5 m 2 , maximum working pressure 0.3 MPa, The concentrated liquid obtained from the preceding membrane filtration device was supplied to a membrane filtration device using a module length of 1172 mm), and circulation filtration was performed under conditions of an inlet pressure of 0.25 MPa and an outlet pressure of 0.01 MPa. By maintaining the liquid volume ratio of the permeate and the concentrate at 1.5: 1, the total recovery rate including the previous stage is set to 98% (concentration 50 times), the permeate is placed in the permeate tank, and the concentrate Was continuously extracted from the apparatus. The transmission capability at this time was 335 L / hr (67 L / hr / m 2 ). Further, the in-module linear velocity calculated from the circulating fluid amount was 0.74 m / sec. After filtration, the front and rear membrane modules were removed from the apparatus and the open ends of the modules were observed, but there were no closed hollow fibers.

(比較例1)
後段の膜モジュールにも旭化成ケミカルズ(株)製、商品名マイクローザMFモジュールUSW−543を用いた以外は、実施例1と同様の濾過を行った。この時の後段の透過能力は129L/hr(15L/hr/m)であった。また、循環液量から算出されるモジュール内線速は0.1m/sec以下であった。濾過後、後段の膜モジュールを装置から取り外してモジュールの開口端部を観察したところ、循環入口側で数十ケ所中空糸の閉塞があり、前段を含めた全回収率を98%にするには無理があることが示唆された。
実施例及び比較例より、後段すなわち高回収率側に内径の太い中空糸膜モジュールを配設することにより回収率を高くできることは明らかである。また、透過能力が高いので所定量の原液を所定の速度で濾過するのに必要な膜モジュールの本数が少なくて済むことも明らかである。
(Comparative Example 1)
The same filtration as in Example 1 was performed except that Asahi Kasei Chemicals Co., Ltd. product name Microza MF module USW-543 was used for the latter membrane module. At this time, the latter transmission ability was 129 L / hr (15 L / hr / m 2 ). The in-module linear velocity calculated from the amount of circulating fluid was 0.1 m / sec or less. After filtration, the latter membrane module was removed from the apparatus and the open end of the module was observed. There were several dozen hollow fiber blockages on the circulation inlet side, and the total recovery rate including the previous stage was 98%. It was suggested that it was impossible.
From the examples and comparative examples, it is clear that the recovery rate can be increased by disposing a hollow fiber membrane module having a large inner diameter in the latter stage, that is, on the high recovery rate side. It is also clear that the high permeation capacity requires fewer membrane modules to filter a given amount of stock solution at a given rate.

本発明の多段膜濾過装置は装置の小型化を可能にするものであり、効率的かつ高度に濃縮液と透過液に分離することができるので醗酵液や糖液等の高粘性液濾過に好適に用いることができる。   The multi-stage membrane filtration apparatus of the present invention enables downsizing of the apparatus, and can be efficiently and highly separated into a concentrate and a permeate, and is suitable for high-viscosity liquid filtration such as fermentation liquid and sugar liquid. Can be used.

本発明の多段膜濾過装置の一例を示すフロー図である。It is a flowchart which shows an example of the multistage membrane filtration apparatus of this invention. 本発明の多段膜濾過装置の別例を示すフロー図である。It is a flowchart which shows another example of the multistage membrane filtration apparatus of this invention.

Claims (4)

循環濾過により濃縮液と透過液に連続的に分離するための内圧型中空糸膜モジュールが多段に配設され、前段の濃縮液を後段でさらに濃縮する多段膜濾過装置において、後段に配するモジュールの中空糸膜の内径を前段に配するモジュールの中空糸膜の内径よりも太くすることを特徴とする多段膜濾過装置。   A module that is arranged in a subsequent stage in a multistage membrane filtration device in which internal pressure type hollow fiber membrane modules for continuous separation into a concentrate and a permeate by circulation filtration are arranged in multiple stages, and the concentrated liquid in the previous stage is further concentrated in the subsequent stage. A multi-stage membrane filtration apparatus characterized in that the inner diameter of the hollow fiber membrane is made larger than the inner diameter of the hollow fiber membrane of the module disposed in the previous stage. 前段に配する中空糸膜モジュールと後段に配する中空糸膜モジュールの膜孔径が同じであることを特徴とする請求項1に記載の多段膜濾過装置。   The multistage membrane filtration device according to claim 1, wherein the hollow fiber membrane module disposed in the front stage and the hollow fiber membrane module disposed in the rear stage have the same membrane pore diameter. 前段に配する中空糸膜モジュールと後段に配する中空糸膜モジュールの膜材質が同じであることを特徴とする請求項1または請求項2に記載の多段膜濾過装置。   The multistage membrane filtration apparatus according to claim 1 or 2, wherein the membrane material of the hollow fiber membrane module disposed in the front stage is the same as that of the hollow fiber membrane module disposed in the rear stage. 内圧型中空糸膜モジュールで循環濾過により濃縮液と透過液に連続的に分離する方法であって、前段の膜モジュールの濃縮液を後段の膜モジュールで濾過する際に、後段の膜モジュールとして、前段の膜モジュールよりも中空糸膜内径の太いものを用いることを特徴とする多段膜濾過装置の運転方法。   This is a method of continuously separating concentrate and permeate by circulating filtration with an internal pressure type hollow fiber membrane module, and when filtering the concentrate of the membrane module of the previous stage with the membrane module of the latter stage, as the membrane module of the latter stage, A method for operating a multistage membrane filtration apparatus, wherein a hollow fiber membrane having an inner diameter larger than that of a membrane module in the previous stage is used.
JP2004291292A 2004-10-04 2004-10-04 Multistage membrane filtration apparatus and operation method thereof Active JP4526915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004291292A JP4526915B2 (en) 2004-10-04 2004-10-04 Multistage membrane filtration apparatus and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004291292A JP4526915B2 (en) 2004-10-04 2004-10-04 Multistage membrane filtration apparatus and operation method thereof

Publications (2)

Publication Number Publication Date
JP2006102607A true JP2006102607A (en) 2006-04-20
JP4526915B2 JP4526915B2 (en) 2010-08-18

Family

ID=36372909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004291292A Active JP4526915B2 (en) 2004-10-04 2004-10-04 Multistage membrane filtration apparatus and operation method thereof

Country Status (1)

Country Link
JP (1) JP4526915B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128888A (en) * 1976-04-22 1977-10-28 Ebara Infilco Co Ltd Separation by membrane
JPS5358974A (en) * 1976-11-10 1978-05-27 Ebara Infilco Co Ltd Separating method by use of membrane
JPS59228988A (en) * 1983-06-10 1984-12-22 Jgc Corp Method for obtaining pure water from high-conductivity water by reverse osmosis method
JPH08108048A (en) * 1994-10-12 1996-04-30 Toray Ind Inc Reverse osmosis separator and reverse osmosis separating method
JPH09889A (en) * 1995-06-13 1997-01-07 Yuasa Corp Multistage type hollow fiber membrane module
JPH10305216A (en) * 1997-05-06 1998-11-17 Nitto Denko Corp Reverse osmosis membrane device and high concentration solution separation
JPH1119696A (en) * 1997-06-27 1999-01-26 Nkk Corp Treatment of sludge waste water and water purifier

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128888A (en) * 1976-04-22 1977-10-28 Ebara Infilco Co Ltd Separation by membrane
JPS5358974A (en) * 1976-11-10 1978-05-27 Ebara Infilco Co Ltd Separating method by use of membrane
JPS59228988A (en) * 1983-06-10 1984-12-22 Jgc Corp Method for obtaining pure water from high-conductivity water by reverse osmosis method
JPH08108048A (en) * 1994-10-12 1996-04-30 Toray Ind Inc Reverse osmosis separator and reverse osmosis separating method
JPH09889A (en) * 1995-06-13 1997-01-07 Yuasa Corp Multistage type hollow fiber membrane module
JPH10305216A (en) * 1997-05-06 1998-11-17 Nitto Denko Corp Reverse osmosis membrane device and high concentration solution separation
JPH1119696A (en) * 1997-06-27 1999-01-26 Nkk Corp Treatment of sludge waste water and water purifier

Also Published As

Publication number Publication date
JP4526915B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
KR100204608B1 (en) Apparatus and method for multistage reverse osmosis separation
EP1726353A1 (en) Membrane filtration of a product
JP2538409B2 (en) Method and device for concentrating high-concentration solution by reverse osmosis membrane for low pressure
JP4225471B2 (en) Operation method of multistage separation membrane module
CN105603130A (en) Apparatus and method for recovering residual sugar in process for producing sugar from sugarcane
JP6728857B2 (en) Reverse osmosis membrane device and operating method thereof
JP4526915B2 (en) Multistage membrane filtration apparatus and operation method thereof
JP3656908B2 (en) Membrane treatment apparatus and cleaning method thereof
JP4304573B2 (en) Treatment method of high concentration solution by reverse osmosis membrane
JP2005102519A (en) Method for treating glucose solution
KR100313664B1 (en) Method for recycling salt water discharged from cabbage salting process by refining with membrane
JP2007014829A (en) On-line washing method
JP2005065541A (en) Liquid filtration apparatus and method for producing clarified sugar solution
JP2001347142A (en) Reverse osmosis separation method
JP2005046762A (en) Water treatment method and water treatment apparatus
JP2002112800A (en) Apparatus for refining starch saccharified liquor
Baars et al. Red alert on transmembrane pressure (TMP)
JP2006198531A (en) Operating method of hollow fiber membrane module
KR100262264B1 (en) Water treatment process by using mf/uf tubular membranes
US20230019509A1 (en) Methods and apparatus for removing contaminants from an aqueous material
JPH05329339A (en) Filtering apparatus
JP2005046801A (en) Water treatment method and apparatus therefor
JPH10137755A (en) Membrane treating device of waste water
WO2021215442A1 (en) Pretreatment method and pretreatment system for drainage
JP4337024B2 (en) Treatment method of high concentration solution by reverse osmosis membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4526915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350