JP4337024B2 - Treatment method of high concentration solution by reverse osmosis membrane - Google Patents

Treatment method of high concentration solution by reverse osmosis membrane Download PDF

Info

Publication number
JP4337024B2
JP4337024B2 JP2003030576A JP2003030576A JP4337024B2 JP 4337024 B2 JP4337024 B2 JP 4337024B2 JP 2003030576 A JP2003030576 A JP 2003030576A JP 2003030576 A JP2003030576 A JP 2003030576A JP 4337024 B2 JP4337024 B2 JP 4337024B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
membrane module
water
concentration solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003030576A
Other languages
Japanese (ja)
Other versions
JP2004237228A (en
Inventor
淳夫 熊野
一成 丸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2003030576A priority Critical patent/JP4337024B2/en
Publication of JP2004237228A publication Critical patent/JP2004237228A/en
Application granted granted Critical
Publication of JP4337024B2 publication Critical patent/JP4337024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Description

【0001】
【発明の属する技術分野】
本発明は、高濃度溶液の逆浸透処理に関する発明であり、特に海水の淡水化などを目的とする分離方法に関するものである。
【0002】
【従来の技術】
逆浸透法は、海水及びかん水の淡水化、半導体工業及び医薬品工業用の純水、超純水の製造、都市排水処理等の幅広い分野で利用されている。蒸発法、電気透析法と比較して省エネルギーの点で有利であり、広く普及が進んでいる。特に、中空糸型逆浸透膜は、単位容積当たりの膜面積を大きくできるため、膜分離操作に適した形状であり、例えば、逆浸透膜による海水淡水化分野では広く用いられている。
【0003】
逆浸透法での処理において、近年、より高回収率での処理が求められている。特に、高濃度溶液の処理においては、膜への負担軽減や、膜表面への濃度分極層の低減のために一旦、逆浸透膜モジュール処理された濃縮水を別の逆浸透膜モジュールへ供給して処理する多連システムが採用されている。
【0004】
従来、1連目の逆浸透膜処理された濃縮水が2連目の逆浸透膜で処理される場合、2連目の逆浸透膜モジュールの本数が少ない状態での処理方法が開示されている。(例えば、非特許文献1、2参照。)これは、逆浸透膜モジュール本数が同じであれば、逆浸透膜モジュール内を流れる流量は1連目より2連目の方が少なくなり、逆浸透膜モジュール内の流量が少ないと逆浸透膜モジュール内に偏流が生じたり、膜表面濃度分極の増大によるなど逆浸透膜モジュール性能低下の原因となるため、2連目以降の逆浸透膜モジュール本数を少なくすることで2連目の逆浸透膜モジュール内の流量を維持するためと考えられている。このように、逆浸透膜やナノろ過膜などのクロスフローで処理する逆浸透膜モジュールに関しては、2連目の逆浸透膜モジュールの濃縮水をさらに3連目の逆浸透膜モジュールに供給するような多連システムにおいても、下流の逆浸透膜モジュール本数が少なく配置することはいわゆるクリスマスツリー方式として開示されている。 (例えば、非特許文献1、2参照。)これらは、一般的には、低濃度溶液の逆浸透膜処理を高回収率で実施する場合に適用されている。
【0005】
【非特許文献1】
最新の膜処理技術とその応用 (株)フジテクノシステム発行 (第33 4頁、図-1)
【非特許文献2】
水道膜ろ過法入門 日本水道新聞社発行 (第24頁、図-2.3-1)
【0006】
【発明が解決しようとする課題】
高濃度溶液を高回収率での多連システムで逆浸透膜の処理する場合、2連目以降の逆浸透膜モジュールの本数が、1連目と同じ場合やそれ以下である場合より、高効率な処理が可能な処理方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を克服すべく鋭意検討を重ねた結果、海水淡水化のような高濃度溶液の2連システムでの処理の場合、驚くべきことに、2連目の逆浸透膜モジュール本数が1連目の逆浸透膜モジュール本数より少ない場合より多い場合の方が、2連システムトータルの性能、特に、海水淡水化でのホウ素の除去率がよくなることを見出し、本発明に至った。すなわち、本願発明は下記の構成を有するものである。
(1) 高濃度原水を逆浸透膜モジュールの2連システムで処理し、高濃度の濃縮水と低濃度の透過水とに分離する処理方法であって、1連目の逆浸透膜モジュールで分離された高濃度の濃縮水が2連目の逆浸透膜モジュールに供給されるように配設され、2連目の逆浸透膜モジュールが1連目の逆浸透膜モジュールより多い本数で処理することを特徴とする高濃度溶液の処理方法。
(2) 2連目の逆浸透膜モジュールの本数が1連目の逆浸透膜モジュールの本数の110%から200%であることを特徴とする(1)記載の高濃度溶液の処理方法。
(3) 高濃度原水を逆浸透膜モジュールの2連システムで処理し、高濃度の濃縮水と低濃度の透過水とに分離する処理方法であって、1連目の逆浸透膜モジュールで分離された高濃度の濃縮水が2連目の逆浸透膜モジュールに供給されるように配設され、2連目の逆浸透膜モジュールの膜面積の総和が1連目の逆浸透膜モジュールの膜面積の総和より多い状態で処理することを特徴とする高濃度溶液の処理方法。
(4) 2連目の逆浸透膜モジュールの膜面積の総和が1連目の逆浸透膜モジュールの膜面積の総和の110%から200%であることを特徴とする(3)記載の高濃度溶液の処理方法。
(5) 逆浸透膜が中空糸膜型であるであることを特徴とする(1)〜(4)いずれか記載の高濃度溶液の処理方法。
(6)中空糸型逆浸透膜が酢酸セルロース系高分子からなることを特徴とする(5)記載の高濃度溶液の処理方法。
(7) 高濃度原水が海水であることを特徴とする(1)〜(6)いずれか記載の高濃度溶液の処理方法。
【0008】
本発明における高濃度原水とは、逆浸透処理が可能な溶質の溶解液体であり、濃度はその浸透圧から逆浸透処理が可能な範囲であるものである。例えば、海水などがあげられ、回収率によっても異なるが、逆浸透膜では、5.4MPaから10MPaで淡水化処理が可能である。また、他の一例としては、食品関係の高濃度糖類の溶液などがあげられる。
【0009】
本発明における逆浸透膜とは、数十ダルトンの分子量の分離特性を有する領域の分離膜であり、具体的には、0.5MPa以上の操作圧力で、食塩を90%以上、除去可能であるものである。海水淡水化に使用される中空糸型逆浸透膜は、操作圧力が大きく、また、食塩の除去率は99%以上が一般的である。
【0010】
本発明における逆浸透膜モジュールとは、逆浸透膜からなる膜モジュールであれば特に限定されない。例えば、膜形状からは、平膜型逆浸透膜モジュール、スパイラル型逆浸透膜モジュール、中空糸型逆浸透膜モジュール、管状型逆浸透膜モジュールなどがあげられるが、逆浸透膜モジュールの容積あたりの膜面積が大きく取れる中空糸型逆浸透膜モジュールが好ましい。
【0011】
本発明における逆浸透膜モジュールの2連システムでの処理とは、原水を一度、逆浸透処理した際に生じる濃縮水をそのまま排水せずに、再度、逆浸透処理する処理方法であり、1連目逆浸透膜モジュールと2連目逆浸透膜モジュールの間には昇圧操作があってもかまわないが、使用エネルギーの点から昇圧操作がない方が好ましい。
【0012】
本発明において、2連目の逆浸透膜モジュールの本数が1連目の逆浸透膜モジュールの本数より多いとは、逆浸透膜モジュールの大きさ、仕様、性能が基本的には同様の場合についてである。1連目に対して110%以上で200%以下が好ましい。これより低いと効果が小さく、これより大きすぎると、2連目の逆浸透膜モジュール内の流量が極端に低下し、逆浸透膜モジュール内の偏流や膜表面の濃度分極が拡大し所期の効果が得られない可能性がある。より好ましくは115%以上、180%以下、さらに好ましくは120%以上、160%以下である。逆浸透膜モジュールの大きさが異なる場合は、逆浸透膜モジュールの膜面積が110%から200%が好ましい。より好ましくは115%以上、180%以下、さらに好ましくは120%以上、160%以下である。
【0013】
2連目の逆浸透膜モジュール本数、膜面積を増やすことにより、トータルの2連システムの性能が向上する理由は明らかではないが、以下のように推測される。すなわち、2連目の逆浸透膜モジュール本数、膜面積を増加すること、逆に1連目の逆浸透膜モジュール本数、膜面積を減少させることにより、1連目の回収率が小さくなる。原水が高濃度(例えば、海水)であれば、浸透圧も大きいため、回収率が透水性能、除去性能に及ぼす影響は大きく、1連目の性能は高くなる。一方、回収率が低いため1連目の濃縮水、すなわち2連目の供給水の溶質濃度が低下し浸透圧が低くなり、2連目の透水性能、除去性能は向上する。これらの傾向は膜が有する性能の溶質濃度の依存性が大きいほど顕著になると推察される。
【0014】
本発明における逆浸透膜が中空糸膜型であるとは、膜形状が中空状ものであれば、均質構造、非対称構造、複合構造など、膜構造は特に限定されない。中空糸の内径は、中空糸膜の内径と外径とから算出される中空率も考慮して設定することが好ましいが、30μmから200μmが好ましく、40μmから150μmがより好ましい。内径が小さすぎると、中空部内の流動圧損が大きくなりすぎるため好ましくない。一方、内径が大きすぎると、中空糸膜径自体が大きくなるため、容積当たりの膜面積が大きく取れなくなるため、好ましくない。本発明における中空糸膜型逆浸透膜の素材等は特に限定されず、例えば、酢酸セルロース系高分子、ポリアミド系高分子、ポリビニルアルコール系高分子などがあげられ、耐塩素性の点から酢酸セルロース系素材が好ましい。
【0015】
本発明における酢酸セルロース系高分子とは、酢酸セルロース、三酢酸セルロース、両者の混合物が例としてあげられる。性能面、性能の安定性等から三酢酸セルロースが好ましい。また、これらの素材は耐塩素性に優れるため、供給水に殺菌剤として塩素の添加が可能である。間欠的に注入するほうが、消毒物副生成物の発生量や薬品使用量が小さくなり好ましい。
【0016】
【発明の実施の形態】
本発明の実施の形態を図1に基づいて説明する。図1は、一例として1連目には4本の中空糸型逆浸透膜モジュールを配置し、2連目には5本の逆浸透膜モジュールを配置しており、1連目の4本の逆浸透膜モジュールの濃縮水を集めて5本の逆浸透膜モジュールへ供給して分離操作を行う場合を示している。高圧ポンプ4により昇圧された供給水6は1連目の逆浸透膜モジュール1に供給され、濃縮水8は2連目の逆浸透膜モジュール2に供給される。2連目の逆浸透膜モジュール2の濃縮水10は排出され、透過水9は1連目の透過水7と合流し生産水13として得られる。
【0017】
図2は従来法の一例として、2連目の方が1連目に比べて、逆浸透膜モジュール本数が少ない例である。1連目には5本の中空糸型逆浸透膜モジュールを配置し、2連目には4本の逆浸透膜モジュールを配置しており、1連目の5本の逆浸透膜モジュールの濃縮水を集めて4本の逆浸透膜モジュールへ供給して分離操作を行う場合を示している。高圧ポンプ4により昇圧された供給水6は1連目の逆浸透膜モジュール1に供給され、濃縮水8は2連目の逆浸透膜モジュール2に供給される。2連目の逆浸透膜モジュール2の濃縮水10は排出され、透過水9は1連目の透過水7と合流し生産水13として得られる。
【0018】
図3は従来法の他の一例として、2連目と1連目が逆浸透膜モジュール本数が同じの場合の例である。1連目には4本の中空糸型逆浸透膜モジュールを配置し、2連目には4本の逆浸透膜モジュールを配置しており、1連目の4本の逆浸透膜モジュールの濃縮水を集めて4本の逆浸透膜モジュールへ供給して分離操作を行う場合を示している。高圧ポンプ4により昇圧された供給水6は1連目の逆浸透膜モジュール1に供給され、濃縮水8は2連目の逆浸透膜モジュール2に供給される。2連目の逆浸透膜モジュール2の濃縮水10は排出され、透過水9は1連目の透過水7と合流し生産水13として得られる。
【0019】
図4は3連システムでの従来の一例を示す。2連目の方が1連目に比べて、逆浸透膜モジュール本数が少なく、さらに、3連目の方が2連目に比べて逆浸透膜モジュール本数が少ない例である。
【0020】
【実施例】
以下に、実施例を挙げて本発明を説明するが、本発明はこれらの実施例により何ら制限されるものではない。なお、実施例は、海水淡水化用の逆浸透膜の場合を示す。
【0021】
(実施例1)
1連目に三酢酸セルロース製の中空糸型逆浸透膜モジュール4本を用い、2連目に三酢酸セルロース製の中空糸型逆浸透膜モジュール5本を用い、図1に示すような、2連システムの逆浸透膜モジュール配置でホウ素含有の海水を処理した。運転条件は以下の通りであった。原水の温度30℃、塩濃度3.1%、ホウ素濃度4.5mg/L、1連目の操作圧力71kg/cm2、回収率62.5%であった。得られた透過水の流量とホウ素の濃度は、それぞれ、1連目は、119m3/日、1.7mg/L、2連目が52m3/日、4.0mg/Lでトータルが171m3/日、2.4mg/Lであった。トータルのホウ素の除去率は47%であった。なお、使用した逆浸透膜モジュールの標準条件の性能は、透水量16m3/日、塩除去率99.2%、ホウ素除去率50%であった。ここでの標準条件は、供給水の温度25℃、食塩濃度3.5%、ホウ素濃度4.5mg/L、供給圧力55kg/cm2、回収率30%である。1連目、2連目の水質等のデータは表1に示した。なお、除去率は下記の(1)式により定義される。溶質が、塩の場合は塩除去率、食塩の場合は、食塩の除去率、ホウ素の場合はホウ素除去率である。塩、食塩の濃度は電気伝導度の値から求めた。また、ホウ素の濃度は、吸光光度法により求めた。
除去率=(1−(透過水の溶質濃度/供給水の溶質濃度))x100(%) (1)
また、回収率は下記の(2)式で定義される。
回収率=(透過水流量/供給水流量)x100(%) (2)
なお、透過水流量は、通常の面積式流量計で測定し、供給水流量は、透過水流量と濃縮水流量の和として求めた。
【0022】
(比較例1)
逆浸透膜モジュールの配置が図2であること以外、実施例1と同様の逆浸透膜モジュールを用いてホウ素含有の食塩水を処理した。1連目に三酢酸セルロース製の中空糸型逆浸透膜モジュール5本を用い、2連目に三酢酸セルロース製の中空糸型逆浸透膜モジュール4本を用いている。得られた透過水の流量とホウ素の濃度は、1連目は、136m3/日、2.1mg/L、2連目が31m3/日、4.7mg/Lでトータルが168m3/日、2.6mg/Lであった。トータルのホウ素の除去率は42%であり、実施例の場合に比べて低い値となった。1連目、2連目の水質等のデータは表1に示した。
【0023】
(比較例2)
逆浸透膜モジュールの配置が図3であること以外、実施例1と同様の逆浸透膜モジュールを用いてホウ素含有の食塩水を処理した。1連目に三酢酸セルロース製の中空糸型逆浸透膜モジュール4本を用い、2連目に三酢酸セルロース製の中空糸型逆浸透膜モジュール4本を用いている。得られた透過水の流量とホウ素の濃度は、1連目は、114m3/日、1.9mg/L、2連目が36m3/日、4.7mg/Lでトータルが150m3/日、2.6mg/Lであった。トータルのホウ素の除去率は42%であり、実施例の場合に比べて低い値となった。1連目、2連目の水質等のデータは表1に示した。
【0024】
【表1】

Figure 0004337024
【0025】
【発明の効果】
逆浸透膜で処理した濃縮水を再度逆浸透膜で処理する2連システムの逆浸透膜の処理方法において、2連目の逆浸透膜モジュールの本数を1連目の逆浸透膜モジュールの本数より多くすることにより、より高効率な分離操作、特に海水のホウ素の除去が可能である。
【図面の簡単な説明】
【図1】本発明の処理方法の一例で、1連目の逆浸透膜モジュールが4本で、2連目の逆浸透膜モジュールが5本の場合の2連システムの場合の簡単な構成図を示す。
【図2】従来例の処理方法の一例で1連目の逆浸透膜モジュールが5本で、2連目の逆浸透膜モジュールが4本の場合の2連システムの場合の簡単な構成図を示す。
【図3】従来例の処理方法の他の一例で1連目の逆浸透膜モジュールが4本で、2連目の逆浸透膜モジュールが4本の場合の2連システムの場合の簡単な構成図を示す。
【図4】従来例の処理方法の他の一例で1連目の逆浸透膜モジュールが4本で、2連目の逆浸透膜モジュールが3本で3連目の逆浸透膜モジュールが1本の場合の3連システムの場合の簡単な構成図を示す。
【符号の説明】
1:1連目の逆浸透膜モジュール
2:2連目の逆浸透膜モジュール
3:供給水
4:高圧ポンプ
5:流量調整バルブ
6:昇圧された供給水
7:1連目の逆浸透膜モジュールの透過水
8:1連目の逆浸透膜モジュールの濃縮水
9:2連目の逆浸透膜モジュールの透過水
10:2連目の逆浸透膜モジュールの濃縮水
11:3連目の逆浸透膜モジュールの透過水
12:3連目の逆浸透膜モジュール[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reverse osmosis treatment of a high-concentration solution, and particularly relates to a separation method for desalination of seawater.
[0002]
[Prior art]
The reverse osmosis method is used in a wide range of fields such as desalination of seawater and brine, production of pure water for the semiconductor industry and pharmaceutical industry, ultrapure water, and municipal wastewater treatment. Compared to the evaporation method and electrodialysis method, it is advantageous in terms of energy saving and is widely spread. In particular, since the hollow fiber type reverse osmosis membrane can increase the membrane area per unit volume, the hollow fiber type reverse osmosis membrane has a shape suitable for membrane separation operation, and is widely used, for example, in the field of seawater desalination using a reverse osmosis membrane.
[0003]
In the treatment by the reverse osmosis method, treatment at a higher recovery rate has been demanded in recent years. In particular, in the treatment of high-concentration solutions, the concentrated water once treated with the reverse osmosis membrane module is supplied to another reverse osmosis membrane module in order to reduce the burden on the membrane and reduce the concentration polarization layer on the membrane surface. Multiple processing systems are used.
[0004]
Conventionally, when the concentrated water treated with the first reverse osmosis membrane is treated with the second reverse osmosis membrane, a treatment method in a state where the number of the second reverse osmosis membrane modules is small is disclosed. . (For example, see Non-Patent Documents 1 and 2.) If the number of reverse osmosis membrane modules is the same, the flow rate flowing through the reverse osmosis membrane module is less in the second continuation than in the first repayment, and reverse osmosis. If the flow rate in the membrane module is small, drift may occur in the reverse osmosis membrane module, or the reverse osmosis membrane module performance may decrease due to an increase in membrane surface concentration polarization. This is considered to maintain the flow rate in the second reverse osmosis membrane module by decreasing the number. As described above, regarding the reverse osmosis membrane module to be processed by crossflow such as reverse osmosis membrane or nanofiltration membrane, the concentrated water of the second reverse osmosis membrane module is further supplied to the third reverse osmosis membrane module. Even in such a multiple system, disposing a small number of downstream reverse osmosis membrane modules is disclosed as a so-called Christmas tree system. (For example, refer nonpatent literatures 1 and 2.) These are generally applied when the reverse osmosis membrane treatment of a low concentration solution is performed at a high recovery rate.
[0005]
[Non-Patent Document 1]
Latest membrane processing technology and its application Fuji Techno System Co., Ltd. (Page 33, page 4, Fig. 1)
[Non-Patent Document 2]
Introduction to the water membrane filtration method Published by Nihon Seido Shimbun (page 24, Fig. 2.3-1)
[0006]
[Problems to be solved by the invention]
More efficient than when the number of reverse osmosis membrane modules in the second and subsequent series is the same as or less than that in the first series when processing high concentration solutions in a multiple system with a high recovery rate An object of the present invention is to provide a processing method capable of various processing.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to overcome the above-mentioned problems, the present inventors have surprisingly found that the second reverse osmosis membrane is used in the case of processing a high-concentration solution such as seawater desalination in a dual-system. It has been found that when the number of modules is larger than the number of the first reverse osmosis membrane modules, the total performance of the dual system is improved, in particular, the boron removal rate in seawater desalination is improved, leading to the present invention. It was. That is, the present invention has the following configuration.
(1) High concentration raw water is treated with a dual system of reverse osmosis membrane modules and separated into high concentration concentrated water and low concentration permeated water, separated by the first reverse osmosis membrane module The high-concentrated concentrated water is disposed so as to be supplied to the second reverse osmosis membrane module, and the second reverse osmosis membrane module is processed with a larger number than the first reverse osmosis membrane module. A method for treating a high-concentration solution characterized by
(2) The method for treating a high concentration solution according to (1), wherein the number of the second reverse osmosis membrane modules is 110% to 200% of the number of the first reverse osmosis membrane modules.
(3) High-concentration raw water is treated with a dual system of reverse osmosis membrane modules and separated into high-concentration concentrated water and low-concentration permeate, separated by the first reverse osmosis membrane module The concentrated water having a high concentration is supplied to the second reverse osmosis membrane module, and the total membrane area of the second reverse osmosis membrane module is the membrane of the first reverse osmosis membrane module. A method for treating a high-concentration solution, wherein the treatment is performed in a state where the total area is greater than the total area.
(4) The high concentration according to (3), wherein the total membrane area of the second reverse osmosis membrane module is 110% to 200% of the total membrane area of the first reverse osmosis membrane module Solution processing method.
(5) The method for treating a high concentration solution according to any one of (1) to (4), wherein the reverse osmosis membrane is a hollow fiber membrane type.
(6) The method for treating a high concentration solution according to (5), wherein the hollow fiber type reverse osmosis membrane is made of a cellulose acetate polymer.
(7) The method for treating a high concentration solution according to any one of (1) to (6), wherein the high concentration raw water is seawater.
[0008]
The high-concentration raw water in the present invention is a dissolved liquid of a solute that can be subjected to reverse osmosis treatment, and the concentration is within a range that allows reverse osmosis treatment from its osmotic pressure. For example, seawater and the like can be mentioned, and depending on the recovery rate, a reverse osmosis membrane can be desalinated at 5.4 to 10 MPa. Another example is a food-related high-concentration sugar solution.
[0009]
The reverse osmosis membrane in the present invention is a separation membrane in a region having a molecular weight separation characteristic of several tens of daltons, and specifically, 90% or more of salt can be removed at an operating pressure of 0.5 MPa or more. Is. The hollow fiber type reverse osmosis membrane used for seawater desalination has a large operating pressure, and the removal rate of salt is generally 99% or more.
[0010]
The reverse osmosis membrane module in the present invention is not particularly limited as long as it is a membrane module made of a reverse osmosis membrane. For example, the membrane shape includes a flat membrane type reverse osmosis membrane module, a spiral type reverse osmosis membrane module, a hollow fiber type reverse osmosis membrane module, a tubular type reverse osmosis membrane module, and the like. A hollow fiber type reverse osmosis membrane module having a large membrane area is preferred.
[0011]
The treatment by the reverse osmosis membrane module duplex system in the present invention is a treatment method in which the concentrated water generated when the raw water is once subjected to the reverse osmosis treatment is again subjected to the reverse osmosis treatment without draining as it is. There may be a pressure increase operation between the eye reverse osmosis membrane module and the second reverse osmosis membrane module, but it is preferable that there is no pressure increase operation in terms of energy used.
[0012]
In the present invention, the number of second reverse osmosis membrane modules is larger than the number of first reverse osmosis membrane modules when the size, specifications and performance of the reverse osmosis membrane modules are basically the same. It is. 110% or more and 200% or less are preferable with respect to the 1st station. If it is lower than this, the effect is small, and if it is larger than this, the flow rate in the second reverse osmosis membrane module is extremely reduced, the drift in the reverse osmosis membrane module and the concentration polarization of the membrane surface are expanded, and the expected The effect may not be obtained. More preferably, they are 115% or more and 180% or less, More preferably, they are 120% or more and 160% or less. When the sizes of the reverse osmosis membrane modules are different, the membrane area of the reverse osmosis membrane module is preferably 110% to 200%. More preferably, they are 115% or more and 180% or less, More preferably, they are 120% or more and 160% or less.
[0013]
The reason why the performance of the total duplex system is improved by increasing the number and the membrane area of the second reverse osmosis membrane module is not clear, but is estimated as follows. That is, by increasing the number and the membrane area of the second reverse osmosis membrane module, and conversely decreasing the number and the membrane area of the first reverse osmosis membrane module, the recovery rate of the first station is reduced. If the raw water has a high concentration (for example, seawater), since the osmotic pressure is large, the effect of the recovery rate on the water permeability and removal performance is large, and the performance of the first station is high. On the other hand, since the recovery rate is low, the solute concentration in the first continuous water, that is, the supply water in the second continuous water is decreased, the osmotic pressure is lowered, and the water permeability and removal performance in the second continuous are improved. These tendencies are presumed to become more prominent as the dependence of the solute concentration on the performance of the membrane increases.
[0014]
If the reverse osmosis membrane in the present invention is a hollow fiber membrane type, the membrane structure is not particularly limited as long as the membrane shape is hollow, such as a homogeneous structure, an asymmetric structure, and a composite structure. The inner diameter of the hollow fiber is preferably set in consideration of the hollow ratio calculated from the inner diameter and the outer diameter of the hollow fiber membrane, but is preferably 30 μm to 200 μm, and more preferably 40 μm to 150 μm. If the inner diameter is too small, the flow pressure loss in the hollow portion becomes too large, which is not preferable. On the other hand, if the inner diameter is too large, the hollow fiber membrane diameter itself is increased, which makes it impossible to increase the membrane area per volume. The material of the hollow fiber membrane type reverse osmosis membrane in the present invention is not particularly limited, and examples thereof include cellulose acetate polymer, polyamide polymer, polyvinyl alcohol polymer and the like, and cellulose acetate from the viewpoint of chlorine resistance. System materials are preferred.
[0015]
Examples of the cellulose acetate polymer in the present invention include cellulose acetate, cellulose triacetate, and a mixture of both. From the viewpoint of performance and stability of performance, cellulose triacetate is preferable. Moreover, since these materials are excellent in chlorine resistance, it is possible to add chlorine as a disinfectant to the supply water. Injecting intermittently is preferable because the amount of disinfectant by-products generated and the amount of chemicals used are reduced.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG. In FIG. 1, as an example, four hollow fiber type reverse osmosis membrane modules are arranged in the first station, and five reverse osmosis membrane modules are arranged in the second station. A case is shown in which the concentrated water of the reverse osmosis membrane module is collected and supplied to five reverse osmosis membrane modules to perform a separation operation. The feed water 6 pressurized by the high-pressure pump 4 is supplied to the first reverse osmosis membrane module 1, and the concentrated water 8 is supplied to the second reverse osmosis membrane module 2. The concentrated water 10 of the second reverse osmosis membrane module 2 is discharged, and the permeated water 9 joins with the first permeated water 7 to be obtained as product water 13.
[0017]
FIG. 2 shows an example of the conventional method in which the number of reverse osmosis membrane modules is smaller in the second series than in the first series. Five hollow fiber type reverse osmosis membrane modules are arranged in the first station, and four reverse osmosis membrane modules are arranged in the second station. Concentration of the five reverse osmosis membrane modules in the first station A case where water is collected and supplied to four reverse osmosis membrane modules to perform a separation operation is shown. The feed water 6 pressurized by the high-pressure pump 4 is supplied to the first reverse osmosis membrane module 1, and the concentrated water 8 is supplied to the second reverse osmosis membrane module 2. The concentrated water 10 of the second reverse osmosis membrane module 2 is discharged, and the permeated water 9 joins with the first permeated water 7 to be obtained as product water 13.
[0018]
FIG. 3 shows an example in which the number of reverse osmosis membrane modules is the same in the second and first stations as another example of the conventional method. Four hollow fiber type reverse osmosis membrane modules are arranged in the first station, and four reverse osmosis membrane modules are arranged in the second station. Concentration of four reverse osmosis membrane modules in the first station A case where water is collected and supplied to four reverse osmosis membrane modules to perform a separation operation is shown. The feed water 6 pressurized by the high-pressure pump 4 is supplied to the first reverse osmosis membrane module 1, and the concentrated water 8 is supplied to the second reverse osmosis membrane module 2. The concentrated water 10 of the second reverse osmosis membrane module 2 is discharged, and the permeated water 9 joins with the first permeated water 7 to be obtained as product water 13.
[0019]
FIG. 4 shows a conventional example in a triple system. This is an example in which the number of reverse osmosis membrane modules in the second station is smaller than that in the first station, and the number of reverse osmosis membrane modules in the third station is smaller than that in the second station.
[0020]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. In addition, an Example shows the case of the reverse osmosis membrane for seawater desalination.
[0021]
Example 1
As shown in FIG. 1, two hollow fiber type reverse osmosis membrane modules made of cellulose triacetate were used in the first series, and five hollow fiber type reverse osmosis membrane modules made of cellulose triacetate were used in the second series. Boron-containing seawater was treated with a reverse osmosis membrane module arrangement in a continuous system. The operating conditions were as follows. The raw water temperature was 30 ° C., the salt concentration was 3.1%, the boron concentration was 4.5 mg / L, the first operation pressure was 71 kg / cm 2 , and the recovery rate was 62.5%. The flow rate of the obtained permeated water and the concentration of boron are 119 m 3 / day for the first series, 1.7 mg / L for the second series, 52 m 3 / day for the second series, 4.0 mg / L, and the total is 171 m 3. / Day, 2.4 mg / L. The total boron removal rate was 47%. The performance of the reverse osmosis membrane module used under standard conditions was a water permeability of 16 m 3 / day, a salt removal rate of 99.2%, and a boron removal rate of 50%. The standard conditions here are a feed water temperature of 25 ° C., a salt concentration of 3.5%, a boron concentration of 4.5 mg / L, a supply pressure of 55 kg / cm 2 , and a recovery rate of 30%. The data of the water quality etc. of the 1st series and the 2nd series are shown in Table 1. The removal rate is defined by the following equation (1). When the solute is a salt, the salt removal rate, when the solute is salt, the salt removal rate, and when boron is the boron removal rate. The concentration of salt and salt was determined from the value of electrical conductivity. The boron concentration was determined by absorptiometry.
Removal rate = (1− (solute concentration of permeated water / solute concentration of supplied water)) × 100 (%) (1)
The recovery rate is defined by the following equation (2).
Recovery rate = (permeate flow rate / feed water flow rate) x 100 (%) (2)
The permeate flow rate was measured with a normal area flow meter, and the feed water flow rate was determined as the sum of the permeate flow rate and the concentrated water flow rate.
[0022]
(Comparative Example 1)
Boron-containing saline was treated using the reverse osmosis membrane module similar to that in Example 1 except that the arrangement of the reverse osmosis membrane module was that shown in FIG. Five hollow fiber type reverse osmosis membrane modules made of cellulose triacetate are used in the first series, and four hollow fiber type reverse osmosis membrane modules made of cellulose triacetate are used in the second series. The flow rate of the obtained permeated water and the concentration of boron were 136 m 3 / day, 2.1 mg / L for the first series, 31 m 3 / day for the second series, 4.7 mg / L, and the total was 168 m 3 / day. The amount was 2.6 mg / L. The total boron removal rate was 42%, which was a lower value than in the example. The data of the water quality etc. of the 1st series and the 2nd series are shown in Table 1.
[0023]
(Comparative Example 2)
A boron-containing saline solution was treated using the same reverse osmosis membrane module as in Example 1 except that the arrangement of the reverse osmosis membrane module was that shown in FIG. Four hollow fiber type reverse osmosis membrane modules made of cellulose triacetate are used in the first series, and four hollow fiber type reverse osmosis membrane modules made of cellulose triacetate are used in the second series. The flow rate and boron concentration of the obtained permeated water were 114 m 3 / day for the first series, 1.9 mg / L, the second series was 36 m 3 / day, 4.7 mg / L, and the total was 150 m 3 / day. The amount was 2.6 mg / L. The total boron removal rate was 42%, which was a lower value than in the example. The data of the water quality etc. of the 1st series and the 2nd series are shown in Table 1.
[0024]
[Table 1]
Figure 0004337024
[0025]
【The invention's effect】
In the treatment method of the reverse osmosis membrane of the double system in which the concentrated water treated with the reverse osmosis membrane is treated again with the reverse osmosis membrane, the number of the reverse osmosis membrane modules in the second series is more than the number of the reverse osmosis membrane modules in the first series. By increasing the number, a more efficient separation operation, particularly removal of boron from seawater is possible.
[Brief description of the drawings]
FIG. 1 is an example of a processing method according to the present invention, and is a simple configuration diagram in the case of a dual system where four first-line reverse osmosis membrane modules and five second-line reverse osmosis membrane modules are used. Indicates.
FIG. 2 is a simple configuration diagram in the case of a dual system in which the number of first reverse osmosis membrane modules is five and the number of second reverse osmosis membrane modules is four in an example of a conventional processing method; Show.
FIG. 3 shows a simple configuration in a case of a dual system in which another example of the conventional processing method includes four first-stage reverse osmosis membrane modules and four second-order reverse osmosis membrane modules. The figure is shown.
FIG. 4 shows another example of the processing method of the conventional example, in which the first reverse osmosis membrane module is four, the second reverse osmosis membrane module is three, and the third reverse osmosis membrane module is one. The simple block diagram in the case of the triple system in the case of is shown.
[Explanation of symbols]
1: 1 reverse osmosis membrane module 2: second reverse osmosis membrane module 3: feed water 4: high pressure pump 5: flow rate adjusting valve 6: pressurized feed water 7: 1st reverse osmosis membrane module Permeated water 8: Concentrated water of the first reverse osmosis membrane module 9: Permeated water of the second reverse osmosis membrane module 10: Concentrated water of the second reverse osmosis membrane module 11: Reverse osmosis of the third continuous water Permeated water of membrane module 12: Reverse osmosis membrane module of 3rd station

Claims (7)

高濃度溶液からなる原水を逆浸透膜モジュールの2連システムで処理し、高濃度の濃縮水と低濃度の透過水とに分離する処理方法であって、1連目の逆浸透膜モジュールで分離された高濃度の濃縮水が2連目の逆浸透膜モジュールに供給されるように配設され、2連目の逆浸透膜モジュールが1連目の逆浸透膜モジュールより多い本数で処理することを特徴とする高濃度溶液の処理方法。Raw water consisting of high-concentration solution is treated with a dual system of reverse osmosis membrane modules and separated into high-concentrated concentrated water and low-concentrated permeated water, separated by the first reverse osmosis membrane module The high-concentrated concentrated water is disposed so as to be supplied to the second reverse osmosis membrane module, and the second reverse osmosis membrane module is processed with a larger number than the first reverse osmosis membrane module. A method for processing a high-concentration solution characterized by the above. 2連目の逆浸透膜モジュールの本数が1連目の逆浸透膜モジュールの本数の110%から200%であることを特徴とする請求項1記載の高濃度溶液の処理方法。  The method for treating a high-concentration solution according to claim 1, wherein the number of second reverse osmosis membrane modules is 110% to 200% of the number of first reverse osmosis membrane modules. 高濃度溶液からなる原水を逆浸透膜モジュールの2連システムで処理し、高濃度の濃縮水と低濃度の透過水とに分離する処理方法であって、1連目の逆浸透膜モジュールで分離された高濃度の濃縮水が2連目の逆浸透膜モジュールに供給されるように配設され、2連目の逆浸透膜モジュールの膜面積の総和が1連目の逆浸透膜モジュールの膜面積の総和より多い状態で処理することを特徴とする高濃度溶液の処理方法。Raw water consisting of high-concentration solution is treated with a reverse osmosis membrane module dual system and separated into high-concentrated concentrated water and low-concentrated permeated water, separated by the first reverse osmosis membrane module The concentrated water having a high concentration is supplied to the second reverse osmosis membrane module, and the total membrane area of the second reverse osmosis membrane module is the membrane of the first reverse osmosis membrane module. A method for treating a high-concentration solution, wherein the treatment is performed in a state where the total area is greater than the total area. 2連目の逆浸透膜モジュールの膜面積の総和が1連目の逆浸透膜モジュールの膜面積の総和の110%から200%であることを特徴とする請求項3記載の高濃度溶液の処理方法。  The high concentration solution treatment according to claim 3, wherein the total membrane area of the second reverse osmosis membrane module is 110% to 200% of the total membrane area of the first reverse osmosis membrane module. Method. 逆浸透膜が中空糸膜型であることを特徴とする請求項1〜4いずれか記載の高濃度溶液の処理方法。  The method for treating a high-concentration solution according to any one of claims 1 to 4, wherein the reverse osmosis membrane is a hollow fiber membrane type. 中空糸型逆浸透膜が酢酸セルロース系高分子からなることを特徴とする請求項5記載の高濃度溶液の処理方法。  6. The method for treating a high concentration solution according to claim 5, wherein the hollow fiber type reverse osmosis membrane comprises a cellulose acetate polymer. 高濃度溶液からなる原水が海水であることを特徴とする請求項1〜6いずれか記載の高濃度溶液の処理方法。The method for treating a high-concentration solution according to any one of claims 1 to 6, wherein the raw water comprising the high-concentration solution is seawater.
JP2003030576A 2003-02-07 2003-02-07 Treatment method of high concentration solution by reverse osmosis membrane Expired - Lifetime JP4337024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030576A JP4337024B2 (en) 2003-02-07 2003-02-07 Treatment method of high concentration solution by reverse osmosis membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030576A JP4337024B2 (en) 2003-02-07 2003-02-07 Treatment method of high concentration solution by reverse osmosis membrane

Publications (2)

Publication Number Publication Date
JP2004237228A JP2004237228A (en) 2004-08-26
JP4337024B2 true JP4337024B2 (en) 2009-09-30

Family

ID=32957425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030576A Expired - Lifetime JP4337024B2 (en) 2003-02-07 2003-02-07 Treatment method of high concentration solution by reverse osmosis membrane

Country Status (1)

Country Link
JP (1) JP4337024B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229708A (en) * 2006-02-06 2007-09-13 Univ Nagoya Filter
JP2019076827A (en) * 2017-10-24 2019-05-23 住友電気工業株式会社 Water treatment equipment and water treatment method

Also Published As

Publication number Publication date
JP2004237228A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
US20200086274A1 (en) Advancements in osmotically driven membrane systems including multi-stage purification
Han et al. Robust and high performance pressure retarded osmosis hollow fiber membranes for osmotic power generation
Singh et al. Introduction to membrane processes for water treatment
WO2018084246A1 (en) Concentration method and concentration device
EP3845297A2 (en) High water recovery hybrid membrane system for desalination and brine concentration
JP2018001111A (en) Processing method of desalinating salt water and processing system of desalinating salt water
US20130233797A1 (en) Methods for osmotic concentration of hyper saline streams
JP2008100220A (en) Method for producing freshwater
WO2015151899A1 (en) Method for treating water containing low molecular weight organic substance
JP3230490B2 (en) Spiral reverse osmosis membrane element and separation device using the same
JP2538409B2 (en) Method and device for concentrating high-concentration solution by reverse osmosis membrane for low pressure
JP2000042378A (en) Fluid separation element
JP4304573B2 (en) Treatment method of high concentration solution by reverse osmosis membrane
JP4337024B2 (en) Treatment method of high concentration solution by reverse osmosis membrane
JP2008080255A (en) Pure water making apparatus
JP4332774B2 (en) Method and apparatus for processing high concentration solution by reverse osmosis membrane
CN117677431A (en) Membrane with controlled porosity for in-line filtration
US20220177340A1 (en) Pure-water production device and pure-water production method
JP3353810B2 (en) Reverse osmosis seawater desalination system
WO2021140374A1 (en) Apparatus for filtration and purification of water
JP2010142799A (en) Device for converting seawater into drinking water by hnad control
JP2006167533A (en) Method for condensing sea water
CN1415540A (en) Method for removing sulfate ion from solution containing sodium chloride with high concentration
JP2001252662A (en) Fresh water generating method
JPH09155344A (en) Method for desalination of brackish water and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090617

R151 Written notification of patent or utility model registration

Ref document number: 4337024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

EXPY Cancellation because of completion of term