JP2006098228A - 分光光度計、生化学分析装置及び測定方法 - Google Patents

分光光度計、生化学分析装置及び測定方法 Download PDF

Info

Publication number
JP2006098228A
JP2006098228A JP2004285157A JP2004285157A JP2006098228A JP 2006098228 A JP2006098228 A JP 2006098228A JP 2004285157 A JP2004285157 A JP 2004285157A JP 2004285157 A JP2004285157 A JP 2004285157A JP 2006098228 A JP2006098228 A JP 2006098228A
Authority
JP
Japan
Prior art keywords
wavelength
light
light receiving
spectrophotometer
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004285157A
Other languages
English (en)
Inventor
Muneyasu Kimura
統安 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004285157A priority Critical patent/JP2006098228A/ja
Priority to US11/231,906 priority patent/US20060066850A1/en
Publication of JP2006098228A publication Critical patent/JP2006098228A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】光学的なバンドパスフィルタを用いた測定結果と等価な測定結果が得られるマルチチャンネル分光方式の分光光度計を提供する。
【解決手段】試料からの検出光は、凹面回折格子で分光・反射されて、フォトダイオードアレイに入射する。フォトダイオードアレイは、検出光の分散方向に多数のフォトダイオードが並べられている。各フォトダイオードから出力される波長毎の光電信号は、光電データに変換された後に、光学的なバンドパスフィルタの波長と透過率との関係に対応させて重みデータで重み付けされてから加算される。加算で得られる測定データが測定結果として出力される。
【選択図】 図6

Description

本発明は、分光光度計、生化学分析装置及び測定方法に関するものである。
近年、医療分野において、開業医,専門医の診察室、病棟及び外来患者向け診療所などの「患者に近いところ」で行われるポイントオブケア検査(Point Of Care Testing:POCT)が注目されてきている。この検査は、中央検査室で集中且つ大量に検体を処理する従来からの病院での通常の検査に比べ、患者が検査を受けに行く必要ない、検体を検査に送る必要がない、検査が患者の近くで行われるので検査結果を即座に医師が判断して、迅速な処置を施すことが可能である、治療の過程や予後のモニタリングまで行うことができるなどの各種利点がある。また、検体の運搬や設備にかかるコストが少なくて済む他に、検体量も少なくて済み、患者負担の軽減が図れるなどの利点もある。例えば、このPOCT対応装置として、糖尿病患者の血糖モニタ検査を始めとして色々な検査機器が開発されつつある。
例えば、本出願人は、富士ドライケム3500(商品名)等の卓上型の生化学分析装置を開発し提供している。この富士ドライケム3500は、ドライタイプの化学分析スライド(以下、スライドという)を用いた生化学分析装置であり、27種類の生化学・免疫検査項目と3種類の電解質検査項目を備えており、多項目の検査が可能である反面、装置の大型化を避けることが難しく、どこでも利用できるというという装置サイズとは言い難かった。そこで、上記のような医療環境の変化に応じて、従来からの高機能大量処理対応の生化学分析装置の他に、少量処理である医療現場において患者の近くで迅速に検査が可能なハンディタイプの生化学分析装置の開発が望まれていた。
上記のようなドライタイプのスライドを用いた生化学分析装置の基本的な構造は、例えば特許文献1,2によって知られている。スライドを用いた分析では、液体試料をスライドに点着供給した後に、インキュベータ(恒温機)内で所定時間恒温保持して呈色反応(色素生成反応)させてから分光光度計による測定を行っている。この測定は、化学成分等の被測定成分とスライドに含まれる試薬とから予め選定された特定波長を含む照明光をスライドに対して照射し、特定波長に対する反射率を測定する。そして、反射率を「反射濃度=−log10(反射率)」の関係に基づいて反射濃度に変換してから、その反射濃度を予め求めておいた反射濃度と被測定成分との対応を表す検量線に適用して被測定成分の濃度を求めている。
特許文献2に記載された分光光度計では、広い波長域の照明光を照射する光源を用いるとともに、この光源とスライドとの間に特定波長域を選択的に透過させるいわゆるバンドパスフィルタを配置した構成になっている。そして、バンドパスフィルタを透過した特定波長の照明光をスライドに照射し、その散乱反射光をフォトダイオード等の受光素子で受光することにより、特定波長に対する反射濃度を得ている。
また、マルチチャンネル分光方式の分光光度計が知られている(例えば特許文献3)。このマルチチャンネル分光方式の分光光度計では、回折格子,プリズム等の分光器を用いて試料を透過した光を分光・反射し、その分光・反射された光を受光素子をライン状に並べた受光素子アレイで受光することにより、所望とする特定波長の光強度に応じた光電信号を出力する。この方式では、異なる特定波長についての光学濃度,透過率あるいは反射率を同時に測定できるといった利点がある。
特公平5−72976号公報 特開昭64−18047号公報 特開2003−139611号公報
ところで、上記のようなハンディタイプの生化学分析装置の開発においては、例えばスライドの装填部、インキュベータ,測光部などをそれぞれ簡素化し、コンパクト且つ軽量化する必要がある。例えば、測光部としての分光光度計を簡素化するためには、従来用いられていたバンドパスフィルタやこれらフィルタの切り替え機構を廃止して、マルチチャンネル分光方式を採用することが考えられる。しかしながら、バンドパスフィルタを用いた測定方式(以下、バンドパスフィルタ測定方式という)をマルチチャンネル分光方式に切り替えるだけでは、以下のような問題があり、ハンディタイプの生化学分析装置を安価に提供することができないという問題がある。
すなわち、同一の特定波長に対する光学濃度(反射濃度、透過濃度)を測定する場合に、特許文献2のようなバンドパスフィルタ測定方式の測定結果と、マルチチャンネル分光方式の測定結果とは等価ではない。これは、後者では、測定すべき特定波長を中心とした極狭い波長域の波長成分を1個の受光素子が受光した結果であるのに対し、前者では、バンドパスフィルタが特定波長だけを透過するのではなく特定波長を中心に適当な波長幅の光を透過するとともに、特定波長の前後での透過率が漸減するという特性を持っており、そのような波長幅を持った光をフォトダイオード等で受光した測定した結果となっているからである。このように両者の測定結果が等価ではないので、バンドパスフィルタ測定方式に対して作成されている検量線(前記スライドの光学濃度と被測定成分との関係を関数表現したもの)をマルチチャンネル分光方式での測定結果に利用することはできず、測定方式を変更する際には新たな検量線を作成しなければならないという問題があった。
本発明は上記問題を解消するためになされたもので、バンドパスフィルタを用いた測定方式と等価な測定結果を得ることができるマルチチャンネル分光方式の分光光度計と、これを用いた生化学分析装置、及び測光方法を提供することを目的とする。
請求項1記載の分光光度計では、照明光を試料に照射する光源と、試料から射出される検出光を分光する分光器と、分光器で分光された検出光の分散方向に並べられ、受光した光の強度に応じた光電信号を出力する複数の受光素子からなり、波長毎に検出光を受光する受光素子アレイと、前記各受光素子から出力される波長毎の光電信号に対して光学的なバンドパスフィルタの透過率に対応した波長毎の重みを付けてから加算することにより、特定波長に対する測定値を算出する演算手段とを備えたものである。
請求項2記載の分光光度計では、演算手段を、光電信号をデジタル変換した各光電データにデジタル演算を行うことにより、重みを付けと加算とを行うデジタル演算処理器としたものである。また、請求項3記載の分光光度計では、演算手段を、光学的なバンドパスフィルタの透過率に対応した波長毎の増幅率で各光電信号を増幅する増幅器と、増幅率の出力を加算する加算器とから構成したものであり、請求項4記載の分光光度計では、演算手段を、受光素子アレイと分光器との間の検出光の光路中に配され、受光素子アレイの受光素子が並んだ方向に透過率が変化する透過率分布フィルタと、前記各受光素子から出力される各光電信号を加算する加算器とから構成したものである。また請求項5記載の分光光度計では、受光素子をフォトダイオードとしたものである。
請求項6記載の生化学分析装置では、上記の分光光度計を備え、分光光度計から得られた特定波長に対する測定値に基づいて前記試料の定量分析を行うものである。また、請求項7記載の測定方法では、試料からの検出光を分光器で分光し、その分光した検出光を波長毎に受光素子で受光し、波長毎の光電信号に光学的なバンドパスフィルタの透過率と等価的な重みを付けてから加算することによって特定波長に対する測定値を算出するものである。また、請求項8記載の測定方法では、算出された特定波長に対する測定値と、光学的なバンドパスフィルタに対応した検量線とに基づいて、試料中に含まれる被測定成分の濃度を得るものである。
本発明によれば、試料からの検出光を分光器で分光し、その分光した検出光を受光素子を分散方向に並べた受光素子アレイで受光して各受光素子から出力される光電信号を光学的なバンドパスフィルタの透過率と等価的な重みを付けてから加算することによって特定波長に対する測定値を算出するようにしたから、光学的なバンドパスフィルタを用いた測定方式と等価な測定結果を得ることができるとともに、異なる種々の特定波長についても短時間に測定結果を得ることができる。したがって、従来からの検量線を用いて試料中に含まれる被測定成分の濃度を測定することができる他に、バンドパスフィルタやその切り替え機構が不要になり、小型,軽量化されたハンディタイプの生化学分析装置を提供することができる。
第1実施形態のポータブルタイプの生化学分析装置の外観を図1に示す。生化学分析装置2は、化学分析スライド(以下、スライドと称する)3に点着された試料中の特定化学成分や有形成分(以下、被測定成分と称する)の定量分析、すなわち被測定成分の濃度を測定する。生化学分析装置2は、装置本体4と端末ユニット5とからなる。
装置本体4には、スライド3を保持して搬送する搬送トレイ(以下、トレイと称する)6が設けてある。このトレイ6は、図1(B)に示されるセット位置を中心に、このセット位置から図1(A)に示されるように装置内部に押し込んだ測定位置と、セット位置から外側に引き出した排出位置との間で移動自在になっている。測定を行う場合には、トレイ6をセット位置にして、そのトレイ6に設けられたスライド開口6a内に測定すべきスライド3をセットした後に測定位置に移動する。測定完了後には、トレイ6を排出位置に引き出すことにより、スライド開口6a内にセットされている測定済みのスライド3が排出口7に落下し排出される。
装置本体4の内部には、インキュベータ8及び分光光度計9が設けられている。測定時には、インキュベータ8によってスライド3を予め設定された時間だけ恒温保持してから、分光光度計9によって測定すべき被測定成分に応じた特定波長に対する反射率を測定する。測定された反射率は、測定データとして出力される。この測定データは、後述するようにバンドパスフィルタ測定方式による反射率と等価な値となっている。
端末ユニット5は、装置本体4に接続ケーブルを介して接続される。端末ユニット5としては、例えば市販の携帯情報端末(PDA)が用いられている。この端末ユニット5には、メモリカード等を介して装置本体4との連携するための連携プログラム,分光光度計9からの測定データを被測定成分の濃度に変換する濃度変換プログラム等の各種アプリケーションプログラムをインストールしてあり、各プログラムは、それに内蔵したマイクロコンピュータ10(図3参照)によって実行される。端末ユニット5は、操作者に操作を促す表示やスライド3に点着した試料の分析結果すなわち、被測定成分の濃度を表示する表示部11と、被測定成分を指定する等の各種操作を行うことができる操作部12が設けられている。
図2に示すように、スライド3は、多層フィルム3aと、この多層フィルム3aを保持する保持枠3bとから構成される。多層フィルム3aは、透明支持体,反応層,反射層,展開層を順番に積層したものである。保持枠3bには、円形の開口が両面に設けてあり、一方の開口内に透明支持体が、他方の開口内に展開層がそれぞれ露呈されている。試料は展開層に点着され、測定は透明支持体を介して反応層に対して行われる。点着された試料は、展開層で均一に展開されて反射層を通過した後、反応層に達する。反応層は、ドライ状態の試薬を含んでおり、その試薬と試料とが反応して発色する。試料は、全血、血清、血漿、尿等である。
分光光度計9と端末ユニット5の構成を図3に示す。制御部13は、分光光度計9の各部を制御して、端末ユニット5で指定される被測定成分に対応した特定波長についての反射率を測定する。また、制御部13は、トレイ6の位置に応じてインキュベータ8を制御し、スライド3を測定前に一定温度で一定時間保持する。ROM13aには、反射率を測定しようとする各特定波長の重みデータが予め書き込まれている。
制御部13は、端末ユニット10で測定すべき被測定成分が指定されると、その被測定成分に対応した特定波長についての各重みデータ演算処理器14に設定する。演算処理器14は、プログラムにしたがってデジタル演算を行うものであり、後述するようにして得られる光電データと、制御部13によって設定された重みデータとを用いて、所定の演算を行うことにより、従来のバンドパスフィルタ測定方式と等価となる測定データを算出して、端末ユニット10に出力する。
光源部16は、白色の照明光を出力する光源17,集光レンズ18,鏡胴19,防熱フィルタ20とからなる。スライド3は、透明支持体を光源部16に向けた姿勢でトレイ6に保持される。光源部16からの照明光は、集光レンズ18によって適当な径の光束に絞られ、多層フイルム3aの表面に入射角度0度で照射される。防熱フィルタ20は、光源部16から出る熱線をカットして、スライド3の温度上昇を防止する。また、光源部16とスライド3との間には、防塵のための保護ガラス21を設けてある。
多層フイルム3aの表面の法線に対して45度傾いた方向に、スリット板25,26と、凹面回折格子27とを順番に配してある。スリット板25,26には、それぞれ適当な幅のスリット25a,26aを形成してある。分光器としての凹面回折格子27には、多層フイルム3aに入射して散乱された光のうちスリット25a,26aを通った散乱光(以下、検出光という)が入射する。凹面回折格子27は、凹面基板上に等間隔に多数の平行な溝を形成したものであり、入射した検出光を分光・反射する。
なお、スリット25a,26aの代わりに絞り開口を用いてもよい。また、この例では、多層フイルム3aの表面に入射角度0度で照明光を入射し、45度の角度を持つ散乱光を検出しているがこれらの角度を測定物等に応じて適宜に変更してもよい。また、分光器としては、各種のものを用いることができ、干渉型分光器の他、分散型分光器を用いてもよい。
凹面回折格子27で分光された検出光は、受光素子アレイとしてのフォトダイオードアレイ28に入射する。フォトダイオードアレイ28は、多数(n個)のフォトダイオード28aを検出光の分散方向に沿ってライン状に並べてあり、検出光のスペクトルの焦点位置に配されている。このフォトダイオードアレイ28は、測定すべき特定波長の各位置にだけフォトダイオード28aを配したものではなく、一定のピッチで密にフォトダイオード28aを並べたものとなっている。これにより、凹面回折格子27で分光された検出光は、波長毎に対応するフォトダイオード28aで受光されてサンプリングされる。各フォトダイオード28aは、受光強度に応じた光電信号を出力する。
なお、受光素子アレイとしては、例えばCCDラインセンサ等を用いてもよい。また、1個の受光素子を検出光の分散方向にスライド移動させ、受光素子からの光電信号をスライド移動に同期してサンプリングしてもよい。
A/D変換器29は、各フォトダイオード28aから出力される光電信号を、その大きさに応じた光電データに変換する。したがって、光電データは、対応する波長における多層フイルム3aの表面の色に応じた反射率の大きさとなっている。
例えば、図4(a)に示すように、波長λの関数として表される反射率S(λ)は、検出光が凹面回折格子27によって分光されて、n個のフォトダイオード28aで受光されることにより、図4(b)に示すように、波長λ1,λ2・・・・λnに対応するn個の光電データに変換される。なお、厳密には波長λi(i=1,2・・・n)はフォトダイオード28aの幅に応じた波長幅を有する。
重みデータは、従来のバンドパスフィルタ測定方式に用いられている光学的なバンドパスフィルタの透過率に基づいて決められるものであり、1つの特定波長について、フォトダイオードアレイ28の各フォトダイオード28aのそれぞれに対応して、すなわち各波長λi(i=1,2・・・n)に対応してn個の重みデータがある。
バンドパスフィルタ測定方式では、例えば図5(a)に一例を示すように、波長λの関数として表される透過率F(λ)を有するバンドパスフィルタが用いられる。図5(a)示される透過率を有するバンドパスフィルタは、中心波長λjを特定波長として測定するときのものであり、波長λjの前後においても光の透過性があって、透過率は波長λjにピークを持つ山形になっている。
重みデータは、検出光をサンプリングする波長域について、検出光のサンプリング周期(波長)間隔で、透過率F(λ)をサンプリングするように決定し、重みデータをバンドパスフィルタの波長λiに対する透過率と等価な値とする。例えば図5(a)に示す特性のバンドパスフィルタに対応して、図5(b)に示すような重みデータが決定される。図5(b)では、波長λj-2〜λj+2に対応する重みデータが「0」よりも大きく、λjの重みデータが最も大きくなっている。また、それ以外の波長については、バンドパスフィルタの透過率が「0%」であるため、それに応じて重みデータも「0」となっている。なお、説明を簡単にするために、重みデータが対応付けられる波長とバンドパスフィルタの透過率が最大となる波長を一致するものとして説明しているが、重みデータが対応付けられる波長には前述のように幅がある等の理由により、必ずしもそのようにならないことがある。
波長λi(i=1,2・・・n)に対応する光電データをDi,重みデータWiとしたときに、演算処理器14は、次の(1)式に示す演算処理を行い、測定データIを算出する。従来のバンドパスフィルタ測定方式によって測定した場合に、前述のように反射率をS(λ)、バンドパスフィルタの透過率をF(λ)とすると、特定波長の測定値I0は、次の(2)式で示すことができる。この(2)式で求められる測定値I0は、上記(1)式において、nの値を無限大としたときの値である。すなわち(1)式によって求められる測定データIは、バンドパスフィルタ測定方式の測定値IOと等価な値となる。
Figure 2006098228
演算処理器14は、算出した測定データを端末ユニット5のマイクロコンピュータ10に送る。図3に示されるように、マイクロコンピュータ10には、メモリ10aが接続してあり、このメモリ10aには前述の各種アプリケーションプログラムが書き込まれている。マイクロコンピュータ10は、濃度変換プログラムを実行することによって、測定データを被測定成分の濃度に変換する変換処理を行う。変換処理は、「反射濃度=−log10(反射率)」の演算式に基づいて、測定データに示される反射率を反射濃度に変換するマイナスログ演算処理と、このマイナスログ演算処理で得られる反射濃度を検量線に適用して被測定成分の濃度に変換する検量線処理とからなる。
上記の検量線処理は、被測定成分の濃度と反射濃度との関係を表した濃度変換式にマイナスログ演算処理で得られる反射濃度を適用することで行われる。濃度変換式は、被測定成分毎に用意されており、メモリ10aに書き込まれている。この検量線処理に用いられる濃度変換式は、従来から生化学分析の際に用いられているバンドパスフィルタ測定方式の検量線に基づいて作成されている。なお、この例では端末ユニット5によって、マイナスログ演算処理及び検量線処理を行っているが、これらを分光光度計9あるいは装置本体4で行ってもよい。
次に、上記実施形態の作用について図6を参照しながら説明する。スライド3の多層フイルム3aに試料を滴下した後、そのスライド3をインキュベータ8で恒温保持したものがセットされているものとする。測定を行う場合には、操作部12の操作で被測定成分を指定してから測定開始の指示をする。この指示により、指定された被測定成分に対応する特定波長についてのn個の重みデータがROM13aから読み出され演算処理器14に送られて設定される。
重みデータの設定後、制御部13からの指示により光源17が点灯され、この光源17からの照明光が集光レンズ19を介してフイルム21aの表面に照射される。このように照射された照明光は多層フイルム3aの反応層の表面で散乱し、そのうちのスリット25a,26aを通る光が検出光として凹面回折格子27に達する。このときに、多層フイルム3aの表面の色に応じて散乱される光の強度が波長毎に変わる。そして、検出光が凹面回折格子27によって分光・反射されてフォトダイオードアレイ28に入射し、その入射した光の強度に応じた光電信号が各フォトダイオード28aから出力される。
各フォトダイオード28aから出力される光電信号は、A/D変換器29によってそれぞれ光電データに変換されて演算処理器14に送られる。このようにしてn個の光電データが入力されると、演算処理器14は、先に制御部13によって設定されたn個の重みデータと、入力されたn個の光電データを用いて、上記(1)式に示される演算を実行し、測定データを算出する。そして、この測定データを端末ユニット5に送る。
測定データが入力されると、マイクロコンピュータ10によってマイナスログ演算処理が行われ、その入力された測定データに示される反射率が反射濃度に変換される。続いて、操作部12の操作で指定された被測定成分に対応する検量線処理のための濃度変換式がメモリ10aから読み出されて、これに反射濃度が適用されることで被測定成分の濃度が算出される。このようにして得られる被測定成分の濃度が表示部11に表示される。
上記のように測定データを光電データだけではなく重みデータを用いて算出しているため、測定データに示される反射率はバンドパスフィルタを用いて選択的な波長域の光を受光した場合に得られる測定値(反射率)と等価な値となっている。したがって、この測定データから得られる反射濃度を従来のバンドパスフィルタ測定方式用の検量線に適用して、特定波長に対応する特定の被測定成分の物質濃度を知ることができる。また、重みデータを変えて演算を行うだけで、異なる特定波長についての反射率の測定データを得ることができるから、バンドパスフィルタを切り替えて再測定する場合よりも迅速に種々の特定波長についての測定データを得ることができる。
次に第2の実施形態について説明する。図7に示す分光光度計30は、特定波長における透過率を測定する。なお、以下に説明する他は、上記実施形態と同じであり、実質的に同じ構成部材には同一の符号を付してその説明を省略する。
光源部31は、光源17と、2枚のレンズ32,33と、これらを保持した鏡胴34とからなり、光源17からの光を適当な径の平行光束の照明光として射出する。光源部31の前面に透明な容器35に収容された試料36が配される。試料36の光源部側とその反対側には、スリット37a.38aが形成されたスリット板37,38がそれぞれ配される。
光源部31から射出される照明光は、スリット37aを介して透明な容器35に収容された試料36を透過し、さらにスリット38aを通って凹面回折格子27に入射する。そして、この凹面回折格子27によって分光・反射されてフォトダイオードアレイ28に入射し、上記実施形態と同様な処理により、特定波長に対する試料36の透過率を示す測定データを求める。測定データは、「透過濃度=−log10(透過率)」の関係に基づいて透過濃度に変換される。そして、透過濃度と被測定成分の濃度との関係を示す検量線に得られる透過濃度を適用することで被測定成分の濃度が得られる。
次に第3実施形態について説明する。なお、第3実施形態及び後述の第4実施形態では、以下に説明する他は第1あるいは第2実施形態と同様であり、実質的に同じ構成部材には同一の符号を付してその説明を省略する。また、図8,図10では光源部,端末ユニット等を省略して描いてある。
図8に示すように、フォトダイオードアレイ28にはセレクタ41を介して増幅回路42を接続してある。セレクタ41は、制御部11の制御の下で各フォトダイオード28aからの光電信号を例えば低波長側から順番に切り替えて増幅回路42に入力する。増幅回路42は、光電信号に重みを付けるためのものであり、制御部11によって設定される増幅率で入力される光電信号を増幅する。
ROM13aには、特定波長のそれぞれについて、フォトダイオードアレイ28を構成するフォトダイオード28a毎、すなわち波長毎に決められた増幅率が予め書き込まれている。制御部13は、測定すべき特定波長に対応した各増幅率をROM13aから読み出し、セレクタ41の切り替えに同期して増幅率を増幅回路42に順番に設定する。このようにして、各フォトダイオード28aから出力される波長毎の光電信号を、その波長に対応する増幅率で増幅する。増幅器からの出力は,A/D変換器29でデジタルデータに変換されてから加算器43によって加算されて、測定データとして出力される。
特定波長に対する各増幅率は、バンドパスフィルタの透過率の特性に基づいて作成してある。図9に波長と増幅率との関係の一例を示すように、バンドパスフィルタの透過率が高い波長に対して増幅率を高くし、透過率が低い波長に対して増幅率を低くするように決めてある。これにより、得られる測定データは、バンドパスフィルタを用いて選択的な波長域の光を受光した場合と等価なものとなる。
次に第4実施形態について説明する。図10に示すように、フォトダイオードアレイ28の前面には、光電信号に重みを付けるための透過率分布フィルタ51を配してある。透過率分布フィルタ51は、図11に示すように、検出光の分散方向、すなわちフォトダイオード28aが並ぶ方向に透過率が変わるようにしてある。したがって、検出光の波長に応じて透過率が変わるようにしてあり、その波長と透過率の関係がバンドパスフィルタとほぼ同じとなっている。各フォトダイオード28a光電信号は、A/D変換器29でデジタル変換された後に、加算器で加算されて測定データとして出力される。このようにしても、バンドパスフィルタを用いて選択的な波長域の光を受光した場合と等価な測定データが得られる。
本発明を実施した生化学分析装置を示す斜視図である。 化学分析スライドを示す斜視図である。 分光光度計の構成を示すブロック図である。 試料の反射率と光電データの関係を示すグラフである。 バンドパスフィルタと重みデータの関係を示すグラフである。 反射率を測定する際の手順を示すフローチャートである。 透過率を測定する分光光度計の例を示すものである。 増幅率を変化させることにより光電信号に重みを付ける例を示すものである。 増幅率と波長との関係の一例を示すグラフである。 フォトダイオードアレイの前面に透過率分布フィルタを配した例を示すものである。 フォトダイオードの位置と透過率分布フィルタの透過率の関係の一例を示すグラフである。
符号の説明
2 生化学分析装置
3 化学分析スライド
4 装置本体
5 端末ユニット
9,30 分光光度計
14 演算処理器
16,31 光源部
27 凹面回折格子
28 フォトダイオードアレイ
28a フォトダイオード
42 増幅器
43 加算器
51 透過率分布フィルタ

Claims (8)

  1. 照明光を試料に照射する光源と、試料から射出される検出光を分光する分光器と、分光器で分光された検出光の分散方向に並べられ、受光した光の強度に応じた光電信号を出力する複数の受光素子からなり、波長毎に検出光を受光する受光素子アレイと、前記各受光素子から出力される波長毎の光電信号に対して光学的なバンドパスフィルタの透過率に対応した波長毎の重みを付けてから加算することにより、特定波長に対する測定値を算出する演算手段とを備えたことを特徴とする分光光度計。
  2. 前記演算手段は、前記光電信号をデジタル変換した各光電データにデジタル演算を行うことにより、重みを付けと加算とを行うデジタル演算処理器であることを特徴とする請求項1記載の分光光度計。
  3. 前記演算手段は、光学的なバンドパスフィルタの透過率に対応した波長毎の増幅率で各光電信号を増幅する増幅器と、増幅率の出力を加算する加算器とからなることを特徴とする請求項1記載の分光光度計。
  4. 前記演算手段は、前記受光素子アレイと前記分光器との間の検出光の光路中に配され、前記受光素子アレイの受光素子が並んだ方向に透過率が変化する透過率分布フィルタと、前記各受光素子から出力される各光電信号を加算する加算器とからなることを特徴とする請求項1記載の分光光度計。
  5. 前記受光素子がフォトダイオードであることを特徴とする請求項1ないし4のいずれか1項に記載の分光光度計。
  6. 請求項1ないし5のいずれか1項に記載の分光光度計を備え、分光光度計から得られたた特定波長に対する測定値に基づいて前記試料の定量分析を行うことを特徴とする生化学分析装置。
  7. 試料からの検出光を分光器で分光し、その分光した検出光を波長毎に受光素子で受光し、
    波長毎の光電信号に光学的なバンドパスフィルタの透過率と等価的な重みを付けてから加算することによって特定波長に対する測定値を算出する測定方法。
  8. 前記算出された特定波長に対する測定値と、光学的なバンドパスフィルタに対応した検量線とに基づいて、試料中に含まれる被測定成分の濃度を得ることを特徴とする請求項7記載の測定方法。
JP2004285157A 2004-09-29 2004-09-29 分光光度計、生化学分析装置及び測定方法 Pending JP2006098228A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004285157A JP2006098228A (ja) 2004-09-29 2004-09-29 分光光度計、生化学分析装置及び測定方法
US11/231,906 US20060066850A1 (en) 2004-09-29 2005-09-22 Light measuring device, biochemical analyzer, biochemical analysis method, and spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004285157A JP2006098228A (ja) 2004-09-29 2004-09-29 分光光度計、生化学分析装置及び測定方法

Publications (1)

Publication Number Publication Date
JP2006098228A true JP2006098228A (ja) 2006-04-13

Family

ID=36238192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004285157A Pending JP2006098228A (ja) 2004-09-29 2004-09-29 分光光度計、生化学分析装置及び測定方法

Country Status (1)

Country Link
JP (1) JP2006098228A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270890A (ja) * 2008-05-02 2009-11-19 Olympus Corp 画像処理装置および画像処理プログラム
JP2011232268A (ja) * 2010-04-30 2011-11-17 Japan Aerospace Exploration Agency 校正機能を備えた反射率及び反射濃度の計測方法及びそれを実施するシステム
WO2012074087A1 (ja) * 2010-12-03 2012-06-07 株式会社 東芝 自動分析装置
JP2012177551A (ja) * 2011-02-25 2012-09-13 Yokogawa Electric Corp 分光測定装置、測定システムおよび分光測定方法
WO2021199963A1 (ja) * 2020-03-30 2021-10-07 キヤノン株式会社 シートの測色装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270890A (ja) * 2008-05-02 2009-11-19 Olympus Corp 画像処理装置および画像処理プログラム
JP2011232268A (ja) * 2010-04-30 2011-11-17 Japan Aerospace Exploration Agency 校正機能を備えた反射率及び反射濃度の計測方法及びそれを実施するシステム
WO2012074087A1 (ja) * 2010-12-03 2012-06-07 株式会社 東芝 自動分析装置
JP2012132907A (ja) * 2010-12-03 2012-07-12 Toshiba Corp 自動分析装置
JP2012177551A (ja) * 2011-02-25 2012-09-13 Yokogawa Electric Corp 分光測定装置、測定システムおよび分光測定方法
WO2021199963A1 (ja) * 2020-03-30 2021-10-07 キヤノン株式会社 シートの測色装置

Similar Documents

Publication Publication Date Title
EP1784624B1 (en) Calibration for spectroscopic analysis
EP1784625B1 (en) Autonomous calibration for optical analysis system
JP4791625B2 (ja) 分光光度・比濁検出ユニット
US9590122B2 (en) Fish eye lens analyzer
JP2000504115A (ja) 光吸収性化合物の非侵入測定のための装置および方法に使用するプログラム可能標準装置
US20060066850A1 (en) Light measuring device, biochemical analyzer, biochemical analysis method, and spectrophotometer
US11150131B2 (en) Mobile biosensing instrument capable of multiple detection modalities
US5731581A (en) Apparatus for automatic identification of gas samples
KR20110127122A (ko) 시료분석장치
US10564094B2 (en) Device and method for blood hemoglobin measurement without carboxyhemoglobin interference
JP2006098228A (ja) 分光光度計、生化学分析装置及び測定方法
JPH1189799A (ja) 特定成分の濃度測定装置および濃度測定方法
JP2000206037A (ja) 分光分析方法
JP2012211782A (ja) 生体物質分析装置および生体物質分析方法
JP2022519845A (ja) 試料の分析方法、分析装置およびコンピュータプログラム
JPH11248622A (ja) 尿検査装置
WO2021019553A1 (en) Smartphone based blood hemoglobin estimation system.
Yoon et al. Spectrophotometry
WO2023112358A1 (ja) 分光光度計
CN217443173U (zh) 样本分析仪
JPS63205546A (ja) 自動分析装置
JPH01295134A (ja) 自動化学分折装置
JP2008058155A (ja) 医用光度計
US20230296438A1 (en) Absorbance spectroscopy analyzer and method of use
JPH09145619A (ja) 散乱光等の分光測定方法及び装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20061226

Free format text: JAPANESE INTERMEDIATE CODE: A712