JP2006098221A - Preceding vehicle detector - Google Patents

Preceding vehicle detector Download PDF

Info

Publication number
JP2006098221A
JP2006098221A JP2004284905A JP2004284905A JP2006098221A JP 2006098221 A JP2006098221 A JP 2006098221A JP 2004284905 A JP2004284905 A JP 2004284905A JP 2004284905 A JP2004284905 A JP 2004284905A JP 2006098221 A JP2006098221 A JP 2006098221A
Authority
JP
Japan
Prior art keywords
vehicle
preceding vehicle
road surface
detection device
reflected wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004284905A
Other languages
Japanese (ja)
Other versions
JP4556597B2 (en
Inventor
Seiji Takeda
誠司 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004284905A priority Critical patent/JP4556597B2/en
Publication of JP2006098221A publication Critical patent/JP2006098221A/en
Application granted granted Critical
Publication of JP4556597B2 publication Critical patent/JP4556597B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a preceding vehicle detector precluding a road face from being erroneously recognized as a preceding vehicle. <P>SOLUTION: This preceding vehicle detector receives a reflected wave of an irradiation wave emitted from own vehicle to detect the presence of the preceding vehicle. The preceding vehicle detector is provided with: a travel condition detecting means for detecting a traveling condition with a road face irradiated with the irradiation wave; and a determination means for determining whether an object reflecting the irradiation wave is the preceding vehicle or the road face, on the basis of a waveform of the reflected wave, when the presence of traveling condition with the road face irradiated with the irradiation wave is detected by the travel condition detecting means. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自車両から発した照射波の反射波から、先行車両を検出する先行車両検出装置に関する。   The present invention relates to a preceding vehicle detection device that detects a preceding vehicle from a reflected wave of an irradiation wave emitted from the host vehicle.

この種の技術としては、マイクロ波やレーザ光を照射し、その反射波強度から自車両と先行車両との相対速度や車間距離を算出するレーダ装置が開示されている(例えば、特許文献1参照)。
特許第3125496号公報
As this type of technology, a radar device is disclosed that irradiates microwaves or laser light, and calculates the relative speed and inter-vehicle distance between the host vehicle and the preceding vehicle from the intensity of the reflected wave (see, for example, Patent Document 1). ).
Japanese Patent No. 3125496

しかしながら、特許文献1に記載された従来技術にあっては、例えば、先行車両追従中に自車両が急減速した際に、自車両前方が減速Gにより下がる(ピッチングが生じる)結果レーダ装置から照射される照射波も下向きに照射されて先行車両後方の路面からの反射波により自車両前方に存在する物体と認識さてしまう。さらに自車両の車体が水平状態に戻る前に追従していた先行車両が加速等を行って検出範囲外になっても、路面からの反射波により路面を自車両と同じ速度で走行する先行車両と誤認識してしまうことがあるという問題があった。   However, in the prior art described in Patent Document 1, for example, when the host vehicle suddenly decelerates while following the preceding vehicle, the front of the host vehicle is lowered by the deceleration G (pitching occurs). The irradiated wave is also irradiated downward and is recognized as an object existing in front of the host vehicle by the reflected wave from the road surface behind the preceding vehicle. Furthermore, even if the preceding vehicle that was following before the body of the host vehicle returned to the horizontal state is accelerated and goes out of the detection range, the preceding vehicle that travels on the road surface at the same speed as the host vehicle due to the reflected wave from the road surface There was a problem that it might be misrecognized.

本発明は、上記問題に着目してなされたもので、その目的とするところは、路面を先行車両と誤認識することのない先行車両検出装置を提供することである。   The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a preceding vehicle detection device that does not erroneously recognize a road surface as a preceding vehicle.

上記目的を達成するため、本発明では、自車両から照射した照射波の反射波を受信して先行車両の有無を検出する先行車両検出装置において、照射波が路面に照射される走行状態を検出する走行状態検出手段と、走行状態検出手段により照射波が路面に照射される走行状態であることが検出されたとき、反射波の波形に基づいて照射波を反射した物体が先行車両か路面かを判定する判定手段と、を備えた。   In order to achieve the above object, in the present invention, in a preceding vehicle detection device that detects the presence or absence of a preceding vehicle by receiving a reflected wave of an irradiation wave irradiated from the host vehicle, a traveling state in which the irradiation wave is irradiated on the road surface is detected. When the traveling state detecting means and the traveling state detecting means detect the traveling state where the irradiation wave is irradiated on the road surface, whether the object that reflected the irradiation wave based on the reflected wave waveform is the preceding vehicle or the road surface And determining means for determining.

本発明では、先行車両検出装置にあっては、先行車両追従中に路面からの反射波を、先行車両からの反射波と誤認識することを低減できる。   In the present invention, the preceding vehicle detection device can reduce erroneously recognizing a reflected wave from the road surface as a reflected wave from the preceding vehicle during following the preceding vehicle.

以下、本発明の先行車両検出装置を実施するための最良の形態を、図面に基づき説明する。   Hereinafter, the best mode for carrying out the preceding vehicle detection device of the present invention will be described with reference to the drawings.

まず、構成を説明する。   First, the configuration will be described.

図1は本実施例1の制御装置12と先行車両検出装置13と画像処理部17とを備えた走行制御装置を搭載した車両の全体システム図である。   FIG. 1 is an overall system diagram of a vehicle equipped with a travel control device including a control device 12, a preceding vehicle detection device 13, and an image processing unit 17 according to the first embodiment.

走行制御装置搭載車は、エンジン1と、エンジン出力を走行状態に応じて変速する自動変速機2と、燃料噴射制御装置5による燃料噴射制御、及び変速機制御装置6による変速制御を利用した駆動力制御(場合によりエンジンブレーキ制御)と、制動流体圧制御装置8を利用した制動力制御と、後述の車間距離の制御を行う制御装置12と、車間距離制御を行うために自車両前方の障害物の検出や先行車両との距離や相対速度を検出する先行車両検出装置13と、前方道路に対する自車両の傾きを検出する画像処理部17とを備えている。   The vehicle equipped with the travel control device is driven using the engine 1, the automatic transmission 2 that changes the engine output according to the travel state, the fuel injection control by the fuel injection control device 5, and the shift control by the transmission control device 6. Force control (according to engine brake control in some cases), braking force control using the braking fluid pressure control device 8, a control device 12 for controlling the following inter-vehicle distance, and an obstacle ahead of the host vehicle for performing the inter-vehicle distance control It includes a preceding vehicle detection device 13 that detects an object, a distance from the preceding vehicle, and a relative speed, and an image processing unit 17 that detects the inclination of the host vehicle with respect to the road ahead.

エンジン1はガソリンエンジンやディーゼルエンジン等からなり、エンジン1からの出力は自動変速機2に入力される。なお、エンジン1は内燃機関にかかわらず、電気モータなど駆動力を発生するものであれば良く、特に限定しない。   The engine 1 is composed of a gasoline engine, a diesel engine, or the like, and the output from the engine 1 is input to the automatic transmission 2. The engine 1 is not particularly limited as long as it generates a driving force such as an electric motor regardless of the internal combustion engine.

自動変速機2は、制御装置12からの変速信号に応じて変速機制御装置6内の電磁ソレノイド弁を切り替えてクラッチ、ブレーキを締結、解放することにより、入出力間で変速を行い、自動変速機2からの出力された駆動力を減速機3を介して、駆動輪4a、4bへ伝達する。   The automatic transmission 2 shifts between the input and output by switching the electromagnetic solenoid valve in the transmission control device 6 in accordance with the shift signal from the control device 12 to engage and release the clutch and brake, thereby automatically changing the speed. The driving force output from the machine 2 is transmitted to the drive wheels 4a and 4b via the speed reducer 3.

制動流体圧制御装置8はブレーキペダル10により操作されるマスタシリンダ11からの制動流体圧を、制御装置12から制御信号により調圧して、各車輪のホイールシリンダ7a〜7dへ供給する。   The brake fluid pressure control device 8 adjusts the brake fluid pressure from the master cylinder 11 operated by the brake pedal 10 by the control signal from the control device 12, and supplies the pressure to the wheel cylinders 7a to 7d of the respective wheels.

制御装置12は、制動流体圧センサ9、先行車両検出装置13、車輪速センサ14、アクセル開度センサ15、手動スイッチ16等の各種検出装置から検出信号が入力され、これらの検出信号を基に演算を行って、燃料噴射制御装置5、変速機制御装置6、制動流体圧制御装置8等に制御信号を出力する。   The control device 12 receives detection signals from various detection devices such as the brake fluid pressure sensor 9, the preceding vehicle detection device 13, the wheel speed sensor 14, the accelerator opening sensor 15, and the manual switch 16, and based on these detection signals. The calculation is performed and a control signal is output to the fuel injection control device 5, the transmission control device 6, the brake fluid pressure control device 8, and the like.

図2に示すように、制御装置12に組み込まれた車間距離制御装置100は、自車両の車速に応じ自車両と先行車両との車間距離から目標車速を算出決定する車間制御部101と、設定車速と車間制御部101で決定された目標走行速度との一方を選択して速度指令値とする車速指令値選択部102と、速度指令値によりエンジン等の駆動力やブレーキ等の制動力を制御する車速制御部103と、を備えている。   As shown in FIG. 2, the inter-vehicle distance control device 100 incorporated in the control device 12 includes an inter-vehicle control unit 101 that calculates and determines the target vehicle speed from the inter-vehicle distance between the host vehicle and the preceding vehicle according to the host vehicle speed. A vehicle speed command value selection unit 102 that selects one of the vehicle speed and the target traveling speed determined by the inter-vehicle distance control unit 101 as a speed command value, and controls the driving force of the engine or the like and the braking force of the brake or the like by the speed command value. A vehicle speed control unit 103.

手動スイッチ16は、たとえばボタンスイッチで構成され、ドライバがボタンスイッチを操作することにより希望の車速(追従走行における上限車速)や車間時間を設定できる。設定車速は、例えば50km/hから100km/hの間でボタンスイッチの操作により5km/hごとに入力設定できる。また設定車間距離は、例えば「長」、「中」、「短」といった3段階の車間距離をボタンスイッチを押すごとに切り替え設定ができる。手動スイッチ16で設定された設定車速や設定車間距離は、車間制御部101と車速指令値選択部102と車速制御部103とに入力される。   The manual switch 16 is constituted by, for example, a button switch, and a driver can set a desired vehicle speed (upper limit vehicle speed in follow-up traveling) and an inter-vehicle time by operating the button switch. The set vehicle speed can be input and set every 5 km / h by operating a button switch between 50 km / h and 100 km / h, for example. Further, the set inter-vehicle distance can be set by switching a three-step inter-vehicle distance such as “long”, “medium”, and “short” every time the button switch is pressed. The set vehicle speed and the set inter-vehicle distance set by the manual switch 16 are input to the inter-vehicle control unit 101, the vehicle speed command value selection unit 102, and the vehicle speed control unit 103.

先行車両検出装置13は、図3に示すように車両20の車体前部に設けられ、反射波から自車両の前方に先行車両があるか否かの判定や、自車両と先行車両との車間距離及び相対速度を演算処理により求め、ここで生成した車両有無の判定情報、車間距離情報や相対速度情報を車間制御部101と車速制御部103とに出力する。この先行車両検出装置13は、図4に示すようにCPU201からの指令により照射波としてレーザを発光するレーザ発光素子203と、レーザ発光素子203を制御するレーザ発光回路202と、レーザを先行車両検出装置13の外へ照射するための投光窓205と、照射波を走査するための反射ミラー204と、反射ミラー204を上下左右に回転させるステッピングモータ207と、ステッピングモータ207を駆動するためのモータ駆動回路206と、反射波を受光するための受光窓208と、反射波を検出するレーザ受光素子209と、レーザ受光素子209からの信号を増幅する受光信号増幅回路210とを有する。   As shown in FIG. 3, the preceding vehicle detection device 13 is provided at the front of the vehicle 20, determines whether there is a preceding vehicle ahead of the host vehicle from the reflected wave, and determines the distance between the host vehicle and the preceding vehicle. The distance and relative speed are obtained by calculation processing, and the vehicle presence / absence determination information, the inter-vehicle distance information, and the relative speed information generated here are output to the inter-vehicle control unit 101 and the vehicle speed control unit 103. As shown in FIG. 4, the preceding vehicle detection device 13 includes a laser light emitting element 203 that emits a laser as an irradiation wave in response to a command from the CPU 201, a laser light emitting circuit 202 that controls the laser light emitting element 203, and a laser for detecting the preceding vehicle. A projection window 205 for irradiating the outside of the apparatus 13, a reflection mirror 204 for scanning the irradiation wave, a stepping motor 207 for rotating the reflection mirror 204 up and down, left and right, and a motor for driving the stepping motor 207 It has a drive circuit 206, a light receiving window 208 for receiving the reflected wave, a laser light receiving element 209 for detecting the reflected wave, and a received light signal amplifying circuit 210 for amplifying a signal from the laser light receiving element 209.

画像処理部17は、図3に示すように車両20の車内にフロントガラス上部中央から車両前方の路面画像を取得できるように取り付けられており、図5に示すように、路面画像を取得するためのCCDやCMOSイメージセンサ等の撮像手段(以下、カメラと記す)301と、カメラ301で取得した画像を格納する画像メモリ302と、画像処理によりカメラ301が取得した画像から、自車両のピッチング量を測定するプロセッサ303とを備え、測定したピッチング量を先行車両検出装置13に入力する。   As shown in FIG. 3, the image processing unit 17 is attached to the inside of the vehicle 20 so that a road surface image in front of the vehicle can be acquired from the center of the upper portion of the windshield. In order to acquire a road surface image as shown in FIG. Image pickup means (hereinafter referred to as a camera) 301 such as a CCD or CMOS image sensor, an image memory 302 for storing an image acquired by the camera 301, and a pitching amount of the host vehicle from an image acquired by the camera 301 by image processing And the processor 303 inputs the measured pitching amount to the preceding vehicle detection device 13.

車輪速センサ14は、車輪速度Vwjを検出する。車輪速度Vwjにより自車両の車速を算出し、この車速情報を車間制御部101及び車速制御部103に出力する。   The wheel speed sensor 14 detects the wheel speed Vwj. The vehicle speed of the host vehicle is calculated from the wheel speed Vwj, and this vehicle speed information is output to the inter-vehicle distance controller 101 and the vehicle speed controller 103.

車間制御部101は、車間距離情報、相対速度情報、設定車速情報、設定車間時間情報等が入力されて、これらの情報から車速に応じた車間距離を設定し、併せて目標車速を算出する。   The inter-vehicle distance control unit 101 receives inter-vehicle distance information, relative speed information, set vehicle speed information, set inter-vehicle time information, and the like, sets an inter-vehicle distance according to the vehicle speed from these information, and calculates a target vehicle speed.

車速指令値選択部102は、設定車速と目標車速とを比べて小さい方の車速を車速指令値として車速制御部103へ出力する。   The vehicle speed command value selection unit 102 compares the set vehicle speed with the target vehicle speed, and outputs the smaller vehicle speed to the vehicle speed control unit 103 as a vehicle speed command value.

車速制御部103は、設定車速情報、設定車間時間情報、先行車両車間距離情報、相対速度情報、及び車速情報等が入力されて、車間距離制御に応じて決定したエンジントルク指令値Tengを燃料噴射制御装置5に、また車間距離制御に応じて決定したブレーキトルク指令値Tbkを制動流体圧制御装置8にそれぞれ出力する。   The vehicle speed control unit 103 receives the set vehicle speed information, the set inter-vehicle time information, the preceding vehicle inter-vehicle distance information, the relative speed information, the vehicle speed information, and the like, and fuel-injects the engine torque command value Teng determined according to the inter-vehicle distance control. The brake torque command value Tbk determined in accordance with the inter-vehicle distance control is output to the control device 5 and to the brake fluid pressure control device 8, respectively.

燃料噴射制御装置5は、車速制御部103から入力されたエンジントルク指令値Tengに応じ、燃料噴射量FIを制御する。   The fuel injection control device 5 controls the fuel injection amount FI according to the engine torque command value Teng input from the vehicle speed control unit 103.

制動流体圧制御装置8は、車速制御部103から入力されたブレーキトルク指令値Tbkに応じ、例えば、ABSアクチュエータを用い、車輪に制動力を付与するブレーキ液圧Pbkを作り出す。   The brake fluid pressure control device 8 generates a brake fluid pressure Pbk that applies a braking force to the wheels using, for example, an ABS actuator in accordance with the brake torque command value Tbk input from the vehicle speed control unit 103.

エンジン1及びホイールシリンダ7a〜7dは、燃料噴射制御装置5による燃料噴射量FIと、制動流体圧制御装置8によるブレーキ液圧Pbkとに応じ、車両を定速走行させたり加速したり減速したりして、車両が設定車間時間や設定車速となるように制御される。   The engine 1 and the wheel cylinders 7a to 7d make the vehicle run at a constant speed, accelerate or decelerate according to the fuel injection amount FI by the fuel injection control device 5 and the brake fluid pressure Pbk by the brake fluid pressure control device 8. Thus, the vehicle is controlled to have the set inter-vehicle time and the set vehicle speed.

次に、作用を説明する。   Next, the operation will be described.

[先行車両検出]
先行車両検出装置13は、レーザ発光回路202を介してCPU201により制御されるレーザ発光素子203により反射ミラー204方向にレーザを発光する。レーザ発光素子203の前方には図示しないレンズが設けられ、レーザは所定の角度に広げられる。反射ミラー204は、モータ駆動回路206を介してCPU201により制御されるステッピングモータ207により上下左右に駆動しレーザ発光素子203から発光されたレーザを、上下左右の所定角度範囲で走査する。レーザは投光窓205に設けられたレンズを介して照射される。上記の所定の角度は照射波を走査する範囲の広さ、分解能、ステッピングモータ207の性能、先行車両検出装置13の要求サイズの設計要因等により決定される。投光窓205から照射されるレーザは図6(a)に示すように所定の面積をもつレーザとなるが、レーザ発光素子203の構造上レーザの強度分布は図6(b)に示すように、中心部の強度が最も強く、中心部から離れるにしたがって強度が弱くなる。照射波が照射された物体からの反射波は、受光窓208に設けられたレンズにより集光されてレーザ受光素子209で受光される。レーザ受光素子209からの信号は受光信号増幅回路210で増幅されて、CPU201へ入力される。
[Leading vehicle detection]
The preceding vehicle detection device 13 emits a laser beam in the direction of the reflection mirror 204 by the laser light emitting element 203 controlled by the CPU 201 via the laser light emitting circuit 202. A lens (not shown) is provided in front of the laser light emitting element 203, and the laser is spread at a predetermined angle. The reflection mirror 204 is driven up and down and left and right by a stepping motor 207 controlled by the CPU 201 via a motor drive circuit 206 and scans the laser emitted from the laser light emitting element 203 within a predetermined angular range of up and down and left and right. The laser is irradiated through a lens provided in the light projection window 205. The above predetermined angle is determined by the design factor of the size of the scanning range of the irradiation wave, the resolution, the performance of the stepping motor 207, the required size of the preceding vehicle detection device 13, and the like. The laser irradiated from the projection window 205 is a laser having a predetermined area as shown in FIG. 6A, but the laser intensity distribution is as shown in FIG. The strength at the center is the strongest, and the strength decreases as the distance from the center increases. The reflected wave from the object irradiated with the irradiation wave is collected by a lens provided in the light receiving window 208 and received by the laser light receiving element 209. A signal from the laser light receiving element 209 is amplified by the received light signal amplification circuit 210 and input to the CPU 201.

CPU201は、受光信号から受光した反射波が、先行車両からの反射波か、静止物体からの反射波か、路面からの反射波かを判断し、先行車両からの反射波であれば、自車両と先行車両との距離や相対速度を演算し、車間距離制御装置100へ送信する。   The CPU 201 determines whether the reflected wave received from the received light signal is a reflected wave from the preceding vehicle, a reflected wave from a stationary object, or a reflected wave from the road surface. And the relative speed and the preceding vehicle are calculated and transmitted to the inter-vehicle distance control device 100.

受光した反射波が先行車両からの反射波か、静止物体からの反射波か、路面からの反射波かの判定は次の方法により判定される。   Whether the received reflected wave is a reflected wave from a preceding vehicle, a reflected wave from a stationary object, or a reflected wave from a road surface is determined by the following method.

CPU201で演算される相対速度が、自車両の車速と同じであれば静止物体と判定する。   If the relative speed calculated by the CPU 201 is the same as the vehicle speed of the host vehicle, it is determined as a stationary object.

路面に照射されたレーザは、路面が完全散乱面と仮定すると、観測される反射波強度IはLambertの余弦則により、
I=Kd×Ii×cosα・・・(1)
で表される。ここでKdは散乱反射率、Iiは路面入射光強度、αは路面の法線とレーザが成す入射角度である。また、完全散乱面とは反射光をどの方向から見ても輝度の等しい表面のことを言う。
Assuming that the road surface is a perfect scattering surface, the reflected wave intensity I of the laser irradiated to the road surface is determined by Lambert's cosine law.
I = Kd × Ii × cosα (1)
It is represented by Here, Kd is the scattering reflectance, Ii is the road surface incident light intensity, and α is the incident angle formed by the road surface normal and the laser. A perfect scattering surface is a surface having the same luminance when viewed from any direction of reflected light.

図6に示すように、自車両に対し最も手前側の位置R1に入射するレーザの角度をα1とし、最も奥側の位置R2に入射するレーザの角度をα2とすると、レーザは一定の角度で広がって路面に照射されるので、α1<α2である。よって、cosα1>cosα2なので、路面の散乱反射率Kdと路面入射光強度Iiとの積Kd×Iiが位置R1と位置R2とで同様であるとすると、位置R1での反射波強度I1と位置R2での反射波強度I2との大きさの関係はI1>I2になる。またレーザ受光素子209には位置R1で反射した反射波の方が、位置R2で反射した反射波より早く到達する。さらに、路面に入射するレーザの強度は図7に示すように、中心部の強度が強く、周辺部ほど強度が弱くなる強度分布なので、レーザ受光素子209において観測される反射波の反射強度と時間の関係は、図8の点線で示すようにピークが左側によった反射波波形となる。なお、図8の実線はレーザ発光素子203におけるレーザ波形を示す。式1に示すように、反射波強度Iはレーザの入射強度とcosαとの積に関係するので、必ずしもレーザの強度が最大の位置で反射強度が最大になるわけではなく、図8の点線のようにピークが左側によっている反射波強度が観測される。   As shown in FIG. 6, when the angle of the laser incident on the position R1 closest to the vehicle is α1, and the angle of the laser incident on the position R2 farthest is α2, the laser is at a constant angle. Since it spreads and irradiates the road surface, α1 <α2. Therefore, since cos α1> cos α2, if the product Kd × Ii of the road surface scattering reflectance Kd and the road surface incident light intensity Ii is the same at the position R1 and the position R2, the reflected wave intensity I1 and the position R2 at the position R1 The relationship of the magnitude with the reflected wave intensity I2 is I1> I2. The reflected wave reflected at the position R1 reaches the laser light receiving element 209 earlier than the reflected wave reflected at the position R2. Further, as shown in FIG. 7, the intensity of the laser incident on the road surface is an intensity distribution in which the intensity at the center is strong and the intensity at the periphery is weak, so the reflection intensity and time of the reflected wave observed in the laser light receiving element 209 are reduced. As shown by the dotted line in FIG. 8, the relationship is a reflected wave waveform with the peak leftward. A solid line in FIG. 8 shows a laser waveform in the laser light emitting element 203. As shown in Equation 1, the reflected wave intensity I is related to the product of the laser incident intensity and cos α, so the reflected intensity is not necessarily maximized at the position where the laser intensity is maximum. Thus, the reflected wave intensity with the peak left is observed.

レーザが先行車両のような高さを持つものに反射された反射波は図9の点線が示すように強い反射強度が短時間に集中して観測される。なお、図9の実線は図8と同様にレーザ発光素子203におけるレーザ波形を示す。   The reflected wave reflected by the laser having a height like a preceding vehicle is observed with a strong reflection intensity concentrated in a short time as shown by the dotted line in FIG. The solid line in FIG. 9 indicates the laser waveform in the laser light emitting element 203 as in FIG.

先行車両からの反射波と路面からの反射波とは波形が異なるので、波形の相似度から先行車両と路面とを判定できる。相似度の判定は、図8、図9に示すように路面からの反射波ピーク強度Iaの高さLfと、強度Ibの位置の幅Ltとの比により判定する。強度Ibは所定強度、またはピーク強度Iaの所定割合の強度である。相似度の判定は、他の方法(例えば、単に幅Ltのみによる判定)でも良く特に本実施形態に限定しない。   Since the reflected wave from the preceding vehicle and the reflected wave from the road surface have different waveforms, the preceding vehicle and the road surface can be determined from the similarity of the waveform. The similarity is determined by a ratio between the height Lf of the reflected wave peak intensity Ia from the road surface and the width Lt at the position of the intensity Ib as shown in FIGS. The intensity Ib is a predetermined intensity or a predetermined ratio of the peak intensity Ia. The determination of the similarity may be another method (for example, determination based only on the width Lt), and is not particularly limited to this embodiment.

[定速走行]
車両の車間距離制御装置100は、先行車両検出装置13により先行車両が検出されなかった場合には、手動スイッチ16でドライバが設定した設定車速を保つようにエンジン1の駆動力及びホイールシリンダ7a〜7dによる制動力を制御する。例えば、ドライバが手動スイッチ16にて設定車速を100km/hに設定したとすると、車間制御部101では、先行車両が検出されていないので目標車速は出力されず、この結果、車速指令値選択部102では、手動スイッチ16から入力された設定車速情報の100km/hを選択して、100km/hを車速指令値として車速制御部103に出力する。その後、車速制御部103はドライバの設定車速100km/hを保つように車速情報等を監視しながら燃料噴射制御装置5を介して、エンジン1を制御する。
[Constant speed running]
When the preceding vehicle is not detected by the preceding vehicle detection device 13, the inter-vehicle distance control device 100 of the vehicle has the driving force of the engine 1 and the wheel cylinders 7 a to 7 so as to keep the set vehicle speed set by the driver with the manual switch 16. The braking force by 7d is controlled. For example, if the driver sets the set vehicle speed to 100 km / h using the manual switch 16, the inter-vehicle distance control unit 101 does not output the target vehicle speed because no preceding vehicle has been detected. As a result, the vehicle speed command value selection unit In 102, 100 km / h of the set vehicle speed information input from the manual switch 16 is selected, and 100 km / h is output to the vehicle speed control unit 103 as a vehicle speed command value. Thereafter, the vehicle speed control unit 103 controls the engine 1 via the fuel injection control device 5 while monitoring vehicle speed information and the like so as to maintain the driver's set vehicle speed of 100 km / h.

[減速走行]
先行車両検出装置13によって、自車両の進行方向に自車両の現在車速より遅い先行車両が検出されたときには、車間時間を保つように減速する。したがって、ドライバの設定車速(例えば100km/h)より遅い先行車両(例えば80km/h)を検出したときは、車間制御部101ではドライバの設定車間時間情報を基に速度に応じた車間距離と、自車両と先行車両との相対速度とから算出した目標車速を車速指令値選択部102に出力する。車速指令値選択部102では、手動スイッチ16からの設定車速情報(ここでは100km/h)と、車間制御部101からの目標車速情報(ここでは80km/h)とが入力されるが、車速の小さい方の目標車速を車速指令値(ここでは80km/h)として車速制御部103へ出力する。車速制御部103では入力された車速指令値に基づき、設定車間時間を達成するように燃料噴射制御装置5及び制動流体圧制御装置8を制御して、エンジン1の駆動力及びホイールシリンダ7a〜7dによる制動力を制御する。
[Deceleration]
When the preceding vehicle detection device 13 detects a preceding vehicle that is slower than the current vehicle speed of the host vehicle in the traveling direction of the host vehicle, the vehicle is decelerated so as to maintain the inter-vehicle time. Accordingly, when a preceding vehicle (for example, 80 km / h) slower than the driver's set vehicle speed (for example, 100 km / h) is detected, the inter-vehicle control unit 101 determines an inter-vehicle distance according to the speed based on the driver's set inter-vehicle time information, The target vehicle speed calculated from the relative speed between the host vehicle and the preceding vehicle is output to the vehicle speed command value selection unit 102. In the vehicle speed command value selection unit 102, set vehicle speed information (here, 100 km / h) from the manual switch 16 and target vehicle speed information (here, 80 km / h) from the inter-vehicle distance control unit 101 are input. The smaller target vehicle speed is output to the vehicle speed control unit 103 as a vehicle speed command value (80 km / h in this case). The vehicle speed control unit 103 controls the fuel injection control device 5 and the brake fluid pressure control device 8 so as to achieve the set inter-vehicle time based on the input vehicle speed command value, thereby driving the engine 1 and the wheel cylinders 7a to 7d. The braking force by is controlled.

[追従走行]
ドライバが設定した設定車間時間を基に速度に応じて算出した車間時間保って、先行車両検出装置13によって検出された先行車両に追従して走行するように車両を制御する。車間制御部101では、入力された車速情報、車間距離情報、相対車速情報、設定車間時間情報基づいて、車速に応じた車間距離を設定し、目標車速を算出する。車速指令値選択部102では、ドライバの設定車速情報と車間制御部101からの目標車速とから、車速の小さいものを選択し指令車速値として車速制御部103に出力する。車速制御部103では、車速指令値等により燃料噴射制御装置5及び制動流体圧制御装置8を介して、自車両の加減速制御を行う。なお、このときの車速はドライバが設定した設定車速を上限とし、車速が設定車速を超えると追従走行をやめて、定速走行を行う。
[Following running]
The vehicle is controlled to travel following the preceding vehicle detected by the preceding vehicle detection device 13 while keeping the following time calculated according to the speed based on the set inter-vehicle time set by the driver. The inter-vehicle control unit 101 sets an inter-vehicle distance according to the vehicle speed based on the input vehicle speed information, inter-vehicle distance information, relative vehicle speed information, and set inter-vehicle time information, and calculates a target vehicle speed. The vehicle speed command value selection unit 102 selects a vehicle with a low vehicle speed from the driver's set vehicle speed information and the target vehicle speed from the inter-vehicle control unit 101 and outputs the selected vehicle speed value to the vehicle speed control unit 103 as a command vehicle speed value. The vehicle speed control unit 103 performs acceleration / deceleration control of the host vehicle via the fuel injection control device 5 and the brake fluid pressure control device 8 according to a vehicle speed command value or the like. Note that the vehicle speed at this time is set to the upper limit of the set vehicle speed set by the driver, and when the vehicle speed exceeds the set vehicle speed, the follow-up running is stopped and constant speed running is performed.

[加速走行]
自車両の進行方向にいる先行車両が走行レーンを変更するなどしてそれまでの走行レーンからいなくなったときには、ドライバの設定車速を上限に加速をする。このとき、車速指令値選択部102では、車間制御部101では目標車速が設定されないのでドライバの設定車速を車速指令値として車速制御部103へ入力する。車速制御部103では、燃料噴射制御装置5よる燃料噴射量を増やして、自車両を車速指令値まで加速させる。
[Acceleration running]
When the preceding vehicle in the traveling direction of the host vehicle changes from the traveling lane, for example, by changing the traveling lane, the vehicle is accelerated up to the driver's set vehicle speed. At this time, the vehicle speed command value selection unit 102 inputs the driver's set vehicle speed to the vehicle speed control unit 103 as the vehicle speed command value because the inter-vehicle distance control unit 101 does not set the target vehicle speed. The vehicle speed control unit 103 increases the fuel injection amount by the fuel injection control device 5 and accelerates the host vehicle to the vehicle speed command value.

[先行車再判定]
先行車両追従走行時に、自車両前方の路面を先行車両と誤認識した可能性がある場合には、検知している反射波が先行車両からか、路面からかを判定し、路面からのであれば先行車両を探索して、先行車両を再検出した場合には検出した先行車両に対して追従走行を行い、先行車両を検出できなかった場合には定速走行を行う。
[Redetermine preceding car]
If there is a possibility of misrecognizing the road surface ahead of the host vehicle as the preceding vehicle during the preceding vehicle following traveling, it is determined whether the detected reflected wave is from the preceding vehicle or from the road surface. When the preceding vehicle is searched and the preceding vehicle is re-detected, follow-up traveling is performed for the detected preceding vehicle, and when the preceding vehicle cannot be detected, constant speed traveling is performed.

自車両前方路面を先行車両と誤認識する可能性がある状況を判断する手段について説明する。図5のカメラ301が自車両前方の路面の画像を取得し、画像メモリ302に格納する。画像メモリ302に格納された画像は、プロセッサ303の白線検出部304により、図10のような走行路面脇にある白線L1、L2が検出され、図11に示すように画面の左上を原点として、横にX軸、縦にY軸の座標が設定される。   A means for determining a situation where there is a possibility of erroneously recognizing the road surface ahead of the host vehicle as a preceding vehicle will be described. The camera 301 in FIG. 5 acquires an image of the road surface ahead of the host vehicle and stores it in the image memory 302. In the image stored in the image memory 302, the white lines L1 and L2 on the side of the running road surface as shown in FIG. 10 are detected by the white line detection unit 304 of the processor 303, and the upper left corner of the screen is set as the origin as shown in FIG. The X axis is set horizontally and the Y axis is set vertically.

車両進行方向推定部305では、白線検出部304において検出された白線に対する自車両の向きや道路曲率を推定する。図11に示すように、Y=Ya、Ybの位置にY軸に対して垂直な直線La、Lbと白線L1、L2との交点a1、a2及び交点b1、b2間の幅Xa、Xbを算出し、幅Xaの中点と幅Xbの中点とを結ぶ中心線L12を設定する。この中心線L12とY軸との傾きが一定範囲内であれば車両が白線に対して傾いて走行をしている、又は道路が曲がっていると判断され、画像処理により白線の傾きや道路曲率を補正して、自車両進行方向に平行な白線画像を作り出す。   The vehicle traveling direction estimation unit 305 estimates the direction of the host vehicle and the road curvature with respect to the white line detected by the white line detection unit 304. As shown in FIG. 11, the widths Xa and Xb between the intersection points a1 and a2 of the straight lines La and Lb and the white lines L1 and L2 perpendicular to the Y axis at the positions Y = Ya and Yb and the intersection points b1 and b2 are calculated. Then, a center line L12 connecting the midpoint of the width Xa and the midpoint of the width Xb is set. If the inclination between the center line L12 and the Y-axis is within a certain range, it is determined that the vehicle is running with an inclination with respect to the white line or the road is curved, and the inclination of the white line and the road curvature are determined by image processing. To produce a white line image parallel to the traveling direction of the host vehicle.

車両挙動推定部306では、上記車両進行方向推定部305から得た白線の座標情報を基に路面に対する自車両のピッチング量を推定する。図12の実線が、ピッチングの生じていないとき(例えば車両停止時)に得られた白線の画像であるとすると、ピッチングが生じて車両前方が下がるとき(例えば減速時)には、2点鎖線で示す白線画像よりY軸負方向が開いた白線画像が得られ、車両前方が上がるとき(例えば加速時)には、1点鎖線で示す白線画像よりY軸負方向が閉じた白線画像が得られる。プロセッサ303ではピッチングが生じていないときのY軸に対する白線の傾きを保持し、検出された白線のY軸に対する傾きの変化量が大きいときには、路面を先行車と誤認識する可能性がある判定する。   The vehicle behavior estimation unit 306 estimates the pitching amount of the host vehicle with respect to the road surface based on the coordinate information of the white line obtained from the vehicle traveling direction estimation unit 305. If the solid line in FIG. 12 is an image of a white line obtained when no pitching occurs (for example, when the vehicle is stopped), a two-dot chain line indicates that when pitching occurs and the front of the vehicle is lowered (for example, when the vehicle is decelerated). A white line image with the Y-axis negative direction opened is obtained from the white line image indicated by, and when the front of the vehicle moves up (for example, during acceleration), a white line image with the Y-axis negative direction closed is obtained from the white line image indicated by the one-dot chain line. It is done. The processor 303 holds the inclination of the white line with respect to the Y axis when no pitching occurs, and determines that there is a possibility that the road surface may be erroneously recognized as a preceding vehicle when the amount of change in the inclination of the detected white line with respect to the Y axis is large. .

図13は先行車両再検出処理の流れを示すフローチャートであり、以下、各ステップについて説明する。   FIG. 13 is a flowchart showing the flow of the preceding vehicle re-detection process. Each step will be described below.

ステップS1では、先行車両に追従走行中か否かを判定し、追従走行中であればステップS2へ移行する。   In step S1, it is determined whether the vehicle is following the preceding vehicle. If the vehicle is following, the process proceeds to step S2.

ステップS2では、ピッチング量の変化(前回検出した値との差)が所定値より大きいか否かを判定し、YESの場合はステップS3へ移行し、NOの場合はステップS4へ移行し、追従走行を継続する。なお、このステップS2は本発明の走行状態検出手段に相当する。   In step S2, it is determined whether or not the change in pitching amount (difference from the previously detected value) is larger than a predetermined value. If YES, the process proceeds to step S3. If NO, the process proceeds to step S4. Continue running. This step S2 corresponds to the traveling state detecting means of the present invention.

ステップS3では、検出した反射波波形から反射波が先行車両からの反射波か路面からの反射波かを判定し、先行車両からの反射波の場合はステップS4へ移行し追従走行を継続し、路面からの反射波の場合にはステップS5へ移行する。なお、このステップS3は本発明の判定手段に相当する。   In step S3, it is determined from the detected reflected wave waveform whether the reflected wave is a reflected wave from the preceding vehicle or a reflected wave from the road surface. If the reflected wave is from the preceding vehicle, the process proceeds to step S4 and the follow-up running is continued. In the case of a reflected wave from the road surface, the process proceeds to step S5. This step S3 corresponds to the determination means of the present invention.

ステップS5では、先行車両を探索し、再検出できた場合にはステップS6へ移行して再検出した先行車両に追従走行を行い、再検出できなかった場合にはステップS7へ移行して定速走行を行う。再検出した先行車両は以前に追従していた先行車両でも良いし、新たに検出した先行車両でも良い。   In step S5, a preceding vehicle is searched, and if it can be re-detected, the process proceeds to step S6 to follow the re-detected preceding vehicle, and if it cannot be detected again, the process proceeds to step S7 and the constant speed is reached. Run. The re-detected preceding vehicle may be a preceding vehicle that was previously followed or may be a newly detected preceding vehicle.

ここでは、画像処理を用いて自車両のピッチング量の変化量により、先行車両検出装置13が路面を先行車両と誤認識する可能性を判定しているが、前方路面が上り坂になっている場合でも同様に路面を先行車両と誤認識する可能性がある。しかし、前方路面が上り坂になっている場合も本実施例と同様の処理で誤認識の可能性を判断できる。すなわち画像処理部17は、路面と自車両とが自車両の走行方向に対して相対的に傾いている状態を検出することができる。   Here, although the preceding vehicle detection device 13 determines the possibility of erroneously recognizing the road surface as the preceding vehicle based on the amount of change in the pitching amount of the host vehicle using image processing, the front road surface is uphill. Even in this case, the road surface may be erroneously recognized as a preceding vehicle. However, even when the front road surface is uphill, the possibility of misrecognition can be determined by the same processing as in this embodiment. That is, the image processing unit 17 can detect a state in which the road surface and the host vehicle are relatively inclined with respect to the traveling direction of the host vehicle.

また、ここでは画像処理を用いて自車両のピッチング量の変化量によって誤認識した可能性を判断しているが、ブレーキ操作を検出するブレーキ操作センサを設け、ブレーキ操作を検出した際に誤認識をした可能性があると判断しても良いし、車両前後Gを検出する前後Gセンサを設け、自車両に所定値以上の減速Gが発生したことを検出した際に誤認識をした可能性があると判断しても良い。なお、ブレーキ操作センサは本発明のブレーキ操作検出手段に相当し、前後Gセンサは本発明の減速検出手段に相当する。   In addition, here, the possibility of misrecognition is determined by using the image processing based on the amount of change in the pitching amount of the host vehicle. However, when a brake operation is detected, a misrecognition is detected when a brake operation is detected. It may be determined that the vehicle may have made a mistake, or there may have been a misrecognition when it was detected that a deceleration G greater than or equal to the specified value was detected in the host vehicle by providing a front-rear G sensor that detects the vehicle front-rear G. You may judge that there is. The brake operation sensor corresponds to the brake operation detection means of the present invention, and the front / rear G sensor corresponds to the deceleration detection means of the present invention.

次に、本実施例1の先行車両検出装置の効果を説明する。   Next, the effect of the preceding vehicle detection device of the first embodiment will be described.

(1)路面を先行車両と誤認識する可能性があったときに、レーザの反射波が先行車両からの反射波か路面からの反射波かを判定するので、路面を先行車両と誤認識する可能性が低減し、正確な車間距離制御を行うことができる。   (1) When there is a possibility that the road surface is erroneously recognized as a preceding vehicle, it is determined whether the reflected wave of the laser is a reflected wave from the preceding vehicle or a reflected wave from the road surface. The possibility is reduced, and accurate inter-vehicle distance control can be performed.

(2)反射波の経時的な変化に基づいて照射波を反射した物体を判定するので、先行車両からの反射波か路面からの反射波かを正確に判別することができる。   (2) Since the object that reflected the irradiation wave is determined based on the change of the reflected wave with time, it is possible to accurately determine whether the reflected wave is from the preceding vehicle or from the road surface.

(3)自車両が路面に対して自車両の走行方向に相対的に傾いたことを検出したとき、反射波が先行車両からの反射波か、路面からの反射波かを判定するようにしたので、路面を先行車両と誤認識する可能性が低減できる。   (3) When it is detected that the host vehicle is tilted relative to the road surface in the traveling direction of the host vehicle, it is determined whether the reflected wave is a reflected wave from the preceding vehicle or a reflected wave from the road surface. Therefore, the possibility of erroneously recognizing the road surface as a preceding vehicle can be reduced.

(4)画像処理部17において取得した白線の画像処理により先行車両検出装置13の誤認識の可能性があると判断するので、自車両が傾いたときのみでなく、前方に上り坂があるときにも、先行車両検出装置13の誤認識する可能性を判断できるので、誤認識の可能性を低減できる。   (4) Since it is determined that there is a possibility of erroneous recognition of the preceding vehicle detection device 13 by the white line image processing acquired in the image processing unit 17, not only when the host vehicle is tilted but also when there is an uphill ahead In addition, since the possibility of erroneous recognition by the preceding vehicle detection device 13 can be determined, the possibility of erroneous recognition can be reduced.

(5)自車両が減速していることを検出したときに先行車両検出装置13の誤認識の可能性があると判断するので、誤認識の可能性を低減できる。   (5) Since it is determined that there is a possibility of erroneous recognition of the preceding vehicle detection device 13 when it is detected that the host vehicle is decelerating, the possibility of erroneous recognition can be reduced.

(6)ブレーキ操作を検出したときに先行車両検出装置13の誤認識の可能性があると判断するので、路面上に白線等を検出できない場合でも誤認識の可能性を判断できる。   (6) Since it is determined that there is a possibility of erroneous recognition by the preceding vehicle detection device 13 when a brake operation is detected, the possibility of erroneous recognition can be determined even when a white line or the like cannot be detected on the road surface.

以上、本発明の先行車両検出装置を実施例1に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加は許容される。   The preceding vehicle detection device of the present invention has been described based on the first embodiment. However, the specific configuration is not limited to these embodiments, and the invention according to each claim of the claims is described. Design changes and additions are allowed without departing from the gist.

例えば、本実施例1の先行車両検出装置では、画像処理部17において白線を検出しているが、中央線の黄線を検出するようにしても良い。   For example, in the preceding vehicle detection device of the first embodiment, the white line is detected by the image processing unit 17, but the yellow line of the center line may be detected.

本発明は、自車両から照射した照射波の反射波を用いて検出した検出物の種類を特定し、先行車両に対して車間距離制御を行うだけでなく、路上の先行車両以外の障害物等を検出し、警報等をドライバに与える衝突防止装置など他の車両制御にも利用することができる。   The present invention not only identifies the type of detected object using the reflected wave of the irradiation wave emitted from the own vehicle and performs inter-vehicle distance control on the preceding vehicle, but also obstacles other than the preceding vehicle on the road, etc. It can also be used for other vehicle control such as a collision prevention device that detects the situation and gives a warning or the like to the driver.

実施例1に係る、走行制御装置搭載車の全体システム図である。1 is an overall system diagram of a vehicle equipped with a travel control device according to a first embodiment. 実施例1に係る、走行制御装置の構成を示すシステムブロック図である。1 is a system block diagram illustrating a configuration of a travel control device according to a first embodiment. 実施例1に係る、先行車両検出装置と画像処理部の取り付け位置を示す図である。It is a figure which shows the attachment position of the preceding vehicle detection apparatus and image processing part based on Example 1. FIG. 実施例1に係る、先行車両検出装置の構成を示すシステムブロック図である。1 is a system block diagram illustrating a configuration of a preceding vehicle detection device according to a first embodiment. 実施例1に係る、画像処理部の構成を示すシステムブロック図である。1 is a system block diagram illustrating a configuration of an image processing unit according to Embodiment 1. FIG. 実施例1に係る、照射するレーザの強度分布を説明する図である。It is a figure explaining the intensity distribution of the laser to irradiate based on Example 1. FIG. 実施例1に係る、路面にレーザが照射される場合を説明する図である。It is a figure explaining the case where a laser is irradiated to the road surface based on Example 1. FIG. 実施例1に係る、路面からの反射波波形を示す図である。It is a figure which shows the reflected wave waveform from the road surface based on Example 1. FIG. 実施例1に係る、先行車両からの反射波波形を示す図である。It is a figure which shows the reflected wave waveform from the preceding vehicle based on Example 1. FIG. 実勢例1に係る、画像処理部において取得される路面上の白線の画像を示す図である。It is a figure which shows the image of the white line on the road surface acquired in the image process part based on the actual example 1. FIG. 実施例1に係る、自車両と白線の傾き又は道路曲率を演算する方法を説明する図である。It is a figure explaining the method based on Example 1 which calculates the inclination or road curvature of the own vehicle and a white line. 実施例1に係る、自車両の傾きによる白線の取得画像を示す図である。It is a figure which shows the acquisition image of the white line by the inclination of the own vehicle based on Example 1. FIG. 実施例1に係る、先行車両再検出処理の流れを示すフローチャートである。3 is a flowchart illustrating a flow of a preceding vehicle re-detection process according to the first embodiment.

符号の説明Explanation of symbols

1 エンジン
2 自動変速機
3 減速機
4 駆動輪
5 燃料噴射制御装置
6 変速機制御装置
7 ホイールシリンダ
8 制動流体圧制御装置
9 制動流体圧センサ
10 ブレーキペダル
11 マスタシリンダ
12 制御装置
13 先行車両検出装置
14 車輪速センサ
15 アクセル開度センサ
16 手動スイッチ
17 画像処理部
20 車両
100 車間距離制御装置
101 車間制御部
102 車速指令値選択部
103 車速制御部
202 レーザ発光回路
203 レーザ発光素子
204 反射ミラー
205 投光窓
206 モータ駆動回路
207 ステッピングモータ
208 受光窓
209 レーザ受光素子
210 受光信号増幅回路
301 カメラ
302 画像メモリ
303 プロセッサ
304 白線検出部
305 車両進行方向推定部
306 車両挙動推定部
DESCRIPTION OF SYMBOLS 1 Engine 2 Automatic transmission 3 Reduction gear 4 Drive wheel 5 Fuel injection control device 6 Transmission control device 7 Wheel cylinder 8 Braking fluid pressure control device 9 Braking fluid pressure sensor 10 Brake pedal 11 Master cylinder 12 Control device 13 Leading vehicle detection device 14 wheel speed sensor 15 accelerator opening sensor 16 manual switch 17 image processing unit 20 vehicle 100 inter-vehicle distance control device 101 inter-vehicle control unit 102 vehicle speed command value selection unit 103 vehicle speed control unit 202 laser light emitting circuit 203 laser light emitting element 204 reflecting mirror 205 Light window 206 Motor drive circuit 207 Stepping motor 208 Light receiving window 209 Laser light receiving element 210 Light reception signal amplification circuit 301 Camera 302 Image memory 303 Processor 304 White line detection unit 305 Vehicle traveling direction estimation unit 306 Vehicle behavior estimation unit

Claims (6)

自車両から照射した照射波の反射波を受信して先行車両の有無を検出する先行車両検出装置において、
前記照射波が路面に照射される走行状態を検出する走行状態検出手段と、
前記走行状態検出手段により前記照射波が路面に照射される走行状態であることが検出されたとき、前記反射波の波形に基づいて前記照射波を反射した物体が先行車両か路面かを判定する判定手段と、
を有することを特徴とする先行車両検出装置。
In the preceding vehicle detection device that detects the presence or absence of the preceding vehicle by receiving the reflected wave of the irradiation wave emitted from the own vehicle,
Traveling state detecting means for detecting a traveling state in which the irradiation wave is irradiated onto the road surface;
When the traveling state detecting means detects that the irradiation wave is traveling on the road surface, it is determined whether the object reflecting the irradiation wave is a preceding vehicle or a road surface based on the waveform of the reflected wave. A determination means;
A preceding vehicle detection device comprising:
請求項1に記載の先行車両検出装置において、
前記反射波の波形は、反射波の強度の経時的な変化であることを特徴とする先行車両検出装置。
In the preceding vehicle detection device according to claim 1,
The preceding vehicle detection device, wherein the waveform of the reflected wave is a change in the intensity of the reflected wave over time.
請求項1又は請求項2に記載の先行車両検出装置において、
前記走行状態検出手段は、前記照射波が路面に照射される走行状態として、自車両が路面に対して自車両の走行方向に相対的に傾く状態を検出することを特徴とする先行車両検出装置。
In the preceding vehicle detection device according to claim 1 or 2,
The traveling state detection means detects a state in which the host vehicle is inclined relative to the road surface in the traveling direction of the host vehicle as a traveling state in which the irradiation wave is irradiated onto the road surface. .
請求項3に記載の先行車両検出装置において、
前記走行状態検出手段は、自車両前方を撮像する撮像手段を有し、前記撮像手段からの画像情報に基づいて、自車両が路面に対して自車両の走行方向に相対的に傾く状態を検出することを特徴とする先行車両検出装置。
In the preceding vehicle detection device according to claim 3,
The traveling state detection unit includes an imaging unit that captures an image of the front of the host vehicle, and detects a state in which the host vehicle is inclined relative to the road surface in the traveling direction of the host vehicle based on image information from the imaging unit. A preceding vehicle detection device.
請求項3に記載の先行車両検出装置において、
前記走行状態検出手段は、自車両が減速していることを検出する減速検出手段を有し、前記減速検出手段からの検出信号に基づいて、自車両が路面に対して自車両の走行方向に相対的に傾く状態を検出することを特徴とする先行車両検出装置。
In the preceding vehicle detection device according to claim 3,
The traveling state detecting unit includes a deceleration detecting unit that detects that the host vehicle is decelerating, and based on a detection signal from the deceleration detecting unit, the host vehicle moves in the traveling direction of the host vehicle. A preceding vehicle detection device for detecting a relatively inclined state.
請求項3に記載の先行車両検出装置において、
前記走行状態検出手段は、運転者によるブレーキ操作を検出するブレーキ操作検出手段を有し、前記ブレーキ操作検出手段からの検出信号に基づいて、自車両が路面に対して自車両の走行方向に相対的に傾く状態を検出することを特徴とする先行車両検出装置。
In the preceding vehicle detection device according to claim 3,
The travel state detection means includes a brake operation detection means for detecting a brake operation by the driver, and the host vehicle is relative to the road surface in the travel direction of the host vehicle based on a detection signal from the brake operation detection means. A preceding vehicle detection device characterized by detecting a state of being tilted automatically.
JP2004284905A 2004-09-29 2004-09-29 Leading vehicle detection device Expired - Fee Related JP4556597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004284905A JP4556597B2 (en) 2004-09-29 2004-09-29 Leading vehicle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004284905A JP4556597B2 (en) 2004-09-29 2004-09-29 Leading vehicle detection device

Publications (2)

Publication Number Publication Date
JP2006098221A true JP2006098221A (en) 2006-04-13
JP4556597B2 JP4556597B2 (en) 2010-10-06

Family

ID=36238186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004284905A Expired - Fee Related JP4556597B2 (en) 2004-09-29 2004-09-29 Leading vehicle detection device

Country Status (1)

Country Link
JP (1) JP4556597B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011000938A (en) * 2009-06-17 2011-01-06 Toyota Motor Corp Obstacle recognizing device
JP2011106877A (en) * 2009-11-13 2011-06-02 Toyota Motor Corp Road gradient estimation apparatus
JP2013210379A (en) * 2009-12-08 2013-10-10 Denso Wave Inc Laser radar device
WO2014073558A1 (en) * 2012-11-07 2014-05-15 株式会社デンソー In-vehicle radar device and slope determination method used in same device
JP2014119349A (en) * 2012-12-17 2014-06-30 Ihi Aerospace Co Ltd Mobile robot travelling area discrimination device and travelling area discrimination method
JP2016044969A (en) * 2014-08-19 2016-04-04 株式会社デンソー On-vehicle radar system
JP2022506428A (en) * 2018-11-02 2022-01-17 ウェイモ エルエルシー Its application to the calculation of the angle of incidence of a laser beam and the estimation of reflectance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318149A (en) * 2000-03-02 2001-11-16 Denso Corp Front information detecting device for vehicle
JP2002116255A (en) * 2000-10-06 2002-04-19 Nissan Motor Co Ltd Setting device of inter-vehicle distance
JP2003042757A (en) * 2001-07-31 2003-02-13 Omron Corp Distance measuring instrument for vehicle
JP2003307561A (en) * 2002-04-12 2003-10-31 Fuji Heavy Ind Ltd Drive support device for vehicle
JP2004151080A (en) * 2002-10-28 2004-05-27 Hyundai Motor Co Ltd Measuring method and device for inter-vehicle distance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318149A (en) * 2000-03-02 2001-11-16 Denso Corp Front information detecting device for vehicle
JP2002116255A (en) * 2000-10-06 2002-04-19 Nissan Motor Co Ltd Setting device of inter-vehicle distance
JP2003042757A (en) * 2001-07-31 2003-02-13 Omron Corp Distance measuring instrument for vehicle
JP2003307561A (en) * 2002-04-12 2003-10-31 Fuji Heavy Ind Ltd Drive support device for vehicle
JP2004151080A (en) * 2002-10-28 2004-05-27 Hyundai Motor Co Ltd Measuring method and device for inter-vehicle distance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011000938A (en) * 2009-06-17 2011-01-06 Toyota Motor Corp Obstacle recognizing device
JP2011106877A (en) * 2009-11-13 2011-06-02 Toyota Motor Corp Road gradient estimation apparatus
JP2013210379A (en) * 2009-12-08 2013-10-10 Denso Wave Inc Laser radar device
WO2014073558A1 (en) * 2012-11-07 2014-05-15 株式会社デンソー In-vehicle radar device and slope determination method used in same device
JP2014095562A (en) * 2012-11-07 2014-05-22 Denso Corp On-vehicle radar device
JP2014119349A (en) * 2012-12-17 2014-06-30 Ihi Aerospace Co Ltd Mobile robot travelling area discrimination device and travelling area discrimination method
JP2016044969A (en) * 2014-08-19 2016-04-04 株式会社デンソー On-vehicle radar system
JP2022506428A (en) * 2018-11-02 2022-01-17 ウェイモ エルエルシー Its application to the calculation of the angle of incidence of a laser beam and the estimation of reflectance

Also Published As

Publication number Publication date
JP4556597B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
RU2687196C1 (en) Control method and device for controlling assistance when driving vehicle
US10503985B2 (en) Pedestrian determination method and determination device
US9415718B2 (en) Vehicular headlight apparatus
JP3264060B2 (en) The preceding vehicle detection mechanism of the vehicle travel control device
US11615708B2 (en) Collision avoidance control apparatus
JP2005231382A (en) Vehicular running control device
JP2008033872A (en) Visibility condition determining device for vehicle
CN113119725B (en) Driving support device
JP2010249668A (en) Object detecting device for vehicle
JP4692077B2 (en) Leading vehicle detection device
JP4118111B2 (en) Dangerous obstacle judgment device
JP2006038697A (en) Another vehicle detection device and inter-vehicle distance control device
JP4556597B2 (en) Leading vehicle detection device
JP6535537B2 (en) Driving support device for vehicle
JP2020125003A (en) Pre-collision control device
CN114523973A (en) Driving support device
JP4720137B2 (en) Obstacle detection device
JP3988713B2 (en) Vehicle travel control device
KR101316306B1 (en) Smart-cruise-control-system and method for controlling the same
JP2000057498A (en) Method for controlling drive of vehicle
JPH1068777A (en) On-vehicle preceding car detecting device
JP4243012B2 (en) Auto cruise equipment
JP2006146754A (en) Preceding car detecting method and preceding car detecting apparatus
JP2000009842A (en) Measuring method for relative speed in transverse direction of preceding vehicle
JP2005331389A (en) Intervehicular distance controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees