JP2000009842A - Measuring method for relative speed in transverse direction of preceding vehicle - Google Patents

Measuring method for relative speed in transverse direction of preceding vehicle

Info

Publication number
JP2000009842A
JP2000009842A JP10177418A JP17741898A JP2000009842A JP 2000009842 A JP2000009842 A JP 2000009842A JP 10177418 A JP10177418 A JP 10177418A JP 17741898 A JP17741898 A JP 17741898A JP 2000009842 A JP2000009842 A JP 2000009842A
Authority
JP
Japan
Prior art keywords
vehicle
preceding vehicle
reflection intensity
relative speed
intensity pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10177418A
Other languages
Japanese (ja)
Other versions
JP3512063B2 (en
Inventor
Yuichiro Hayashi
祐一郎 林
Kazuya Hayafune
一弥 早舩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP17741898A priority Critical patent/JP3512063B2/en
Publication of JP2000009842A publication Critical patent/JP2000009842A/en
Application granted granted Critical
Publication of JP3512063B2 publication Critical patent/JP3512063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a measuring method for relative speed in the transverse direction, in which the relative speed in the transverse direction of a vehicle which precedes its own vehicle is measured with high accuracy on the basis of the reflection intensity pattern of a laser radar. SOLUTION: From a laser radar 2 which is carried on its own vehicle 1, a laser beam LB is radiated toward the front of the vehicle, a reflected beam from a preceding vehicle A is detected, and a reflection intensity pattern is prepared. By using a previously prepared reflection intensity pattern and a recently prepared reflection intensity pattern, the movement amount in the transverse direction of the preceding vehicle A is computed by a pattern matching operation. On the basis of the computed movement amount in the transverse direction and on the basis of the time difference between the previously prepared reflection intensity pattern and the recently prepared reflection intensity pattern, the relative speed in the transverse direction of the preceding vehicle A is computed. Thereby, the relative speed in the transverse direction of the preceding vehicle A can be measured with high accuracy and stably.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自車両に先行する
車両の横方向相対速度計測する先行車両の横方向相対速
度計測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the relative speed of a preceding vehicle in the lateral direction for measuring the relative speed of the preceding vehicle in the lateral direction.

【0002】[0002]

【従来の技術】近年、自動車の運転操作を軽減するため
に、先行車両の追尾走行を行うべく車間距離制御装置を
備えた走行制御装置が実用化されている。この車間距離
制御装置を備えた走行制御装置は、例えば、カメラ、レ
ーザレーダ等の前方認識装置からの情報に基づいて自車
両(以下「自車」という)と先行車両(以下「先行車」
という)との間の車間距離を検出し、この車間距離が予
め設定された目標車間距離となるようにエンジン出力等
の調整により車速を調節して、先行車を追尾するように
したものである。
2. Description of the Related Art In recent years, a travel control device having an inter-vehicle distance control device for pursuing a preceding vehicle has been put into practical use in order to reduce the driving operation of an automobile. A travel control device provided with this inter-vehicle distance control device, based on information from a front recognition device such as a camera or a laser radar, for example, can control a vehicle (hereinafter, referred to as “own vehicle”) and a preceding vehicle (hereinafter, “preceding vehicle”).
) Is detected, and the vehicle speed is adjusted by adjusting the engine output and the like so that the inter-vehicle distance becomes a preset target inter-vehicle distance, and the preceding vehicle is tracked. .

【0003】自動追尾システムにおいて先行車は、自車
走行車線上を走行する最も近くの車両であり、自車が走
行車線を走行しており、他車が追い越し車線を走行して
いる場合、この他車は、先行車と見なさず、自車の走行
車線の領域内にいる車両のみを先行車として認識しなけ
ればならない。このため先行車の自動追尾を行う場合、
先行車と自車との位置関係を正確に検出することが重要
であり、先行車との車間距離(車間時間)の他、先行車
の横方向への移動速度(横方向相対速度)を検出するこ
とが必要である。
In the automatic tracking system, the preceding vehicle is the closest vehicle traveling on the own vehicle traveling lane, and when the own vehicle is traveling on the traveling lane and another vehicle is traveling on the overtaking lane, The other vehicle must not be regarded as a preceding vehicle, and only a vehicle within the traveling lane of the own vehicle must be recognized as a preceding vehicle. Therefore, when performing automatic tracking of the preceding vehicle,
It is important to accurately detect the positional relationship between the preceding vehicle and the own vehicle, and to detect the distance between the preceding vehicle (inter-vehicle time) and the moving speed of the preceding vehicle in the lateral direction (lateral relative speed). It is necessary to.

【0004】車間距離の検出は、通常自車の前部にレー
ザレーダを搭載してレーザ光を前方に向けて発射し、こ
のレーザ光が自車の前方に位置する先行車で反射して戻
ってきた反射光を受光して、発射から受光までの往復時
間(遅延時間)によって、自車と先行車との車間距離を
算出するようにしている。
In order to detect the inter-vehicle distance, a laser radar is usually mounted on the front of the own vehicle to emit laser light forward, and this laser light is reflected by a preceding vehicle located in front of the own vehicle and returned. The received reflected light is received, and the inter-vehicle distance between the own vehicle and the preceding vehicle is calculated based on the round-trip time (delay time) from emission to light reception.

【0005】また、横方向相対速度を計測する方法とし
ては、自車の前部にレーザレーダを搭載して先行車の後
部各位置(検出点)からの各反射光の位置座標の平均を
先行車の中心位置とし、前回計測時の先行車の中心位置
と今回計測時の先行車の中心位置との時間差分を相対速
度ベクトルとして、先行車の横方向相対速度を計測する
所謂差分法が採用されている。尚、通常、レーザレーダ
により前記車間距離と横方向相対速度とを計測する。
In order to measure the relative speed in the lateral direction, a laser radar is mounted on the front of the own vehicle, and the average of the position coordinates of each reflected light from the rear positions (detection points) of the preceding vehicle is calculated. The so-called difference method that measures the lateral relative speed of the preceding vehicle using the time difference between the center position of the preceding vehicle at the previous measurement and the center position of the preceding vehicle at the current measurement as the relative speed vector is adopted as the center position of the vehicle. Have been. Usually, the inter-vehicle distance and the lateral relative speed are measured by a laser radar.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記従
来の差分法による先行車の横方向相対速度の計測では、
先行車の後部からの反射は、当該先行車の後部の形状に
よりレーザ光の反射レベルが十分でないために反射レベ
ルの低い箇所の検出ができない場合があり、検出点の数
が変動する。検出点の数が変動するとこれに伴い先行車
の中心位置が変動するためにノイズが大きくなり、相対
速度の計算に精度上の限界があり、自車と先行車との横
方向相対速度を高精度に測定することができないという
問題がある。
However, in the measurement of the relative speed in the lateral direction of the preceding vehicle by the above-mentioned conventional difference method,
Regarding the reflection from the rear part of the preceding vehicle, the reflection level of the laser beam is not sufficient due to the shape of the rear part of the preceding vehicle, so that it may not be possible to detect a portion having a low reflection level, and the number of detection points varies. If the number of detection points fluctuates, the center position of the preceding vehicle fluctuates accordingly, increasing noise.There is a limit in the accuracy of the calculation of the relative speed, and the lateral relative speed between the host vehicle and the preceding vehicle increases. There is a problem that measurement cannot be performed with high accuracy.

【0007】このため、本発明では、レーザレーダの反
射強度パターンに基づいて自車両に先行する車両の横方
向相対速度を高精度に計測するようにした先行車両の横
方向相対速度計測方法を提供することを目的としてい
る。
For this reason, the present invention provides a method for measuring the relative speed of the preceding vehicle in the lateral direction of the preceding vehicle, which measures the relative speed of the vehicle preceding the own vehicle with high accuracy based on the reflection intensity pattern of the laser radar. It is intended to be.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明の請求項1では、自車両に搭載したレーザレ
ーダから車両前方に向けてレーザビームを発射し、先行
車両からの反射ビームを検出して反射強度パターンを作
成する。そして、前回作成した反射強度パターンと今回
作成した反射強度パターンとを用いてパターンマッチン
グにより先行車両の横方向の移動量を算出する。そし
て、この算出した横方向の移動量と、前回作成した反射
強度パターンと今回作成した反射強度パターンの時間差
分とにより、先行車両の横方向相対速度を算出する。こ
れにより、先行車両の横方向相対速度を高精度に、且つ
安定して計測することが可能となる。
To achieve the above object, according to the first aspect of the present invention, a laser beam is emitted from a laser radar mounted on an own vehicle toward the front of a vehicle, and a reflected beam from a preceding vehicle is emitted. Detect and create a reflection intensity pattern. Then, the lateral movement amount of the preceding vehicle is calculated by pattern matching using the reflection intensity pattern created last time and the reflection intensity pattern created this time. Then, the lateral relative speed of the preceding vehicle is calculated based on the calculated lateral movement amount and the time difference between the previously generated reflection intensity pattern and the currently generated reflection intensity pattern. This makes it possible to measure the relative speed of the preceding vehicle in the lateral direction with high accuracy and stability.

【0009】請求項2の発明では、レーザレーダにより
先行車との車間距離の測距周期毎に反射強度パターンを
作成し、毎回前回と今回との反射強度パターンのパター
ンマッチング行う。これにより、先行車両の横方向相対
速度を常に正確に計測することが可能となる。
According to the second aspect of the present invention, the reflection intensity pattern is created by the laser radar at every distance measurement cycle of the inter-vehicle distance to the preceding vehicle, and the pattern matching of the reflection intensity pattern between the previous time and the current time is performed each time. This makes it possible to always accurately measure the lateral relative speed of the preceding vehicle.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の好
適な実施例を例示的に詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be illustratively described in detail below with reference to the drawings.

【0011】図1は、本発明に係わる先行車両の横方向
相対速度計測方法を実施するための走行システムの概略
構成図を示す。
FIG. 1 is a schematic configuration diagram of a traveling system for implementing a method for measuring a relative speed of a preceding vehicle in a lateral direction according to the present invention.

【0012】図1において、自車両としての車両(以下
「自車」という)1の前部には、前方に向けてレーザビ
ームLBを発射し、且つこのレーザビームLBを図2に
示すように水平方向に左右にスキャニングすることで自
車1の前方に位置する物体としての先行車Aを認識し、
更に、この先行車Aまでの距離を計測可能なスキャン式
レーザレーダ2が搭載されている。また、車室内のルー
フ部には自車1の前方を撮像するCCDカメラ4が取り
付けられており、前方に位置する物体及び車線(白線)
等を認識可能とされている。
In FIG. 1, a laser beam LB is emitted forward to a front portion of a vehicle 1 (hereinafter referred to as “own vehicle”) as a host vehicle, and the laser beam LB is applied as shown in FIG. By scanning left and right in the horizontal direction, the preceding vehicle A as an object located in front of the own vehicle 1 is recognized,
Further, a scanning laser radar 2 capable of measuring the distance to the preceding vehicle A is mounted. A CCD camera 4 for capturing an image of the front of the own vehicle 1 is attached to a roof portion in the vehicle compartment, and an object located in front and a lane (white line) are provided.
Etc. can be recognized.

【0013】エンジン6には、当該エンジン6への吸気
量を制御してエンジン出力を調節するスロットルバルブ
8が設けられている。このスロットルバルブ8にはアク
セルペダル(図示せず)の開度等に応じて、後述する電
子制御装置(ECU)50から出力される作動信号に基
づき自動的にスロットルバルブ開度を調節可能なスロッ
トルアクチュエータ12が設けられている。
The engine 6 is provided with a throttle valve 8 for controlling the amount of intake air to the engine 6 to adjust the engine output. The throttle valve 8 is capable of automatically adjusting the throttle valve opening based on an operation signal output from an electronic control unit (ECU) 50, which will be described later, according to the opening of an accelerator pedal (not shown) or the like. An actuator 12 is provided.

【0014】左右の各前輪(駆動輪)20及び各後輪
(従動輪)22には夫々油圧ディスクブレーキ等のサー
ビスブレーキ(制動装置)24が設けられており、この
サービスブレーキ24は、例えば、負圧ブースタを有し
たブレーキマスタシリンダ26を介してブレーキペダル
28に接続されている。ブレーキマスタシリンダ26に
は、ブレーキペダル28からの入力に拘わらず、電子制
御装置50からの作動信号に応じて自動的にサービスブ
レーキ24を作動可能な負圧式のブレーキアクチュエー
タ30が設けられている。
Each of the left and right front wheels (drive wheels) 20 and each rear wheel (driven wheels) 22 is provided with a service brake (braking device) 24 such as a hydraulic disc brake. It is connected to a brake pedal 28 via a brake master cylinder 26 having a negative pressure booster. The brake master cylinder 26 is provided with a negative pressure type brake actuator 30 that can automatically operate the service brake 24 in response to an operation signal from the electronic control unit 50 regardless of an input from the brake pedal 28.

【0015】従動輪としての左右の各後輪22の近傍に
は、夫々車輪速センサ32が設けられており、右輪車速
VSR、左輪車速VSLを検出する。これらの各車輪速セン
サ32は、車速Veを検出するための車速検出手段とし
て機能する。
A wheel speed sensor 32 is provided near each of the left and right rear wheels 22 as driven wheels, and detects a right wheel speed VSR and a left wheel speed VSL. Each of these wheel speed sensors 32 functions as vehicle speed detecting means for detecting the vehicle speed Ve.

【0016】ステアリングホイール34のステアリング
コラム36には、車両1の走行制御装置を通常の走行状
態と追尾制御による走行状態とに切り換える追尾走行切
換スイッチ38が設けられている。この追尾走行切換ス
イッチ38をセット側に操作すると追尾走行制御、即
ち、車間距離制御が開始され、リセット側に操作すると
車間距離制御が解除される。
The steering column 36 of the steering wheel 34 is provided with a tracking travel changeover switch 38 for switching the travel control device of the vehicle 1 between a normal traveling state and a traveling state by tracking control. When the tracking travel changeover switch 38 is operated to the set side, the tracking travel control, that is, the inter-vehicle distance control is started, and when it is operated to the reset side, the inter-vehicle distance control is released.

【0017】電子制御装置50は、自車1の各制御装置
を司る主制御装置で、入力側には、スキャン式レーザレ
ーダ2、CCDカメラ4、各車輪速センサ32、追尾走
行切換スイッチ38等の各種センサ、スイッチ類が接続
され、出力側には、スロットルアクチュエータ12、ブ
レーキアクチュエータ30等の駆動装置類が接続されて
いる。
The electronic control unit 50 is a main control unit for controlling each control unit of the vehicle 1. On the input side, a scanning laser radar 2, a CCD camera 4, each wheel speed sensor 32, a tracking switch 38, etc. The various sensors and switches are connected, and driving devices such as the throttle actuator 12 and the brake actuator 30 are connected to the output side.

【0018】以下に図3に示すフローチャートを参照し
て走行制御装置の制御内容について説明する。
Hereinafter, control contents of the traveling control device will be described with reference to a flowchart shown in FIG.

【0019】追尾走行切換スイッチ38がセット側に操
作されて追尾走行制御が開始されると、図2に示すよう
に自車1のレーザレーダ2から所定の測距周期でレーザ
ビームLBが左右方向にスキャンされ、先行車両候補の
判定処理が実行される(ステップS1)。尚、先行車A
の前回の計測位置を細線で示し、今回の計測位置を太線
で示す。この先行車両候補判定処理は、図4に示すサブ
ルーチンで実行される。電子制御装置50は、図4のス
テップS20においてスキャン式レーザレーダ2により
先行車両があるか否かが判定され、前方に車両が検出さ
れたときには、スキャン式レーザレーダ2により自車1
から先行車Aまでの車間距離Lを計測する共に、先行車
Aの後部により反射された各反射ビーム毎の反射強度デ
ータを読み込み、各検出点の反射強度データを一定間隔
で補間して各測距周期毎に先行車Aの反射強度パターン
を作成する(ステップS21)。
When the tracking travel changeover switch 38 is operated to the set side to start the tracking travel control, the laser beam LB is moved in the right and left directions at a predetermined distance measurement cycle from the laser radar 2 of the own vehicle 1 as shown in FIG. , And a preceding vehicle candidate determination process is executed (step S1). In addition, preceding car A
The previous measurement position is indicated by a thin line, and the current measurement position is indicated by a thick line. This preceding vehicle candidate determination processing is executed by a subroutine shown in FIG. The electronic control unit 50 determines whether or not there is a preceding vehicle by the scanning laser radar 2 in step S20 of FIG.
, The inter-vehicle distance L from the preceding vehicle A to the preceding vehicle A is measured, the reflection intensity data for each reflected beam reflected by the rear part of the preceding vehicle A is read, and the reflection intensity data at each detection point is interpolated at regular intervals to perform each measurement. A reflection intensity pattern of the preceding vehicle A is created for each distance cycle (step S21).

【0020】この反射強度パターンの一例を図5に示
す。図5において先行車Aの前回計測位置における反射
強度パターンを細線で示し、先行車Aの今回計測位置に
おける反射強度パターンを太線で示す。レーザビームの
反射強度は、車両後部の左右両側に設けられているリフ
レクタ部では強く、車体部では弱く、各分布パターンに
おいて左右両側に設けられているリフレクタ及びこれら
のリフレクタの間に設けられている飾りパネル(何れも
図示せず)等の各検出点において最大となり、車体部で
は最小となっている。
FIG. 5 shows an example of this reflection intensity pattern. In FIG. 5, the reflection intensity pattern of the preceding vehicle A at the previous measurement position is indicated by a thin line, and the reflection intensity pattern of the preceding vehicle A at the current measurement position is indicated by a thick line. The reflection intensity of the laser beam is strong in the reflector portions provided on the left and right sides of the rear portion of the vehicle, weak in the vehicle body portion, and provided between the reflectors provided on the left and right sides in each distribution pattern and between these reflectors It is maximum at each detection point such as a decorative panel (neither is shown) and is minimum at the vehicle body.

【0021】次いで、反射強度パターンを自車1と先行
車Aとの車間距離に基づいて正規化し(ステップS2
2)、図6に示すように前回の反射強度パターンと今回
の反射強度パターンとのパターンマッチングにより先行
車Aの横方向移動量Dを算出する(ステップS23)。
次いで、この横方向移動量Dと、前回の反射強度パター
ン作成と今回の反射強度パターン作成の時間差分とによ
り先行車Aの横方向相対速度を算出する(ステップS2
4)。この横方向相対速度の算出は、レーザビームLB
が反射された全ての前方車両(前方の周辺車両)に対し
て行われる。これは、車両の割り込み等に対処するため
である。そして、全ての前方車両の横方向相対速度の算
出が終了したか否かを判定し(ステップS25)、終了
していないときには、ステップS21に戻り、終了した
ときには当該ルーチンを終了する。
Next, the reflection intensity pattern is normalized based on the inter-vehicle distance between the vehicle 1 and the preceding vehicle A (step S2).
2), as shown in FIG. 6, the lateral movement amount D of the preceding vehicle A is calculated by pattern matching between the previous reflection intensity pattern and the current reflection intensity pattern (step S23).
Next, the lateral relative speed of the preceding vehicle A is calculated based on the lateral movement amount D and the time difference between the previous reflection intensity pattern creation and the current reflection intensity pattern creation (step S2).
4). The calculation of the lateral relative velocity is performed by using the laser beam LB.
Is performed for all the vehicles ahead (vehicles in front of the vehicle) reflected by the vehicle. This is to deal with a vehicle interruption or the like. Then, it is determined whether or not the calculation of the lateral relative velocities of all the preceding vehicles has been completed (step S25). If the calculation has not been completed, the process returns to step S21. If the calculation has been completed, the routine ends.

【0022】一例として、図7に示すように自車1の前
に他の車両Bが割り込んだ場合の車間距離と横方向相対
速度との関係を図8に示す。図8において太線は、本発
明の計測方法による計測結果を示し、細線は、従来の差
分法による計測結果を示す。矢印は、スキャン式レーザ
レーダ2により車体の一部しか検出できない状態におけ
る割り込み車両Bの割り込み初期を示す。この図8から
明らかなように本発明のパターンマッチングによる計測
方法は、従来の差分法による計測方法に比べて車体の一
部しか検出できない車両Bの割り込み初期を含めて、バ
ラツキが減少し、横方向相対速度の計測精度が安定して
いる。
As an example, FIG. 8 shows the relationship between the inter-vehicle distance and the lateral relative speed when another vehicle B interrupts before the own vehicle 1 as shown in FIG. In FIG. 8, a thick line indicates a measurement result by the measurement method of the present invention, and a thin line indicates a measurement result by the conventional difference method. The arrow indicates the initial stage of the interruption of the interruption vehicle B in a state where only a part of the vehicle body can be detected by the scanning laser radar 2. As is apparent from FIG. 8, the measurement method using the pattern matching of the present invention reduces the variation including the initial stage of the interruption of the vehicle B in which only a part of the vehicle body can be detected, as compared with the measurement method using the conventional difference method. The measurement accuracy of the relative speed in the direction is stable.

【0023】図3に戻り、自車1の車速Veを各車輪速
センサ32からの情報に基づいて次式により算出する
(ステップS2)。
Returning to FIG. 3, the vehicle speed Ve of the own vehicle 1 is calculated by the following equation based on the information from each wheel speed sensor 32 (step S2).

【0024】Ve=(VSR+VSL)/2 次いで、車間距離Lに基づいて自車1と先行車Aとの相
対速度が演算される(ステップS3)。相対速度は、前
回計測した車間距離と今回計測した車間距離との変化量
ΔLに基づいて演算される。この変化量ΔLが正であれ
ば自車1は先行車Aから離れつつあり、負であれば自車
1は先行車Aに接近しつつあると見なすことができる。
次いで、自車1の車速Veと相対速度ΔLとから先行車
Aの車速Vaが演算され(ステップS4)、この車速V
aを微分処理して先行車Aの減速度αaを演算する。こ
の減速度αaは、前回算出した先行車Aの車速と今回算
出した車速との変化量ΔVaから演算される。
Ve = (VSR + VSL) / 2 Next, the relative speed between the own vehicle 1 and the preceding vehicle A is calculated based on the following distance L (step S3). The relative speed is calculated based on a change amount ΔL between the previously measured inter-vehicle distance and the currently measured inter-vehicle distance. If the change amount ΔL is positive, it can be considered that the own vehicle 1 is moving away from the preceding vehicle A, and if the change amount ΔL is negative, the own vehicle 1 is approaching the preceding vehicle A.
Next, the vehicle speed Va of the preceding vehicle A is calculated from the vehicle speed Ve of the own vehicle 1 and the relative speed ΔL (step S4).
The differential processing of a is performed to calculate the deceleration α a of the preceding vehicle A. This deceleration α a is calculated from the change amount ΔVa between the vehicle speed of the preceding vehicle A calculated last time and the vehicle speed calculated this time.

【0025】次いで、自車1を減速すべきか否かを判別
する(ステップS6)。即ち、前記変化量ΔLが負とな
って自車1が先行車Aに接近しており、自車1を減速さ
せる必要があるか否かを判別する。そして、減速する必
要がないと判定されたときには車間距離Lが目標車間距
離となるようにスロットルアクチュエータ12を駆動し
てスロットルバルブ8を開動作させて加速制御を行う
(ステップS7)。
Next, it is determined whether or not the vehicle 1 should be decelerated (step S6). That is, it is determined whether or not the change amount ΔL is negative and the vehicle 1 is approaching the preceding vehicle A, and it is necessary to decelerate the vehicle 1. If it is determined that there is no need to decelerate, the throttle actuator 12 is driven to open the throttle valve 8 so that the inter-vehicle distance L becomes the target inter-vehicle distance to perform acceleration control (step S7).

【0026】自車1を減速すべきと判定されたときには
目標減速度を演算して付加すべき補助制動力を算出し
(ステップS8)、これに基づいてスロットルアクチュ
エータ12を駆動してスロットルバルブ8を閉動作させ
(ステップS9)、ブレーキアクチュエータ30を補助
制動力に応じて作動させてサービスブレーキ24による
制動力を付与する(ステップS10)。この場合には、
運転者がブレーキペダル28を操作しなくても、自車1
は、良好に先行車Aに追尾して走行する。これにより、
車間距離制御に自動ブレーキを導入した場合に、誤認識
による自動ブレーキによる減速制御が抑制され、運転者
の違和感が軽減される。
When it is determined that the own vehicle 1 should be decelerated, the target deceleration is calculated to calculate an auxiliary braking force to be added (step S8), and the throttle actuator 12 is driven based on this to drive the throttle valve 8 Is closed (step S9), and the brake actuator 30 is operated in accordance with the auxiliary braking force to apply the braking force by the service brake 24 (step S10). In this case,
Even if the driver does not operate the brake pedal 28, the vehicle 1
Travels well following the preceding vehicle A. This allows
When an automatic brake is introduced into the inter-vehicle distance control, deceleration control by the automatic brake due to erroneous recognition is suppressed, and the driver's discomfort is reduced.

【0027】[0027]

【発明の効果】本発明によれば、請求項1では、先行車
両から反射されたレーザビームの反射強度を検出して反
射強度パターンを作成し、前回の反射強度パターンと今
回の反射強度パターンからパターンマッチングにより先
行車両の横方向移動量を算出し、この横方向移動量と、
前回と今回の反射強度パターンの作成時間差とにより横
方向相対速度を算出することで、先行車両の横方向相対
速度を高精度に、且つ安定して計測することができる。
According to the present invention, according to the first aspect, the reflection intensity of the laser beam reflected from the preceding vehicle is detected to create a reflection intensity pattern, and the reflection intensity pattern is calculated from the previous reflection intensity pattern and the current reflection intensity pattern. The lateral movement amount of the preceding vehicle is calculated by pattern matching, and the lateral movement amount is calculated as follows:
By calculating the lateral relative speed based on the time difference between the previous and current reflection intensity patterns, the lateral relative speed of the preceding vehicle can be measured with high accuracy and stably.

【0028】請求項2の発明では、レーザレーダにより
先行車との車間距離の測距周期毎に反射強度パターンを
作成し、毎回前回と今回との反射強度パターンのパター
ンマッチング行う。これにより、先行車両の横方向相対
速度を常に正確に計測することが可能となる。
According to the second aspect of the present invention, a reflection intensity pattern is created by the laser radar in each distance measurement cycle of the inter-vehicle distance to the preceding vehicle, and pattern matching of the reflection intensity pattern between the previous time and the current time is performed each time. This makes it possible to always accurately measure the lateral relative speed of the preceding vehicle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる先行車両の横方向相対速度計測
方法を実施するための車両の走行制御装置の概略構成図
である。
FIG. 1 is a schematic configuration diagram of a traveling control device of a vehicle for implementing a method of measuring a relative speed of a preceding vehicle in a lateral direction according to the present invention.

【図2】先行車両の横方向位置の計測方法の説明図であ
る。
FIG. 2 is an explanatory diagram of a method for measuring a lateral position of a preceding vehicle.

【図3】本発明の走行制御手順を示すフローチャートで
ある。
FIG. 3 is a flowchart showing a traveling control procedure according to the present invention.

【図4】図3の先行車両候補判定の手順を示すフローチ
ャートである。
FIG. 4 is a flowchart showing a procedure for determining a preceding vehicle candidate in FIG. 3;

【図5】図2の先行車からの反射ビームにより形成した
前回と今回の反射強度パターンを示す図である。
FIG. 5 is a diagram showing previous and current reflection intensity patterns formed by reflected beams from a preceding vehicle in FIG. 2;

【図6】図5の前回と今回の反射強度パターンからパタ
ーンマッチング法により横方向移動量を算出する説明図
である。
FIG. 6 is an explanatory diagram for calculating a lateral movement amount by a pattern matching method from the previous and current reflection intensity patterns of FIG. 5;

【図7】先行車が割り込んで来る場合の説明図である。FIG. 7 is an explanatory diagram in a case where a preceding vehicle is interrupting.

【図8】図7の割り込み車両に対する横方向相対速度と
車間距離との関係を示す説明図である。
8 is an explanatory diagram illustrating a relationship between a relative speed in a lateral direction with respect to the interrupted vehicle and a distance between vehicles in FIG. 7;

【符号の説明】[Explanation of symbols]

1 自車(自車両) 2 スキャン式レーザレーダ 50 電子制御装置 A 先行車(先行車両) Reference Signs List 1 own vehicle (own vehicle) 2 scanning laser radar 50 electronic control unit A preceding vehicle (preceding vehicle)

フロントページの続き Fターム(参考) 3D046 BB18 EE01 HH20 HH22 5H180 AA01 CC03 CC04 CC14 CC24 LL01 LL02 LL04 5J070 AB01 AC02 AC06 AD01 AE01 AF03 AK22 5J084 AA02 AA05 AA07 AB01 AC02 AD01 AD03 BA03 BA11 CA03 CA31 EA04 Continued on the front page F term (reference) 3D046 BB18 EE01 HH20 HH22 5H180 AA01 CC03 CC04 CC14 CC24 LL01 LL02 LL04 5J070 AB01 AC02 AC06 AD01 AE01 AF03 AK22 5J084 AA02 AA05 AA07 AB01 AC02 AD01 AD03 BA03 BA11 CA03 CA31

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 自車に搭載したレーザレーダから車両前
方に向けてレーザビームを発射し、先行車両からの反射
ビームを検出して反射強度パターンを作成し、前回の反
射強度パターンと今回の反射強度パターンとのパターン
マッチングにより横方向の移動量を算出し、この横方向
の移動量と前回と今回の時間差分とにより先行車両の横
方向相対速度を計測することを特徴とする先行車両の横
方向相対速度計測方法。
1. A laser radar mounted on a host vehicle emits a laser beam toward the front of a vehicle, detects a reflected beam from a preceding vehicle, creates a reflection intensity pattern, and generates a reflection intensity pattern of a previous reflection and a reflection intensity of a current reflection. A lateral movement amount is calculated by pattern matching with the intensity pattern, and a lateral relative speed of the preceding vehicle is measured based on the lateral movement amount and a time difference between the previous time and the current time. Direction relative speed measurement method.
【請求項2】 反射強度パターンは、先行車との車間距
離の測距周期毎に作成することを特徴とする請求項1項
に記載の先行車両の横方向相対速度計測方法。
2. The method for measuring a relative speed of a preceding vehicle in a lateral direction according to claim 1, wherein the reflection intensity pattern is created for each distance measurement cycle of an inter-vehicle distance to the preceding vehicle.
JP17741898A 1998-06-24 1998-06-24 How to measure the relative speed of the preceding vehicle in the lateral direction Expired - Fee Related JP3512063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17741898A JP3512063B2 (en) 1998-06-24 1998-06-24 How to measure the relative speed of the preceding vehicle in the lateral direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17741898A JP3512063B2 (en) 1998-06-24 1998-06-24 How to measure the relative speed of the preceding vehicle in the lateral direction

Publications (2)

Publication Number Publication Date
JP2000009842A true JP2000009842A (en) 2000-01-14
JP3512063B2 JP3512063B2 (en) 2004-03-29

Family

ID=16030590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17741898A Expired - Fee Related JP3512063B2 (en) 1998-06-24 1998-06-24 How to measure the relative speed of the preceding vehicle in the lateral direction

Country Status (1)

Country Link
JP (1) JP3512063B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030075753A (en) * 2002-03-20 2003-09-26 삼성전자주식회사 Compatible optical pickup
JP2005001500A (en) * 2003-06-11 2005-01-06 Nissan Motor Co Ltd Automatic brake controller
JP2008008679A (en) * 2006-06-27 2008-01-17 Toyota Motor Corp Object detecting apparatus, collision predicting apparatus and vehicle controlling apparatus
WO2013047685A1 (en) * 2011-09-29 2013-04-04 三菱重工業株式会社 Device for measuring an object to be measured, processing method thereof, and program
KR20140104959A (en) * 2011-12-16 2014-08-29 마이크로소프트 코포레이션 Discovery and mining of performance information of a device for anticipatorily sending updates to the device
KR102301425B1 (en) * 2020-08-14 2021-09-14 방병주 heavy equipment control system through selective sensing of objects
KR102301427B1 (en) * 2020-10-22 2021-09-14 방병주 heavy equipment control system through predition of object action patterns
KR102301426B1 (en) * 2020-09-07 2021-09-14 방병주 heavy equipment control system through analysis of object action patterns

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030075753A (en) * 2002-03-20 2003-09-26 삼성전자주식회사 Compatible optical pickup
JP2005001500A (en) * 2003-06-11 2005-01-06 Nissan Motor Co Ltd Automatic brake controller
JP2008008679A (en) * 2006-06-27 2008-01-17 Toyota Motor Corp Object detecting apparatus, collision predicting apparatus and vehicle controlling apparatus
WO2013047685A1 (en) * 2011-09-29 2013-04-04 三菱重工業株式会社 Device for measuring an object to be measured, processing method thereof, and program
JPWO2013047685A1 (en) * 2011-09-29 2015-03-26 三菱重工業株式会社 Measuring object measuring apparatus, processing method thereof, and program
KR20140104959A (en) * 2011-12-16 2014-08-29 마이크로소프트 코포레이션 Discovery and mining of performance information of a device for anticipatorily sending updates to the device
KR102301425B1 (en) * 2020-08-14 2021-09-14 방병주 heavy equipment control system through selective sensing of objects
KR102301426B1 (en) * 2020-09-07 2021-09-14 방병주 heavy equipment control system through analysis of object action patterns
KR102301427B1 (en) * 2020-10-22 2021-09-14 방병주 heavy equipment control system through predition of object action patterns

Also Published As

Publication number Publication date
JP3512063B2 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
JP3913878B2 (en) Vehicle object detection device
JP3183501B2 (en) Travel control device for vehicles
JP4571757B2 (en) Method and apparatus for controlling the running speed of a vehicle
JP4011711B2 (en) Vehicle travel safety device
US6769504B2 (en) Adaptive cruise control system for vehicle
JP3327217B2 (en) Vehicle running control method
JPH0776237A (en) Traveling controller for automobile
JPH09145737A (en) Collision-preventing device for vehicle
JP2004352217A (en) Distance between vehicles controller
JP2000038121A (en) Travel control method for vehicle
JP4956043B2 (en) Vehicle object detection device
JP4134885B2 (en) Curve estimation device and travel control device using the same
JP3512063B2 (en) How to measure the relative speed of the preceding vehicle in the lateral direction
JP3381778B2 (en) Vehicle running control method
JP3707521B2 (en) Vehicle travel control device
JP2000057498A (en) Method for controlling drive of vehicle
JP2002029348A (en) Outside recognizer for vehicle
JP4606638B2 (en) Vehicle trajectory estimation device and vehicle travel safety device using the same
JP4556597B2 (en) Leading vehicle detection device
JPH11348599A (en) Traveling control device for vehicle
JP2004243903A (en) Travel control device for vehicle
JP3266832B2 (en) Recognition method of objects in vehicles
JP3214823B2 (en) Actuator control method for vehicle with contrast object recognition function
JP2004199512A (en) Inter-vehicle distance controller
JP3214822B2 (en) Actuator control method for vehicle with contrast object recognition function

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031230

LAPS Cancellation because of no payment of annual fees