JP2006097073A - METHOD FOR PRODUCING Fe-Ni BASED ALLOY THIN SHEET - Google Patents
METHOD FOR PRODUCING Fe-Ni BASED ALLOY THIN SHEET Download PDFInfo
- Publication number
- JP2006097073A JP2006097073A JP2004283492A JP2004283492A JP2006097073A JP 2006097073 A JP2006097073 A JP 2006097073A JP 2004283492 A JP2004283492 A JP 2004283492A JP 2004283492 A JP2004283492 A JP 2004283492A JP 2006097073 A JP2006097073 A JP 2006097073A
- Authority
- JP
- Japan
- Prior art keywords
- alloy thin
- slitting
- producing
- alloy
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
- C21D1/30—Stress-relieving
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Child & Adolescent Psychology (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Shearing Machines (AREA)
- Winding, Rewinding, Material Storage Devices (AREA)
Abstract
Description
本発明は、リードフレーム用素材やリード用素材等に用いられるFe−Ni系合金薄板材の製造方法に関するものである。 The present invention relates to a method for producing an Fe—Ni-based alloy thin plate material used for a lead frame material, a lead material, or the like.
例えばFe−Ni系合金薄板製のリードフレームの製造方法は、今日まで種々の提案がなされてきている。このうち、加熱収縮や残留応力に着目した提案として特開平5−109960号公報(特許文献1)や特開平6‐145811号公報(特許文献2)等がある。
この特開平5‐109960号公報に開示される製造方法は、
(1)Fe−Ni合金、Fe−Ni−Co合金を製品板厚に冷間圧延を行ない、
(2)その後製品幅にスリット加工を行ない、
(3)更に該スリット加工後の歪取焼鈍を施す工程において600〜700℃で1〜3分間加熱する処理を張力5kg/mm2以下(好ましくは2kg/mm2以下)で実施する。
という工程が開示されている。
For example, various proposals for producing a lead frame made of Fe-Ni alloy thin plate have been made to date. Among these, as proposals paying attention to heat shrinkage and residual stress, there are JP-A-5-109960 (Patent Document 1) and JP-A-6-14581 (Patent Document 2).
The manufacturing method disclosed in JP-A-5-109960 is as follows:
(1) Cold rolling the Fe—Ni alloy and Fe—Ni—Co alloy to the product sheet thickness,
(2) Then slit the product width,
(3) Further, in the step of performing strain relief annealing after the slit processing, a process of heating at 600 to 700 ° C. for 1 to 3 minutes is performed with a tension of 5 kg / mm 2 or less (preferably 2 kg / mm 2 or less).
This process is disclosed.
また、特開平6‐145811号に開示される製造方法は、それ以前に行われていた
(1)Fe−Ni合金の板材の熱間圧延を行なう。
(2)次いで、冷間圧延を行なう。
(3)更に、一度軟化焼鈍を行なう。
(4)次に、50%以下の加工度で仕上げ圧延を行なう。
(5)次いで、所定幅に剪断加工(スリット加工)して帯材を製造する。
(6)そして、このスリット加工による歪みを除去するために、600℃以下で歪取り焼鈍を行なう。
という工程に対して、
(1)仕上げ圧延を行ない、
(2)その後スリット加工を行ない、
(3)更に該スリット加工に対して630〜700℃の範囲の十分な歪取り焼鈍を行ない、
(4)その後にレベラー矯正を行なう
という工程が開示されている。
In addition, the manufacturing method disclosed in Japanese Patent Laid-Open No. 6-14581 (1) performs hot rolling of a Fe—Ni alloy plate material which has been performed before that.
(2) Next, cold rolling is performed.
(3) Further, soft annealing is performed once.
(4) Next, finish rolling is performed at a workability of 50% or less.
(5) Next, a band material is manufactured by shearing (slit processing) to a predetermined width.
(6) Then, in order to remove distortion caused by the slit processing, strain relief annealing is performed at 600 ° C. or lower.
For the process
(1) Perform finish rolling,
(2) After that slit processing,
(3) Perform sufficient strain relief annealing in the range of 630 to 700 ° C. for the slit processing,
(4) The process of performing leveler correction after that is disclosed.
上述した通り、従来から行われてきた方法というのは、鋼帯をスリットした後に歪取焼鈍を行うものである。この製造方法には次の問題がある。
従来の製造方法の技術思想は、スリット歪および冷間圧延の歪を最後に熱処理で低減しようとするものである。しかしながら、製品幅へのスリット後の熱処理の場合、歪の開放に伴い、うねり状の波打ち変形を生じて平坦度を劣化させる。
また製品幅へのスリット後の材料を多条同時に熱処理を施そうとすれば各条の張力はばらつき、安定した制御は困難で、かつ炉内での材料蛇行により変形や損傷の問題が避けられない。1条づつでの熱処理では張力制御や蛇行の問題は生じないが、大幅に生産性が落ちてしまう。
つまり、従来のようなスリット後の歪取焼鈍では熱処理によりスリット歪を低減することはできても、安定した張力制御による安定した加熱収縮およびリードフレーム材として必要な形状の平坦性を確保できないという最大の欠点がある。
As described above, the conventional method is to perform strain relief annealing after slitting the steel strip. This manufacturing method has the following problems.
The technical idea of the conventional manufacturing method is to finally reduce the slit strain and the cold rolling strain by heat treatment. However, in the case of heat treatment after slitting to the product width, as the strain is released, waviness-like undulating deformation is generated and flatness is deteriorated.
In addition, if the material after slitting to the product width is subjected to heat treatment at the same time, the tension of each strip varies, stable control is difficult, and the problem of deformation and damage can be avoided by meandering the material in the furnace. Absent. The heat treatment by one line does not cause a problem of tension control or meandering, but the productivity is greatly reduced.
In other words, the conventional strain relief annealing after slit can reduce the slit strain by heat treatment, but cannot ensure the stable heat shrinkage by the stable tension control and the flatness necessary for the lead frame material. There is the biggest drawback.
特開平6−145811号公報では、この後に平坦性を確保するためにレベラー矯正を行うが、上述のように安定して加熱収縮を抑制できない上に、熱処理により変形した個所のレベラー矯正によって、製品幅へのスリット後の鋼帯では局部的に応力が残留することになり、リードフレームとするための打抜き後やエッチング後に変形を生じるおそれがある。
また、例えばリードフレーム材では従来のような板幅30mm程度以下の狭い幅であれば、若干のうねりが生じたとしても使用に耐えられるが、近年のIC高効率化に伴う広幅化で板幅60mm以上になると平坦度の要求も厳しく、従来の製造方法では平坦度の確保が非常に困難となっている。
本発明の目的は、特に加熱収縮の問題を解決でき、例えば60mm以上の広い幅であっても優れた平坦性を実現できるリードフレーム用素材やリード用素材等に用いられるFe−Ni系合金薄板材の製造方法を提供することである。
In Japanese Patent Application Laid-Open No. 6-14581, leveler correction is performed to ensure flatness after this. However, as described above, the heat shrinkage cannot be stably suppressed, and the product is also corrected by leveler correction at a portion deformed by heat treatment. In the steel strip after the slit to the width, the stress remains locally, and there is a risk of deformation after punching or etching for forming a lead frame.
For example, in the case of a lead frame material, if it is a narrow width of about 30 mm or less as in the prior art, it can be used even if a slight swell occurs, but the board width has increased due to the recent increase in IC efficiency. When the thickness is 60 mm or more, the demand for flatness is severe, and it is very difficult to ensure flatness with the conventional manufacturing method.
The object of the present invention is to solve the problem of heat shrinkage in particular. For example, Fe-Ni alloy thin films used for lead frame materials and lead materials that can realize excellent flatness even with a wide width of 60 mm or more. It is providing the manufacturing method of a board | plate material.
本発明は上述した問題に鑑みてなされたものである。
即ち本発明は、Fe−Ni系合金薄板材の製造方法において、最終の冷間圧延後にレベラーによる矯正を行い、該レベラーによる矯正の後に連続焼鈍炉による歪取焼鈍を行った後、条取りスリット加工を行うFe−Ni系合金薄板材の製造方法である。
好ましくは、上記連続焼鈍炉による歪取焼鈍は、炉内張力20N/mm2以下で行うFe−Ni系合金薄板材の製造方法である。
更に好ましくは、上記の歪取焼鈍は温度400〜750℃で行うFe−Ni系合金薄板材の製造方法である。
また本発明では、条取りスリット加工は、円形上刃カッターと円形下刃カッターとの協働により行い、それぞれのカッター径はFe−Ni系合金薄板材の板厚の750倍以上の直径を有するものが好ましい。
更に好ましい条取りスリット加工は、円形上刃カッターと円形下刃カッターのオーバーラップ量を板厚の5〜50%とするFe−Ni系合金薄板材の製造方法である。
本発明のFe−Ni系合金薄板材の好ましい組成は、質量%でC:0.1%以下、Si:1.0%以下、Mn:1.2%以下、Ni:30〜50%を含有し、残部は実質的にFeとすると良い。
The present invention has been made in view of the above-described problems.
That is, the present invention provides a method for manufacturing a Fe-Ni alloy sheet material, which is subjected to straightening by a leveler after the final cold rolling, and after straightening by the continuous annealing furnace after straightening by the leveler, a slit for slitting. It is a manufacturing method of the Fe-Ni type alloy sheet material which processes.
Preferably, the strain relief annealing by the continuous annealing furnace is a method for producing an Fe—Ni-based alloy sheet material that is performed with an in-furnace tension of 20 N / mm 2 or less.
More preferably, the above-described strain relief annealing is a method for producing a Fe—Ni alloy sheet material performed at a temperature of 400 to 750 ° C.
Further, in the present invention, the slitting slit processing is performed in cooperation with the circular upper blade cutter and the circular lower blade cutter, and the diameter of each cutter has a diameter of 750 times or more the thickness of the Fe-Ni alloy thin plate material. Those are preferred.
A more preferred slitting process is a method for producing an Fe—Ni alloy thin plate material in which the overlap amount of the circular upper blade cutter and the circular lower blade cutter is 5 to 50% of the plate thickness.
The preferable composition of the Fe—Ni-based alloy sheet material of the present invention includes C: 0.1% or less, Si: 1.0% or less, Mn: 1.2% or less, and Ni: 30 to 50% by mass%. The balance is substantially Fe.
本発明の製造方法を適用すれば、熱収縮の問題をより確実に解決でき、優れた平坦度を有するFe−Ni系合金薄板を得られることから、微細加工が不可欠なリードフレーム用素材やリード用素材等に用いられるFe−Ni系合金薄板材を容易に得ることができる By applying the manufacturing method of the present invention, it is possible to more reliably solve the problem of heat shrinkage and obtain an Fe—Ni alloy thin plate having excellent flatness. Fe-Ni-based alloy thin plate material used for materials for manufacturing can be easily obtained
以下に、本発明で規定した限定理由を詳しく説明する。
本発明では最終の冷間圧延後にレベラーによる形状矯正を行ない、リードフレーム用素材やリード用素材等に用いられるFe−Ni系合金薄板材の形状を矯正して平坦性を確保した後、連続焼鈍炉による歪取焼鈍を行う。
本発明で言うレベラーとは鋼帯全幅に長さ方向にある程度の引張応力を負荷し鋼帯に発生している長さ差を矯正する設備のことをいい、本発明において実際に用いるレベラーとしては、Fe−Ni系合金薄板材の厚さを考慮するとテンションレベラーを用いるのが好ましく、ベンディングとテンションとを組合わせたレベラーであっても良い。張力は50〜500N/mm2の範囲であれば良い。
また歪取焼鈍については、本発明の製造方法においては製品幅への条取りするスリット前であるため、例えば300mm〜1200mmといった広い幅のFe−Ni系合金薄板材に対して連続焼鈍炉による歪取焼鈍が行える。これにより、自重のみがFe−Ni系合金薄板材の鋼帯全幅に負荷されるため、狭い幅の鋼帯を多条同時通板する場合と比較し容易に張力の調整を行うことができる。
そのため、従来のようにFe−Ni系合金薄板材に部分的に熱収縮の変動が生じるのを抑制でき安定した熱収縮特性が得られるのである。また、Fe−Ni系合金薄板材を多条同時通板する場合と比較し、容易に材料蛇行の制御も行うことができ、変形、損傷のポテンシャルも無くすことができる。
The reason for limitation defined in the present invention will be described in detail below.
In the present invention, the shape is corrected by a leveler after the final cold rolling, the shape of the Fe-Ni alloy thin plate material used for the lead frame material, the lead material, etc. is corrected to ensure flatness, and then continuous annealing is performed. Performs strain relief annealing in a furnace.
The leveler referred to in the present invention means a facility that applies a certain amount of tensile stress to the entire width of the steel strip to correct the length difference generated in the steel strip, and the leveler actually used in the present invention is as follows. In consideration of the thickness of the Fe—Ni alloy sheet material, it is preferable to use a tension leveler, or a leveler in which bending and tension are combined. Tension may be in the range of 50~500N / mm 2.
In addition, with regard to strain relief annealing, in the manufacturing method of the present invention, since it is before slitting to the product width, for example, a strain by a continuous annealing furnace is applied to a wide width Fe—Ni alloy sheet material of 300 mm to 1200 mm. Can be annealed. Thereby, since only the own weight is loaded on the full width of the steel strip of the Fe—Ni-based alloy sheet material, the tension can be easily adjusted as compared with the case where a narrow strip of steel strip is simultaneously passed.
For this reason, it is possible to suppress the occurrence of partial thermal shrinkage in the Fe—Ni-based alloy thin plate material as in the prior art, and to obtain a stable thermal shrinkage characteristic. Further, as compared with the case where multiple sheets of Fe—Ni alloy thin plate material are passed simultaneously, the meandering of the material can be easily controlled, and the potential for deformation and damage can be eliminated.
なお、本発明で用いる代表的な連続焼鈍炉には竪型、横型のものがあるが、何れにおいても張力の調整が行えて、生産効率を高められるという利点が得られる。
この時に、特に竪型の連続焼鈍炉を用いた場合では、鋼帯の長手方向が上下となるため、鋼帯の弛みを抑制することができ、より一層安定した熱収縮特性が得られる。
The typical continuous annealing furnace used in the present invention includes a vertical type and a horizontal type, and in either case, the tension can be adjusted, and the advantage that the production efficiency can be improved is obtained.
At this time, particularly when a vertical continuous annealing furnace is used, since the longitudinal direction of the steel strip is up and down, slackness of the steel strip can be suppressed, and more stable heat shrinkage characteristics can be obtained.
上記の歪取焼鈍において炉内張力を20N/mm2以下とするのが好ましい。この範囲であればプレス打抜加工で用いる中間熱処理時または半導体パッケージ製造中に受ける加熱時に生じる熱収縮を低く抑え、寸法変動による不具合を防止できる。といった効果をより確実に得ることができる。
炉内張力が20N/mm2を超えると、例えばプレス打抜加工で中間熱処理時を行うと熱収縮が大きくなり、寸法変動による不具合が発生し易くなるため炉内張力を20N/mm2以下と規定した。
なお、下限については用いる連続焼鈍炉が竪型炉であるか横型炉であるかによっても若干の違いが有り、例えば竪型炉であれば特別に張力を加えることなく、自重で垂れた状態でも良いが、作業の安定性を考慮すると竪型炉、横型炉共に0.5N/mm2を下限とすれば良く、好ましくは1〜15N/mm2の範囲であれば上記の効果をより確実に得ることができる。
In the above-described strain relief annealing, it is preferable that the furnace tension is 20 N / mm 2 or less. Within this range, thermal shrinkage that occurs during intermediate heat treatment used in press punching or during heating that is received during semiconductor package manufacture can be suppressed to a low level, and problems due to dimensional variations can be prevented. Such an effect can be obtained more reliably.
If the in-furnace tension exceeds 20 N / mm 2 , for example, if the intermediate heat treatment is performed by press punching, thermal shrinkage increases, and defects due to dimensional variations are likely to occur, so the in-furnace tension is 20 N / mm 2 or less. Stipulated.
There is a slight difference in the lower limit depending on whether the continuous annealing furnace used is a vertical furnace or a horizontal furnace. For example, in the case of a vertical furnace, no special tension is applied, even in a state where it is hung by its own weight. good, consider a shaft furnace stability of the work may be a horizontal furnace together 0.5 N / mm 2 and a lower limit, preferably the above effects more reliably be in the range of 1~15N / mm 2 Obtainable.
上記の歪取焼鈍は温度400〜750℃で行うことが好ましい。
この温度の範囲であれば冷間圧延及び形状矯正時に導入された歪みの緩和という効果が得られる。好ましい温度範囲は500〜700℃の範囲である。なお、処理時間は特に規定はしないが10〜120秒であれば良い。
また、この時の雰囲気としては露点−70〜−5℃の還元性雰囲気中で行っても、或いは窒素等の不活性ガス雰囲気中で行っても良い。何れの雰囲気とするかは、求められる特性に応じて選択すればよく、例えば主として耐食性を向上させることが重要である場合、不活性ガス雰囲気中で行う方が有利であり、還元性雰囲気の場合は主として表面酸化抑制という効果を付与することができたりする。
The strain relief annealing is preferably performed at a temperature of 400 to 750 ° C.
Within this temperature range, the effect of relaxation of strain introduced during cold rolling and shape correction can be obtained. A preferred temperature range is 500-700 ° C. The processing time is not particularly specified but may be 10 to 120 seconds.
In addition, the atmosphere at this time may be performed in a reducing atmosphere having a dew point of −70 to −5 ° C., or in an inert gas atmosphere such as nitrogen. Which atmosphere should be selected according to the required characteristics, for example, when it is important to mainly improve the corrosion resistance, it is advantageous to perform in an inert gas atmosphere, in the case of a reducing atmosphere Can mainly impart the effect of suppressing surface oxidation.
本発明においては上記の歪取焼鈍を行った後、例えば製品幅に条取りスリット加工を行う。
本発明においては、条取りスリット加工前に平坦度と熱収縮特性の両方を実現させているため、この条取りスリット加工において過度に歪を与えないことが望ましく、低歪で条取りスリットができる方法であれば、例えばレーザーであっても良いが、円形上刃カッターと円形下刃カッターとの協働によりスリットするのが簡便である。
スリット加工する円形上刃カッターと円形下刃カッターのそれぞれのカッター径はFe−Ni系合金薄板材の板厚750倍以上の直径であることが好ましい。これは、板厚の750倍未満の直径のカッター径の場合、せん断角度が大きくなり条取りスリット時の残留歪みが増大する場合があるからである。
そのため、本発明ではスリット歪を大きく軽減させるために円形上刃カッター径と円形下刃カッター径はFe−Ni系合金薄板材の板厚の750倍以上の直径とした。好ましくは900倍以上が良い。
なお、この時、更にスリット歪を軽減させるために円形上刃カッターと円形下刃カッターのオーバーラップ量は板厚の5〜50%とするとよい。オーバーラップ量を大きくするとせん断角度が大きくなりスリット時の残留歪が増大する。オーバーラップ量が小さすぎると切断しきれなくなり、スリット不良になるからである。
In the present invention, after performing the above-described strain relief annealing, for example, a slitting process is performed on the product width.
In the present invention, since both flatness and heat shrinkage characteristics are realized before the slitting slit processing, it is desirable not to give excessive distortion in the slitting slit processing, and the slitting slit can be formed with low distortion. If it is a method, it may be a laser, for example, but it is easy to slit by cooperation of a circular upper blade cutter and a circular lower blade cutter.
The cutter diameters of the circular upper blade cutter and the circular lower blade cutter to be slit are preferably 750 times or more the thickness of the Fe-Ni alloy thin plate material. This is because in the case of a cutter diameter with a diameter less than 750 times the plate thickness, the shear angle becomes large and the residual strain at the time of the slitting slit may increase.
Therefore, in the present invention, in order to greatly reduce the slit distortion, the diameter of the circular upper blade cutter and the circular lower blade cutter are set to a diameter of 750 times or more the thickness of the Fe—Ni alloy thin plate material. 900 times or more is preferable.
At this time, in order to further reduce slit distortion, the overlap amount of the circular upper blade cutter and the circular lower blade cutter is preferably 5 to 50% of the plate thickness. Increasing the overlap amount increases the shear angle and increases the residual strain at the time of slitting. This is because if the amount of overlap is too small, it will not be able to cut completely, resulting in a slit failure.
なお、本発明で言うFe−Ni系合金とは、FeとNiとが主成分となるものを言い、代表的な組成は、質量%でNi含有量が27〜52質量%−残部が実質的にFeの合金、または更にCrを7%以下含んだ合金、前記のNiを20%以下のCoで置換した合金等、FeとNiとを主成分とする合金を指す。
このうち、好ましくはFeとNiとでなる合金であり、以下に好ましい元素の範囲とその理由を説明する。
C:0.1%以下
Cはエッチングに供される場合のあるFe−Ni系合金薄板材において、エッチング性を劣化させる元素である。そのため、Cの上限を0.1%以下とした。好ましいCの上限は0.3%である。
Si:1.0%以下、Mn:1.2%以下
Si、Mnは通常Fe−Ni系合金では、脱酸を目的に微量含有されているが、過剰に添加すれば偏析を起こし易くなるため、Si:1.0%以下、Mn:1.2%以下とした。
The Fe—Ni-based alloy referred to in the present invention refers to an alloy composed mainly of Fe and Ni, and the typical composition is mass% and the Ni content is 27 to 52 mass% —the balance being substantially the same. An alloy containing Fe and Ni as main components, such as an alloy of Fe, or an alloy containing 7% or less of Cr, or an alloy obtained by replacing Ni with 20% or less of Co.
Of these, an alloy composed of Fe and Ni is preferable, and the range of preferable elements and the reason thereof will be described below.
C: 0.1% or less C is an element that deteriorates the etching property in Fe-Ni alloy thin plate material that may be subjected to etching. Therefore, the upper limit of C is set to 0.1% or less. A preferable upper limit of C is 0.3%.
Si: 1.0% or less, Mn: 1.2% or less Si and Mn are usually contained in small amounts for the purpose of deoxidation in Fe-Ni alloys, but segregation is likely to occur if excessively added. , Si: 1.0% or less, Mn: 1.2% or less.
Ni:30〜50%
NiはFe−Ni系合金薄板材を例えばリードフレームとして用いる場合の熱膨張係数を調整する作用を有し、低熱膨張特性に大きな影響を及ぼす元素である。含有量が30%より少なく、または50%を越えるものでは熱膨張係数を低める効果がなくなるため、Niの範囲は30〜50%とする。好ましくは40〜45%である。
残部は実質的にFe
上記の元素以外は実質的にFeとしたが、製造上不可避的に含有する不純物は含まれる。また、プレス打抜き性を向上させる場合はS等の快削性元素を0.005%〜0.020%含有させても良いし、熱間加工性を向上させるようなB等の元素を0.0005〜0.0050%含有させても良い。
Ni: 30-50%
Ni is an element that has an effect of adjusting a thermal expansion coefficient when an Fe—Ni-based alloy thin plate material is used as a lead frame, for example, and has a great influence on low thermal expansion characteristics. If the content is less than 30% or exceeds 50%, the effect of lowering the thermal expansion coefficient is lost, so the range of Ni is 30 to 50%. Preferably it is 40 to 45%.
The balance is substantially Fe
The elements other than the above elements are substantially Fe, but impurities inevitably contained in production are included. Further, in order to improve the press punchability, 0.005% to 0.020% of a free-cutting element such as S may be contained, and an element such as B that improves the hot workability is set to 0.005%. You may make it contain 0005-0.0050%.
以下の実施例で本発明を更に詳しく説明する。
真空溶解、鍛造、熱間圧延を行い、リードフレーム用に用いる冷間圧延用のFe−Ni系合金薄板材を作製した。次に、この冷間圧延用のFe−Ni系合金薄板材に対して、還元性雰囲気中で焼鈍と冷間圧延を繰返して、厚さ0.125mm、幅700mmのFe−Ni系合金薄板材を作製した。なお、焼鈍温度は950℃とし、最終の冷間圧延は圧下率25%とし、レベラーはテンションレベラーとして張力200〜400N/mm2の範囲で行った。
更に、Fe−Ni系合金薄板材を用いて本発明方法と従来方法にてリードフレーム材用のFe−Ni系合金薄板材に仕上げた。条取りスリット加工は、円形上刃カッターと円形下刃カッターとの協働により行い、スリットの幅は全て100mmとした。
なお、比較例については条取りスリット後の焼鈍となる。工程No.7及びNo.8については3条同時の歪取焼鈍とし、工程No.9は1条ずつの焼鈍とした。
化学組成を表1に、製造条件を表2に示す。
The following examples further illustrate the present invention.
Vacuum melting, forging, and hot rolling were performed to produce a cold-rolled Fe-Ni alloy thin plate material used for a lead frame. Next, the Fe—Ni alloy thin sheet material for cold rolling is repeatedly annealed and cold rolled in a reducing atmosphere to obtain a Fe—Ni alloy thin sheet material having a thickness of 0.125 mm and a width of 700 mm. Was made. The annealing temperature was 950 ° C., the final cold rolling was a reduction rate of 25%, and the leveler was a tension leveler with a tension of 200 to 400 N / mm 2 .
Further, an Fe—Ni alloy thin plate material for a lead frame material was finished using the Fe—Ni alloy thin plate material by the method of the present invention and the conventional method. The slitting slitting was performed in cooperation with a circular upper blade cutter and a circular lower blade cutter, and the slit widths were all 100 mm.
In addition, about a comparative example, it becomes the annealing after a winding slit. Step No. 7 and no. For No. 8, three strips were simultaneously subjected to strain relief annealing. No. 9 was annealed one by one.
The chemical composition is shown in Table 1, and the production conditions are shown in Table 2.
各製造条件で製造した条取りスリット後のリードフレーム材用のFe−Ni系合金薄板材の加熱収縮量の評価を実施した。
加熱収縮量の評価は、圧延方向に180mmの距離の標点を打ち工具顕微鏡で距離を測定。サンプルを650℃×10分(水素中)加熱後、標点を再度工具顕微鏡で測定し、収縮量を求めて加熱前の標点距離で割って100を乗じた値として示した。
スリット歪量は、図1に示すようにリードフレーム材用のFe−Ni系合金薄板材(1)のスリットエッジ(2)から1.5mmの幅にワイヤーカットで切り込み(4)を入れ、カット後のリードフレーム材用のFe−Ni系合金薄板材(1)を定盤(3)上に置いて先端の浮上りをスケールにて測定した。
平坦度の評価は500mm長さに切断後、定盤上に置きレーザー距離センサーで最大浮上量(mm)を測定した。
これらの測定は条取した6本のリードフレーム材用のFe−Ni系合金薄板材を測定した。測定結果を表3に示す。
The heat shrinkage amount of the Fe—Ni alloy thin plate material for the lead frame material after the slitting slit manufactured under each manufacturing condition was evaluated.
The heat shrinkage is evaluated by measuring a distance with a tool microscope by placing a mark at a distance of 180 mm in the rolling direction. After heating the sample at 650 ° C. × 10 minutes (in hydrogen), the gauge point was again measured with a tool microscope, the amount of shrinkage was determined, and divided by the gauge distance before heating and multiplied by 100.
As shown in FIG. 1, the slit strain amount is cut by wire cutting (4) to a width of 1.5 mm from the slit edge (2) of the Fe-Ni alloy thin plate material (1) for the lead frame material. The Fe—Ni alloy thin plate material (1) for the later lead frame material was placed on the surface plate (3), and the lift of the tip was measured with a scale.
The flatness was evaluated by measuring the maximum flying height (mm) with a laser distance sensor after cutting it to a length of 500 mm and placing it on a surface plate.
These measurements were carried out on six striped Fe-Ni alloy thin plate materials for lead frame materials. Table 3 shows the measurement results.
表3に示すように、本発明の製造方法での歪取焼鈍条件で実施したリードフレーム材用のFe−Ni系合金薄板材は加熱収縮量が0.03%以下と小さいものになっている。
比較例のスリット後の歪取焼鈍ではNo.7で収縮が高くなっている。これは歪取焼鈍時張力も高く、レベラーにより再び歪が導入されるためである。
No.8では加熱収縮量が0.03%以下のものもあるがロット間のバラツキが大きくなっている。これは多条同時通板のために張力制御が各条独立して制御ができないからである。
No.9では歪取焼鈍で1条づつ通板しているのでロット間のバラツキは比較的少ないが、スリット後の歪取焼鈍のため歪が開放されて平坦度が悪くなっている。
またてスリット歪の測定においても本発明の製造方法でのスリット条件で実施したリードフレーム材用のFe−Ni系合金薄板材はスリット歪量が15mm以下と小さくなっている。
平坦度に関しては本発明方法によれば100mmの幅に対して平坦度0.2mm以下を実現しているが、比較例では平坦度が0.27〜0.58mmの浮上りとなっている。これはスリット後の熱処理のために各条で歪が開放される際に周囲の拘束がないので容易にうねり形状が発生するものである。特に今回の板幅100mmのような広幅材においては平坦度は顕著な差が現れる。
As shown in Table 3, the Fe-Ni-based alloy thin plate material for lead frame material implemented under the strain relief annealing conditions in the manufacturing method of the present invention has a small heat shrinkage of 0.03% or less. .
In the strain relief annealing after slit of the comparative example, No. 7, the shrinkage is high. This is because the tension during strain relief annealing is high and strain is introduced again by the leveler.
No. In some cases, the amount of heat shrinkage is 0.03% or less, but the variation between lots is large. This is because the tension control cannot be controlled independently for each strip because of the multiple strips.
No. In No. 9, since the strips are passed through one line by strain relief annealing, the variation between lots is relatively small, but the strain is released due to strain relief annealing after the slit, and the flatness is deteriorated.
Also in the measurement of the slit strain, the Fe-Ni alloy thin plate material for lead frames made under the slit conditions in the manufacturing method of the present invention has a slit strain amount as small as 15 mm or less.
Regarding the flatness, according to the method of the present invention, a flatness of 0.2 mm or less is realized with respect to a width of 100 mm. However, in the comparative example, the flatness is 0.27 to 0.58 mm. This is because a wavy shape is easily generated because there is no surrounding constraint when the strain is released by each strip for heat treatment after the slit. In particular, in a wide material such as a plate width of 100 mm this time, a remarkable difference appears in flatness.
本発明は低加熱収縮と低スリット歪の特性に優れているため、微細加工が不可欠なFe−Ni系合金薄板材を用いる用途に適用できる。 Since the present invention is excellent in the characteristics of low heat shrinkage and low slit strain, it can be applied to applications using an Fe—Ni-based alloy sheet material in which fine processing is indispensable.
1. Fe−Ni系合金薄板材
2. スリットエッジ
3. 定盤
4. 切り込み
1. Fe-Ni alloy thin plate material2. 2. Slit edge Surface plate 4. Notch
Claims (6)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004283492A JP4164828B2 (en) | 2004-09-29 | 2004-09-29 | Method for producing Fe-Ni alloy sheet material |
SG200505625A SG121095A1 (en) | 2004-09-29 | 2005-09-01 | A method for manufacturing an iron-nickel-based alloy thin strip |
KR1020050090050A KR100699424B1 (en) | 2004-09-29 | 2005-09-27 | A method for manufacturing an iron-nickel-based alloy thin strip |
CNB2005101041851A CN100374583C (en) | 2004-09-29 | 2005-09-29 | Method for producing Fe-Ni based alloy thin plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004283492A JP4164828B2 (en) | 2004-09-29 | 2004-09-29 | Method for producing Fe-Ni alloy sheet material |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008125654A Division JP2008223146A (en) | 2008-05-13 | 2008-05-13 | METHOD FOR PRODUCING Fe-Ni BASED ALLOY THIN SHEET |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006097073A true JP2006097073A (en) | 2006-04-13 |
JP4164828B2 JP4164828B2 (en) | 2008-10-15 |
Family
ID=36237162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004283492A Expired - Lifetime JP4164828B2 (en) | 2004-09-29 | 2004-09-29 | Method for producing Fe-Ni alloy sheet material |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP4164828B2 (en) |
KR (1) | KR100699424B1 (en) |
CN (1) | CN100374583C (en) |
SG (1) | SG121095A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009270196A (en) * | 2008-04-09 | 2009-11-19 | Hitachi Metals Ltd | Manufacturing method of band steel for blade |
CN105598211A (en) * | 2015-12-29 | 2016-05-25 | 西安瑞福莱钨钼有限公司 | Thermal leveling method for high-density tungsten alloy thin plate |
WO2018043641A1 (en) * | 2016-08-31 | 2018-03-08 | 日立金属株式会社 | Metal mask material and production method therefor |
WO2023243710A1 (en) * | 2022-06-17 | 2023-12-21 | 株式会社プロテリアル | METHOD FOR PRODUCING Fe-Ni-BASED ALLOY THIN PLATE, AND Fe-Ni-BASED ALLOY THIN PLATE |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100948150B1 (en) * | 2009-10-07 | 2010-03-18 | 주식회사 아또인터내셔날 | The apparatus and method of reprocessing a aluminum plate thickness by grinding and annealing |
JP5455099B1 (en) | 2013-09-13 | 2014-03-26 | 大日本印刷株式会社 | Metal plate, metal plate manufacturing method, and mask manufacturing method using metal plate |
JP5516816B1 (en) | 2013-10-15 | 2014-06-11 | 大日本印刷株式会社 | Metal plate, method for producing metal plate, and method for producing vapor deposition mask using metal plate |
JP5641462B1 (en) | 2014-05-13 | 2014-12-17 | 大日本印刷株式会社 | Metal plate, metal plate manufacturing method, and mask manufacturing method using metal plate |
TWI656229B (en) | 2015-02-10 | 2019-04-11 | 日商大日本印刷股份有限公司 | Production method of vapor deposition mask for organic EL display device, metal plate used for producing vapor deposition mask for organic EL display device, and production method thereof |
JP6598007B2 (en) * | 2015-09-30 | 2019-10-30 | 日立金属株式会社 | Method for producing Fe-Ni alloy thin sheet |
CN106995904B (en) * | 2017-05-19 | 2018-08-21 | 广东省钢铁研究所 | A kind of preparation method of the anti-corrosion iron-nickel alloy band of antirust |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3191291A (en) * | 1959-01-21 | 1965-06-29 | Continental Can Co | Art of producing very thin steel and like sheets in wide strips |
JPS5867826A (en) * | 1981-10-17 | 1983-04-22 | Nippon Steel Corp | Preparation of steel plate for spiral fin of heat exchanger excellent in processability and high temp. oxidation resistance |
JPS5881926A (en) * | 1981-11-07 | 1983-05-17 | Toyo Kohan Co Ltd | Preparation of material for shadow mask |
JPH06216304A (en) * | 1993-01-14 | 1994-08-05 | Daido Steel Co Ltd | Lead frame material for thin plate with multipin, and its manufacture |
JP2848233B2 (en) * | 1994-02-09 | 1999-01-20 | 株式会社ニコン | Electronic flash device information setting device |
NL9400674A (en) | 1994-04-27 | 1995-12-01 | Hoogovens Groep Bv | Device and method for manufacturing DKG strip steel. |
FR2730942B1 (en) * | 1995-02-24 | 1997-05-16 | Lorraine Laminage | PROCESS FOR THE PREPARATION OF A SHEET OR A STEEL STRIP FOR THE PRODUCTION OF A BOX AND SHEET OR STEEL STRIP OBTAINED BY THIS PROCESS |
JPH09136101A (en) * | 1995-11-09 | 1997-05-27 | Furukawa Electric Co Ltd:The | Manufacture of ni-ti alloy sheet and ni-ti alloy member |
CN1160163C (en) * | 1996-03-15 | 2004-08-04 | 杰富意钢铁株式会社 | Ultra-thin steel sheet and mfg. method therefor |
-
2004
- 2004-09-29 JP JP2004283492A patent/JP4164828B2/en not_active Expired - Lifetime
-
2005
- 2005-09-01 SG SG200505625A patent/SG121095A1/en unknown
- 2005-09-27 KR KR1020050090050A patent/KR100699424B1/en active IP Right Grant
- 2005-09-29 CN CNB2005101041851A patent/CN100374583C/en active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009270196A (en) * | 2008-04-09 | 2009-11-19 | Hitachi Metals Ltd | Manufacturing method of band steel for blade |
CN105598211A (en) * | 2015-12-29 | 2016-05-25 | 西安瑞福莱钨钼有限公司 | Thermal leveling method for high-density tungsten alloy thin plate |
WO2018043641A1 (en) * | 2016-08-31 | 2018-03-08 | 日立金属株式会社 | Metal mask material and production method therefor |
JPWO2018043641A1 (en) * | 2016-08-31 | 2019-06-24 | 日立金属株式会社 | Material for metal mask and method of manufacturing the same |
WO2023243710A1 (en) * | 2022-06-17 | 2023-12-21 | 株式会社プロテリアル | METHOD FOR PRODUCING Fe-Ni-BASED ALLOY THIN PLATE, AND Fe-Ni-BASED ALLOY THIN PLATE |
Also Published As
Publication number | Publication date |
---|---|
KR20060051696A (en) | 2006-05-19 |
JP4164828B2 (en) | 2008-10-15 |
SG121095A1 (en) | 2006-04-26 |
CN100374583C (en) | 2008-03-12 |
KR100699424B1 (en) | 2007-03-28 |
CN1754968A (en) | 2006-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6598007B2 (en) | Method for producing Fe-Ni alloy thin sheet | |
KR100699424B1 (en) | A method for manufacturing an iron-nickel-based alloy thin strip | |
EP3225704A1 (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JP2021014639A (en) | PRODUCING METHOD OF Fe-Ni ALLOY SHEET | |
JP2017064764A (en) | Fe-Ni-BASED ALLOY THIN SHEET AND PRODUCTION METHOD OF THE SAME | |
JP2015193871A (en) | Fe-Ni-BASED ALLOY THIN SHEET AND MANUFACTURING METHOD THEREFOR | |
KR102294111B1 (en) | Manufacturing method of thin plate for metal mask and thin plate for metal mask | |
JP2008223146A (en) | METHOD FOR PRODUCING Fe-Ni BASED ALLOY THIN SHEET | |
JP5206017B2 (en) | Method for producing high silicon steel sheet | |
JP6975391B2 (en) | Manufacturing method of Fe-Ni alloy sheet and Fe-Ni alloy sheet | |
EP3521459B1 (en) | METHOD FOR PRODUCING Fe-Ni-BASED ALLOY THIN PLATE AND Fe-Ni-BASED ALLOY THIN PLATE | |
JP2011012334A (en) | Stainless steel sheet for photoetching-processing and manufacturing method therefor | |
JP2010047834A (en) | Cold-rolled steel sheet, process for production of same, and backlight chassis | |
JP7294336B2 (en) | Fe-Ni alloy sheet | |
JPH08100242A (en) | Alloy wire with high strength, high toughness and low thermal expansion and its production | |
JP2001247938A (en) | Austenitic stainless steel sheet for electronic equipment component | |
JP3348565B2 (en) | Method of producing Fe-Ni-based alloy thin plate for electronic parts and Fe-Ni-Co-based alloy thin plate excellent in degreasing property | |
JP4496995B2 (en) | Method for producing hot-rolled sheet steel for hot-dip galvanized steel sheets with excellent cold-rollability and corrugation workability | |
WO2023243710A1 (en) | METHOD FOR PRODUCING Fe-Ni-BASED ALLOY THIN PLATE, AND Fe-Ni-BASED ALLOY THIN PLATE | |
JPH06145811A (en) | Manufacture of lead frame material | |
JP2006328509A (en) | Method for producing alloy | |
JP2005103600A (en) | Method for hot-rolling continuously cast slab of high nickel alloy steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080204 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080314 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080513 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080415 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080528 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080704 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080717 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4164828 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130808 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |