JP2006095519A - Treating method and treating apparatus for heavy metals-containing water - Google Patents

Treating method and treating apparatus for heavy metals-containing water Download PDF

Info

Publication number
JP2006095519A
JP2006095519A JP2005252357A JP2005252357A JP2006095519A JP 2006095519 A JP2006095519 A JP 2006095519A JP 2005252357 A JP2005252357 A JP 2005252357A JP 2005252357 A JP2005252357 A JP 2005252357A JP 2006095519 A JP2006095519 A JP 2006095519A
Authority
JP
Japan
Prior art keywords
sludge
containing water
heavy metal
precipitate
iron compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005252357A
Other languages
Japanese (ja)
Other versions
JP4747269B2 (en
Inventor
Hiroshi Hayashi
浩志 林
Hitoshi Takeuchi
均 竹内
Hajime Negishi
一 根岸
Nariyuki Tsuzaki
成幸 津崎
Shintaro Nakaie
新太郎 仲家
Yoshio Aikawa
良雄 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005252357A priority Critical patent/JP4747269B2/en
Publication of JP2006095519A publication Critical patent/JP2006095519A/en
Application granted granted Critical
Publication of JP4747269B2 publication Critical patent/JP4747269B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treating system with which heavy metals are efficiently and economically removed from heavy metals-containing water. <P>SOLUTION: The treating method for the heavy metals-containing water has an iron compound addition step of adding a reducing iron compound to the heavy metals-containing water, a precipitation step of leading the heavy metals-containing water to which the reducing iron compound is added to a reaction tank and forming a precipitate, a solid-liquid separation step of separating the formed precipitate (sludge) by solid-liquid separation and a sludge return step of alkalinizing all or a portion of the separated sludge to form alkaline sludge and returning it to the reaction tank. In the precipitation step, a sealed reaction tank is used, and an open type alkali addition tank is used in the sludge return step, and the return sludge to which alkali is added under open conditions is introduced into the sealed reaction tank and is blended with the heavy metals-containing water to which the reducing iron compound is added, and the obtained alkaline mixture is allowed to react in a non-oxidizing atmosphere under an alkaline condition to form a reducing iron compound precipitate, thereby incorporating heavy metals in the precipitate to remove them out of the system. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、重金属類含有水から効率よく重金属類を除去する経済性に優れた処理システムに関する。より詳しくは、工程が簡単で実用性に優れ、生成する汚泥がコンパクトであって、常温で効率よく排水中の重金属類を除去することができる経済性に優れた重金属類含有水の処理システムに関する。 The present invention relates to an economical treatment system that efficiently removes heavy metals from water containing heavy metals. More specifically, the present invention relates to a system for treating heavy metal-containing water that is simple and excellent in practicality, has a compact sludge, and can efficiently remove heavy metals in waste water at room temperature. .

排水等に含まれる重金属類の一例としてセレンが知られている。通常、排水等に含まれるセレンは、亜セレン酸イオン[SeO3 2-](4価セレン)や、セレン酸イオン[SeO4 2-](6価セレン)の形態で存在する。このセレンは汚染物質として、排出基準が厳しく規制されている。従来、排水に含まれるセレンの除去方法として、(イ)水酸化第二鉄などの3価鉄化合物を添加し、その凝集作用によって沈澱にセレンを吸着させて共沈させる方法、(ロ)バリウムや鉛などを添加して難溶性のセレン酸塩沈澱を形成する方法、(ハ)イオン交換樹脂を用いてセレンを吸着させて除去する方法、(ニ)生物処理法が知られている。 Selenium is known as an example of heavy metals contained in waste water and the like. Usually, selenium contained in waste water or the like exists in the form of selenite ion [SeO 3 2- ] (tetravalent selenium) or selenate ion [SeO 4 2- ] (hexavalent selenium). This selenium is a pollutant and its emission standards are strictly regulated. Conventionally, as a method for removing selenium contained in wastewater, (i) a method in which a trivalent iron compound such as ferric hydroxide is added and selenium is adsorbed to the precipitate by coagulation, and (b) barium There are known a method of forming a poorly soluble selenate precipitate by adding lead or lead, (c) a method of adsorbing and removing selenium using an ion exchange resin, and (d) a biological treatment method.

しかし、バリウムや鉛による沈澱化は共存イオンの影響を受けやすいために添加量を多く必要とし、しかもバリウムおよび鉛も重金属類であるため後処理の負担が生じる。また、イオン交換樹脂を用いた方法は硫酸イオン等が存在すると除去効果が激減するなどの問題がある。さらに、生物処理法は処理時間が長くかかる。一方、3価鉄化合物を用いる方法は6価セレンに対しては殆ど効果がない。そこで、第一鉄塩(2価の鉄)を利用した方法が提案されている。 However, since precipitation with barium or lead is easily affected by coexisting ions, a large amount of addition is required, and since barium and lead are also heavy metals, a burden of post-treatment arises. Further, the method using an ion exchange resin has a problem that the removal effect is drastically reduced if sulfate ions or the like are present. Furthermore, the biological treatment method takes a long time. On the other hand, the method using a trivalent iron compound has little effect on hexavalent selenium. Therefore, a method using ferrous salt (divalent iron) has been proposed.

この方法は、第一鉄の還元力を利用して6価セレンを4価セレンに還元することによってセレンの沈澱を促す方法であり、例えば、セレン含有排水に2価鉄イオンを添加し、次いで液温を30℃以上に加温維持しつつ空気遮断環境下とし、アルカリを添加してセレン澱物を生成させる処理方法が知られている(特許文献1)。また、セレン含有排水にアルカリを添加して重金属類の水酸化物を沈澱させる第1工程と、この処理液に不活性ガスを導入して溶存酸素を除去した後にアルカリ域で第一鉄塩を添加してセレンを還元し、沈澱化する第2工程と、この処理液に空気を吹き込んで液中に残留する重金属類を鉄含有沈澱に取り込んで沈澱化する第3工程とを有する処理方法が知られている(特許文献2)。この他に、セレン含有排水に水酸化第一鉄を添加し、さらにアルカリを加えてセレン含有沈澱を生成させる一方、そのスラッジの一部をアルカリ添加後の反応槽に循環して処理効率を高める処理方法が知られている(特許文献3)。 In this method, precipitation of selenium is promoted by reducing hexavalent selenium to tetravalent selenium by utilizing the reducing power of ferrous iron. For example, divalent iron ions are added to selenium-containing wastewater, and then There is known a treatment method in which a liquid temperature is maintained at 30 ° C. or higher while maintaining an air-blocking environment, and alkali is added to produce selenium starch (Patent Document 1). In addition, the first step of adding alkali to the selenium-containing wastewater to precipitate heavy metal hydroxides, and introducing an inert gas into the treatment liquid to remove dissolved oxygen, and then adding ferrous salt in the alkaline region And a second step of adding and reducing selenium and precipitating, and a third step of blowing air into the treatment liquid and taking in heavy metals remaining in the liquid into the iron-containing precipitate and precipitating. Known (Patent Document 2). Besides this, ferrous hydroxide is added to the selenium-containing wastewater, and further alkali is added to produce a selenium-containing precipitate, while a part of the sludge is circulated to the reaction tank after the addition of alkali to increase the processing efficiency. A processing method is known (Patent Document 3).

しかし、従来の上記処理方法は何れも排水中のセレン濃度を環境基準値0.01mg/L以下に低減するのが難しい。また、単に水酸化第一鉄を添加する方法では、排水中の酸素がセレンと競合して第一鉄イオンと反応するため、予め排水中の溶存酸素を除去する必要があり処理工程が煩わしい。さらに、水酸化第一鉄の沈澱は含有水率が大きく嵩高くなるので、このままではスラリー処理の負担が大きい。なお、生成した沈澱の一部を反応槽に循環する方法が知られているが、生成沈澱を単純に循環しても沈澱の圧密効果が低く、後処理に負担がかかる。しかも、従来の処理方法の多くは、水酸化第一鉄を加熱処理して鉄フェライト化しており、処理工程が煩雑であると共に加熱コストも嵩むと云う問題がある。 However, it is difficult to reduce the selenium concentration in the waste water to an environmental standard value of 0.01 mg / L or less in any of the above-described conventional treatment methods. Further, in the method of simply adding ferrous hydroxide, oxygen in the wastewater competes with selenium and reacts with ferrous ions, so it is necessary to remove dissolved oxygen in the wastewater in advance, and the treatment process is troublesome. Furthermore, since precipitation of ferrous hydroxide has a large water content and becomes bulky, the burden on slurry processing is large as it is. In addition, a method is known in which a part of the generated precipitate is circulated to the reaction vessel. However, even if the generated precipitate is simply circulated, the precipitation compaction effect is low, and the post-treatment is burdened. Moreover, many of the conventional treatment methods have the problem that ferrous hydroxide is heat-treated to form iron ferrite, and the treatment process is complicated and the heating cost increases.

また、重金属類排水に第一鉄イオン等を添加し、pH5以上に調整して鉄フェライトまたは疑似鉄フェライトを生成させ、生成したフェライト汚泥を固液分離すると共に、その一部を反応槽に返送して汚泥循環することによって重金属類を排水から除去する処理方法が知られている(特許文献4)。この方法は、フェライト汚泥(FeO・Fe23)が第一鉄と第二鉄を含むことに注目し、第一鉄単独よりも第一鉄と第二鉄を有するほうが容易にフェライト汚泥化することを利用して沈澱を生成させているが、この方法のフェライト汚泥は還元力が弱く、この汚泥を反応槽に返送しても重金属類の除去効果には限界がある。 In addition, ferrous ions etc. are added to heavy metal wastewater, adjusted to pH 5 or higher to produce iron ferrite or pseudo iron ferrite, and the generated ferrite sludge is separated into solid and liquid, and part of it is returned to the reaction tank And the processing method which removes heavy metals from waste water by circulating sludge is known (patent document 4). This method pays attention to the fact that ferrite sludge (FeO · Fe 2 O 3 ) contains ferrous iron and ferric iron. Ferrite sludge is easier to form with ferrous iron and ferric iron than ferrous alone. However, the ferrite sludge of this method has a weak reducing power, and even if this sludge is returned to the reaction tank, the effect of removing heavy metals is limited.

一方、重金属類含有水にアルカリを添加して汚泥を沈澱させ、この汚泥を分離する排水の処理方法において、重金属類排水にアルカリを直接添加せず、分離した汚泥の一部にアルカリを添加し、このアルカリ汚泥を反応槽に返送する処理方法が知られている(特許文献5、特許文献6)。しかし、アルカリ汚泥単独では重金属類を環境基準値以下に低減するのは難しい。
特開平08−267076号公報 特開2002−326090号公報 特開2001−9467号公報 特開2001−321781号公報 特公昭61−156号公報 特開平05−57292号(特許第2910346号)公報
On the other hand, in the wastewater treatment method of adding sludge by adding alkali to water containing heavy metals and separating this sludge, alkali is not added directly to the heavy metal wastewater, but alkali is added to a part of the separated sludge. A processing method for returning the alkaline sludge to the reaction tank is known (Patent Documents 5 and 6). However, it is difficult to reduce heavy metals below the environmental standard value with alkaline sludge alone.
Japanese Patent Laid-Open No. 08-267076 JP 2002-326090 A JP 2001-9467 A Japanese Patent Laid-Open No. 2001-321781 Japanese Patent Publication No. 61-156 Japanese Patent Laid-Open No. 05-57292 (Japanese Patent No. 2910346)

本発明は、第一鉄塩を用いた従来のフェライト法に基づく処理方法を改善して上記問題を解決したものであり、沈澱が圧密化され、固液分離性が良く、かつ常温でフェライト処理が可能な経済性および処理効果に優れ、重金属類の濃度を環境基準値0.01mg/L以下に低減することができる処理方法を提供するものである。 The present invention improves the treatment method based on the conventional ferrite method using a ferrous salt and solves the above problems. The precipitate is consolidated, the solid-liquid separability is good, and the ferrite treatment is performed at room temperature. Therefore, the present invention provides a treatment method that is excellent in economic efficiency and treatment effect, and that can reduce the concentration of heavy metals to an environmental standard value of 0.01 mg / L or less.

本発明は以下の重金属類含有水の処理方法に関する。
(1)重金属類含有水に還元性鉄化合物を添加する工程〔鉄化合物添加工程〕、還元性鉄化合物を添加した重金属類含有水を反応槽に導いて沈澱を生成させる工程〔沈澱化工程〕、生成した沈澱(汚泥)を固液分離する工程〔固液分離工程〕、分離した汚泥の全部または一部をアルカリ性にして反応槽に返送する工程〔汚泥返送工程〕を有する処理方法であって、沈澱化工程において密閉反応槽を用いると共に、汚泥返送工程において開放型のアルカリ添加槽を用い、開放下でアルカリを添加した返送汚泥を密閉下の反応槽に導入して、還元性鉄化合物を添加した重金属類含有水と混合し、非酸化性雰囲気下、アルカリ性下で反応させて還元性の鉄化合物沈澱を生成させ、該沈澱に重金属類を取り込んで系外に除去することを特徴とする処理方法。
(2)アルカリ添加槽の開口面積を調整することによって空気界面との接触によって生じる鉄化合物の酸化を制御し、この鉄化合物を含むアルカリ性返送汚泥を導入した密閉反応槽の沈澱生成を調整する上記(1)の処理方法。
(3)反応槽において生成される還元性鉄化合物沈澱が、グリーンラストと鉄フェライトの混合物であり、該沈澱の2価鉄イオンと全鉄イオンの比〔Fe2+/Fe(T)〕が0.4〜0.8であるように該沈澱を生成させる上記(1)または(2)に記載する処理方法。
(4)反応槽に返送するアルカリ性汚泥のpHを11〜13に調整し、このアルカリ性汚泥を混合した反応槽内のpHを8.5〜11に調整し、非酸化性雰囲気下で上記還元性鉄化合物沈澱を生成させる上記(1)〜(3)の何れかに記載する処理方法。
(5)還元性鉄化合物として第一鉄化合物を用い、密閉反応槽で非酸化性雰囲気下、30℃以下の液温下で沈澱を生成させる上記(1)〜(4)の何れかに記載する処理方法。
(6)上記処理方法において、鉄化合物添加工程の前に、重金属類含有水に鉄化合物またはアルミニウム化合物を添加し、アルカリ性下で鉄またはアルミニウムの水酸化物を沈殿させることによって、ケイ酸イオン、アルミニウムイオン、微量有機物の少なくとも何れかを上記水酸化物と共に沈澱化し、この沈澱を濾過除去する前処理工程を設け、上記沈殿物を除去した重金属類含有水について、上記還元性鉄化合物添加工程、上記沈澱化工程、上記固液分離工程、上記汚泥返送工程の各処理を行う上記(1)〜(5)の何れかに記載する重金属類含有水の処理方法。
(7)重金属類含有水に鉄化合物またはアルミニウム化合物を添加して生成した沈澱を固液分離した後に、該重金属類含有水に第一鉄化合物を添加し、この第一鉄化合物を添加した重金属類含有水を密閉反応槽に導入する一方、該反応槽から抜き出して固液分離した汚泥の一部または全部に開放下でアルカリを添加して汚泥のpHを11〜13にし、このアルカリ性汚泥を上記反応槽に返送し、該反応槽において、空気を遮断した非酸化性雰囲気下、30℃以下の温度下、pH8.5〜11の液性下で、30分〜3時間反応させ、生成した沈澱(汚泥)を固液分離する一方、沈澱の一部または全部をアルカリ化して上記反応槽に返送することを繰り返し、固液分離した重金属類含有水の重金属類濃度を0.01mg/L以下に低減する上記(1)〜(6)の何れかに記載する重金属類含有水の処理方法。
(8)含有重金属類の濃度を0.01mg/L以下に低減する上記(1)〜(7)の何れかに記載する重金属類含有水の処理方法。
(9)固液分離手段において分離した汚泥について、反応槽に返送しない汚泥を濾過脱水し、水分を系外に排出する一方、濾渣に別系統の排水等を通水し、濾渣に残存する還元力を利用して上記排水等に含まれる汚染を分解する上記(1)〜(8)の何れかに記載する重金属類含有水の処理方法。
The present invention relates to the following methods for treating heavy metal-containing water.
(1) A step of adding a reducing iron compound to heavy metal-containing water [iron compound addition step], a step of introducing a heavy metal-containing water added with a reducing iron compound to a reaction vessel to generate a precipitate [precipitation step] A process for solid-liquid separation of the generated precipitate (sludge) (solid-liquid separation process), a process for converting all or part of the separated sludge to alkalinity and returning it to the reaction tank (sludge return process) In addition, a closed reaction vessel is used in the precipitation step, an open type alkali addition vessel is used in the sludge return step, and the return sludge to which alkali has been added in the open state is introduced into the reaction vessel in the closed state, and the reducing iron compound is introduced. It is mixed with the added heavy metal-containing water and reacted in a non-oxidizing atmosphere and under alkaline conditions to form a reduced iron compound precipitate, and the heavy metal is taken into the precipitate and removed out of the system. How to process .
(2) By adjusting the opening area of the alkali addition tank, the oxidation of the iron compound caused by contact with the air interface is controlled, and the precipitation generation of the sealed reaction tank in which the alkaline return sludge containing this iron compound is introduced is adjusted. Processing method of (1).
(3) The reducing iron compound precipitate produced in the reaction tank is a mixture of green last and iron ferrite, and the ratio of the divalent iron ions to total iron ions in the precipitate [Fe 2+ / Fe (T)] The processing method according to the above (1) or (2), wherein the precipitate is formed so as to be 0.4 to 0.8.
(4) The pH of the alkaline sludge to be returned to the reaction tank is adjusted to 11 to 13, the pH in the reaction tank in which the alkaline sludge is mixed is adjusted to 8.5 to 11, and the reducing property is reduced in a non-oxidizing atmosphere. The processing method according to any one of (1) to (3) above, wherein an iron compound precipitate is formed.
(5) The ferrous compound is used as the reducing iron compound, and a precipitate is produced in a closed reaction tank under a non-oxidizing atmosphere at a liquid temperature of 30 ° C. or lower. Processing method.
(6) In the above treatment method, before the iron compound addition step, by adding an iron compound or an aluminum compound to heavy metal-containing water and precipitating iron or aluminum hydroxide under alkalinity, silicate ions, Precipitating step of precipitating at least one of aluminum ions and trace organic substances together with the hydroxide, and removing the precipitate by filtration. About the heavy metal-containing water from which the precipitate has been removed, the reducing iron compound adding step, The method for treating heavy metal-containing water according to any one of the above (1) to (5), wherein each treatment of the precipitation step, the solid-liquid separation step, and the sludge return step is performed.
(7) After solid-liquid separation of a precipitate formed by adding an iron compound or an aluminum compound to heavy metal-containing water, a ferrous compound is added to the heavy metal-containing water, and the heavy metal to which the ferrous compound is added Water is introduced into a closed reaction tank, while alkali is added to a part or all of the sludge that has been extracted from the reaction tank and separated into solid and liquid to open the sludge to a pH of 11-13. It returned to the said reaction tank, and it was made to react for 30 minutes-3 hours under the non-oxidizing atmosphere which interrupted | blocked air, the temperature of 30 degrees C or less, and the liquidity of pH 8.5-11, and produced | generated. While solid-liquid separation of the precipitate (sludge), part or all of the precipitate is alkalized and returned to the above reaction tank, and the heavy metal concentration of the heavy metal-containing water separated by solid-liquid separation is 0.01 mg / L or less (1) to (6) what to reduce to Processing method of heavy metal containing water described crab.
(8) The method for treating heavy metal-containing water according to any one of the above (1) to (7), wherein the concentration of the contained heavy metal is reduced to 0.01 mg / L or less.
(9) For sludge separated in the solid-liquid separation means, sludge that is not returned to the reaction tank is filtered and dehydrated, and water is discharged out of the system. The method for treating heavy metal-containing water according to any one of the above (1) to (8), wherein force is used to decompose pollution contained in the drainage or the like.

また、本発明は以下の重金属類含有水の処理装置に関する。
(10)重金属類含有水に第一鉄化合物を添加する槽、第一鉄化合物を添加した重金属類含有水を反応させる非酸化性雰囲気の密閉反応槽、該反応槽から抜き出したスラリーを固液分離する手段、分離した汚泥にアルカリを添加する開放型のアルカリ添加槽、このアルカリ性汚泥を反応槽に返送する管路、これらの各槽および固液分離手段を連通する管路を備え、上記(1)の処理系を形成したことを特徴とする重金属類含有水の処理装置。
(11)上記(10)の処理装置において、重金属類含有水に還元性鉄化合物を添加する槽の前に、該重金属類含有水に鉄化合物またはアルミニウム化合物を添加する槽、および生成した沈澱の固液分離手段を有する重金属類含有水の処理装置。
Moreover, this invention relates to the processing apparatus of the following heavy metal containing water.
(10) A tank for adding ferrous compounds to heavy metal containing water, a non-oxidizing atmosphere sealed reaction tank for reacting heavy metals containing water added with ferrous compounds, and a slurry extracted from the reaction tank A means for separating, an open type alkali addition tank for adding alkali to the separated sludge, a pipe for returning the alkaline sludge to the reaction tank, a pipe for communicating each of these tanks and the solid-liquid separation means, An apparatus for treating heavy metal-containing water, wherein the treatment system of 1) is formed.
(11) In the processing apparatus of (10), before the tank for adding the reducing iron compound to the heavy metal-containing water, the tank for adding the iron compound or the aluminum compound to the heavy metal-containing water, and the generated precipitate An apparatus for treating heavy metal-containing water having solid-liquid separation means.

〔具体的な説明〕
本発明の処理方法は、重金属類含有水に還元性鉄化合物を添加する工程〔鉄化合物添加工程〕、還元性鉄化合物を添加した重金属類含有水を反応槽に導いて沈澱を生成させる工程〔沈澱化工程〕、生成した沈澱(汚泥)を固液分離する工程〔固液分離工程〕、分離した汚泥の全部または一部をアルカリ性にして反応槽に返送する工程〔汚泥返送工程〕を有する処理方法であって、沈澱化工程において密閉反応槽を用いると共に、汚泥返送工程において開放型のアルカリ添加槽を用い、開放下でアルカリを添加した返送汚泥を密閉下の反応槽に導入して、還元性鉄化合物を添加した重金属類含有水と混合し、非酸化性雰囲気下、アルカリ性下で反応させて還元性の鉄化合物沈澱を生成させ、該沈澱に重金属類を取り込んで系外に除去することを特徴とする処理方法である。
[Specific description]
The treatment method of the present invention includes a step of adding a reductive iron compound to heavy metal-containing water [iron compound addition step], a step of introducing a heavy metal-containing water to which the reductive iron compound has been added to a reaction vessel to generate a precipitate [ (Precipitation step), solid-liquid separation of the generated precipitate (sludge) (solid-liquid separation step), and treatment (sludge return step) in which all or part of the separated sludge is made alkaline and returned to the reaction tank In this method, a closed reaction tank is used in the precipitation step, an open type alkali addition tank is used in the sludge return step, and the return sludge to which alkali has been added in the open state is introduced into the closed reaction tank for reduction. Mixed with water containing heavy metals to which a ferrous iron compound has been added and reacted in a non-oxidizing atmosphere and under alkaline conditions to form a reduced iron compound precipitate, which is then taken out of the system by incorporating heavy metals into the precipitate. Special Is a processing method to be.

本発明において、重金属類含有水とは重金属類を含む水を広く意味し、自然発生的および人為的に生じた各種の廃水や排水等を含み、例えば、工場排水や下水、海水、河川水、沼や湖池の水、地表の溜り水、河川等の堰止域の水、地下の流水や溜り水、暗渠の水などであって重金属類を含有するものを云う。なお、以下の説明において、これらの水を含めて排水等と云い、重金属類含有水について重金属類を含有する排水等と云う場合がある。 In the present invention, heavy metal-containing water broadly means water containing heavy metals, and includes various wastewater and wastewater generated naturally and artificially, such as factory wastewater and sewage, seawater, river water, This refers to water from marshes and lakes, surface pools, rivers and other dams, underground running water and pools, underdrains, etc. that contain heavy metals. In the following description, these waters may be referred to as waste water, and the heavy metal containing water may be referred to as waste water containing heavy metals.

また、本発明において重金属類とは、例えば、セレン、カドミウム、六価クロム、鉛、亜鉛、銅、ニッケル、ヒ素、アンチモンなどの重金属元素や金属元素などを云う。本発明の処理システムは排水等に含まれるこれらの汚染源となる重金属類の何れか1種および2種以上に対して優れた除去効果を有する。 In the present invention, heavy metals refer to heavy metal elements such as selenium, cadmium, hexavalent chromium, lead, zinc, copper, nickel, arsenic, and antimony, and metal elements. The treatment system of the present invention has an excellent removal effect with respect to any one or more of the heavy metals that are the sources of contamination contained in the waste water and the like.

本処理システムの概略を図1に示す。図示するように本処理システムは、重金属類含有水に還元性鉄化合物を添加する槽10、還元性鉄化合物を添加した重金属類含有水を反応させる非酸化性雰囲気の密閉反応槽30、該反応槽30から抜き出したスラリーを固液分離する手段40、分離した汚泥にアルカリを添加する開放型のアルカリ槽20、アルカリ性汚泥を反応槽30に返送する管路、これらの各槽および固液分離手段を連通する管路を備えている。なお、図1に示す処理システムにおいて、反応槽30を2台以上直列に設置し、これらを窒素でパージした密閉構造にし、還元性雰囲気下で上記フェライト化処理を行うようにすると良い。 The outline of this processing system is shown in FIG. As shown in the figure, the present processing system includes a tank 10 for adding a reducing iron compound to heavy metal-containing water, a sealed reaction tank 30 in a non-oxidizing atmosphere for reacting heavy metal-containing water added with a reducing iron compound, and the reaction. Means 40 for solid-liquid separation of the slurry extracted from the tank 30, an open-type alkali tank 20 for adding alkali to the separated sludge, pipes for returning the alkaline sludge to the reaction tank 30, each of these tanks and solid-liquid separation means It has a pipe line that communicates. In the treatment system shown in FIG. 1, it is preferable to install two or more reaction tanks 30 in series, to form a sealed structure purged with nitrogen, and to perform the ferritization treatment in a reducing atmosphere.

本発明の処理システムでは、重金属類含有水を添加槽10に導き、還元性鉄化合物を添加する。還元性鉄化合物としては、硫酸第一鉄(FeSO4)、塩化第一鉄(FeCl2)などの第一鉄化合物を用いることができる。第一鉄化合物の添加量はFe2+イオン濃度400〜600mg/Lになる量が適当である。還元性鉄化合物を添加した重金属類含有水を反応槽30に導入する。 In the treatment system of the present invention, the heavy metal-containing water is guided to the addition tank 10 and the reducing iron compound is added. As the reducing iron compound, ferrous compounds such as ferrous sulfate (FeSO 4 ) and ferrous chloride (FeCl 2 ) can be used. The addition amount of the ferrous compound is appropriate such that the Fe 2+ ion concentration is 400 to 600 mg / L. Heavy metal-containing water to which the reducing iron compound is added is introduced into the reaction tank 30.

反応槽30には、還元性鉄化合物を添加した重金属類含有水と共に固液分離工程からアルカリ性汚泥が返送され、重金属類含有水と混合される。このアルカリ性汚泥は後工程において固液分離された沈澱(汚泥)の一部または全部にアルカリを添加してpH11〜13に調整したものである。添加するアルカリ物質としては消石灰、生石灰、水酸化ナトリウムなどを用いることができる。アルカリ性汚泥を混合することによって反応槽30のpHは8.5〜11、好ましくはpH9.0〜10に調整される。 Alkaline sludge is returned to the reaction tank 30 from the solid-liquid separation step together with the heavy metal-containing water to which the reducing iron compound is added, and mixed with the heavy metal-containing water. This alkaline sludge is adjusted to pH 11 to 13 by adding alkali to a part or all of the precipitate (sludge) separated into solid and liquid in the subsequent step. As the alkaline substance to be added, slaked lime, quick lime, sodium hydroxide or the like can be used. By mixing the alkaline sludge, the pH of the reaction tank 30 is adjusted to 8.5 to 11, preferably pH 9.0 to 10.

反応槽30において、還元性鉄化合物を添加した重金属類含有水とアルカリ性返送汚泥とを混合し、非酸化性雰囲気下で反応させることによって、還元性の鉄化合物沈澱を生成させる。この鉄化合物沈澱は、グリーンラストと鉄フェライトの混合物であり、還元性の沈澱である。 In the reaction tank 30, heavy metal-containing water to which a reducing iron compound is added and alkaline return sludge are mixed and reacted in a non-oxidizing atmosphere to generate a reducing iron compound precipitate. This iron compound precipitate is a mixture of green last and iron ferrite and is a reductive precipitate.

グリーンラストは第一鉄と第二鉄の水酸化物が層状をなす青緑色の物質であり、層間に重金属類のアニオンを取り込んだ構造を有し、例えば次式(1)によって表される。
〔FeII (6-x)FeIII x(OH)12x+〔Ax/n・yH2O〕x- …(1)
(0.9<x<4.2、Fe2+/全Fe=0.3〜0.85)。
Green last is a blue-green substance in which a hydroxide of ferrous iron and ferric iron forms a layer, and has a structure in which an anion of heavy metals is incorporated between layers, and is represented by, for example, the following formula (1).
[Fe II (6-x) Fe III x (OH) 12 ] x + [A x / n · yH 2 O] x- ... (1)
(0.9 <x <4.2, Fe 2+ / total Fe = 0.3 to 0.85).

また、鉄フェライトはFeIIの鉄(III)酸塩であり、マグネタイト(FeIIFeIII 34)を主体とするが、一部に重金属類の鉄酸塩を含むものでもよい。本発明の還元性の鉄化合物沈澱は、例えば、重金属類含有水中の重金属類イオンがグリーンラストの層間に取り込まれ、重金属類を一部に含んだ状態で鉄フェライト化する。具体的には、例えば、排水等に含まれる6価セレン(SeO4 2-)は第一鉄化合物によって還元されて4価セレン(SeO3 2-)および元素セレンになり、これらはグリーンラストの層間に取り込まれた状態で沈澱化する。 Moreover, iron ferrites are Fe II iron (III) salt, but mainly of magnetite (Fe II Fe III 3 O 4 ), or those containing ferrate heavy metals in a part. In the reducing iron compound precipitate of the present invention, for example, heavy metal ions in water containing heavy metals are taken in between the layers of the green last, and iron ferrite is formed in a state in which the heavy metals are partially included. Specifically, for example, hexavalent selenium (SeO 4 2- ) contained in waste water and the like is reduced by ferrous compounds to tetravalent selenium (SeO 3 2- ) and elemental selenium, which are It precipitates in the state of being taken in between the layers.

本発明の処理方法は、反応槽30で上記還元性鉄化合物沈澱を生成させるために、空気の流入を遮断した密閉反応槽を用い、非酸化性雰囲気下、pH8.5〜11、好ましくはpH9.0〜10のアルカリ性下で反応させる。液温は10〜30℃程度で良く、加熱する必要はない。反応時間は30分〜3時間程度で良い。 The treatment method of the present invention uses a closed reaction tank in which the inflow of air is blocked in order to produce the reduced iron compound precipitate in the reaction tank 30, and has a pH of 8.5 to 11 and preferably a pH of 9 in a non-oxidizing atmosphere. The reaction is carried out under alkaline conditions of 0.0 to 10. The liquid temperature may be about 10 to 30 ° C. and does not need to be heated. The reaction time may be about 30 minutes to 3 hours.

なお、重金属類含有水に第一鉄化合物とアルカリとを添加して、鉄化合物沈澱を生成させる処理方法であっても、従来のように反応槽が密閉されておらず、非酸化性雰囲気下ではないもの、またアルカリの程度が弱いものは、上記還元力を有する沈澱が生成せず、本発明と同様の効果を得ることはできない。 Even in a treatment method in which ferrous compound and alkali are added to heavy metal-containing water to produce an iron compound precipitate, the reaction vessel is not sealed as in the conventional case, and the reaction is performed in a non-oxidizing atmosphere. Those having a low alkali level do not produce precipitates having the above reducing power, and the same effects as those of the present invention cannot be obtained.

本発明の処理方法においては、グリーンラストと鉄フェライトの混合物からなる上記鉄化合物沈澱が還元力を有するように、該沈澱の2価鉄イオンと全鉄イオンの比〔Fe2+/Fe(T)〕が0.4〜0.8であるように沈澱を生成させることが好ましく、上記鉄イオン比を0.55〜0.65に制御するのが更に好ましい。この比が上記範囲を外れると重金属類の還元が不十分になり、あるいは澱物の沈降性が劣化するので好ましくない。上記還元性の鉄化合物沈澱を生成させることによって、含有重金属類が還元され、容易に沈澱に取り込まれる。 In the treatment method of the present invention, the ratio of divalent iron ions to total iron ions of the precipitate [Fe 2+ / Fe (T )] Is preferably 0.4 to 0.8, and the iron ion ratio is more preferably controlled to 0.55 to 0.65. When this ratio is out of the above range, the reduction of heavy metals becomes insufficient, or the sedimentation property of starch deteriorates, which is not preferable. By producing the reducible iron compound precipitate, the contained heavy metals are reduced and easily incorporated into the precipitate.

反応槽30にアルカリ性汚泥の返送を繰り返し、還元性鉄化合物を添加した重金属類含有水との反応を繰り返すと、グリーンラストが酸化して鉄フェライト化し、最初は深青緑色であった沈澱がしだいに黒色に変化する。グリーンラストの大部分が鉄フェライトになると還元性がなくなるので、本発明の処理方法では、上記鉄化合物沈澱の2価鉄イオンと全鉄イオンの比〔Fe2+/Fe(T)〕を上記範囲内に制御して還元性のある沈澱を生成させる。 When the alkaline sludge is repeatedly returned to the reaction tank 30 and the reaction with the heavy metal-containing water to which the reducing iron compound is added is repeated, the green rust is oxidized to iron ferrite, and the precipitate which was initially deep blue-green gradually It turns black. Since the reducibility is lost when most of the green rust becomes iron ferrite, in the treatment method of the present invention, the ratio [Fe 2+ / Fe (T)] of the divalent iron ions to the total iron ions in the iron compound precipitate is set as described above. Control within the range to produce a reducing precipitate.

本発明の処理方法では、上記還元性汚泥(鉄化合物沈澱)の一部または全部を分離し、分離した汚泥にアルカリを添加し、アルカリ性にした汚泥を上記反応槽に返送し、非酸化性雰囲気下で反応させて再び還元性汚泥を沈澱させることを繰り返す。汚泥をアルカリ性にする際、開放型の槽(アルカリ添加槽)を用い、開放下で汚泥にアルカリを添加する。アルカリを開放下で汚泥に添加することによって、汚泥が空気に接触し、汚泥に含まれている鉄化合物が部分的に酸化する。この酸化した鉄化合物を含むアルカリ性の汚泥を密閉反応槽に導入し、非酸化性雰囲気下で重金属類含有水と混合することによって、上記還元性の鉄化合物沈澱の生成が良好に進行する。 In the treatment method of the present invention, a part or all of the reducing sludge (iron compound precipitation) is separated, alkali is added to the separated sludge, the alkalinized sludge is returned to the reaction tank, and a non-oxidizing atmosphere is obtained. Repeat the reaction below to precipitate reducing sludge again. When making sludge alkaline, an open tank (alkali addition tank) is used, and alkali is added to the sludge under open conditions. By adding alkali to the sludge in an open state, the sludge comes into contact with air, and the iron compound contained in the sludge is partially oxidized. By introducing the alkaline sludge containing the oxidized iron compound into the sealed reaction tank and mixing with the heavy metal-containing water in a non-oxidizing atmosphere, the generation of the reducing iron compound precipitate proceeds well.

また、返送汚泥にアルカリを添加する場合、アルカリ添加槽の開口面積を調整することによって空気界面との接触によって生じる鉄化合物の酸化を制御し、この鉄化合物を含むアルカリ性返送汚泥を導入した密閉反応槽の沈澱生成を調整することができる。なお、開放型のアルカリ添加槽に代えて密閉型のアルカリ添加槽を用い、密閉反応槽から固液分離手段を経てアルカリ添加槽に至る何れかの経路の間に汚泥を溜める開放型のバッフア槽を設け、ここで汚泥が空気と接触するようにしても良い。このような構成も開放型アルカリ添加槽を用いる応用例として本発明の範囲に含む。 In addition, when adding alkali to the return sludge, the oxidation reaction of the iron compound generated by contact with the air interface is controlled by adjusting the opening area of the alkali addition tank, and the sealed reaction that introduces the alkaline return sludge containing this iron compound The precipitation of the tank can be adjusted. An open-type buffer tank that uses a sealed-type alkali addition tank instead of an open-type alkali addition tank, and accumulates sludge between any path from the sealed reaction tank to the alkali-added tank via the solid-liquid separation means. Here, the sludge may be in contact with air. Such a configuration is also included in the scope of the present invention as an application example using an open type alkali addition tank.

本発明の処理方法では、汚泥(沈澱)の還元性を維持しつつ鉄フェライト化が進行するので沈澱の圧密化が進み、澱物の濃度が格段に高まるので重金属類の除去効果が向上する。因みに、水酸化鉄を主体とした沈澱(汚泥)は嵩高く、脱水処理の負担が大きい。また、本発明の処理方法では、沈澱を形成している鉄フェライトはマグネタイトを主体とするため磁性を帯びており、分離した沈澱を磁石に吸着させて処理することができる。 In the treatment method of the present invention, iron ferritization proceeds while maintaining the reducibility of sludge (precipitation), so that the consolidation of the precipitation proceeds and the concentration of the starch is remarkably increased, so that the effect of removing heavy metals is improved. Incidentally, precipitation (sludge) mainly composed of iron hydroxide is bulky and has a heavy dehydration burden. Further, in the treatment method of the present invention, the iron ferrite forming the precipitate is magnetized because it is mainly composed of magnetite, and the separated precipitate can be adsorbed to a magnet for treatment.

反応槽30から排出されたスラリーは、例えばシックナーなどの固液分離手段に導き、汚泥を槽底に沈降させて分離する。この澱物(汚泥)を固液分離して重金属類を系外に除去することができる。また、既に述べたように、汚泥の一部または全部にアルカリを添加してpH11〜13に調整して反応槽30に戻し、反応槽30において沈澱生成反応を繰り返す。返送する汚泥の割合(返送汚泥の循環比)は反応槽30で生成する沈澱の2価鉄イオンと全鉄イオンの比〔Fe2+/Fe(T)〕が上記範囲内になるように定めればよい。なお、本発明の処理方法は、バッチ式または連続式の何れの形式でも実施することができる。 The slurry discharged from the reaction tank 30 is guided to a solid-liquid separation means such as a thickener, for example, and sludge is settled on the tank bottom to be separated. This starch (sludge) can be subjected to solid-liquid separation to remove heavy metals out of the system. Moreover, as already stated, an alkali is added to part or all of sludge, it adjusts to pH 11-13, and it returns to the reaction tank 30, The precipitation production | generation reaction is repeated in the reaction tank 30. The ratio of the sludge to be returned (circulation ratio of the returned sludge) is determined so that the ratio [Fe 2+ / Fe (T)] of the divalent iron ions and total iron ions in the precipitate generated in the reaction tank 30 is within the above range. Just do it. The treatment method of the present invention can be carried out in either a batch type or a continuous type.

本処理方法の具体的な一例を示すと、初期セレン濃度2mg/Lの排水に、Fe2+イオン濃度400〜600mg/Lになるように第一鉄化合物を添加して溶解させ、この第一鉄化合物を添加した排水に、アルカリを添加してpH11〜13にした沈澱スラリーを混合し、空気の混入を遮断した密閉反応槽で、30℃以下の温度下、pH9.0〜9.3で30分〜3時間反応させ、生成した沈澱を固液分離し、沈澱の一部を開放型のアルカリ添加槽に導入し、アルカリを添加した汚泥を反応槽に返送し、繰り返し使用することによって、排水中のセレン濃度を0.01mg/L以下に低減することができる。 As a specific example of this treatment method, a ferrous compound is added to and dissolved in wastewater having an initial selenium concentration of 2 mg / L so that the Fe 2+ ion concentration becomes 400 to 600 mg / L. In a closed reaction tank in which the waste slurry to which the iron compound was added was mixed with a precipitate slurry adjusted to pH 11 to 13 by adding alkali to prevent air contamination, at a temperature of 30 ° C. or less, at a pH of 9.0 to 9.3. By reacting for 30 minutes to 3 hours, the produced precipitate is solid-liquid separated, a part of the precipitate is introduced into an open-type alkali addition tank, the sludge added with alkali is returned to the reaction tank, and repeatedly used. The selenium concentration in the waste water can be reduced to 0.01 mg / L or less.

重金属類含有水にケイ酸イオンやアルミニウムイオン、あるいは微量の有機物が含まれていると、これらのイオンによってフェライト化が影響を受け、重金属類の除去効果が低下する場合がある。このような重金属類含有水に対しては、図2に示すように、鉄化合物添加工程の前に、重金属類含有水に鉄化合物またはアルミニウム化合物を添加してこれらのイオンを沈殿化し、この沈澱を濾過してケイ酸イオン等を除去する前処理工程を設けるのが好ましい。 If the heavy metal-containing water contains silicate ions, aluminum ions, or trace amounts of organic substances, ferritization is affected by these ions, and the removal effect of heavy metals may be reduced. For such heavy metal-containing water, as shown in FIG. 2, before the iron compound addition step, an iron compound or an aluminum compound is added to the heavy metal-containing water to precipitate these ions. It is preferable to provide a pretreatment step for removing silicate ions and the like by filtration.

上記前処理工程において、重金属類含有水に鉄化合物を添加してアルカリを加え、アルカリ性下で鉄水酸化物を生成させることによって、ケイ酸イオン、アルミニウムイオン、微量有機物の少なくとも何れかを鉄水酸化物沈澱と共に沈澱化し、この沈澱を固液分離して系外に除去する。鉄化合物としては塩化第二鉄などの第二鉄化合物が好ましい。鉄化合物に代えてアルミニウム化合物を用いてもよい。重金属類含有水にアルミニウム化合物を添加してアルカリを加え、アルカリ性下でアルミニウム水酸化物を沈殿させる。この沈殿にケイ酸イオンや微量有機物が取り込まれて沈殿化するので、これを固液分離して系外に除去する。 In the pretreatment step, an iron compound is added to the heavy metal-containing water, an alkali is added, and an iron hydroxide is generated under alkalinity, whereby at least one of silicate ions, aluminum ions, and a trace amount of organic substances is added to the iron water. It precipitates together with the oxide precipitate, and this precipitate is separated from the system by solid-liquid separation. A ferric compound such as ferric chloride is preferred as the iron compound. An aluminum compound may be used in place of the iron compound. An aluminum compound is added to heavy metal-containing water, an alkali is added, and an aluminum hydroxide is precipitated under alkalinity. Since silicate ions and trace organic substances are taken into this precipitate and precipitate, it is separated from the system by solid-liquid separation.

この前処理によって、フェライト化に影響を与えるケイ酸イオンやアルミニウムイオン、あるいは微量有機物をあらかじめ除去した重金属類含有水について、上記還元性鉄化合物添加工程、上記沈澱化工程、上記固液分離工程、上記汚泥返送工程の各処理を行えば、上記フェライト化が阻害されず、重金属類の除去効果を高めることができる。 By this pretreatment, silicate ions and aluminum ions that affect ferritization, or heavy metal-containing water from which trace organic substances have been removed in advance, the reducing iron compound addition step, the precipitation step, the solid-liquid separation step, If each process of the said sludge return process is performed, the said ferritization will not be inhibited and the removal effect of heavy metals can be heightened.

上記前処理工程は、重金属類含有水に還元性鉄化合物を添加する槽の前に、鉄化合物またはアルミニウム化合物を重金属類含有水に添加する槽と、生成した沈澱の固液分離手段を設ければ良い。 In the pretreatment step, a tank for adding an iron compound or an aluminum compound to heavy metal-containing water and a solid-liquid separation means for the generated precipitate are provided before the tank for adding the reducing iron compound to the heavy metal-containing water. It ’s fine.

また、先に述べたように、固液分離手段において分離した汚泥の全部または一部はアルカリ性にして反応槽に返送されるが、反応槽に返送されない汚泥はフィルタープレスなどによって濾過脱水し、水分は系外に排水する。一方、濾渣は還元力が残存しており、しかもこの濾渣は透水性が良いので、必要に応じ、図2に示すように、この濾渣に汚染度の高くない別系統の排水等を通水し、濾渣に残存する還元力を利用して排水等に含まれる汚染を分解し、排水等から除去することができる。 Further, as described above, all or part of the sludge separated in the solid-liquid separation means is made alkaline and returned to the reaction tank, but the sludge not returned to the reaction tank is filtered and dehydrated by a filter press or the like, Drains out of the system. On the other hand, the filter residue has a reducing power, and this filter residue has good water permeability. Therefore, as shown in FIG. The contamination contained in the drainage can be decomposed and removed from the drainage by utilizing the reducing power remaining in the residue.

本発明の処理方法によれば、返送汚泥に開放下でアルカリを添加することによって、汚泥をアルカリ性にすると共に汚泥に含まれる鉄化合物を部分的に酸化し、これを密閉下の反応槽に導入して重金属類含有水と混合し、非酸化性雰囲気下で還元性鉄化合物を沈澱させる操作を繰り返すので、汚泥の還元性を維持しつつ鉄フェライト化が円滑に進行し、汚泥の圧密化が進み、澱物の濃度が格段に高まるので重金属類の除去効果が向上する。 According to the treatment method of the present invention, the alkali is added to the return sludge in an open state to make the sludge alkaline and the iron compound contained in the sludge is partially oxidized, and this is introduced into the sealed reaction tank. Then, mixing with heavy metal-containing water and repeating the operation of precipitating the reducing iron compound in a non-oxidizing atmosphere, iron ferritization proceeds smoothly while maintaining sludge reducibility, and sludge consolidation is achieved. As the starch concentration increases significantly, the removal effect of heavy metals is improved.

アルカリ添加時における、汚泥に含まれる鉄化合物の部分的な酸化は、アルカリ添加槽の開口面積を調整することによって制御することができるので、汚泥返送の繰り返しによって生成する沈澱の状態に応じて、アルカリ槽の開口面積を設定し、あるいは適宜に上記開口面積を調整すれば良く、処理条件に対応して優れた処理効果を得ることができる。因みに、本発明の処理方法によれば、排水等に含まれる重金属類の濃度を環境基準値の0.01mg/L以下に低減することができる。 Since the partial oxidation of the iron compound contained in the sludge at the time of alkali addition can be controlled by adjusting the opening area of the alkali addition tank, depending on the state of precipitation generated by repeated sludge return, What is necessary is just to set the opening area of an alkali tank, or to adjust the said opening area suitably, and can obtain the outstanding process effect according to process conditions. Incidentally, according to the treatment method of the present invention, the concentration of heavy metals contained in the waste water or the like can be reduced to an environmental standard value of 0.01 mg / L or less.

本発明の処理方法は、加熱する必要がなく、常温で鉄フェライト化を進めることができ、圧密されたコンパクトな澱物を形成するので脱水性が格段に良く、重金属類の除去効果も高く、経済性および取扱性に優れた処理方法である。 The treatment method of the present invention does not require heating, can proceed to iron ferritization at room temperature, and forms a compact compact starch so that the dehydration is remarkably good, and the effect of removing heavy metals is high, It is a processing method with excellent economy and handling.

以下、本発明を実施例および比較例によって具体的に示す。各例の処理条件と処理結果を表1に示した。 Hereinafter, the present invention will be specifically described by examples and comparative examples. Table 1 shows the processing conditions and processing results of each example.

〔実施例1〕
図1に示す本発明の処理フローに従い、重金属類含有水(セレンおよびヒ素を含む排水、セレンおよびヒ素の濃度:各々2mg/L)を回分式で以下のように処理した。まず、この重金属類含有水2.0Lを添加槽10に導入して硫酸第一鉄をFe(II)として600mg/Lになるように添加した。一方、固液分離した沈澱の全量を開放型の添加槽20に返送し、開放下で消石灰1.5gを上記沈澱に添加してpH12の強アルカリに調整した。この強アルカリ沈澱を密閉反応槽30に導入し、硫酸第一鉄を添加した排水と混合して2時間反応させた。次いで、反応槽30から抜き出したスラリーをシックナーで20時間静置して沈澱を沈降させて固液分離した。この沈澱の全量を上記のとおり開放下で消石灰を加えて強アルカリ性に調整して反応槽30に戻し、沈澱の生成分離を30回繰り返した。
[Example 1]
In accordance with the treatment flow of the present invention shown in FIG. 1, heavy metal-containing water (drainage containing selenium and arsenic, selenium and arsenic concentrations: 2 mg / L each) was treated in a batch manner as follows. First, 2.0 L of this heavy metal-containing water was introduced into the addition tank 10 and ferrous sulfate was added as Fe (II) to 600 mg / L. On the other hand, the entire amount of the solid-liquid separated precipitate was returned to the open addition tank 20, and 1.5 g of slaked lime was added to the precipitate under the open condition to adjust to a strong alkali of pH 12. This strong alkali precipitate was introduced into the sealed reaction tank 30 and mixed with waste water to which ferrous sulfate was added, and reacted for 2 hours. Next, the slurry extracted from the reaction vessel 30 was allowed to stand for 20 hours with a thickener to settle the precipitate, and solid-liquid separation was performed. The total amount of this precipitate was adjusted to strong alkalinity by adding slaked lime while being open as described above, and returned to the reaction vessel 30, and the precipitate formation and separation were repeated 30 times.

〔比較例1,2〕
反応槽とアルカリ添加槽の両方に開放型の槽を用い、それ以外は実施例1と同様にして重金属類含有水を処理した(比較例1)。また、反応槽とアルカリ添加槽の両方に密閉型の槽を用い、それ以外は実施例1と同様にして重金属類含有水を処理した(比較例2)。
[Comparative Examples 1 and 2]
Heavy metal-containing water was treated in the same manner as in Example 1 except that open tanks were used for both the reaction tank and the alkali addition tank (Comparative Example 1). Moreover, the closed type tank was used for both the reaction tank and the alkali addition tank, and the heavy metal containing water was processed like Example 1 except that (comparative example 2).

表1に示すように、密閉型反応槽と開放型添加槽を用いた本発明の実施例1ではグリーンラストと鉄フェライトの混合物からなる澱物が形成される。一方、反応槽と添加槽の両方に開放型槽を用いた比較例1では、鉄化合物の酸化が大幅に進むため、本発明のような澱物は形成されず、主にFeOOHからなる澱物が形成された。また、反応槽と添加槽の両方に密閉型槽を用いた比較例2では、鉄化合物のフェライト化が殆ど進行せず、主に水酸化鉄Fe(OH)2からなる澱物が形成された。 As shown in Table 1, in Example 1 of the present invention using a closed type reaction vessel and an open type addition vessel, a starch composed of a mixture of green last and iron ferrite is formed. On the other hand, in Comparative Example 1 using an open type tank for both the reaction tank and the addition tank, the oxidation of the iron compound proceeds greatly, so that the starch as in the present invention is not formed, and the starch mainly composed of FeOOH. Formed. Further, in Comparative Example 2 in which the closed tank was used for both the reaction tank and the addition tank, the ferritization of the iron compound hardly progressed, and a starch mainly composed of iron hydroxide Fe (OH) 2 was formed. .

本発明の実施例1では、沈降スラッジの固体分が多く、しかも還元電位(ORP)も大きく、セレンとヒ素の何れの除去率も100%と高い。比較例1では沈降スラッジの固体分は多いものの、還元性を有しないので、還元電位が低く、セレンおよびヒ素の何れの除去率も低い。一方、比較例2では、沈降スラッジに含まれる固体分が少なく、水分量が格段に多い。このため、脱水処理の負担が大きい。また、形成される澱物の性状が本発明と異なるので、セレンの除去率は高いが、ヒ素の除去率は約半分に止まる。 In Example 1 of the present invention, the sedimented sludge has a large solid content, the reduction potential (ORP) is large, and the removal rate of both selenium and arsenic is as high as 100%. In Comparative Example 1, although the sedimented sludge has a large solid content, it does not have reducing properties, so the reduction potential is low, and the removal rate of both selenium and arsenic is low. On the other hand, in Comparative Example 2, the solid content contained in the settled sludge is small, and the water content is remarkably large. For this reason, the burden of a dehydration process is large. Further, since the properties of the formed starch are different from those of the present invention, the selenium removal rate is high, but the arsenic removal rate is only about half.

Figure 2006095519
Figure 2006095519

本発明の処理工程図Process chart of the present invention 前処理工程を含む本発明の処理工程図Process diagram of the present invention including pretreatment process

符号の説明Explanation of symbols

10−還元性鉄化合物添加槽、20−アルカリ添加槽、30−反応槽、40−固液分離手段。 10-reducing iron compound addition tank, 20-alkali addition tank, 30-reaction tank, 40-solid-liquid separation means.

Claims (11)

重金属類含有水に還元性鉄化合物を添加する工程〔鉄化合物添加工程〕、還元性鉄化合物を添加した重金属類含有水を反応槽に導いて沈澱を生成させる工程〔沈澱化工程〕、生成した沈澱(汚泥)を固液分離する工程〔固液分離工程〕、分離した汚泥の全部または一部をアルカリ性にして反応槽に返送する工程〔汚泥返送工程〕を有する処理方法であって、沈澱化工程において密閉反応槽を用いると共に、汚泥返送工程において開放型のアルカリ添加槽を用い、開放下でアルカリを添加した返送汚泥を密閉下の反応槽に導入して、還元性鉄化合物を添加した重金属類含有水と混合し、非酸化性雰囲気下、アルカリ性下で反応させて還元性の鉄化合物沈澱を生成させ、該沈澱に重金属類を取り込んで系外に除去することを特徴とする処理方法。
A step of adding a reducing iron compound to heavy metal-containing water [iron compound addition step], a step of introducing heavy metal-containing water added with a reducing iron compound into a reaction vessel to generate a precipitate [precipitation step], A treatment method comprising a step of solid-liquid separation of precipitate (sludge) (solid-liquid separation step), a step of returning all of the separated sludge to alkalinity and returning it to the reaction tank (sludge return step), and precipitation Heavy metal with a reducing iron compound added by using a closed reaction tank in the process and using an open-type alkali addition tank in the sludge return process, introducing the return sludge to which alkali has been added under the open condition into the sealed reaction tank A treatment method characterized by mixing with water containing water and reacting in a non-oxidizing atmosphere and under alkali to form a reducible iron compound precipitate, taking heavy metals into the precipitate and removing it from the system.
アルカリ添加槽の開口面積を調整することによって空気界面との接触によって生じる鉄化合物の酸化を制御し、この鉄化合物を含むアルカリ性返送汚泥を導入した密閉反応槽の沈澱生成を調整する請求項1の処理方法。
The oxidation of the iron compound generated by contact with the air interface is controlled by adjusting the opening area of the alkali addition tank, and the precipitation generation of the sealed reaction tank in which the alkaline return sludge containing the iron compound is introduced is adjusted. Processing method.
反応槽において生成される還元性鉄化合物沈澱が、グリーンラストと鉄フェライトの混合物であり、該沈澱の2価鉄イオンと全鉄イオンの比〔Fe2+/Fe(T)〕が0.4〜0.8であるように該沈澱を生成させる請求項1または2に記載する処理方法。
The reducing iron compound precipitate produced in the reaction vessel is a mixture of green last and iron ferrite, and the ratio of the divalent iron ion to the total iron ion [Fe 2+ / Fe (T)] of the precipitate is 0.4. The processing method according to claim 1 or 2, wherein the precipitate is formed so as to be -0.8.
反応槽に返送するアルカリ性汚泥のpHを11〜13に調整し、このアルカリ性汚泥を混合した反応槽内のpHを8.5〜11に調整し、非酸化性雰囲気下で上記還元性鉄化合物沈澱を生成させる請求項1〜3の何れかに記載する処理方法。
The pH of the alkaline sludge to be returned to the reaction tank is adjusted to 11 to 13, the pH in the reaction tank mixed with the alkaline sludge is adjusted to 8.5 to 11, and the reducing iron compound precipitates in a non-oxidizing atmosphere. The processing method in any one of Claims 1-3 which produce | generate.
還元性鉄化合物として第一鉄化合物を用い、密閉反応槽で非酸化性雰囲気下、30℃以下の液温下で沈澱を生成させる請求項1〜4の何れかに記載する処理方法。
The processing method according to any one of claims 1 to 4, wherein a ferrous compound is used as the reducing iron compound, and a precipitate is produced in a closed reaction tank in a non-oxidizing atmosphere at a liquid temperature of 30 ° C or lower.
上記処理方法において、鉄化合物添加工程の前に、重金属類含有水に鉄化合物またはアルミニウム化合物を添加し、アルカリ性下で鉄またはアルミニウムの水酸化物を沈殿させることによって、ケイ酸イオン、アルミニウムイオン、微量有機物の少なくとも何れかを上記水酸化物と共に沈澱化し、この沈澱を濾過除去する前処理工程を設け、上記沈殿物を除去した重金属類含有水について、上記還元性鉄化合物添加工程、上記沈澱化工程、上記固液分離工程、上記汚泥返送工程の各処理を行う請求項1〜5の何れかに記載する重金属類含有水の処理方法。
In the treatment method, before the iron compound addition step, an iron compound or an aluminum compound is added to heavy metal-containing water, and iron or aluminum hydroxide is precipitated under alkalinity, whereby silicate ions, aluminum ions, A pretreatment step for precipitating at least one of the trace organic substances together with the hydroxide and removing the precipitate by filtration is provided, and for the heavy metal-containing water from which the precipitate has been removed, the reducing iron compound addition step, the precipitation The processing method of the heavy metal containing water in any one of Claims 1-5 which performs each process of a process, the said solid-liquid separation process, and the said sludge return process.
重金属類含有水に鉄化合物またはアルミニウム化合物を添加して生成した沈澱を固液分離した後に、該重金属類含有水に第一鉄化合物を添加し、この第一鉄化合物を添加した重金属類含有水を密閉反応槽に導入する一方、該反応槽から抜き出して固液分離した汚泥の一部または全部に開放下でアルカリを添加して汚泥のpHを11〜13にし、このアルカリ性汚泥を上記反応槽に返送し、該反応槽において、空気を遮断した非酸化性雰囲気下、30℃以下の温度下、pH8.5〜11の液性下で、30分〜3時間反応させ、生成した沈澱(汚泥)を固液分離する一方、沈澱の一部または全部をアルカリ化して上記反応槽に返送することを繰り返し、固液分離した重金属類含有水の重金属類濃度を0.01mg/L以下に低減する請求項1〜6の何れかに記載する重金属類含有水の処理方法。
After solid-liquid separation of the precipitate formed by adding an iron compound or aluminum compound to heavy metal-containing water, the ferrous compound is added to the heavy metal-containing water, and the heavy metal-containing water to which the ferrous compound is added Is added to a part or all of the sludge that has been extracted from the reaction tank and separated into solid and liquid, and the pH of the sludge is adjusted to 11 to 13 by opening the sludge to 11-13. In the reaction tank, the reaction was performed for 30 minutes to 3 hours under a non-oxidizing atmosphere in which air was blocked, at a temperature of 30 ° C. or less, and at a pH of 8.5 to 11 for 30 minutes to 3 hours. ) Is solid-liquid separated, while part or all of the precipitate is alkalized and returned to the reaction vessel, and the heavy metal concentration of the solid-liquid separated heavy metal-containing water is reduced to 0.01 mg / L or less. Any one of claims 1-6 Processing method of heavy metal containing water described.
含有重金属類の濃度を0.01mg/L以下に低減する請求項1〜7の何れかに記載する重金属類含有水の処理方法。
The method for treating heavy metal-containing water according to any one of claims 1 to 7, wherein the concentration of the heavy metal is reduced to 0.01 mg / L or less.
固液分離手段において分離した汚泥について、反応槽に返送しない汚泥を濾過脱水し、水分を系外に排出する一方、濾渣に別系統の排水等を通水し、濾渣に残存する還元力を利用して上記排水等に含まれる汚染を分解する請求項1〜7の何れかに記載する重金属類含有水の処理方法。
For sludge separated in the solid-liquid separation means, sludge that is not returned to the reaction tank is filtered and dehydrated, and water is discharged out of the system. On the other hand, drainage from another system is passed through the filter residue and the remaining reducing power is used. And the processing method of the heavy metal containing water in any one of Claims 1-7 which decomposes | disassembles the contamination contained in the said waste_water | drain etc.
重金属類含有水に第一鉄化合物を添加する槽、第一鉄化合物を添加した重金属類含有水を反応させる非酸化性雰囲気の密閉反応槽、該反応槽から抜き出したスラリーを固液分離する手段、分離した汚泥にアルカリを添加する開放型のアルカリ添加槽、このアルカリ性汚泥を反応槽に返送する管路、これらの各槽および固液分離手段を連通する管路を備え、請求項1の処理系を形成したことを特徴とする重金属類含有水の処理装置。
A tank for adding ferrous compounds to heavy metal-containing water, a non-oxidizing atmosphere sealed reaction tank for reacting heavy metals-containing water added with ferrous compounds, and a means for solid-liquid separation of the slurry extracted from the reaction tank 2. An open type alkali addition tank for adding alkali to the separated sludge, a pipe for returning the alkaline sludge to the reaction tank, and a pipe for communicating the tank and the solid-liquid separation means. An apparatus for treating heavy metal-containing water, characterized in that a system is formed.
請求項10の処理装置において、重金属類含有水に還元性鉄化合物を添加する槽の前に、該重金属類含有水に鉄化合物またはアルミニウム化合物を添加する槽、および生成した沈澱の固液分離手段を有する重金属類含有水の処理装置。

11. The treatment apparatus according to claim 10, wherein a tank for adding an iron compound or an aluminum compound to the heavy metal-containing water is added before the tank for adding the reducing iron compound to the heavy metal-containing water, and a solid-liquid separation means for the generated precipitate. An apparatus for treating water containing heavy metals.

JP2005252357A 2004-08-31 2005-08-31 Method and apparatus for treating heavy metal-containing water Expired - Fee Related JP4747269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005252357A JP4747269B2 (en) 2004-08-31 2005-08-31 Method and apparatus for treating heavy metal-containing water

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004251762 2004-08-31
JP2004251762 2004-08-31
JP2005252357A JP4747269B2 (en) 2004-08-31 2005-08-31 Method and apparatus for treating heavy metal-containing water

Publications (2)

Publication Number Publication Date
JP2006095519A true JP2006095519A (en) 2006-04-13
JP4747269B2 JP4747269B2 (en) 2011-08-17

Family

ID=36235834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005252357A Expired - Fee Related JP4747269B2 (en) 2004-08-31 2005-08-31 Method and apparatus for treating heavy metal-containing water

Country Status (1)

Country Link
JP (1) JP4747269B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754099B2 (en) 2004-04-26 2010-07-13 Mitsubishi Materials Corporation Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus
JP2010207673A (en) * 2009-03-09 2010-09-24 Takamatsu Mekki:Kk METHOD OF MANUFACTURING LOW-GRADE Ni RECYCLE SLUDGE
CN113896519A (en) * 2021-10-09 2022-01-07 郑州大学 Method for preparing wave-absorbing sludge ceramic material by using zinc-cobalt-manganese mixed wastewater of zinc smelting system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780478A (en) * 1993-09-13 1995-03-28 Kurita Water Ind Ltd Treatment of chromium-containing discharged water
JPH08267076A (en) * 1995-03-28 1996-10-15 Dowa Mining Co Ltd Treatment of selenium-containing waste water
JP2001079565A (en) * 1999-07-13 2001-03-27 Dowa Mining Co Ltd Process for removing selenium in wastewater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780478A (en) * 1993-09-13 1995-03-28 Kurita Water Ind Ltd Treatment of chromium-containing discharged water
JPH08267076A (en) * 1995-03-28 1996-10-15 Dowa Mining Co Ltd Treatment of selenium-containing waste water
JP2001079565A (en) * 1999-07-13 2001-03-27 Dowa Mining Co Ltd Process for removing selenium in wastewater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754099B2 (en) 2004-04-26 2010-07-13 Mitsubishi Materials Corporation Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus
US7799232B2 (en) 2004-04-26 2010-09-21 Mitsubishi Materials Corporation Method of treating wastewater with reducing water purification material
US7892426B2 (en) 2004-04-26 2011-02-22 Mitsubishi Materials Corporation Wastewater treatment apparatus
JP2010207673A (en) * 2009-03-09 2010-09-24 Takamatsu Mekki:Kk METHOD OF MANUFACTURING LOW-GRADE Ni RECYCLE SLUDGE
CN113896519A (en) * 2021-10-09 2022-01-07 郑州大学 Method for preparing wave-absorbing sludge ceramic material by using zinc-cobalt-manganese mixed wastewater of zinc smelting system

Also Published As

Publication number Publication date
JP4747269B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
KR100853970B1 (en) Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus
JP3956978B2 (en) Method and apparatus for treating heavy metal-containing water
JP2009148749A (en) Heavy metal-containing water treating method
JP5170461B2 (en) Treatment of selenium-containing wastewater
JP4973864B2 (en) Method and apparatus for treating heavy metal-containing water
JP2013075252A (en) Treatment method removing cesium and heavy metal from wastewater
JP2009148750A (en) Heavy metal-containing water treating method
JP3928650B2 (en) Reducing water purification material and method for producing the same
JP4747269B2 (en) Method and apparatus for treating heavy metal-containing water
CN108640251B (en) Method for removing multiple heavy metal pollutants in water by using bivalent manganese enhanced ferrate
JP2007117816A (en) Water purification method and apparatus
JP6307276B2 (en) Selenium-containing water treatment apparatus and selenium-containing water treatment method
JP4936559B2 (en) Arsenic remover
JP2004290777A (en) Method for treating arsenic-containing water
JP2007054818A (en) Method for treating water polluted with selenium and agent therefor
JP2007117984A (en) Apparatus for treating heavy metals-containing water
JP4706828B2 (en) Method and apparatus for treating nitrate-containing water
JP4706827B2 (en) Method and apparatus for treating organic halide-containing water
CN111072176A (en) Treatment method of leaching solution containing arsenic acid
JP2002159978A (en) Treatment method for waste liquid containing cadmium and selenium
JP2019147136A (en) Processing method of selenium-containing water
US20060231498A1 (en) Reactive filtration
AU2008202319A1 (en) Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus
JPH0361515B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110412

R150 Certificate of patent or registration of utility model

Ref document number: 4747269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees