JP2001079565A - Process for removing selenium in wastewater - Google Patents

Process for removing selenium in wastewater

Info

Publication number
JP2001079565A
JP2001079565A JP32681999A JP32681999A JP2001079565A JP 2001079565 A JP2001079565 A JP 2001079565A JP 32681999 A JP32681999 A JP 32681999A JP 32681999 A JP32681999 A JP 32681999A JP 2001079565 A JP2001079565 A JP 2001079565A
Authority
JP
Japan
Prior art keywords
selenium
wastewater
iron
dissolved oxygen
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32681999A
Other languages
Japanese (ja)
Other versions
JP4231934B2 (en
Inventor
Mitsuo Abumiya
三雄 鐙屋
Toshiaki Tokumitsu
俊章 徳光
Hitoshi Mikata
仁 三ヶ田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP32681999A priority Critical patent/JP4231934B2/en
Publication of JP2001079565A publication Critical patent/JP2001079565A/en
Application granted granted Critical
Publication of JP4231934B2 publication Critical patent/JP4231934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an efficient and economical process for removing selenium in wastewater, which is intended for treating wastewater containing hexavalent selenium, such as industrial wastewater, and capable of easily reducing the selenium content in the wastewater to <=0.1 mg/L (effluent standard value) by treatment at room temperature. SOLUTION: This process comprises: introducing wastewater to be treated into a reaction vessel in an air atmosphere under the atmospheric pressure or in a non- oxidizing atmosphere formed by e.g. sealing an upper part of the reaction vessel with gaseous nitrogen or the like; thereafter, adjusting the pH of the wastewater to about 3, adding a reducing agent such as powdery iron to the pH-adjusted wastewater and agitating them together, to reduce the dissolved oxygen content in the wastewater to <=0.5 mg/L; subsequently, adding a divalent iron salt such as FeSO4 to the resulting water, to adjust the pH of the water to 9, to coagulate iron(II) hydroxide and to coprecipitate reduced selenium with the coagulated iron(II) hydroxide; and when a comparatively high content of iron remains in the water thus treated, further increasing the pH of the water to about 9.5, to perform secondary coagulation of iron(II) hydroxide, to reduce the iron content in the water to <=0.1 mg/L and to obtain the objective treated water; wherein the excess powdery iron or iron salt is recovered from the resulting precipitate and reused.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】排水中のセレン、特に、室温
で6価セレンをも排水基準値である0.1mg/l以下
にまで除去可能な方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing selenium in wastewater, in particular, hexavalent selenium at room temperature to a wastewater standard value of 0.1 mg / l or less.

【0002】[0002]

【従来の技術】排水中のセレンを除去する方法として、
鉄粉置換処理方法、水酸化鉄(3価)を用いた吸着処理
方法などが知られている。上記、従来法の鉄粉置換処理
法でも、SeO32− :亜セレン酸イオン(以下、4
価セレンという)に関しては、ほぼ完全(0.1mg/
l以下)に除去可能であったが、一方、SeO4
2− :セレン酸イオン(以下、6価セレンという)の
除去に関しては、除去能力が乏しいという問題があっ
た。
2. Description of the Related Art As a method for removing selenium in wastewater,
An iron powder replacement treatment method, an adsorption treatment method using iron hydroxide (trivalent), and the like are known. Even in the above-described conventional iron powder replacement treatment method, SeO3 2- : selenite ion (hereinafter referred to as 4) is used.
Is almost complete (0.1 mg / selenium).
l) or less, while SeO4
2- : Regarding the removal of selenate ions (hereinafter referred to as hexavalent selenium), there is a problem that the removal ability is poor.

【0003】また、水酸化鉄(3価)の凝集フロックに
セレンを吸着させて除去する吸着処理方法では、吸着可
能な微量濃度でのみ適用可能な方法であり、したがって
上述のような従来法においては、いずれも比較的濃度が
高い6価セレン(数mg/l〜数十mg/l以上)を含有する排
水処理に問題があった。また例えば、特開平6−792
86号公報には、排水にセレン量に見合う多量の硫酸第
一鉄塩を加えた後、中和剤を添加し、セレンを凝集する
水酸化鉄(2価)に吸着させて除去する方法が開示され
ている。しかし、この方法は6価セレンの除去効率が悪
く、また、コストがかかるという問題があった。
[0003] Further, the adsorption treatment method for adsorbing and removing selenium from the flocculence of iron hydroxide (trivalent) is a method applicable only to a trace concentration capable of being adsorbed. All have problems in wastewater treatment containing hexavalent selenium (several mg / l to several tens mg / l or more) having a relatively high concentration. Also, for example, see JP-A-6-792.
No. 86 discloses a method in which a large amount of ferrous sulfate corresponding to the amount of selenium is added to wastewater, then a neutralizing agent is added, and selenium is adsorbed and removed by coagulating iron hydroxide (divalent). It has been disclosed. However, this method has a problem that the removal efficiency of hexavalent selenium is low and the cost is high.

【0004】さらに、特開平8−132074号公報に
は、排水を、塩化第一鉄等遷移金属化合物の存在下で、
pH9以上かつ温度70℃以上に保持してセレンを殿物
として除去する方法が開示されている。しかしこの方法
においては実質的に液温を80℃以上に昇温させないと
6価セレンの効率的な除去ができないので、昇温のため
のコストがかかり、また、排水が高温となる点に問題が
あった。
[0004] Further, Japanese Patent Application Laid-Open No. Hei 8-132074 discloses that wastewater is treated in the presence of a transition metal compound such as ferrous chloride.
A method for removing selenium as a deposit while maintaining the pH at 9 or more and the temperature at 70 ° C. or more is disclosed. However, in this method, since the hexavalent selenium cannot be efficiently removed unless the liquid temperature is raised to 80 ° C. or more, the cost for raising the temperature is increased, and the temperature of the waste water becomes high. was there.

【0005】また、特開平10−34168号公報に
は、排水をpH3以下として鉄粉等鉄金属を充填したカ
ラムに通水し、水中のセレン酸を還元させ、カラムから
の流出水のpHを7以上とし、凝集する水酸化鉄のフロ
ックにセレンを吸着させて除去するようにした方法が開
示されている。しかし、この方法においては、鉄金属カ
ラムを使用するので、排水のセレン濃度が高い場合、直
接対応し難く、またセレン濃度が低い場合においては大
量の排水が問題となる。さらにカラムの通過速度、カラ
ムの寿命や異物の詰まり等を考慮すると、複数基のカラ
ムを必要とし、関連設備が大規模になる等コストが大で
経済性に問題があった。
Japanese Patent Application Laid-Open No. 10-34168 discloses that wastewater is passed through a column filled with iron metal such as iron powder at a pH of 3 or less to reduce selenic acid in the water and to adjust the pH of the effluent from the column. There is disclosed a method in which selenium is adsorbed on floc of iron hydroxide that is agglomerated to remove the selenium by setting it to 7 or more. However, in this method, since an iron metal column is used, it is difficult to directly cope with a high selenium concentration in the wastewater, and a large amount of wastewater becomes a problem when the selenium concentration is low. Further, in consideration of the passing speed of the column, the life of the column, clogging of foreign matter, and the like, a plurality of columns are required, and the related equipment becomes large-scale, so that the cost is large and there is a problem in economy.

【0006】一方、本発明者等が提案した技術として、
特開平8−267076号公報に開示された方法があ
る。この方法は、セレンを含有する排水に2価鉄イオン
を溶存させ、大気中で液温を30℃以上に加温維持しつ
つ、アルカリ剤を添加してpH8〜10に中和し、固液
分離して殿物を除くか、または空気遮断下、好ましくは
室温以上に加温維持しつつアルカリ剤を添加してpH8
〜10に中和した後、固液分離して殿物を除くことによ
り排水中のセレン量を0.1mg/l以下にまで低下さ
せる方法である。
On the other hand, as a technique proposed by the present inventors,
There is a method disclosed in Japanese Patent Application Laid-Open No. 8-267076. In this method, ferrous ions are dissolved in wastewater containing selenium, and while maintaining the liquid temperature at 30 ° C. or higher in the atmosphere, an alkaline agent is added to neutralize the solution to a pH of 8 to 10, and the solid-liquid Separate to remove deposits, or add an alkaline agent while keeping the temperature above room temperature, preferably with the air shut off, to adjust the pH to 8
This is a method in which the amount of selenium in the waste water is reduced to 0.1 mg / l or less by neutralizing to 10 to 10 and then performing solid-liquid separation to remove deposits.

【0007】[0007]

【発明が解決しようとする課題】しかし、この方法は6
価セレンをも容易に0.1mg/l以下にまで除去が可
能であったが、前記特開平8−132074号公報の発
明の場合程の高温度ではないが、液の加温処理が必要で
ある等作業性や経済性に問題があった。
However, this method has a problem of 6
It was possible to easily remove even valent selenium down to 0.1 mg / l or less, but the temperature was not as high as that of the invention of JP-A-8-132074, but a heating treatment of the liquid was necessary. There were problems with workability and economy.

【0008】以上の状況に鑑み、本発明は、前記の特開
平8−267076号公報の技術をさらに発展させ、そ
の反応性を飛躍的に向上させることにより、室温でも容
易に6価セレンを水質汚濁防止法における排水基準値で
ある0.1mg/l以下にまで除去できるような効率性
かつ経済性の高いセレン含有排水の処理方法の提供を目
的とするものである。
In view of the above situation, the present invention further develops the technology of the above-mentioned Japanese Patent Application Laid-Open No. 8-267076 and drastically improves its reactivity, thereby easily converting hexavalent selenium into water at room temperature. It is an object of the present invention to provide an efficient and economical method for treating selenium-containing wastewater that can be removed to 0.1 mg / l or less, which is the wastewater standard value in the Pollution Control Law.

【0009】[0009]

【課題を解決するための手段】本発明者等は、上記課題
を解決するために鋭意研究したところ、セレン含有排水
中において2価鉄イオンを中和し、析出する水酸化鉄に
よるセレンの還元処理を行うに先立ち、該排水中に存在
する溶存酸素を除去することが反応性の飛躍的な向上に
密接に関与する事実を見出した。また、本発明は、全工
程を大気雰囲気下で実施できるが、好ましくは非酸化性
雰囲気下において実施する方がより高濃度のセレン含有
量まで対応可能となる。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and found that selenium is neutralized in waste water containing selenium and reduced by iron hydroxide which precipitates. Prior to the treatment, it has been found that the removal of dissolved oxygen present in the wastewater is closely related to the drastic improvement in reactivity. In addition, the present invention can be carried out in an air atmosphere, but preferably carried out in a non-oxidizing atmosphere, which can cope with a higher selenium content.

【0010】溶存酸素の除去は、被処理水をpHが7以
下で金属と接触させる手段、被処理水に溶存酸素除去試
薬を添加する手段、被処理水を非酸化性ガスでバブリン
グする手段、また、非酸化性雰囲気中で被処理水を減圧
処理する手段等が挙げられるが、それ以外の非酸化性雰
囲気中で溶存酸素を除去する処理手段も当然本発明に含
まれるものであり、これらの手段は1つまたは2つ以上
に組合わせて利用されるものである。
[0010] The removal of dissolved oxygen includes means for bringing the water to be treated into contact with a metal having a pH of 7 or less, means for adding a dissolved oxygen removing reagent to the water to be treated, means for bubbling the water to be treated with a non-oxidizing gas, Further, a means for reducing the pressure of the water to be treated in a non-oxidizing atmosphere may be mentioned, but other treating means for removing dissolved oxygen in a non-oxidizing atmosphere are naturally included in the present invention. Are used in combination of one or more.

【0011】すなわち、本発明は、第1に、セレンを含
有する排水に含まれる溶存酸素を除去する溶存酸素除去
工程と、得られた被処理排水に2価鉄塩を添加する鉄塩
添加工程と、次いでアルカリ剤を添加してpHを8〜1
0に中和し、セレンを水酸化第一鉄と共沈させるセレン
共沈工程と、得られた殿物を分離して清浄排水を得る固
液分離工程とからなることを特徴とする排水中のセレン
の除去方法0、第2に、セレンを含有する排水に2価鉄
塩を添加する鉄塩添加工程と、次いで、溶存酸素を除去
する溶存酸素除去工程と、得られた被処理排水にアルカ
リ剤を添加してpHを8〜10に中和し、セレンを水酸
化第一鉄と共沈させるセレン共沈工程と、得られた殿物
を分離して清浄排水を得る固液分離工程とからなること
を特徴とする排水中のセレンの除去方法を、第3に、セ
レンを含有する排水に含まれる溶存酸素を除去する溶存
酸素除去工程と、得られた被処理排水に2価鉄塩を添加
する鉄塩添加工程と、次いでアルカリ剤を添加してpH
を8〜9に中和し、セレンを水酸化第一鉄と共沈させる
セレン共沈工程と、引き続きアルカリ剤を添加してpH
を9〜11に中和して水酸化第一鉄を沈殿させる水酸化
鉄沈殿工程と、得られた殿物を分離して清浄排水を得る
固液分離工程とからなることを特徴とする排水中のセレ
ンの除去方法を、第4に、セレンを含有する排水に2価
鉄塩を添加する鉄塩添加工程と、次いで溶存酸素を除去
する溶存酸素除去工程と、得られた被処理排水にアルカ
リ剤を添加してpHを8〜9に中和し、セレンを水酸化
第一鉄と共沈させるセレン共沈工程と、引き続きアルカ
リ剤を添加してpHを9〜10に中和して水酸化第一鉄
を沈殿させる水酸化鉄沈殿工程と、得られた殿物を分離
して清浄排水を得る固液分離工程とからなることを特徴
とする排水中のセレンの除去方法を、第5に、前記溶存
酸素除去工程が、被処理排水を、pHが7以下で金属と
接触させる手段を含むことを特徴とする前記第1〜第4
のいずれかに記載の方法を、第6に、前記溶存酸素除去
工程が、被処理排水に溶存酸素除去薬剤を添加する手段
を含むことを特徴とする前記第1〜第4のいずれかに記
載の方法を、第7に、前記溶存酸素除去工程が、被処理
排水を非酸化性ガスでバブリングする手段を含むことを
特徴とする前記第1〜第4のいずれかに記載の方法を、
第8に、前記溶存酸素除去工程が、被処理排水を減圧処
理する手段を含むことを特徴とする前記第1〜第4のい
ずれかに記載の方法を、第9に、前記溶存酸素除去工程
が、少なくとも、非酸化性雰囲気中で被処理排水を減圧
処理する手段を含むことを特徴とする前記第1〜第8の
いずれかに記載の方法を、第10に、前記鉄塩添加工程
と前記セレン共沈工程が非酸化性雰囲気中で行われるこ
とを特徴とする前記第1〜第9のいずれかに記載の方法
を、第11に、前記水酸化鉄沈殿工程が、非酸化性雰囲
気で行われることを特徴とする前記第3〜第10のいず
れかに記載の方法を、第12に、前記金属が鉄粉である
ことを特徴とする前記第5に記載の方法を、第13に、
前記水酸化鉄沈殿工程における殿物を含有する被処理排
水から磁気選別により前記鉄粉を回収し、該鉄粉を再度
前記溶存酸素除去工程に供することを特徴とする前記第
12に記載の方法を、第14に、前記鉄粉を磁気選別に
より回収した後、前記殿物を含有する被処理排水を固液
分離し、得られた殿物をpHが4以下の酸性液で溶解し
て不溶解物を濾別し、得られた濾過液を2価鉄源として
再度前記鉄塩添加工程に供することを特徴とする前記第
13に記載の方法であり、第15に、前記水酸化鉄沈殿
工程における殿物を含有する被処理排水を固液分離し、
得られた殿物を、pHが4以下の酸性液で溶解した後、
溶解液中にある鉄粉を磁気選別により回収し、再度前記
溶存酸素除去工程に供すると共に、さらに、鉄粉を除い
た溶解液を濾過し、不溶解物を濾別した濾過液を2価鉄
源として再度前記鉄塩添加工程に供することを特徴とす
る前記第12に記載の方法であり、第16に、前記溶存
酸素の除去を被処理水の溶存酸素が0.5mg/l以下
になるまで行うことを特徴とする前記第1〜15のいず
れかに記載の排水中のセレンの除去方法を提供するもの
である。
That is, the present invention firstly provides a dissolved oxygen removing step for removing dissolved oxygen contained in a selenium-containing wastewater, and an iron salt adding step for adding a bivalent iron salt to the obtained treated wastewater. And then add an alkaline agent to adjust the pH to 8 to 1.
A selenium co-precipitation step of neutralizing selenium with ferrous hydroxide to zero and a solid-liquid separation step of separating the obtained residue to obtain clean waste water. Selenium removal method 0, secondly, an iron salt addition step of adding a ferrous salt to a selenium-containing wastewater, a dissolved oxygen removal step of removing dissolved oxygen, and A selenium co-precipitation step of neutralizing the pH to 8 to 10 by adding an alkali agent and co-precipitating selenium with ferrous hydroxide, and a solid-liquid separation step of separating the obtained residue to obtain clean waste water Thirdly, a method for removing selenium in wastewater, comprising: a dissolved oxygen removal step of removing dissolved oxygen contained in wastewater containing selenium; Iron salt adding step of adding salt, and then adding alkaline agent to pH
Is neutralized to 8 to 9 and selenium is coprecipitated with ferrous hydroxide, and a selenium coprecipitation step is performed.
Wastewater, comprising: a step of precipitating ferrous hydroxide by neutralizing to 9 to 11 to precipitate ferrous hydroxide; and a solid-liquid separation step of separating the obtained residue to obtain clean wastewater. Fourthly, the method for removing selenium in the wastewater includes the steps of: adding a ferrous salt to a selenium-containing wastewater; adding an iron salt; then, removing a dissolved oxygen; An alkaline agent is added to neutralize the pH to 8 to 9, and selenium is coprecipitated with ferrous hydroxide. A selenium coprecipitation step is performed, followed by adding an alkaline agent to neutralize the pH to 9 to 10. A method for removing selenium in wastewater, comprising a step of precipitating ferrous hydroxide and a step of solid-liquid separation for separating the obtained artifact to obtain clean wastewater, 5. The means for removing dissolved oxygen, wherein the wastewater to be treated is brought into contact with a metal having a pH of 7 or less. The first to fourth, wherein Mukoto
Sixthly, in the sixth aspect, wherein the dissolved oxygen removing step includes means for adding a dissolved oxygen removing agent to the wastewater to be treated. Seventh, the method according to any one of the first to fourth features, wherein the dissolved oxygen removing step includes means for bubbling the treated wastewater with a non-oxidizing gas.
Eighth, the method according to any one of the first to fourth aspects, wherein the dissolved oxygen removing step includes a means for reducing the pressure of the wastewater to be treated. The method according to any one of the first to eighth, characterized in that the method comprises at least means for reducing the pressure of the waste water to be treated in a non-oxidizing atmosphere, The method according to any one of the first to ninth aspects, wherein the selenium co-precipitation step is performed in a non-oxidizing atmosphere. The method according to any one of the third to tenth aspects, wherein the metal is iron powder, and the method according to the fifth aspect, wherein the metal is iron powder. To
The method according to the twelfth aspect, wherein the iron powder is recovered by magnetic separation from the treated wastewater containing a deposit in the iron hydroxide precipitation step, and the iron powder is subjected to the dissolved oxygen removal step again. Fourteenth, after the iron powder is collected by magnetic separation, the wastewater to be treated containing the deposit is subjected to solid-liquid separation, and the resulting deposit is dissolved in an acidic solution having a pH of 4 or less to remove the residue. The method according to the thirteenth aspect, wherein the dissolved substance is separated by filtration, and the obtained filtrate is again subjected to the iron salt addition step as a ferrous iron source. The wastewater to be treated containing the deposit in the process is separated into solid and liquid,
After dissolving the obtained residue in an acidic solution having a pH of 4 or less,
The iron powder in the solution was recovered by magnetic separation and subjected to the dissolved oxygen removing step again, and the solution excluding the iron powder was filtered. The method according to the twelfth aspect, wherein the method is again provided to the iron salt adding step as a source. Sixteenth, the removal of the dissolved oxygen reduces the dissolved oxygen in the water to be treated to 0.5 mg / l or less. 16. A method for removing selenium from wastewater according to any one of the first to fifteenth aspects, wherein

【0012】[0012]

【発明の実施の形態】本発明では、基本的に、セレン含
有排水から溶存酸素を除去し、この処理液に2価鉄塩を
添加してpH8〜10に中和させることにより、溶存す
る6価セレンを還元すると共に水酸化第一鉄の凝集フロ
ックに吸着させて共沈させることにより除去するもので
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, dissolved oxygen is basically removed from selenium-containing wastewater, and a divalent iron salt is added to the treated solution to neutralize the solution to a pH of 8 to 10. The selenium is reduced and removed by co-precipitation by adsorbing on coagulated floc of ferrous hydroxide.

【0013】溶存酸素を0.5mg/l以下まで低減す
ることで、前記水酸化第一鉄を安定化させ、処理排水の
セレンを排水基準値の0.1mg/l以下にまで低減さ
せることが可能となる。
By reducing the dissolved oxygen to 0.5 mg / l or less, the ferrous hydroxide can be stabilized, and the selenium in the treated wastewater can be reduced to 0.1 mg / l or less of the wastewater standard value. It becomes possible.

【0014】溶存酸素を除去するには、(1) pH7以下
の酸性域において鉄粉等金属と接触させる手段、(2) 2
価鉄塩を溶解して中和する手段や亜硫酸ソーダ等溶存酸
素除去試薬(還元剤)を添加する手段、(3) 非酸化性雰
囲気中で、かつ、N ガス等非酸化性ガスで被処理水
をバブリングする手段、(4) 非酸化性雰囲気中で、か
つ、被処理水を減圧処理する手段等がある。
In order to remove dissolved oxygen, (1) means for bringing into contact with a metal such as iron powder in an acidic region having a pH of 7 or less, (2) 2
Means for adding a means or sodium sulfite or the like for removing dissolved oxygen reagent (reducing agent) and neutralizing the dissolved Ataitetsushio, (3) in a non-oxidizing atmosphere, and the in N 2 gas or the like non-oxidizing gas There are means for bubbling the treated water, and (4) means for subjecting the water to be treated to a reduced pressure in a non-oxidizing atmosphere.

【0015】非酸化性雰囲気は、反応槽に被処理水を入
れた後、その液槽の上部空間にN等非酸化性ガスを流
入させて空気と置換させ、被処理水を上部シールするこ
とで得られる。非酸化性ガスは、Nガス以外にアルゴ
ン、ヘリウム等の不活性ガス等用いることができるが、
ガスがコスト的に有用である。Nガス等非酸化性
ガスによるバブリング処理の場合は、ふた付反応槽を用
いて行うことにより、実質的に上部空間は置換状況、す
なわち、非酸化性雰囲気状況となるので、バブリング処
理時は上部シールを行う必要はない。
In the non-oxidizing atmosphere, after the water to be treated is put into the reaction tank, a non-oxidizing gas such as N 2 is caused to flow into the upper space of the liquid tank to replace the air, thereby sealing the water to be treated at the upper part. Obtained by: As the non-oxidizing gas, an inert gas such as argon and helium can be used in addition to the N 2 gas.
N 2 gas is cost effective. In the case of the bubbling process using a non-oxidizing gas such as N 2 gas, by performing the process using a reaction vessel with a lid, the upper space is substantially in a replacement state, that is, a non-oxidizing atmosphere state. There is no need for a top seal.

【0016】溶存酸素の除去がセレンの除去におよぼす
効果は顕著であり、例えば、純水に試薬を添加して6価
セレンを34mg/lの高濃度とした液300mlを用
い、スターラー攪拌で500mg/lのFe2+存在
下、pH=9のアルカリ域で30分反応させて水酸化第
一鉄を凝集させた場合において、溶存酸素の除去処理を
行わずに液温25℃としたものは、液残留セレン濃度は
20mg/lであったのに対し、同じ液温25℃で、液
槽底部からNガスをバブリングさせて溶存酸素を除去
した場合、セレン濃度は1.9mg/lとなった。ま
た、液温が45℃で、液槽をNガスで上部シールした
場合、セレン濃度は2.0mg/lであった(特開平8
−267076号の方法)。すなわち、溶存酸素を除去
する本発明は常温反応で十分な脱セレン効果を得ること
ができる。
The effect of the removal of dissolved oxygen on the removal of selenium is remarkable. For example, a reagent was added to pure water, and 300 ml of a solution having a high concentration of hexavalent selenium of 34 mg / l was used. In the case where ferrous hydroxide is aggregated by reacting in the alkaline region at pH = 9 for 30 minutes in the presence of Fe 2+ / l in the presence of Fe 2+ , the solution which has been subjected to a liquid temperature of 25 ° C. without removing dissolved oxygen is: When the liquid residual selenium concentration was 20 mg / l, when the dissolved oxygen was removed by bubbling N 2 gas from the bottom of the liquid tank at the same liquid temperature of 25 ° C., the selenium concentration was 1.9 mg / l. Was. In addition, when the liquid temperature was 45 ° C. and the liquid tank was sealed at the top with N 2 gas, the selenium concentration was 2.0 mg / l (Japanese Patent Application Laid-Open No. H08-208,1992).
-267076 method). That is, in the present invention for removing dissolved oxygen, a sufficient de-selenium effect can be obtained at room temperature.

【0017】前記したように、被処理排水の溶存酸素と
処理排水のセレン濃度とは密接に関連しており、溶存酸
素の除去は6価セレンの還元、水酸化第一鉄の安定とそ
の吸着性等に顕著な影響力を及ぼしている。
As described above, the dissolved oxygen in the waste water to be treated and the selenium concentration in the treated waste water are closely related, and the removal of dissolved oxygen is achieved by reducing hexavalent selenium, stabilizing ferrous hydroxide and adsorbing the same. It has a remarkable influence on sex.

【0018】さらに、塩類の少ない排水に比べて、6価
セレンを2.2mg/l含有すると共に、カルシウム、
塩素等を多量に含み6価セレンが除去し難い高塩濃度排
水を元液として溶存酸素の影響力を調査したところによ
れば、すなわち、元液900mlを反応容器にとり、液
温25℃、設定溶存酸素になるまでNガスバブリング
を続け、その後、容器のNガス上部置換を行い、スタ
ーラー攪拌で、Fe 500mg/lの存在下、pH
=9で30分の凝集反応を行わせたところによれば、
(a) 前記のバブリングによる溶存酸素の除去処理を行わ
ない場合では、溶存酸素は6.1〜7.4mg/lで、
処理後のセレン濃度は0.72mg/lとなったのに対
し、前記のバブリングによる酸素除去を行って、(b) 溶
存酸素を2mg/lとしたものは、セレン濃度は0.4
1mg/l、(c) 溶存酸素を1mg/lとしたものは、
セレン濃度は0.22mg/l、(d) 溶存酸素を0.5
mg/lとしたものは、セレン濃度は0.10mg/
l、(e) 溶存酸素を0.1mg/l以下としたものは、
セレン濃度は0.08mg/lにそれぞれ低減した。し
たがって、6価セレンが除去し難い高塩濃度排水を対象
とする場合においても、常温で処理排水のセレンを排水
基準の0.1mg/l以下とするには、被処理水の溶存
酸素を0.5mg/l以下にまで低減すればよい。
Furthermore, compared with wastewater containing less salt, it contains 2.2 mg / l of hexavalent selenium and contains calcium,
According to the investigation of the influence of dissolved oxygen using a high salt concentration wastewater containing a large amount of chlorine and the like, from which hexavalent selenium is difficult to be removed, as a base solution, that is, 900 ml of the base solution was taken in a reaction vessel, and the liquid temperature was set at 25 ° C. N 2 gas bubbling was continued until dissolved oxygen was reached, and then N 2 gas was replaced in the upper part of the vessel, and the mixture was stirred and stirred, and the pH was increased in the presence of 500 mg / l of Fe 2 +.
According to the results of a 30-minute agglutination reaction at = 9,
(a) In the case where the treatment for removing dissolved oxygen by bubbling is not performed, the dissolved oxygen is 6.1 to 7.4 mg / l,
While the selenium concentration after the treatment was 0.72 mg / l, the oxygen removal by bubbling as described above was carried out to obtain (b) the dissolved oxygen of 2 mg / l.
1 mg / l, (c) 1 mg / l of dissolved oxygen
The selenium concentration was 0.22 mg / l and (d) the dissolved oxygen was 0.5
mg / l, the selenium concentration was 0.10 mg / l
l, (e) When the dissolved oxygen is 0.1 mg / l or less,
The selenium concentration was reduced to 0.08 mg / l. Therefore, even in the case of high-salt-concentration wastewater from which hexavalent selenium is difficult to remove, the dissolved oxygen of the water to be treated should be reduced to 0 mg / l or less of the treated wastewater at room temperature at room temperature. What is necessary is just to reduce it to 0.5 mg / l or less.

【0019】この溶存酸素除去工程を含めて全工程を非
酸化性雰囲気下で処理するのが好ましい。また、溶存酸
素除去用鉄塩として2価鉄塩を利用することができ、2
価鉄塩の使用はセレンの水酸化鉄共沈処理の場合との2
段階使用になる。
It is preferable that all the steps including the step of removing dissolved oxygen be performed in a non-oxidizing atmosphere. In addition, a ferrous salt can be used as an iron salt for removing dissolved oxygen.
The use of iron (II) salt is 2 times that of coprecipitation treatment of selenium with iron hydroxide.
Becomes a stage use.

【0020】また、本発明では、6価セレンの還元と水
酸化第一鉄の凝集フロックへのセレンの吸着のため、2
価鉄塩を添加する。したがって、セレンの共沈のための
好適なpH=9前後におけるセレンの除去後も、鉄がそ
の排出基準10mg/l以下を若干上回る量で残留する
場合がある。この時は過剰量の残留鉄イオンの除去のた
め、本発明では、セレンの共沈反応後、さらにpH値を
高めて新たな水酸化鉄の凝集反応を行わせることもでき
る。
In the present invention, since selenium is adsorbed on flocculent floc of ferrous hydroxide, reduction of hexavalent selenium and adsorption of selenium on the floc of floc.
Add the ferrous salt. Therefore, even after removal of selenium at a preferable pH of about 9 for coprecipitation of selenium, iron may remain in an amount slightly exceeding the emission standard of 10 mg / l or less. At this time, in order to remove an excessive amount of residual iron ions, in the present invention, after the coprecipitation reaction of selenium, the pH value can be further increased to cause a new agglomeration reaction of iron hydroxide.

【0021】6価セレンを1.1mg/l含有する高塩
濃度排水を元液としてpH値と残留セレンと残留鉄との
関係を調査したところによれば、すなわち、元液900
mlを反応容器にとり、Nガスバブリングによる溶存
酸素の除去を行った後、容器上部のNガス置換を行っ
て非酸化性雰囲気とし、スターラー攪拌で、FeSO
・7HOの添加によるFe2+500mg/l存在
下で、pH=9に設定し、30分間の処理で、水酸化鉄
の一次凝集を行ってセレンを共沈させ、次いで、殿物除
去を行うことなく、攪拌下でパルプ状液をNaOHでp
H=9〜11に再設定して水酸化鉄の二次凝集を行わ
せ、その濾液を調査したところによれば、(a) 再度pH
=9に調整した場合、残留したセレン量は0.02mg
/l、鉄量は12mg/l、(b) pH=9.5に調整し
た場合、セレン量は0.04mg/l、鉄量は0.06
mg/l、(c) pH=10に調整した場合、セレン量は
0.10mg/l、鉄量は0.08mg/l、(d) pH
=10.5に調整した場合、セレン量は0.07mg/
l、鉄量は0.06mg/l、(e) pH=11に調整し
た場合、セレン量は0.09mg/l、鉄量は0.06
mg/lであり、pH=9以上で残留鉄量は急速に低減
した。しかし、pH=10以上では殿物中のセレンが再
溶解する傾向をみせた。したがって、前工程でpH=8
〜9,好ましくは約9で効率的にセレンを共沈させた
後、殿物含有処理水のままpH=9〜11好ましくは約
10に再調整し、水酸化鉄の二次凝集処理を行うことに
より、セレンと鉄を共に排水基準値以下に抑えることが
できる。また、同時に排水中に残存する微量のカドミウ
ム、アンチモン、水銀、鉛等の重金属をも排水基準値以
下に抑えることもできる。
High salt containing 1.1 mg / l of hexavalent selenium
Of pH value, residual selenium and residual iron
According to the investigation of the relationship, ie, the original liquid 900
ml into a reaction vessel,2Dissolution by gas bubbling
After removal of oxygen, N2Perform gas replacement
To a non-oxidizing atmosphere, stirring with a stirrer, 4
 ・ 7H2Fe by addition of O2+500mg / l present
Under pH set to pH = 9 and treated for 30 minutes,
Primary coagulation to co-precipitate selenium,
Without stirring, the pulp-like liquid was pulverized with NaOH under stirring.
H is reset to 9-11 to perform secondary aggregation of iron hydroxide
According to the results of examination of the filtrate, (a)
= 9, the amount of residual selenium was 0.02 mg
/ L, iron content was adjusted to 12 mg / l, (b) pH = 9.5.
, The amount of selenium is 0.04 mg / l and the amount of iron is 0.06 mg / l.
mg / l, (c) When adjusted to pH = 10, the amount of selenium is
0.10mg / l, iron content 0.08mg / l, (d) pH
= 10.5, the amount of selenium is 0.07 mg /
l, iron content was adjusted to 0.06mg / l, (e) pH = 11
, The amount of selenium is 0.09 mg / l and the amount of iron is 0.06 mg / l.
mg / l, and the residual iron content decreases rapidly at pH = 9 or more
did. However, when the pH is 10 or more, selenium in the deposits is
It showed a tendency to dissolve. Therefore, in the previous step, pH = 8
~ 9, preferably about 9, effectively coprecipitated selenium
Thereafter, pH = 9-11, preferably about 10
Readjusted to 10 to perform secondary aggregation of iron hydroxide
Selenium and iron can both be kept below the effluent standard.
it can. At the same time, a small amount of cadmium remaining in the wastewater
Heavy metals such as metals, antimony, mercury, lead, etc.
It can also be held down.

【0022】以下、図1の工程図により本発明の具体例
を説明する。工場排水等のセレン含有排水は、一般に、
pH=7の室温液の状態にあり、このまま反応槽に供給
する。反応槽は完全密閉である必要はないが、非酸化性
雰囲気とすることが可能で、ガス供給管および薬剤等の
投入口と共に攪拌装置を具備する蓋体を備えることが好
ましい。
Hereinafter, a specific example of the present invention will be described with reference to the process chart of FIG. Selenium-containing wastewater such as factory wastewater is generally
It is in the state of a room temperature liquid having a pH of 7, and is supplied to the reaction tank as it is. The reaction vessel does not need to be completely sealed, but can be made in a non-oxidizing atmosphere, and is preferably provided with a lid provided with a stirring device together with a gas supply pipe and an inlet for chemicals.

【0023】セレン含有排水即ち被処理水を反応槽に供
給した後、反応槽上部の空間に、非酸化性ガスとしてN
ガスを一定の供給速度で供給して空気と置換させ、被
処理水をシール状態とする。次いで、該被処理水を塩酸
等酸性剤によりpH=3程度の酸性域に保持し、鉄粉を
例えば0.3〜1.0g/l供給し、攪拌機により強く
攪拌する。鉄粉は少量が溶けて液中の酸素と反応し、
0.1mg/l以下にまで溶存酸素を低減することがで
きる。
After the selenium-containing waste water, ie, the water to be treated, is supplied to the reaction tank, the space above the reaction tank is filled with N 2 as a non-oxidizing gas.
The two gases are supplied at a constant supply rate to replace the air, and the water to be treated is brought into a sealed state. Next, the water to be treated is kept in an acidic range of about pH = 3 with an acidic agent such as hydrochloric acid, and iron powder is supplied, for example, in an amount of 0.3 to 1.0 g / l, and strongly stirred by a stirrer. A small amount of iron powder melts and reacts with oxygen in the liquid,
Dissolved oxygen can be reduced to 0.1 mg / l or less.

【0024】溶存酸素計により、0.5mg/l、好ま
しくは0.1mg/l以下にまで、溶存酸素が低減した
ことを確認した後、引き続き非酸化性雰囲気中で、被処
理水にFeCl 、FeSO 等2価鉄塩をFe2+
として500mg/l程度を投入し、攪拌して溶解させ
た後、NaOH等アルカリ剤を添加し、pH=8〜9と
し、このpHを維持したまま中和反応させることによ
り、2価の鉄イオン(Fe2+)はFe(OH)とな
り凝集(一次凝集)し、液中のセレンはこの凝集Fe
(OH) に還元され、吸着されて共沈する。30分
程度でセレンは殆ど沈殿となるが、液中に残存するFe
2+が多く鉄分の排水基準値を越える場合、さらに、N
aOH等アルカリ剤によりpH=9〜10程度に上げ、
Fe(OH) の二次凝集を促進させる。この時、凝集
剤と共に、沈降濾過助剤と して珪藻土を添加するのが
好ましい。得られたパルプ状の殿物含有処理水は沈降装
置、フィルタープレス等の手段で殿物と清浄排水とに固
液分離する。これによって、セレンが容易に0.1mg
/l以下に低減した清浄排水を得ることができる。な
お、水酸化第一鉄Fe(OH) の二次凝集の際、前
記したように、pHを10以上にしても、Fe(OH)
の沈殿量は増えず、一方、吸着セレンが若干再溶解
する傾向がみられるので、pHは10以下に止める。
According to a dissolved oxygen meter, 0.5 mg / l is preferable.
Or less than 0.1mg / l dissolved oxygen
After confirming that the
FeCl in water2 , FeSO4 Equivalent iron salts2+
About 500 mg / l, and stir to dissolve
After that, an alkaline agent such as NaOH is added to adjust the pH to 8-9.
The neutralization reaction is carried out while maintaining this pH.
And divalent iron ions (Fe2+) Is Fe (OH)2Tona
Coagulation (primary coagulation), and selenium in the liquid
(OH)2 To be adsorbed and co-precipitated. 30 minutes
Selenium is almost precipitated by the degree, but Fe remaining in the liquid
2+If the amount of iron exceeds the wastewater standard value, N
The pH is raised to about 9 to 10 with an alkaline agent such as aOH,
Fe (OH) 2Promotes secondary aggregation. At this time,
Diatomaceous earth is added as a sedimentation filter aid
preferable. The resulting pulp-like treated water containing sediment is settled.
And clean drainage by means such as
Separate the liquid. This makes it easy for selenium to
/ L or less can be obtained. What
Contact, ferrous hydroxide Fe (OH)2 Before secondary coagulation
As described above, even if the pH is 10 or more, Fe (OH)
2 Does not increase, while the adsorbed selenium slightly redissolves
Therefore, the pH is kept at 10 or less.

【0025】また、上記のように溶存酸素の除去に還元
剤として鉄粉を使用する場合、作業効率の点から、必要
量の数倍を超える過剰量の鉄粉が添加されるが、反応終
了後、殿物含有処理水から磁気選別等により鉄粉が回収
でき、再度上記溶存酸素の除去処理に供することができ
る。さらに、鉄粉を磁気選別した後、殿物含有処理水を
固液分離し、得られた殿物をpH1以上4以下、好まし
くは2以上4以下の酸性液で溶解し、不溶解物を濾別
し、得られた濾過水を2価鉄源として再度上記2価鉄塩
の添加処理に供することができる。酸性液がpH1より
低いとセレンが微量溶け出すことがあり、pH4より高
いと鉄塩の溶解が不十分である。
When iron powder is used as a reducing agent to remove dissolved oxygen as described above, an excessive amount of iron powder exceeding several times the required amount is added from the viewpoint of working efficiency. Thereafter, iron powder can be recovered from the deposit-containing treated water by magnetic separation or the like, and can be again subjected to the above-described dissolved oxygen removal treatment. Furthermore, after magnetically separating the iron powder, the treated water containing the residue is separated into solid and liquid, and the resulting residue is dissolved in an acidic solution having a pH of 1 to 4 and preferably 2 to 4 and the insoluble matter is filtered. Separately, the obtained filtered water can be used again as a ferrous iron source and subjected to the above-mentioned ferrous salt addition treatment. If the pH of the acidic liquid is lower than 1, selenium may be slightly dissolved, and if the pH is higher than 4, the dissolution of the iron salt is insufficient.

【0026】さらにまた、上記反応終了後、殿物含有処
理水を固液分離し、得られた殿物を、pH4以下の酸性
液で溶解した後、溶解液中にある鉄粉を磁気選別で回収
し、再度上記溶存酸素の除去処理に供すると共に、さら
に鉄粉を除いた溶解液を濾過し不溶解物を濾別し、得ら
れた濾過液を2価の鉄源として再度上記2価鉄塩の添加
工程に供することもできる。
Further, after the reaction is completed, the treated water containing the deposit is separated into solid and liquid, and the obtained residue is dissolved in an acidic solution having a pH of 4 or less, and the iron powder in the solution is subjected to magnetic separation. The collected solution is again subjected to the above-mentioned dissolved oxygen removal treatment, and the dissolved solution from which the iron powder has been removed is further filtered to remove insolubles. The obtained filtrate is used as a divalent iron source again to remove the above-mentioned divalent iron. It can also be subjected to a salt addition step.

【0027】本発明の別の具体例を図2の工程図により
説明する。工場排水等pH7の6価セレン含有排水を被
処理水として、図1の場合と同様に攪拌装置等を具備す
る反応槽に供給し、この被処理水中に、槽底に設けた給
気管をとおしてNガス等非酸化性ガスを吹き込んでバ
ブリングを行うことにより、被処理排水中の溶存酸素を
非酸化性ガスに同伴させる状態で、0.1mg/l以下
にまで低減することができる。この場合、非酸化性ガス
が反応槽の上部空間を充満する状態となるので、特に
は、図1の場合のように、上部空間におけるガス置換は
必要ではない。ただし、溶存酸素の除去後における中和
工程やセレン共沈工程は、非酸化性雰囲気中で行う方が
好ましく、バブリング処理後、反応槽の上部空間に少量
のN等非酸化性ガスを吹き込むシール手段を施すとよ
り効果的である。
Another embodiment of the present invention will be described with reference to the process chart of FIG. Wastewater containing hexavalent selenium having a pH of 7, such as factory wastewater, is supplied to a reaction tank equipped with a stirrer or the like as the water to be treated as in the case of FIG. 1, and an air supply pipe provided at the bottom of the tank is provided in the water to be treated. Then, by blowing a non-oxidizing gas such as N 2 gas and performing bubbling, the dissolved oxygen in the waste water to be treated can be reduced to 0.1 mg / l or less in a state where the dissolved oxygen is accompanied by the non-oxidizing gas. In this case, since the non-oxidizing gas fills the upper space of the reaction tank, gas replacement in the upper space is not particularly necessary as in the case of FIG. However, the neutralization step and the selenium coprecipitation step after the removal of dissolved oxygen are preferably performed in a non-oxidizing atmosphere. After bubbling, a small amount of a non-oxidizing gas such as N 2 is blown into the upper space of the reaction tank. It is more effective to provide a sealing means.

【0028】上記のバブリングによる溶存酸素除去処理
の終了後、Nガスによる上部シールを行い、次いで、
被処理水にFeCl、FeSO等の2価の鉄塩をF
として500mg/lの割合で添加し、さらに、
NaOH等アルカリ剤を添加し、pH=8〜9好ましく
は9に調整し、攪拌しながら、30分程度pHをそのま
ま保持するようにすることで、液中のFe2+はFe(O
H)となって 凝集し、還元されたセレンは吸着され
て共沈する。この約30分の共沈処理後、さらにNaO
H等アルカリ剤によりpH=9〜10に調整し、残存F
2+について水酸化鉄二次凝集を行わせる。この二次
凝集時、好ましくは珪藻土を沈降濾過助剤として添加す
る。水酸化鉄二次凝集処理を10分程で終了させた後、
殿物含有処理水は沈降あるいは濾過手段により固液分離
を行い、殿物を回収する、以上により、セレンおよび鉄
を、それぞれ排水基準以下にまで低減した清浄排水を得
ることができる。
After the end of the dissolved oxygen removal treatment by bubbling, the upper seal is performed with N 2 gas.
Divalent iron salts such as FeCl 2 and FeSO 4 are added to the water to be treated by F
e 2 + at a rate of 500 mg / l,
An alkaline agent such as NaOH is added to adjust the pH to 8-9, preferably 9, and the pH is maintained as it is for about 30 minutes while stirring, so that Fe 2+ in the liquid is reduced to Fe (O
H) It becomes 2 and aggregates, and the reduced selenium is adsorbed and co-precipitated. After about 30 minutes of coprecipitation, NaO
The pH is adjusted to 9 to 10 with an alkali agent such as H, and the remaining F
The secondary aggregation of iron hydroxide is performed for e 2+ . During this secondary flocculation, diatomaceous earth is preferably added as a settling filter aid. After finishing the secondary aggregation treatment of iron hydroxide in about 10 minutes,
Treated water containing sediment is subjected to sedimentation or solid-liquid separation by means of filtration, and the sediment is collected. As described above, it is possible to obtain clean wastewater in which selenium and iron are each reduced to below the wastewater standard.

【0029】本発明のまた別の具体例を図3の工程図に
よって説明する。この具体例では、水酸化鉄の凝集は3
段階に行われる。工場排水等pH7の6価のセレンの含
有排水を被処理水として、攪拌装置を具備する反応槽に
供給し、空気を巻き込まない程度の攪拌を行う。この攪
拌は反応終了まで継続する。液温は好ましくは25〜3
0℃とする。反応槽を大気開放下におき、被処理水にF
eSO4 ・7H2 O等2価鉄塩をFe2+として400m
g/l程度を投入し、NaOH等アルカリ剤によりpH
を8〜9好ましくは9程度に調整して15分間程度保持
させ、水酸化鉄(Fe(OH)2 )の生成を図ることに
より(一次凝集)、溶存酸素を低減させることができ
る。この時凝集する水酸化鉄により、液中のセレンもあ
る程度共沈する。
Another embodiment of the present invention will be described with reference to the process chart of FIG. In this example, the aggregation of iron hydroxide is 3
It takes place in stages. Wastewater containing hexavalent selenium having a pH of 7, such as factory wastewater, is supplied to a reaction tank equipped with a stirrer as water to be treated, and is stirred so that air is not involved. This stirring is continued until the end of the reaction. The liquid temperature is preferably 25 to 3
0 ° C. Place the reaction tank under the open air and add F
ESO 4 · 7H 2 O, etc. 2 Ataitetsushio 400m as the Fe 2+
g / l, and pH is adjusted with an alkaline agent such as NaOH.
Is adjusted to about 8 to 9, preferably about 9, and held for about 15 minutes to produce iron hydroxide (Fe (OH) 2 ) (primary aggregation), thereby reducing dissolved oxygen. At this time, selenium in the liquid is also coprecipitated to some extent due to the coagulated iron hydroxide.

【0030】次いで、塩酸等酸性液によりpHを7に調
整し、再度FeSO4 ・7H2 O等2価鉄塩をFe2+
して400mg/l程度添加しNaOH等アルカリ剤に
よりpHを8〜9好ましくは9に調整し、15〜30分
間好ましくは約30分間保持することにより、水酸化鉄
を凝集させ(二次凝集)、セレンを吸着・共沈させるこ
とができ、液中のセレンは0.1mg/l以下にまで十
分に除去される。
[0030] Then, pH was adjusted to 7 with hydrochloric acid and the like acidic solution, the pH by the addition of about 400 mg / l again FeSO 4 · 7H 2 O, etc. 2 Ataitetsushio as Fe 2+ NaOH like alkali agent 8-9 By adjusting to preferably 9 and holding for 15 to 30 minutes, preferably for about 30 minutes, iron hydroxide can be agglomerated (secondary agglutination) and selenium can be adsorbed and co-precipitated. 0.1 mg / l or less.

【0031】次ぎに、液中に残存する鉄イオンを除去す
るため、水酸化鉄殿物を除去することなく、被処理水を
NaOH等アルカリ剤でpH9〜11好ましくはpH1
0に調整し約10分間保持させることにより新たな水酸
化鉄の凝集を図る(三次凝集)。10分経過後、凝集剤
と沈降濾過助剤として珪藻土を添加し、凝集物を十分に
沈降させた後、固液分離し、セレン共沈殿物を回収す
る。以上の処理により、セレンおよび鉄をそれぞれ排水
基準以下にまで低減した清浄排水を得ることができる。
Next, in order to remove iron ions remaining in the solution, the water to be treated is treated with an alkaline agent such as NaOH to a pH of 9 to 11, preferably pH 1 to 1, without removing iron hydroxide precipitate.
Aggregation of new iron hydroxide is achieved by adjusting the temperature to 0 and holding for about 10 minutes (tertiary aggregation). After a lapse of 10 minutes, diatomaceous earth is added as a flocculant and a sedimentation filter aid, and the flocculate is sufficiently settled. Then, solid-liquid separation is performed to collect a selenium coprecipitate. By the above treatment, it is possible to obtain clean wastewater in which selenium and iron are each reduced to a wastewater standard or less.

【0032】[0032]

【実施例】[実施例1](金属接触手段による溶存酸素
の除去) Ca 1.3g/l、Cl 40g/l等塩類を多量に
含んだ工場排水を対象とし、6価セレン濃度が1.1m
g/lの液を元液として処理試験を行った(図1参
照)。
EXAMPLES Example 1 (Removal of Dissolved Oxygen by Means of Metal Contact) For industrial wastewater containing a large amount of salts such as 1.3 g / l Ca and 40 g / l Cl, a hexavalent selenium concentration of 1. 1m
A treatment test was performed using the g / l solution as a base solution (see FIG. 1).

【0033】この元液900mlを1lビーカーにと
り、蓋をして上部空間にNガスを500ml/min
の割合で流し、上部シール状態とした、蓋に付属させた
テフロン2枚羽根を備える攪拌装置により攪拌し、反応
液温度を25℃に保持した。次いで、塩酸液によりpH
を3に調整した後、鉄粉を0.5g/lの割合で添加
し、溶存酸素の除去処理をした。
900 ml of this original solution is placed in a 1 liter beaker, covered, and the upper space is filled with N 2 gas at 500 ml / min.
, And stirred by a stirrer equipped with two Teflon blades attached to the lid in an upper sealed state to maintain the reaction solution temperature at 25 ° C. Then, the pH is adjusted with hydrochloric acid solution.
Was adjusted to 3, and iron powder was added at a rate of 0.5 g / l to remove dissolved oxygen.

【0034】溶存酸素計により、被処理水の溶存酸素が
0.1mg/l以下となったことを確認した後、FeS
・7HO を2.3g(Fe2+として500m
g/l)を添加して4分間攪拌して溶解させた。次い
で、NaOH溶液の添加によりpHを9に調整し、30
分間このpHを保持し、セレンを凝集Fe(OH)
共沈させた。このパルプ液をブフナーで吸引濾過し、そ
の濾液を分析したところ、セレンは0.04mg/lで
あった。
After confirming by a dissolved oxygen meter that the dissolved oxygen in the water to be treated was 0.1 mg / l or less, FeS
500m The O 4 · 7H 2 O as 2.3 g (Fe 2+
g / l) was added and stirred for 4 minutes to dissolve. The pH was then adjusted to 9 by adding a NaOH solution,
This pH was maintained for a minute and selenium was co-precipitated with the agglomerated Fe (OH) 2 . This pulp solution was subjected to suction filtration with a Buchner, and the filtrate was analyzed. As a result, selenium was 0.04 mg / l.

【0035】[実施例2](薬剤添加手段による溶存酸
素の除去) 実施例1と同様の6価セレン濃度が1.1mg/lの元
液300mlをビーカーにとり、その上部空間にN
スを500ml/minの割合で流し、上部をシールし
た。元液をスターラー攪拌を行い、反応温度を常温の2
5℃に保持すると共に、pHを7に調整した。この元液
300mlに対して溶存酸素除去薬剤としてNaSO
2.75g/50ml溶液を1ml添加して(これ
はNaSOの55mg分に相当する)、溶存酸素の
除去を行わせた。
Example 2 (Removal of Dissolved Oxygen by Chemical Addition Means) A 300 ml original solution having a hexavalent selenium concentration of 1.1 mg / l as in Example 1 was placed in a beaker, and N 2 gas was injected into the upper space thereof. The solution was flowed at a rate of 500 ml / min, and the upper portion was sealed. The original solution was stirred with a stirrer, and the reaction temperature was set to 2 at room temperature.
While maintaining at 5 ° C., the pH was adjusted to 7. Na 2 SO 3 as a dissolved oxygen removing agent
3 2.75 g / 50 ml solution (1 ml) was added (this corresponds to 55 mg of Na 2 SO 3 ) to remove dissolved oxygen.

【0036】5分間の攪拌で溶存酸素計により溶存酸素
が0.1mg/l以下となったことを確認した後、2価
鉄塩としてFeSO・7HOを0.77g(Fe
2+として500mg/l分を添加し、4分間攪拌して
溶解させた。次いで、NaOHでpHを9に調整し、そ
のpHを保持しながら30分間反応させ、セレンを凝集
Fe(OH)に吸着させて共沈させた。得られたパル
プ状液をブフナーで吸引濾過し、その濾液を分析したと
ころ、セレン濃度は、0.08mg/lであった。
[0036] After the dissolved oxygen was confirmed to have become less 0.1 mg / l by a stirring for 5 minutes the dissolved oxygen meter, as 2 Ataitetsushio FeSO 4 · 7H 2 O and 0.77 g (Fe
500 mg / l as 2+ was added and stirred for 4 minutes to dissolve. Next, the pH was adjusted to 9 with NaOH, and the reaction was carried out for 30 minutes while maintaining the pH, whereby selenium was adsorbed on the coagulated Fe (OH) 2 and coprecipitated. The obtained pulp-like liquid was subjected to suction filtration with a Buchner, and the filtrate was analyzed. As a result, the selenium concentration was 0.08 mg / l.

【0037】[実施例3](大気雰囲気下、薬剤添加手
段による溶存酸素の除去) 実施例1と同一の工場排水を対象とし、6価セレンの濃
度を1.2mg/lとして4回の同一処理試験を行っ
た。その際、大気雰囲気下で溶存酸素の除去処理を行
い、その後、セレンの共沈処理を実施した。すなわち、
元液900mlずつを各ビーカにとり、それぞれ、空気
を巻き込まない程度のスターラー攪拌を行うと共に、反
応温度として30℃を保持するようにした。次いで、元
液をpH7に調整した後、Fe2+として400mg/l
相当のFeSO4 ・7H2O を添加し、その後、NaO
HでpH9に調整保持して溶存酸素を0.1mg/l以
下にまで除去させた。処理液は引き続き、pH9に15
分間保持させた。
Example 3 (Removal of Dissolved Oxygen by Chemical Addition Means in the Atmospheric Atmosphere) The same factory wastewater as in Example 1 was used, and the concentration of hexavalent selenium was 1.2 mg / l, and the same was repeated four times. A treatment test was performed. At that time, a dissolved oxygen removal treatment was performed in an air atmosphere, and then a selenium coprecipitation treatment was performed. That is,
Each 900 ml of the original solution was placed in each beaker, and each was stirred with a stirrer to such an extent that air was not entrained, and the reaction temperature was maintained at 30 ° C. Then, the original solution was adjusted to pH 7, and then 400 mg / l as Fe 2+.
It was added considerable FeSO 4 · 7H 2 O, then, NaO
H was adjusted to pH 9 and maintained to remove dissolved oxygen to 0.1 mg / l or less. The treatment solution is subsequently adjusted to pH 9 by 15
Hold for minutes.

【0038】その後、被処理水を塩酸でpH7に調整し
た。さらに、再び、Fe2+として400mg/l相当の
FeSO4 溶液を添加し、次いで、NaOHでpH9に
調整し、15分間反応させ、生成する水酸化鉄Fe(O
H)2 により、セレンを還元させ、吸着・共沈させた。
得られたパルプ状液をブフナーで吸引濾過し、その濾液
を分析したところ、セレン濃度はそれぞれ、0.02m
g/l、0.02mg/l、0.02mg/lおよび
0.01mg/lであった。
Thereafter, the water to be treated was adjusted to pH 7 with hydrochloric acid. Further, a FeSO 4 solution equivalent to 400 mg / l as Fe 2+ was added again, and then adjusted to pH 9 with NaOH, and reacted for 15 minutes to produce iron hydroxide Fe (O 2
H) 2 was used to reduce selenium to cause adsorption and coprecipitation.
The obtained pulp-like liquid was subjected to suction filtration using a Buchner, and the filtrate was analyzed.
g / l, 0.02 mg / l, 0.02 mg / l and 0.01 mg / l.

【0039】[実施例4](非酸化性雰囲気下、薬剤添
加手段による溶存酸素の除去) 実施例1と同一の工場排水を対象とし、6価セレン濃度
を1.6mg/lとした液を元液として処理試験を行っ
た。1lビーカーに元液を900ml取り、上部空間に
ガスを500ml/minの割合で流し、ガスシー
ルした。この元液をスターラーで攪拌し、反応温度は常
温の25℃に保持するようにした。
Example 4 (Removal of Dissolved Oxygen by Chemical Addition Means in Non-Oxidizing Atmosphere) The same factory effluent as in Example 1 was subjected to a liquid having a hexavalent selenium concentration of 1.6 mg / l. A processing test was performed as a base liquid. 900 ml of the original solution was taken in a 1 liter beaker, and N 2 gas was flowed into the upper space at a rate of 500 ml / min to seal the gas. This stock solution was stirred with a stirrer, and the reaction temperature was maintained at room temperature of 25 ° C.

【0040】さらに、この元液のpHを7とした後、溶
存酸素除去用鉄塩としてFeSO4・7HOを0.4
6g(Fe2+として100mg/lに相当)を添加
し、4分 間攪拌して溶解させた。次いで、NaOHで
pHを9に調整し、3分間このpH=9を保持すること
により、凝集水酸化鉄により溶存酸素を0.1mg/l
以下にまで除去させた。
[0040] Furthermore, after the pH of the Motoeki and 7, the FeSO 4 · 7H 2 O as dissolved oxygen removal iron salt 0.4
6 g (corresponding to 100 mg / l as Fe 2+ ) was added and stirred for 4 minutes to dissolve. Then, the pH was adjusted to 9 with NaOH, and the pH was maintained at 9 for 3 minutes, whereby the dissolved oxygen was reduced to 0.1 mg / L by the aggregated iron hydroxide.
It was removed to:

【0041】その後、被処理水を塩酸でpH=7に調整
した。さらに、再び、鉄塩として、FeSO・7H
Oを2.30g(Fe2+として500mg/l相当)
を添加し、4分間攪拌して溶解させた。次いで、NaO
HでpH=9に調整し30分間反応させ、水酸化鉄の凝
集を行わせた。得られたパルプ状液をブフナーで吸引濾
過し、その濾液を分析したところ、セレンの濃度は0.
04mg/lであった。
Thereafter, the water to be treated was adjusted to pH = 7 with hydrochloric acid. Moreover, again, as the iron salt, FeSO 4 · 7H 2
2.30 g of O (equivalent to 500 mg / l as Fe 2+ )
Was added and stirred for 4 minutes to dissolve. Then, NaO
The pH was adjusted to 9 with H, and the mixture was reacted for 30 minutes to cause aggregation of iron hydroxide. The obtained pulp-like liquid was subjected to suction filtration with a Buchner, and the filtrate was analyzed.
It was 04 mg / l.

【0042】[実施例5](非酸化性ガスのバブリング
による溶存酸素の除去) 実施例1と同一の工場排水を対象とし、6価セレン濃度
を0.98mg/lとした液を元液として処理試験を行
った。元液を900mlをビーカーに取り、スターラー
で攪拌をした。反応温度は常温の25℃とした。次い
で、Nガスをビーカー内の底部から元液中に吹き込
み、Nガス500ml/minでバブリングを行わせ
た。10分間のNガスバブリングにより、液中の溶存
酸素が0.1mg/l以下となったことが確認された。
Example 5 (Removal of Dissolved Oxygen by Bubbling Non-Oxidizing Gas) The same factory wastewater as in Example 1 was used, and a liquid having a hexavalent selenium concentration of 0.98 mg / l was used as an original liquid. A treatment test was performed. 900 ml of the original solution was placed in a beaker and stirred with a stirrer. The reaction temperature was normal temperature of 25 ° C. Next, N 2 gas was blown into the original liquid from the bottom of the beaker, and bubbling was performed at 500 ml / min of N 2 gas. It was confirmed that the dissolved oxygen in the liquid became 0.1 mg / l or less by bubbling N 2 gas for 10 minutes.

【0043】Nガスバブリングの後、被処理液をpH
=7に調整し、ビーカー容器の上部空間をNガスでシ
ールさせた。ついで、2価鉄塩として、FeSO・7
Oを2.30g(Fe2+として500mg/l相
当)を添加し、4分間攪拌して溶解させた。次いで、N
aOHでpH=9に調整保持し、30分間反応させ、F
e(OH) を凝集させ、セレンを吸着共沈させた。得
られたパルプ状液をブフナーで吸引濾過し、その濾液を
分析したところセレン濃度は0.05mg/lであっ
た。
N2After gas bubbling, the liquid to be treated
= 7 and adjust the upper space of the beaker container to N2Gas
I was Then, as a ferrous salt, FeSO4・ 7
H 22.30 g of O (Fe2+500 mg / l phase
Was added and stirred for 4 minutes to dissolve. Then N
The pH was adjusted to 9 with aOH, and the mixture was reacted for 30 minutes.
e (OH) 2Was coagulated, and selenium was coprecipitated by adsorption. Profit
The obtained pulp-like liquid is suction-filtered with a Buchner, and the filtrate is filtered.
Analysis showed that the selenium concentration was 0.05 mg / l.
Was.

【0044】[実施例6](非酸化性ガスのバブリング
手段による溶存酸素の除去) 実施例1と同一の工場排水を対象として、6価セレン濃
度を1.1mg/l、水銀0.1mg/l、カドミウム
1.0mg/l、砒素0.1mg/l、鉛2.2mg/
l、亜鉛1.0mg/l、アンチモン0.5mg/lと
なるようにそれぞれの重金属を添加した液を元液として
処理試験を行った(図2参照)。元液を900mlビー
カーにとり、スターラーで攪拌を行い、反応温度は25
℃に保持するようにした。ビーカー内の元液にNガス
を底部から500m l/minの割合で吹き込み、バ
ブリング処理を行った。10分間のバブリング処理で、
液中の溶存酸素が0.1mg/l以下となったことが確
認された。
Example 6 (Removal of Dissolved Oxygen by Bubbling Means of Non-Oxidizing Gas) For the same factory wastewater as in Example 1, a hexavalent selenium concentration of 1.1 mg / l and mercury of 0.1 mg / l were used. 1, cadmium 1.0 mg / l, arsenic 0.1 mg / l, lead 2.2 mg / l
A treatment test was performed using a liquid to which each heavy metal was added so as to be 1.0 mg / l, zinc 1.0 mg / l, and antimony 0.5 mg / l as a base liquid (see FIG. 2). Take the original solution into a 900 ml beaker, stir with a stirrer,
It was kept at ° C. From the bottom of the N 2 gas to the original solution in the beaker blowing at a rate of 500m l / min, it was bubbled process. In the bubbling process for 10 minutes,
It was confirmed that the dissolved oxygen in the liquid was 0.1 mg / l or less.

【0045】次いで、液をpH=7に調整してビーカー
内上部空間にNガスを供給し、N 上部シールを行っ
た後、2価鉄塩として試薬FeSO・7HOを2.
30g(Fe2+として500mg/l相当)を添加
し、4分間攪拌して溶解させた。次いで、NaOHでp
H=9に調整保持して30分間反応させ、Fe(OH)
によるセレン共沈処理(水酸化鉄一次凝集処理)を行
った。その反応終了後、殿物を除去することなく、被処
理液をNaOHによりpH=9.5に調整保持して10
分間反応させ、Fe(OH)の二次凝集を行わせた。
反応終了後、得られたパルプ液をブフナーで吸引濾過
し、その濾液を分析したところ、セレン濃度は、0.0
4mg/lで、処理後のFeも0.13mg/lに低下
した。また、処理後の重金属濃度も水銀0.0005m
g/l、カドミウム0.01mg/l以下、砒素0.0
05mg/l、鉛0.005mg/l以下、亜鉛0.0
2mg/l、アンチモン0.008mg/lに低下し、
セレンと同時に排水中から除去されたことが確認でき
た。
Next, the solution was adjusted to pH = 7 and beaked.
N in upper space2Supply gas and N 2Do the top seal
After that, the reagent FeSO4・ 7H2O to 2.
30g (Fe2+(Equivalent to 500 mg / l)
And stirred for 4 minutes to dissolve. Then p with NaOH
The reaction was carried out for 30 minutes while adjusting and holding at H = 9, and Fe (OH)
2Selenium co-precipitation treatment (iron hydroxide primary coagulation treatment)
Was. After the reaction is completed, the treatment is performed without removing the artifact.
The solution was adjusted to pH = 9.5 with NaOH and maintained at 10
Minutes and react with Fe (OH)2Was subjected to secondary aggregation.
After completion of the reaction, the obtained pulp solution is subjected to suction filtration with a Buchner.
When the filtrate was analyzed, the selenium concentration was 0.0
4mg / l, Fe after treatment also reduced to 0.13mg / l
did. The concentration of heavy metals after the treatment was 0.0005 m of mercury.
g / l, cadmium 0.01 mg / l or less, arsenic 0.0
05 mg / l, lead 0.005 mg / l or less, zinc 0.0
2 mg / l, antimony reduced to 0.008 mg / l,
It was confirmed that selenium was removed from the wastewater at the same time.
Was.

【0046】[比較例1]実施例1と同一の工場排水を
対象とし、6価セレンの濃度を0.98mg/lとした
液を元液として2回の同一処理試験を行った。ただし、
いずれも溶存酸素の除去処理を行うことなく、大気開放
下で処理を行った。すなわち、元液900mlづつを各
ビーカーにとり、それぞれ、空気を巻き込まない程度の
スターラー攪拌を行うと共に、反応温度として25℃に
保持するようにした。
[Comparative Example 1] Two identical treatment tests were performed on the same factory wastewater as in Example 1, using a liquid having a hexavalent selenium concentration of 0.98 mg / l as a base liquid. However,
In each case, the treatment was carried out in the open to the atmosphere without removing the dissolved oxygen. That is, 900 ml of the original solution was placed in each beaker, and the stirrer was stirred to such an extent that air was not entrained, and the reaction temperature was maintained at 25 ° C.

【0047】次いで、液をpH=7に調整した後、2価
鉄塩として、試薬FeSO・7H Oを2.30g
(Fe2+として500mg/lに相当)を添加し、4
分間攪拌し、溶解させた。その後、NaOHでpH=9
に調整保持し30分間反応させ、Fe(OH)の凝集
によるセレン共沈処理を実施した。得られたパルプ状液
をブフナーで吸引濾過し、その濾液を分析したところ、
セレンの濃度は、それぞれ、0.28mg/lおよび
0.34mg/lであった。
Next, the solution was adjusted to pH = 7 and then divalent.
As an iron salt, the reagent FeSO4・ 7H 22.30 g of O
(Fe2+As 500 mg / l) and added 4
Stir for a minute and dissolve. Then, pH = 9 with NaOH.
, And react for 30 minutes.2Aggregation
Selenium coprecipitation treatment was performed. Pulp-like liquid obtained
Was filtered by suction with a Buchner, and the filtrate was analyzed.
The concentrations of selenium were 0.28 mg / l and
It was 0.34 mg / l.

【0048】[0048]

【発明の効果】以上の説明により明らかなように、予
め、被処理水の溶存酸素を除去する本発明のセレン除去
方法によれば、工場排水等6価セレンを含有する高塩排
水を処理して、室温でも容易に6価セレンを排水基準値
である0.1mg/l以下にまで低減でき、同時に、鉄
分の含有を排水基準以下にまで十分低減することも容易
に可能であり、かつ他の重金属もあわせて除去できると
いう効果を奏する。また、作業性がよく、被処理水を室
温で処理できるので、液の加温設備を必要とせず、設備
コストも安く、経済性が高いという効果が得られる。
As is clear from the above description, according to the selenium removal method of the present invention for removing dissolved oxygen in water to be treated in advance, high-salt wastewater containing hexavalent selenium such as factory wastewater is treated. Therefore, even at room temperature, hexavalent selenium can be easily reduced to the effluent standard value of 0.1 mg / l or less, and at the same time, the iron content can be sufficiently reduced to the effluent standard value or less. This has the effect that heavy metals can also be removed together. In addition, the workability is good and the water to be treated can be treated at room temperature, so that there is no need for a liquid heating facility, the facility cost is low, and the effect of high economic efficiency can be obtained.

【0049】被処理水の溶存酸素の除去手段として、鉄
粉を用いる手段は鉄粉が安価で、溶存酸素除去薬剤と共
に取扱い性がよいという効果を有し、バブリングや減圧
手段によるものは、作業効率がよいという効果を有す
る。また、溶存酸素除去において、特に鉄粉を用いた場
合にあっては、そのリサイクル処置を講ずることがで
き、材料費等の節減が図れるという効果を奏する。
As means for removing dissolved oxygen of the water to be treated, means using iron powder has the effect that iron powder is inexpensive and has good handleability together with the dissolved oxygen removing agent. This has the effect of being efficient. In addition, in the case of removing dissolved oxygen, especially when iron powder is used, it is possible to take a recycle process, thereby achieving an effect of reducing material costs and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一具体例を示す工程図である。FIG. 1 is a process chart showing a specific example of the present invention.

【図2】本発明の別の具体例を示す工程図である。FIG. 2 is a process chart showing another specific example of the present invention.

【図3】本発明のまた別の具体例を示す工程図である。FIG. 3 is a process chart showing another specific example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三ヶ田 仁 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 Fターム(参考) 4D037 AA11 AB10 AB11 BA04 BA23 BB05 BB07 BB09 CA01 CA02 CA08 CA09 CA14 4D038 AA08 AB27 AB70 AB82 BB03 BB06 BB13 BB15 BB17 BB18 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Jin Mitsada 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. F-term (reference) 4D037 AA11 AB10 AB11 BA04 BA23 BB05 BB07 BB09 CA01 CA02 CA08 CA09 CA14 4D038 AA08 AB27 AB70 AB82 BB03 BB06 BB13 BB15 BB17 BB18

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 セレンを含有する排水に含まれる溶存酸
素を除去する溶存酸素除去工程と、得られた被処理排水
に2価鉄塩を添加する鉄塩添加工程と、次いでアルカリ
剤を添加してpHを8〜10に中和し、セレンを水酸化
第一鉄と共沈させるセレン共沈工程と、得られた殿物を
分離して清浄排水を得る固液分離工程とからなることを
特徴とする排水中のセレンの除去方法。
1. A dissolved oxygen removing step for removing dissolved oxygen contained in a wastewater containing selenium, an iron salt adding step for adding a ferrous salt to the obtained treated wastewater, and then adding an alkali agent. A selenium co-precipitation step of neutralizing the pH to 8 to 10 and co-precipitating selenium with ferrous hydroxide, and a solid-liquid separation step of separating the obtained residue to obtain clean waste water. Characteristic method of removing selenium from wastewater.
【請求項2】 セレンを含有する排水に2価鉄塩を添加
する鉄塩添加工程と、次いで溶存酸素を除去する溶存酸
素除去工程と、得られた被処理排水にアルカリ剤を添加
してpHを8〜10に中和し、セレンを水酸化第一鉄と
共沈させるセレン共沈工程と、得られた殿物を分離して
清浄排水を得る固液分離工程とからなることを特徴とす
る排水中のセレンの除去方法。
2. An iron salt addition step of adding a ferrous salt to waste water containing selenium, a dissolved oxygen removal step of removing dissolved oxygen, and an alkali agent is added to the obtained waste water to be treated to adjust pH. A selenium co-precipitation step of neutralizing selenium with ferrous hydroxide, and a solid-liquid separation step of separating the obtained residue to obtain clean wastewater. To remove selenium from wastewater.
【請求項3】 セレンを含有する排水に含まれる溶存酸
素を除去する溶存酸素除去工程と、得られた被処理排水
に2価鉄塩を添加する鉄塩添加工程と、次いでアルカリ
剤を添加してpHを8〜9に中和し、セレンを水酸化第
1鉄と共沈させるセレン共沈工程と、引き続きアルカリ
剤を添加してpHを9〜11に中和して水酸化第一鉄を
沈殿させる水酸化鉄沈殿工程と、得られた殿物を分離し
て清浄排水を得る固液分離工程とからなることを特徴と
する排水中のセレンの除去方法。
3. A process for removing dissolved oxygen contained in wastewater containing selenium, a process for adding a ferrous salt to the obtained wastewater to be treated, and a process for adding an alkali agent. A selenium co-precipitation step of neutralizing the pH to 8 to 9 and co-precipitating selenium with ferrous hydroxide, and subsequently adding an alkaline agent to neutralize the pH to 9 to 11 and ferrous hydroxide. A precipitation step of iron hydroxide, and a solid-liquid separation step of separating the obtained precipitate to obtain clean wastewater, the method for removing selenium from wastewater.
【請求項4】 セレンを含有する排水に2価鉄塩を添加
する鉄塩添加工程と、次いで溶存酸素を除去する溶存酸
素除去工程と、得られた被処理排水にアルカリ剤を添加
してpHを8〜9に中和し、セレンを水酸化第一鉄と共
沈させるセレン共沈工程と、引き続きアルカリ剤を添加
してpHを9〜11に中和して水酸化第一鉄を沈殿させ
る水酸化鉄沈殿工程と、得られた殿物を分離して清浄排
水を得る固液分離工程とからなることを特徴とする排水
中のセレンの除去方法。
4. An iron salt addition step of adding a ferrous salt to waste water containing selenium, a dissolved oxygen removal step of removing dissolved oxygen, and an alkaline agent is added to the obtained waste water to be treated to adjust pH. Is neutralized to 8-9 and selenium is coprecipitated with ferrous hydroxide, and then an alkaline agent is added to neutralize the pH to 9-11 to precipitate ferrous hydroxide. A method for removing selenium from wastewater, comprising: a step of precipitating iron hydroxide to be carried out; and a step of separating solid matter from the obtained precipitate to obtain clean wastewater.
【請求項5】 前記溶存酸素除去工程が、被処理排水を
pHが7以下で金属と接触させる手段を含むことを特徴
とする請求項1〜4のいずれかに記載の排水中のセレン
の除去方法。
5. The removal of selenium in wastewater according to claim 1, wherein the step of removing dissolved oxygen includes means for bringing the wastewater to be treated into contact with a metal having a pH of 7 or less. Method.
【請求項6】 前記溶存酸素除去工程が、被処理排水に
溶存酸素除去薬剤を添加する手段を含むことを特徴とす
る請求項1〜4のいずれかに記載の排水中のセレンの除
去方法。
6. The method for removing selenium from wastewater according to claim 1, wherein the dissolved oxygen removing step includes a means for adding a dissolved oxygen removing agent to the wastewater to be treated.
【請求項7】 前記溶存酸素除去工程が、被処理排水を
非酸化性ガスでバブリングする手段を含むことを特徴と
する請求項1〜4のいずれかに記載の排水中のセレンの
除去方法。
7. The method for removing selenium from wastewater according to claim 1, wherein the step of removing dissolved oxygen includes means for bubbling the wastewater to be treated with a non-oxidizing gas.
【請求項8】 前記溶存酸素除去工程が、被処理排水を
減圧処理する手段を含むことを特徴とする請求項1〜4
のいずれかに記載の排水中のセレンの除去方法。
8. The method according to claim 1, wherein the dissolved oxygen removing step includes a means for reducing the pressure of the waste water to be treated.
The method for removing selenium in wastewater according to any one of the above.
【請求項9】 前記溶存酸素除去工程が、非酸化性雰囲
気中で行われることを特徴とする請求項1〜8のいずれ
かに記載の排水中のセレンの除去方法。
9. The method for removing selenium from waste water according to claim 1, wherein the step of removing dissolved oxygen is performed in a non-oxidizing atmosphere.
【請求項10】 前記鉄塩添加工程と前記セレン共沈工
程が非酸化性雰囲気中で行われることを特徴とする請求
項1〜9のいずれかに記載の排水中のセレンの除去方
法。
10. The method for removing selenium from wastewater according to claim 1, wherein the iron salt adding step and the selenium coprecipitation step are performed in a non-oxidizing atmosphere.
【請求項11】 前記水酸化鉄沈殿工程が、非酸化性雰
囲気で行われることを特徴とする請求項3〜10のいず
れかに記載の排水中のセレンの除去方法。
11. The method for removing selenium from waste water according to claim 3, wherein the iron hydroxide precipitation step is performed in a non-oxidizing atmosphere.
【請求項12】 前記金属が鉄粉であることを特徴とす
る請求項5記載の排水中のセレンの除去方法。
12. The method according to claim 5, wherein the metal is iron powder.
【請求項13】 前記水酸化鉄沈殿工程からの殿物を含
有する被処理排水から磁気選別により鉄粉を回収し、該
鉄粉を再度前記溶存酸素除去工程に供することを特徴と
する請求項12記載の排水中のセレンの除去方法。
13. The method according to claim 11, wherein iron powder is recovered by magnetic separation from the treated wastewater containing deposits from the iron hydroxide precipitation step, and the iron powder is again subjected to the dissolved oxygen removal step. 13. The method for removing selenium from wastewater according to item 12.
【請求項14】 前記鉄粉を磁気選別により回収した
後、前記殿物を含有する被処理排水を固液分離し、得ら
れた殿物をpHが4以下の酸性液で溶解して不溶解物を
濾別し、得られた濾過液を2価鉄源として、再度前記鉄
塩添加工程に供することを特徴とする請求項13記載の
排水中のセレンの除去方法。
14. After collecting the iron powder by magnetic separation, the wastewater to be treated containing the deposit is separated into a solid and a liquid, and the obtained deposit is dissolved and dissolved in an acidic solution having a pH of 4 or less. 14. The method for removing selenium in waste water according to claim 13, wherein the substance is separated by filtration, and the obtained filtrate is used as a ferrous iron source and then subjected to the iron salt addition step again.
【請求項15】 前記水酸化鉄沈殿工程からの殿物を含
有する被処理排水を固液分離し、得られた殿物を、pH
を4以下の酸性液で溶解した後、溶解液中にある鉄粉を
磁気選別により回収し、再度前記溶存酸素除去工程に供
すると共に、さらに、鉄粉を除いた溶解液を濾過し、不
純物を濾別した濾過液を2価鉄源として再度前記鉄塩添
加工程に供することを特徴とする請求項12記載の排水
中のセレンの除去方法。
15. A wastewater to be treated containing a residue from the iron hydroxide precipitation step is subjected to solid-liquid separation, and the resulting residue is subjected to pH adjustment.
Was dissolved in an acidic solution of 4 or less, and the iron powder in the solution was recovered by magnetic separation, and subjected to the dissolved oxygen removal step again. Further, the solution excluding the iron powder was filtered to remove impurities. 13. The method for removing selenium in waste water according to claim 12, wherein the filtrate separated by filtration is used again as an iron source for the iron salt addition step.
【請求項16】 前記溶存酸素除去工程における溶存酸
素の除去を被処理排水の溶存酸素が0.5mg/l以下
になるまで行うことを特徴とする請求項1〜15のいず
れかに記載の排水中のセレンの除去方法。
16. The wastewater according to any one of claims 1 to 15, wherein the removal of the dissolved oxygen in the dissolved oxygen removal step is performed until the dissolved oxygen of the wastewater to be treated becomes 0.5 mg / l or less. Method of removing selenium from the inside.
JP32681999A 1999-07-13 1999-11-17 How to remove selenium in wastewater Expired - Lifetime JP4231934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32681999A JP4231934B2 (en) 1999-07-13 1999-11-17 How to remove selenium in wastewater

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-199105 1999-07-13
JP19910599 1999-07-13
JP32681999A JP4231934B2 (en) 1999-07-13 1999-11-17 How to remove selenium in wastewater

Publications (2)

Publication Number Publication Date
JP2001079565A true JP2001079565A (en) 2001-03-27
JP4231934B2 JP4231934B2 (en) 2009-03-04

Family

ID=26511344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32681999A Expired - Lifetime JP4231934B2 (en) 1999-07-13 1999-11-17 How to remove selenium in wastewater

Country Status (1)

Country Link
JP (1) JP4231934B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071474A (en) * 2001-08-30 2003-03-11 Chiyoda Corp Reaction apparatus for treating wastewater containing selenium
JP2005015282A (en) * 2003-06-26 2005-01-20 Mitsubishi Chemicals Corp Method of producing coprecipitated product, and method of producing substitutional lithium transition metal multiple oxide
JP2006095519A (en) * 2004-08-31 2006-04-13 Mitsubishi Materials Corp Treating method and treating apparatus for heavy metals-containing water
JP2006102559A (en) * 2004-09-30 2006-04-20 Dowa Mining Co Ltd Treatment method of selenium-containing wastewater
KR100733443B1 (en) * 2005-02-01 2007-06-29 도시바 세라믹스 가부시키가이샤 Silicon member and method of manufacturing the same
JP2009056379A (en) * 2007-08-30 2009-03-19 Mitsubishi Materials Corp Heavy metals-containing water treatment method and apparatus
US7754099B2 (en) 2004-04-26 2010-07-13 Mitsubishi Materials Corporation Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus
JP2011072940A (en) * 2009-09-30 2011-04-14 Chiyoda Kako Kensetsu Kk Treatment method of reducing selenium-containing waste water
JP2019147136A (en) * 2018-02-28 2019-09-05 三菱マテリアル株式会社 Processing method of selenium-containing water

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071474A (en) * 2001-08-30 2003-03-11 Chiyoda Corp Reaction apparatus for treating wastewater containing selenium
JP2005015282A (en) * 2003-06-26 2005-01-20 Mitsubishi Chemicals Corp Method of producing coprecipitated product, and method of producing substitutional lithium transition metal multiple oxide
US7754099B2 (en) 2004-04-26 2010-07-13 Mitsubishi Materials Corporation Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus
US7799232B2 (en) 2004-04-26 2010-09-21 Mitsubishi Materials Corporation Method of treating wastewater with reducing water purification material
US7892426B2 (en) 2004-04-26 2011-02-22 Mitsubishi Materials Corporation Wastewater treatment apparatus
JP2006095519A (en) * 2004-08-31 2006-04-13 Mitsubishi Materials Corp Treating method and treating apparatus for heavy metals-containing water
JP2006102559A (en) * 2004-09-30 2006-04-20 Dowa Mining Co Ltd Treatment method of selenium-containing wastewater
KR100733443B1 (en) * 2005-02-01 2007-06-29 도시바 세라믹스 가부시키가이샤 Silicon member and method of manufacturing the same
JP2009056379A (en) * 2007-08-30 2009-03-19 Mitsubishi Materials Corp Heavy metals-containing water treatment method and apparatus
JP2011072940A (en) * 2009-09-30 2011-04-14 Chiyoda Kako Kensetsu Kk Treatment method of reducing selenium-containing waste water
JP2019147136A (en) * 2018-02-28 2019-09-05 三菱マテリアル株式会社 Processing method of selenium-containing water
JP7047459B2 (en) 2018-02-28 2022-04-05 三菱マテリアル株式会社 Treatment method of selenium-containing water

Also Published As

Publication number Publication date
JP4231934B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
US7001583B2 (en) Essentially insoluble heavy metal sulfide slurry for wastewater treatment
CN105753218B (en) A method of removal trivalent arsenic
US6177015B1 (en) Process for reducing the concentration of dissolved metals and metalloids in an aqueous solution
JP4255154B2 (en) Method for removing arsenic from a solution containing sulfur dioxide
JP5261950B2 (en) Method and apparatus for treating selenium-containing wastewater
KR20040054821A (en) A method for precipitating iron from a zinc sulphate solution as hematite
CN112537856A (en) Method for treating acid mine wastewater containing heavy metal ions
JP2001079565A (en) Process for removing selenium in wastewater
JP4025841B2 (en) Treatment of wastewater containing arsenic and other heavy metals
Figueroa et al. Recovery of gold and silver and removal of copper, zinc and lead ions in pregnant and barren cyanide solutions
CN110627179A (en) Method for treating arsenic-containing wastewater by using recyclable composite salt precipitator
USH1852H (en) Waste treatment of metal plating solutions
WO2007057521A1 (en) Method for removing substances from aqueous solution
CN110217876B (en) Method for treating trivalent arsenic wastewater by in-situ formation of zinc-iron hydrotalcite through double-drop method
JP3813052B2 (en) Method for processing fly ash containing heavy metals
WO2023070556A1 (en) Method for removing thallium from leach liquor of ash of lead smelting bottom-blown converter
JP4507267B2 (en) Water treatment method
JP2003137545A (en) Method for manufacturing waste acid gypsum
JP3596631B2 (en) Treatment of wastewater containing selenium
JPH0578105A (en) Treatment of selenium-containing waste water
JP2000167571A (en) Treatment of selenium-containing water
CN114807618B (en) Comprehensive recovery process for valuable metals in gold ore high-temperature chlorination roasting flue gas washing liquid
JP4591641B2 (en) Method for coagulating and precipitating iron hydroxide in wastewater containing concentrated inorganic components
CN113620464B (en) Non-ferrous smelting waste acid treatment method for forming amorphous ferric arsenate
JPH11267667A (en) Treatment of antimony-containing waste water

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4231934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term