JP2006094866A - Dna増幅装置 - Google Patents

Dna増幅装置 Download PDF

Info

Publication number
JP2006094866A
JP2006094866A JP2005365222A JP2005365222A JP2006094866A JP 2006094866 A JP2006094866 A JP 2006094866A JP 2005365222 A JP2005365222 A JP 2005365222A JP 2005365222 A JP2005365222 A JP 2005365222A JP 2006094866 A JP2006094866 A JP 2006094866A
Authority
JP
Japan
Prior art keywords
reaction
dna
nucleic acid
dna amplification
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005365222A
Other languages
English (en)
Other versions
JP3899360B2 (ja
Inventor
Seiji Kondo
聖二 近藤
Etsuo Shinohara
悦夫 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005365222A priority Critical patent/JP3899360B2/ja
Publication of JP2006094866A publication Critical patent/JP2006094866A/ja
Application granted granted Critical
Publication of JP3899360B2 publication Critical patent/JP3899360B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

【課題】反応溶液の温度を精密に制御してDNA増幅反応を効率よく行なうことが可能なDNA増幅装置を提供する。
【解決手段】無機もしくは有機基板上に形成された反応部と、該反応部に連通する2つの流路と、少なくとも前記反応部の底面もしくは前記基板の反応部が形成された面の裏面のいずれか一方に設けられ、DNA増幅に必要な温度に制御可能な加熱手段、前記流路と連通し、全血もしくは血清等の核酸分離前の試料から核酸を分離する試料分離部と、分離した核酸と、DNA増幅に必要なプライマー、DNA合成酵素および4種類のデオキシリボ三リン酸とを含む反応溶液を前記反応セルにおいて形成する手段と、前記分離部と前記反応部の間に分岐路を介して連通し、前記分離部で分離された核酸以外の成分を廃棄する廃棄部とを具備するDNA増幅装置を提供する。
【選択図】 図20

Description

この発明は、DNAの増幅反応を行なって微量のDNAを増幅するための装置に関する。
近年、微量のDNAを増幅する手段として、ポリメラーゼ連鎖反応(以下、PCRと略記する)が盛んに用いられている。この方法は、例えば特許文献1(特開平 6-292579 号公報)に開示されるように、まず、目的とする核酸を含有する検体に、目的とするDNAの各々の鎖の両端部の塩基配列を含む2種類のプライマー、耐熱性DNA合成酵素および4種類のデオキシリボヌクレオシド三リン酸(dATP、dCTP、dGTPおよびdTTP)を加える。次に、系の温度を制御することのみにより、DNAを解離させる(変性)工程、解離により生成した一本鎖DNAとプライマーとを結合させる(アニーリング)工程、およびプライマーが結合した一本鎖DNAを鋳型としてDNA合成酵素により相補鎖を合成する(伸長)工程の各工程を行ない、これを1回以上繰り返す。
このようにPCRは微量のDNAを効率よく増幅することが可能であるが、このPCRに加えて、さらに前処理および後処理を含めて自動化しようとする試みがなされている。例えば、特許文献2(特開平 6-327476 号公報)に開示される装置では、まず、全血を遠心分離し、フェノールおよびクロロホルム溶液で抽出することにより全血中の核酸成分を精製する(前処理段階)。次いで、精製した核酸成分をバッファーに溶解し、上述の2種類のプライマー、耐熱性DNA合成酵素および4種類のデオキシリボムクレオシド三リン酸を加え、熱サイクルを実施することにより目的の核酸を増幅する(PCR段階)。最後に、増幅した核酸が含まれる反応溶液をゲル電気泳動で処理し、プライマー等の不純物や副生物等を除去して目的の核酸を得る(後処理段階)。
また、PCRを行なうための反応容器自体についてもいくつかの試みがなされている。例えば、特許文献3(特開平 7-75544号公報)に開示される装置は、2つの恒温槽を経由する毛管を設け、検体を含む混合液を単にこの毛管内に流すことにより、DNA合成反応に必要な熱サイクルを実現している。この方法では、増幅反応を毛管内で行なうため、液流の外側と内側との温度勾配が小さくなり、系内の温度をより迅速に均一化することができるという利点がある。
特開平 6-292579 号公報 特開平 6-327476 号公報 特開平 7-75544号公報
上記従来のDNA増幅装置においては、反応容器を恒温槽や金属ブロックで取り巻き、この反応容器自体を加熱および冷却することによりDNA増幅反応に必要な熱サイクルを施している。したがって、これらの装置では反応溶液の温度を直接制御するのではなく、反応容器を介して間接的に制御している。加えて、これらの装置では、反応溶液が微量であることもあって反応溶液の温度を直接測定することはできない。このため、従来のDNA増幅装置は、反応溶液の温度を精密に制御することができず、信頼性に欠ける。特開平 7-75544号公報に開示される装置では、毛管内で反応を行なうことにより、反応溶液中で温度勾配が形成されることを防いでいる。しかしながら、この装置でも反応溶液の温度を直接測定することはできず、やはり温度制御が不正確になる。
また、上記特開平 6-327476 号公報に開示される装置は、前処理および後処理を含めて全ての工程を自動的に行なう全自動化を実現してはいるが、反応容器の移動や分注操作等は全て機械的に行なっている。このため、装置が大型化し、コストが非常に高くなる。同様に、特開平 7-75544号公報に開示される装置でも反応溶液を循環させるために機械式ポンプを用いており、このため装置が大型化し、コストが高くなる欠点を有する。
したがって、この発明は、反応溶液の温度を精密に制御し、DNA増幅反応を効率よく行なうことが可能なDNA増幅装置を提供することを目的とする。
また、この発明は、機械的な作動部分を減少し、それにより装置全体を小型化し、かつコストを低くすることが可能なDNA増幅装置を提供することを目的とする。
この発明によると、無機もしくは有機基板上に形成されたプレーナ状の反応セルと、この反応セルに連通する2つの流路と、この流路の各々に前記反応セルを挟んで設けられた2つ弁と、少なくとも前記反応セルの底面もしくは前記基板の反応セルが形成された面の裏面のいずれか一方に設けられた加熱手段とを具備する第1のDNA増幅装置が提供される。
また、この発明の別の面によると、無機もしくは有機基板上に設けられた流路、この流路に設けられた2つの弁、この2つの弁の間の流路の底面に設けられた2つの電極、この2つの電極の間の流路の底面に設けられた少なくとも1つの温度検出手段、この少なくとも1つの温度検出手段の各々の近傍の流路底面もしくは前記基板の流路が設けられている面の裏面の少なくともいずれか一方に、前記温度検出手段の各々と対をなして設けられた加熱手段、前記2つの電極に印加される電圧を制御する電圧制御手段、および前記温度検出手段からの情報に基づいて前記加熱手段を制御する加熱制御手段を具備する第2のDNA増幅装置が提供される。
また、この発明のさらに別の面によると、無機もしくは有機基板上に設けられた流路、この流路の底面に設けられた第1ないし第4の電極、第1の電極と第2の電極との間に設けられた第1の弁、第1の電極と第1の弁との間に設けられた試料投入口、この試料投入口と第1の弁との間に位置し、底面に第5の電極を有する不純物導入セルに連通する第1の分岐流路、この第1の分岐流路と前記試料投入口との間の流路内に設けられたゲル状化合物、第1の弁と第2の電極との間に位置し、底面に第6の電極を有する貯留セルに連通する第2の分岐流路、第2の電極と第3の電極との間の流路底面に設けられた少なくとも1つの温度検出手段、この少なくとも1つの温度検出手段の各々の近傍の流路底面もしくは前記基板の流路が設けられている面の裏面の少なくともいずれか一方に、前記温度検出手段の各々と対をなして設けられた加熱手段、第3の電極と第4の電極との間に設けられたDNA検出手段、このDNA検出手段と第4の電極との間に設けられた第2の弁、前記第1ないし第6の電極に印加される電圧を制御する電圧制御手段、および前記温度検出手段からの情報に基づいて前記加熱手段を制御する加熱制御手段を具備する第3のDNA増幅装置が提供される。
本発明によれば、反応セルをプレーナ状とすることにより反応溶液をより迅速に加熱および冷却することが可能であり、DNA増幅反応に必要な熱サイクルで問題となる、反応溶液中に生じる温度勾配を小さくすることができる。
以下、この発明によるDNA増幅装置を図面を参照して説明する。
この発明による第1のDNA増幅装置の一具体例の平面図を図1に、また図1に示すDNA増幅装置のA−A線断面図を図2にそれぞれ模式的に示す。この装置では、無機もしくは有機基板 101の上面に反応セル 102並びに流路 103および 104が形成され、さらにその上面に透明基板 105が接合されている。また、流路 103には弁 105が、流路 104には弁 106がそれぞれ設けられ、さらに基板 101の反応セル 102が形成された面の裏面に接して発熱体 108が設けられている。無機もしくは有機基板 101としては、例えば、シリコンウェハ基板、ガラス基板、アルミ、ステンレススティール等の無機基板、およびフッ素樹脂、エポキシ、ポリカーボネート等の有機基板が用いられる。反応セル 102並びに流路 103および 104は基板 101の材質に応じて様々な方法で形成することができ、例えば、基板 101としてシリコンウェハ基板を用いる場合には、シリコンウェハ上にプラズマエッチング等によって所定の形状の溝を形成した後、ガラス基板等の透明基板を陽極接合すればよい。反応セル 102はプレーナ状に形成されている。この反応セルは、その大きさを含めて、必要とする容量に応じて種々の形状が選択可能である。例えば、容量を 3μlとする場合には、縦長 5mm、横長 3mmおよび深さ 200μmとすればよいが、反応溶液の温度をより精密に制御するためには深さは浅いほうが好ましい。発熱体 108も、DNA増幅反応に必要な熱サイクルを遂行し得るものであれば特に限定されるものではなく、例えば、電熱ヒータ、ペルチエ素子、赤外線ランプ等を挙げることができる。
次に、この装置を用いたDNA増幅の手順について説明する。まず、弁 106および 107を開放し、図示しない送出手段により、目的の核酸、2種類以上のプライマー、耐熱性DNA合成酵素および4種類のデオキシリボヌクレオシド三リン酸(dATP、dCTP、dGTPおよびdTTP)を含有するバッファーを反応セル 102に導入した後、弁 106および 107を閉鎖する。次に、発熱体 108を作働させて反応セル 102中のバッファーに熱サイクルを加えて目的の核酸を増幅させる。具体的には、まず発熱体 108を発熱させてバッファー中の核酸が解離する温度(90〜94℃)にバッファーを加熱し、この温度を所定時間維持する。次に、発熱体 108の動作を停止させ、解離した核酸とプライマーとが結合する温度(約37℃)までバッファーを冷却する。解離した核酸とプライマーとが結合した後、再び発熱体 108を作働させ、耐熱性DNA合成酵素の活性が最も高まる温度(50〜75℃)までバッファーを加熱して所定の時間維持する。これにより、プライマーが伸長し、核酸が増幅される。プライマーの伸長が終了した後、再度発熱体 108を作働させて核酸が解離する温度までバッファーを加熱し、生成した二本鎖核酸を解離させる。以下、このサイクルを所望の回数繰り返せばよい。核酸の増幅反応が終了した後、再び弁 106および 107を開放し、増幅した核酸を流路 104を介して反応セル 102から回収する。この際、続けて増幅反応を行なう場合には、回収と同時に新たなバッファーを流路 103を介して反応セル 102内に導入し、同様の熱サイクルを開始する。
この装置では、上述のように反応セル 102の形状がプレーナー状である。したがって、発熱体 108から生じた熱を反応セル中のバッファーに効率よく伝えることができ、加熱および冷却の効率を上げることが可能となる。
図1および図2に示す装置においては、発熱体 108は基板 101の裏面にのみ設けられているが、基板 101の裏面と基板 101の上面、すなわち反応セル 102の底面の両方に設けることもできる。この場合には、反応セル 102内のバッファーの昇降温速度を高め、それによりバッファー中の温度勾配を小さくして、DNA増幅反応の精度を高めることができる。さらに、上記説明においては、発熱体 108の動作を停止させ、自然に放熱させることによりバッファーの冷却を行なっているが、発熱体 108としてペルチエ素子のような加熱および冷却の両動作が可能なものを用いることにより、冷却時間の短縮と、より精密な温度制御を達成することができる。
また、この発明による第1のDNA増幅装置においては、図3および4に示すように、反応セル 102の底面に1つもしくはそれ以上の温度検出手段 301および 302を設けることができる。ここで、図3はこの発明による第1のDNA増幅装置の別の具体例を模式的に示す平面図であり、図4は図3に示される装置のB−B線に沿った断面を模式的に示す図である。なお、図3および4において、図1および2と同じ部材には同一の符号が付されており、以下の図面においても同一の符号は同一の部材を表わすことを原則とする。温度検出手段 301および 302としては、例えば、熱電対、ダイオード等を用いることができる。
このように反応セル 102の底面に温度検出手段 301および 302を設けることにより、反応セル中の反応溶液の温度を直接測定することが可能となり、DNA増幅反応に必要な熱サイクル時の温度をより精密に制御することができる。この精密な温度制御は、特に、上記熱サイクルにおける核酸の解離工程において重要な意味を持つ。すなわち、上述のように核酸を解離させる工程においては反応セル 102中の反応溶液を高温(90〜94℃)に加熱する。このような高温では、たとえ耐熱性酵素であっても徐々に活性が失われ、94℃を越える温度では酵素が変性して活性が完全に失われてしまうため、過加熱には十分注意する必要がある。図3および4に示す装置では、温度検出手段 301および 302によって反応溶液の温度を直接測定することができるので、この測定結果を発熱体 108にフィードバックすることにより、核酸解離の効率を落とすことなく過加熱を防ぐことが可能となる。
さらに、この発明による第1のDNA増幅装置においては、図5および図6に示すように、反応セル 102の底面に1つもしくはそれ以上の突起 501を設けることができる。ここで、図5はこの発明による第1のDNA増幅装置のさらに別の具体例を模式的に示す平面図であり、図6は図5に示される装置のC−C線に沿った断面を模式的に示す図である。この突起 501は、プレーナー状の反応セル 102を形成する際に同時にその形状を形成してもよく、あるいはプレーナー状の反応セル 102を形成した後に予め作製した突起を接合してもよいが、基板 101と同一の材質であることが好ましい。
このように反応セル 102の底面に1つ以上の突起 501を設けることにより、反応セルの底面の表面積を増大させることができ、基板 101の裏面に設けられた発熱体 108から生じた熱を反応セル 102内の反応溶液に効率よく伝えることが可能となる。また、発熱体 108が前述のような加熱および冷却の両動作が可能なものである場合には、反応溶液の冷却もより迅速に行なうことが可能となる。したがって、図5および6に示される装置は、反応セル 102中の反応溶液の昇降温速度をより高めることができ、かつ反応溶液の温度勾配を小さくすることが可能である。このため、この装置を用いることにより、DNA増幅反応に要する時間を短縮し、熱サイクルの温度をより精密に制御することが可能となる。
同様の効果は、図7および8に示すように、反応セル 102の代わりに底面の断面形状が鋸刃状もしくは波状である反応セル 701を用いることによっても達成することができる。ここで、図7はこの発明による第1のDNA増幅装置のさらに別の具体例を模式的に示す平面図であり、図8は図7に示される装置のD−D線に沿った断面を模式的に示す図である。図7および8に示す装置においても、反応セル底面の表面積が増大し、基板 101の裏面に設けられた発熱体 108が発生する熱を、反応セル 701内の反応溶液に効率よく伝えることができる。したがって、図5および6に示される装置と同様に、DNA増幅反応に要する時間を短縮し、熱サイクルの温度をより精密に制御することが可能となる。反応セル 701の断面形状が鋸刃状もしくは波状の底面は、図5および6に示される装置と同様に、反応セル 701を形成する際に同時にその形状を形成してもよく、あるいはまずプレーナー状の反応セルを形成した後に断面形状を鋸刃状もしくは波状に加工してもよいが、基板 101と同一の材質であることが好ましい。
さらにまた、この発明による第1のDNA増幅装置においては、図9および図10に示すように、反応セル 102の底面に1つもしくはそれ以上の突起 901を反応溶液の流れ方向に対して斜めに配置することもできる。ここで、図9はこの発明による第1のDNA増幅装置のさらに別の具体例を模式的に示す平面図であり、図10は図9に示される装置のE−E線に沿った断面を模式的に示す図である。この突起 901は、図5および6に示される装置と同様に、プレーナー状の反応セル 102を形成する際に同時にその形状を形成してもよく、あるいはプレーナー状の反応セル 102を形成した後に予め作製した突起を接合してもよいが、基板 101と同一の材質であることが好ましい。
前述のように、DNA増幅反応は、核酸の解離、解離した核酸とプライマーとの結合および耐熱性DNA合成酵素によるプライマーの伸長の3段階で進行する。このうち、解離した核酸とプライマーとの結合は、解離した核酸同志が再び結合する反応と競合することになる。一方、繰り返し行なわれる増幅反応によって、系内には核酸が徐々に増加し、プライマーは次第に減少してゆく。このため、増幅を繰り返すうちに解離した核酸がプライマーと結合せずに核酸同志で結合することが多くなり、増幅反応の効率が減少する。したがって、効率の減少を最小限に抑えるために、増幅反応を開始する際には、すなわち反応溶液が反応セル 102内に導入される際には、反応溶液中で核酸とプライマーとを可能な限り均一に分散させておくことが好ましい。図9および図10に示される装置おける反応溶液の流れ方向に対して斜めに配置された突起 901は、この反応溶液中の核酸とプライマーとをより均一に分散させる機能を果たす。すなわち、流路 103から反応セル 102に流入してきた反応溶液は、突起 901による抵抗を受けて乱流を生じ、それにより反応溶液が十分に撹拌される。したがって、図9および図10に示される装置を用いることにより、解離した核酸とプライマーとの結合反応を、ひいてはDNA増幅反応を、効率よく行なうことが可能であり、反応の精度を向上させることもできる。また、弁107 を開放して反応セル102 から反応溶液を流出させる際にもやはり突起109 によって反応溶液が撹拌され、次の精製、分析工程をむらのない状態で行なうことができる。
もちろん、突起 901は反応セル 102の底面の表面積を増大させることにも貢献する。したがって、図9および10に示される装置は、図5ないし図8に示される装置と同様に、DNA増幅反応に要する時間を短縮し、熱サイクルの温度をより精密に制御することも可能となる。
次に、この発明による第2のDNA増幅装置の一具体例の平面図を図11に、また図11に示されるDNA増幅装置のF−F線断面図を図12にそれぞれ模式的に示す。この装置では、無機もしくは有機基板1101上に、2つの弁1104および1105が設けられた流路1102が形成され、その上面に透明基板1103が接合されている。弁1104と1105との間には、基板1101の裏面に接して3つの発熱体1106、1107および1108が設けられており、それぞれ発熱体の温度を個別に制御する発熱体制御装置1109、1110および1111に接続されている。また、これらの発熱体1106、1107および1108に対応して流路1102の底面には、それぞれ、反応溶液の温度を検出するための温度検出手段1112、1113および1114が設けられている。さらに、弁1104と発熱体1106の間に位置する流路1102の底面および弁1105と発熱体1108の間に位置する流路1102の底面には、それぞれ電極1115および1116が設けられ、いずれも、電極に電圧を印加することが可能であり、かつ印加した電圧を反転することが可能な電圧制御装置1117に接続されている。無機もしくは有機基板1101の材質、流路1102の形成方法、透明基板1103の材質、利用可能な発熱体、および利用可能な温度検出手段は全て、上記この発明による第1のDNA増幅装置に用いられるものと同様である。
この第2のDNA増幅装置を用いたDNA増幅反応の手順は以下の通りである。まず、弁1104および1105を開放し、目的の核酸、2種類以上のプライマー、耐熱性DNA合成酵素および4種類のデオキシリボヌクレオシド三リン酸(dATP、dCTP、dGTPおよびdTTP)を含有するバッファーを流路1102に導入した後、弁1104および1105を閉鎖する。次に、発熱体制御装置1109、1110および1111の制御の下で、それぞれ発熱体1106、1107および1108を作動させ、各々の発熱体に対応する位置の流路1102内のバッファーを所定の温度に加熱し、その温度を維持する。この際、温度検出手段1112、1113および1114によって各々の近傍のバッファーの温度を測定し、その情報を各発熱体制御手段にフィードバックすることにより、バッファーの温度を所定の値に正確に維持することが可能となる。また、各発熱体はその加熱温度を違えており、例えば、発熱体1106の加熱温度は核酸が解離する温度(90〜94℃)に、発熱体1107の加熱温度は耐熱性DNA合成酵素の活性が高まり、解離した核酸と結合したプライマーが耐熱性DNA合成酵素の作用によって伸長する温度(50〜75℃)に、さらに発熱体1108の加熱温度は解離した核酸にプライマーが結合する温度(約37℃)に設定すればよい。その後、電圧制御装置1117によって電極1115および1116に電圧を印加する。バッファー中に含まれる核酸、プライマー、DNA合成酵素およびデオキシリボヌクオシド三リン酸はそれぞれ等電点が異なり、バッファーのpHによって正もしくは負の極性を示すが、バッファーのpHを適当に選択することにより全ての成分を正もしくは負のいずれかの極性に統一することができる。例えば、バッファー中の全ての成分が負の電荷を帯びるように調整し、電極1115が負に、電極1116が正になるように電圧を印加すると、バッファー中に含まれる成分のみが電極1116に向かって移動を始める。このとき、バッファーは移動しない。移動を始めた各成分は、まず発熱体1106の上方領域を通過する。この領域は、上述のように、核酸が解離する温度に加熱、維持されているので、移動する成分のうち核酸のみが解離反応を起こす。解離した核酸を含む各成分はさらに移動を続け、発熱体1107の上方領域を通過して発熱体1108の上方領域に到達する。この領域は、解離した核酸とプライマーとが結合反応を生じる温度に加熱、維持されており、解離した核酸とプライマーとの結合反応が生じる。ここで、電圧制御装置1117により電極1115と1116との極性を逆転させる。これにより、核酸とプライマーとの結合体を含む各成分は移動方向を逆転させ、電極1115に向かって移動を始める。逆方向に移動を始めた各成分は、まず耐熱性DNA合成酵素の活性が高まる温度に加熱、維持された発熱体1107の上方領域を通過し、核酸に結合したプライマーが伸長する。プライマーが伸長し、二本鎖が形成された核酸を含む各成分は、さらに移動を続け、再び発熱体1106の上方領域に到達して核酸の解離が起こる。ここで再び両電極1104および1105の極性を逆転することにより、新たな熱サイクルが開始され、これを繰り返すことで核酸を増幅することができる。
このように、この装置は電極に電圧を印加することによって、バッファー中に含まれる、DNA増幅反応に必要な成分のみを移動させる。すなわち、最も容量が多く、したがって最も熱容量が大きいバッファーを加熱および冷却する必要がなく、各発熱体の上方領域のバッファーは温度測定手段の情報に基づく発熱体制御装置の作用により常に一定の温度に保たれている。異なる温度領域の間を移動する各成分の熱容量は小さく、異なる温度領域に達したときには瞬時に温度変化が完了する。このため、熱サイクルの実施に伴う温度勾配の問題が解消され、DNA増幅反応をより精密に行なうことができる。また、機械的なバッファーの送出手段を必要としないため、装置を小型化し、コストを抑えることが可能である。
また、近年、熱サイクルに用いる温度を2種類、すなわち核酸が解離する温度と耐熱性酵素が最も活性化してプライマーの伸長が生じる温度とにしてDNA増幅反応を行なう研究がなされている。この方法には、熱サイクルに要する時間を短縮し、DNA増幅反応をより短時間で行なうことができるという利点がある。この発明による第2のDNA増幅装置は、このような方法にも対応することができる。すなわち、図11および12に示される装置において、発熱体1106を核酸の解離が生じる温度に、発熱体1107をプライマーの伸長が効率的に生じる温度にそれぞれ設定し、この間でバッファー中の各成分を往復させればよい。装置をこの方法に専用の装置とする場合には、発熱体1108、発熱体制御装置1111および温度検出手段1114は省くことができる。
この発明による第2のDNA増幅装置においては、図13および14に示されるように、耐熱性酵素の活性が高まる温度に維持される発熱体1107の上方に位置する流路1102の内面、すなわち流路1102の温度検出手段1113の近傍内面に耐熱性酵素1301を固定することができる。ここで、図13はこの発明による第2のDNA増幅装置の別の具体例を模式的に示す平面図であり、図14は図13に示される装置のG−G線に沿った断面を模式的に示す図である。耐熱性酵素を固定する位置は、流路1102の内面であれば底面、側面および上面のいずれでもよい。流路1102の内面への耐熱性酵素を固定は、例えば、流路1102の内面をアミノ基を含有するシランカップリング剤で処理しておけば、カルボジイミド法、グルタルアルデヒド法、過ヨウ素酸ナトリウム法等の常法により行なうことができる。このように耐熱性酵素1301を固定化した装置を用いることにより、増幅しようとする核酸、2種類のプライマーおよび4種類にデオキシリボヌクレオシド三リン酸のみを移動させることで増幅反応を行なうことができる。
上述のように、図11および12に示される装置においては、耐熱性DNA合成酵素を含む増幅反応に必要な各成分を予め温度が設定、維持された領域の間を移動させることにより増幅反応を行なっている。しかしながら、耐熱性酵素は、耐熱性とはいうもののタンパク質であるため核酸が解離する温度に晒されると徐々に劣化する。したがって、熱サイクルの回数が増すに従って反応の効率が低下してしまう。すなわち、この耐熱性酵素の劣化がDNA増幅反応における増幅率の上限を決定する一つの要因となっている。図13および14に示される装置では、耐熱性酵素は常にその活性が最も高まる部位に留まっており、高温により劣化することがなく、活性を長時間に亘って維持することができる。このため、DNA増幅反応をより効率よく、長時間に亘って行なうことが可能であり、DNAの増幅率を高めることができる。
また、この発明による第2のDNA増幅装置においては、図15および16に示されるように、各発熱体と発熱体との間、すなわち発熱体1106と1107との間および発熱体1107と1108との間に、基板1101の裏面に接して、冷却液を循環させるための冷却液流路1501を設けることができる。ここで、図15はこの発明による第2のDNA増幅装置のさらに別の具体例を模式的に示す平面図であり、図16は図15に示される装置のH−H線に沿った断面を模式的に示す図である。この冷却液流路1501内には、図示しないポンプ等により、少なくとも解離した核酸がプライマーと結合する温度(約37℃)よりも低温の冷却液を循環させる。
このように各発熱体と発熱体との間に冷却液を循環させることにより、各発熱体の上方領域の流路1102内の反応溶液の温度を、隣接する発熱体の影響を受けることなくより精密に制御することが可能となる。
さらに、この発明の第2のDNA増幅装置においては、図17および18に示すように、発熱体1107と1108との間の流路1102、すなわち流路1102の温度検出手段1113と1114との間に、底面に電極1701を備えた貯留セル1702に連通する分岐流路1703を設けることもできる。ここで、図17はこの発明による第2のDNA増幅装置のさらに別の具体例を模式的に示す平面図であり、図18は図17に示される装置のI−I線に沿った断面を模式的に示す図である。貯留セル1702にはプライマーが貯留され、貯留セル1702の底面に設けられた電極1701は電圧制御装置1117に接続されている。
前述のように、DNAの増幅反応では、解離した核酸にプライマーを結合させ、耐熱性DNA合成酵素の作用によりこのプライマーを伸長させる。したがって、一度結合したプライマーはそのまま増幅した核酸の一部として消費される。このため、増幅反応を繰り返すに従ってプライマーが減少し、プライマーが完全に消費されると増幅反応も終結する。すなわち、前述の耐熱性酵素の劣化と同様、プライマーの減少もDNA増幅反応における増幅率の上限を決定する一要素である。図17および18に示される装置では、貯留セル1702から分岐流路1703を介して流路1102にプライマーを追加供給することが可能であり、増幅反応を繰り返すに従ってプライマーが不足する問題を解消することができる。
図17および18に示される装置を用いたDNA増幅の手順は以下の通りである。まず、図11および12に示される装置を用いたDNA増幅の手順と同様にして、流路1102のバッファーを導入し、各発熱体1106、1107および1108の上方領域の流路1102内のバッファーを所定の温度に維持した後、電極1115および1116に電圧を印加し、または反転させ、バッファー中の各成分を移動させて増幅反応を行なう。熱サイクルを適当な回数繰り返した後、新たなサイクルを開始し、発熱体1106の上方領域を通過させて核酸を解離させるところまでは同様に行なう。その後、さらに各成分を電極1116に向けて移動させ、適当な位置に到達したときに、電極1701に電極1115と同じ極性の電圧を印加する。これにより貯留セル1702に貯留されているプライマーは電極1116に向けて移動を開始する。移動を開始したプライマーは分岐流路1703を介して流路1102に流入し、発熱体1106の上方領域から流路1102を移動してきた各成分と合流する。その後は、再び同様にして熱サイクルを繰り返せばよい。
このように、図17および18に示される装置を用いることにより、DNA増幅反応を繰り返している途中であってもプライマーを追加供給することが可能であり、プライマーの不足を回避し、DNAの増幅率を高めることができる。また、DNAの増幅反応においては、プライマーだけではなく4種のデオキシリボヌクレオシド三リン酸もそれぞれ消費され、増幅反応を繰り返すに従って反応の効率が低下する要因となるが、貯留セル1702にプライマーに加えて4種類のデオキシリボヌクレオシド三リン酸を貯留することにより、デオキシリボヌクレオシド三リン酸の不足を回避し、増幅率をより高めることができる。
さらにまた、この発明による第2のDNA増幅装置は、図11ないし図18に示される装置を1ユニットとして、複数のユニットを分岐を有する流路で連結することもできる。図13および14に示される装置を1ユニットとして、このユニットを複数連結した具体例を図19に示す。この図では、それぞれが図13および図14に示される構造を有するユニット1901、1902および1903が、流路1904を介して連結されている。流路1904は、ユニット1901を通過した後、具体的にはユニット1901の弁1905の下流で分岐し、一方が弁1906を介してユニット1902に、他方が弁1907を介してユニット1903にそれぞれ連通している。
この装置を用いたDNAの増幅反応は以下の手順で行なう。まず、ユニット1901において、前述の図11および12に示される装置を用いたDNAの増幅反応において説明した手順でDNAの増幅反応を行なう。熱サイクルを所定の回数繰り返した後、増幅した核酸を含む各成分を発熱体1908の上方を通過させて電極1909の近傍に集める。次に、弁1905、1906および1907を開放し、電極1909および1910に印加していた電圧を遮断する、続いて、電極1909の極性を反転させ、同時に電極1911および1912に電圧を印加する。具体的には、電極1909が負に、電極1911および1912が正になるように電圧を印加する。これにより、電極1909近傍に集まっていた各成分は流路1904内を電極1911および1912に向けて移動する。各成分がユニット1902および1903内に移動したところで各電極に印加していた電圧を遮断し、弁1905、1906および1907を閉鎖する。その後、ユニット1902および1903において、前述の手順によりDNAの増幅反応を行なう。
耐熱性酵素の劣化およびプライマーの減少がDNA増幅反応における増幅率の上限を決定する要因となることは前述したが、増幅反応の結果生じるDNAの濃度上昇もまた増幅率の上限を左右する要因となる。解離した核酸とプライマーとの結合が核酸同士の結合との競合反応であることも前に説明した。図17および18に示される装置では、増幅反応の途中でプライマーを追加供給可能なシステムを加えることによりこの問題を解決している。しかしながら、流路の容量は一定であり、核酸は増幅する一方であるため、例えプライマーの濃度を高めたとしても、核酸同士が会合して結合する機会は増加する。この装置では、ユニット1901を流出した各成分が、流路1904の分岐点でほぼ2等分されてユニット1902および1903に流入する。すなわち、ユニット1902および1903に流入する核酸の濃度は、ユニット1901における核酸の最終濃度のほぼ半分である。このため、増幅反応の最中に核酸同志が結合する確率が低下して、増幅反応をより効率的に行なうことが可能であり、その結果増幅率を高めることができる。
なお、図19においては、ユニット1901に続くユニットの数は2つであるが、これに限定されるものではなく、流路1904をさらに分岐させてより多くのユニットに連結することもできる。また、図19においては増幅反応は2段階でおこなっているが、ユニット1902および1903の後でさらに流路1904を分岐させて複数のユニットを連結させ、より多段階で増幅反応を行なうこともできる。
次に、この発明による第3のDNA増幅装置の一具体例の平面図を図20に示す。この装置では、無機もしくは有機基板2001上に、2つの弁2003および2004が設けられた流路2002が形成され、さらに基板2001の上面に接して透明基板が接合されている。弁2003と2004との間には、基板2001の裏面に接して3つの発熱体2005、2006および2007が設けられており、それぞれ発熱体の温度を個別に制御する発熱体制御装置2008、2009および2010に接続されている。また、これらの発熱体2005、2006および2007に対応して流路2002の底面には、それぞれ、反応溶液の温度を検出するための温度検出手段2011、2012および2013が設けられている。さらに、発熱体2006に対応する位置の流路2002の底面には耐熱性DNA合成酵素2014が固定されている。また、弁2003と発熱体2005との間に位置する流路2002の底面および弁2004と発熱体2007との間に位置する流路2002の底面にはそれぞれ電極2015および2016が設けられており、さらに電極2015と弁2003との間には、底面に電極2017を備えた貯留セル2018に連通する分岐流路2019が設けられている。弁2003の上流側の流路2002の底面には電極2020が設けられ、この電極2020と弁2003との間には、基板2001の上面に接合された透明基板を貫通する試料投入口2021が設けられている。試料投入口2021は外部から試料を流路2002内に取り込むことが可能な形態をとっている。また、試料投入口2021と弁2003との間の流路2002にはゲル状化合物2022が流路2002を塞ぐ形で充填され、このゲル状化合物2022が充填された部位と弁2003との間には、弁2023を介して、底面に電極2024を備えた廃棄物セル2025に連通する分岐流路2026が設けられている。同様に、弁2004の下流側の流路2002にも電極2027が設けられ、この電極2027と弁2004との間にはDNA検出手段2028が設けられている。電極2015、2016、2017、2020、2024および2027は全て、各電極に電圧を印加することが可能であり、かつ印加した電圧を反転することが可能な電圧制御装置2029に接続されている。無機もしくは有機基板2001の材質、流路2002の形成方法、透明基板の材質、利用可能な発熱体、および利用可能な温度検出手段等は全て、上記この発明による第1のDNA増幅装置に用いられるものと同様である。流路2002に充填されるゲル状化合物2022としては、例えば、セルロース、アガロース、アルリルアミド等を用いることができる。また、DNA検出手段2028は特に限定されるものではなく、通常DNAの検出に用いられるいかなる手段をも用いることができ、例としては紫外線吸光度検出法、屈折率検出法、蛍光検出法および楕円偏光解析法を利用するものを挙げることができる。
この第3のDNA増幅装置を用いたDNA増幅反応の手順は以下の通りである。まず、バッファーを満たした流路2002内に、試料投入口2021から、全血もしくは血清等の試料を導入する。次に、弁2003を閉鎖し、弁2023を開放した後、電極2020および2024に、電極2020が負に、2024が正になるように電圧を印加し、核酸を含む試料を電極2024に移動させる。流路2002を電極2024に向けて移動する試料は、ゲル状化合物2022を通過する。この際、ゲル電気泳動の原理により、核酸がゲル状化合物2022を通過するより早く、不純物であるより低分子の化合物がゲル状化合物2022を通過し、分岐流路2026を経て廃棄物セル2025に到達する。この後、目的とする核酸がゲル状化合物2022を通過し終えた時点で、弁2023を閉鎖して電極2024に印加していた電圧を遮断し、次いで弁2003を開放して電極2015に電圧を印加する。これにより、不純物が除去された、目的とする核酸のみが弁2023を通過する。また、電極2015に電圧を印加するのと同時に電極2017にも電圧を印加する。貯留セル2018には、予めDNA増幅反応に必要な2種類のプライマーおよび4種類のデオキシリボヌクレオシド三リン酸(dATP、dCTP、dGTPおよびdTTP)が貯留されており、電極2017に電圧が印加されると同時に電極2015に向けて移動を開始して、分岐流路2019を介して流路2002に流入し、弁2003を通過した核酸と合流する。核酸が弁2003を通過し、貯留セル2018からの各成分と共に電極2015の近傍に集まった後、弁2003を閉鎖して電極2017および2020に印加されていた電圧を遮断し、次いで電極2016に電圧を印加すると同時に電極2015に印加される電圧の極性を反転させる。これにより、各成分は電極2016に向けて移動を開始し、以下、前述の第2のDNA増幅装置に各具体例において説明した手順によりDNAの増幅反応を行なう。所定の回数熱サイクルを行なって増幅反応が終了した後、まず増幅した核酸を含む各成分を電極2016の近傍に集める。次に、電極2015に印加していた電圧を遮断して弁2004を開放し、電極2027に電圧を印加すると同時に電極2016に印加されていた電圧の極性を反転させる。これにより、増幅した核酸は電極2027に向けて移動を開始する。核酸がDNA検出手段2028の位置まで移動した時点で電極2016および電極2027に印加していた電圧を遮断し、DNAの検出を行なう。
この装置では、試料の投入から、DNAを増幅し、増幅したDNAを検出するまで全て電気的な動作であり、機械的な動作は必要としない。このため、装置を非常に小型化することが可能であり、コストの低下にも非常に有利である。また、同じ理由により、全自動化も容易である。
図20に示される装置においては、ゲル状化合物は試料投入口2021と弁2003との間にのみ充填されているが、弁2004とDNA検出手段2028との間の流路2002に充填することもできる。このようにゲル状化合物を配置することにより、DNA増幅後にも反応せずに残留し、DNA検出の妨げになるプライマーやデオキシリボヌクレオシド三リン酸を分離することができ、検出の精度をより高めることができる。
また、流路2002にゲル状化合物2022を充填する代わりに、この部分の流路の径を 150μm以下とすることによっても同様の効果を得ることができる。すなわち、流路の径を 150μm以下とすることにより、壁面との電気親和力の差により、核酸と他の不純物とを分離することができる。
以上、図面に基づいてこの発明によるDNA増幅装置の実施の形態を説明したが、この発明は上述の実施の形態に限定されるものではなく、この発明の要旨の範囲内で種々の変形や応用が可能である。ここで、この発明の要旨をまとめると以下のようになる。
(1)図1ないし10に対応
無機もしくは有機基板上に形成されたプレーナ状の反応セルと、該反応セルに連通する2つの流路と、該流路の各々に前記反応セルを挟んで設けられた2つ弁と、少なくとも前記反応セルの底面もしくは前記基板の反応セルが形成された面の裏面のいずれか一方に設けられた加熱手段とを具備するDNA増幅装置。
この装置は、反応セルがプレーナ状であり、これにより反応セル内の反応溶液をより迅速に加熱および冷却することができる。また、加熱手段を反応セルの底面および基板の裏面の両方に設けた場合には、反応セル内の反応溶液の昇降温速度を高めることができる。その結果、反応溶液内の温度勾配を小さくすることが可能であり、DNA増幅反応の精度を高めることができる。
(2)図11ないし19に対応
無機もしくは有機基板上に設けられた流路、該流路に設けられた2つの弁、該2つの弁の間の流路の底面に設けられた2つの電極、該2つの電極の間の流路の底面に設けられた少なくとも1つの温度検出手段、該少なくとも1つの温度検出手段の各々の近傍の流路底面もしくは前記基板の流路が設けられている面の裏面の少なくともいずれか一方に、前記温度検出手段の各々と対をなして設けられた加熱手段、前記2つの電極に印加される電圧を制御する電圧制御手段、および前記温度検出手段からの情報に基づいて前記加熱手段を制御する加熱制御手段を具備するDNA増幅装置。
この装置では、流路内に満たされた反応溶液に電圧を印加し、反応溶液中の核酸、耐熱性DNA合成酵素、プライマーおよびデオキシリボヌクレオシド三リン酸のみを所定の温度に維持された複数の領域の間で移動させ、DNAの増幅反応を行なう。このため、増幅反応に必要な熱サイクルの際に生じる温度勾配の問題が解消される。また、電気的な手段で溶液中の成分のみを移動させ、溶液の移動を伴わないため、ポンプ等の機械的な作動部材を必要とせず、装置の小型化および低価格化が可能となる。
(3)図20に対応
無機もしくは有機基板上に設けられた流路、該流路の底面に設けられた第1ないし第4の電極、第1の電極と第2の電極との間に設けられた第1の弁、第1の電極と第1の弁との間に設けられた試料投入口、該試料投入口と第1の弁との間に位置し、底面に第5の電極を有する不純物導入セルに連通する第1の分岐流路、該第1の分岐流路と前記試料投入口との間の流路内に設けられたゲル状化合物、第1の弁と第2の電極との間に位置し、底面に第6の電極を有する貯留セルに連通する第2の分岐流路、第2の電極と第3の電極との間の流路底面に設けられた少なくとも1つの温度検出手段、該少なくとも1つの温度検出手段の各々の近傍の流路底面もしくは前記基板の流路が設けられている面の裏面の少なくともいずれか一方に、前記温度検出手段の各々と対をなして設けられた加熱手段、第3の電極と第4の電極との間に設けられたDNA検出手段、該DNA検出手段と第4の電極との間に設けられた第2の弁、前記第1ないし第6の電極に印加される電圧を制御する電圧制御手段、および前記温度検出手段からの情報に基づいて前記加熱手段を制御する加熱制御手段を具備するDNA増幅装置。
この装置では、試料の投入から、DNAを増幅し、増幅したDNAを検出するまで全て電気的な動作で行なうことが可能であり、装置を非常に小型にすることができ、また低コスト化も可能である。さらに、機械的な部材を必要としないことから全自動化も容易である。
また、この発明は以下の態様をも含むものである。
(4)図3および4に対応
前記(1)の装置において、反応セルの底面に少なくとも1つの温度検出手段を有するDNA増幅装置。
この装置では、反応セルの底面に設けられた少なくとも1つの温度検出手段が反応溶液の温度を直接測定する。したがって、加熱手段によって加熱される反応溶液の温度をより精密に制御することができる。
(5)図5および6に対応
前記(1)の装置において、反応セルの底面に少なくとも1つの突起を有するDNA増幅装置。
この装置では、反応セルの底面に少なくとも1つの突起を設けることにより、反応セル中の反応溶液がセル底面と接する面積を拡大している。その結果、加熱手段から生じた熱をより効率的に反応溶液に伝えることができ、反応溶液をより迅速に加熱もしくは冷却することが可能である。
(6)図7および8に対応
前記(1)の装置において、反応セル底面の断面形状が鋸刃状もしくは波状であるDNA増幅装置。
この装置も、上記(5)の装置と同様に、反応セル底面の断面形状を鋸刃状もしくは波状とすることにより、反応セル中の反応溶液がセル底面と接する面積をより拡大している。したがって、加熱手段から生じた熱をより効率的に反応溶液に伝えることができ、反応溶液をより迅速に加熱もしくは冷却することが可能である。
(7)図9および10に対応
前記(1)の装置において、反応セルの底面に1つもしくはそれ以上の突起が反応溶液の流れ方向に対して斜めに配置されたDNA増幅装置。
この装置では、反応セルに流入する反応溶液がセル底面に設けられた突起の抵抗を受けて反応セル内で撹拌される。その結果、各成分が反応溶液中で均一に分散し、DNA増幅反応が均一に生じる。また、反応セルから反応溶液を流出させる際にもやはり突起により反応溶液が撹拌され、次の精製、分析工程をむらのない状態で行なうことができる。さらに、前記(5)および(6)の装置と同様に、反応セル底面に設けられた突起は、反応セル中の反応溶液がセル底面と接する面積を拡大する作用をする。したがって、加熱手段から生じた熱をより効率的に反応溶液に伝えることができ、反応溶液をより迅速に加熱もしくは冷却することが可能である。
(8)図11ないし19に対応
無機もしくは有機基板上に設けられた流路、該流路に設けられた2つの弁および該2つの弁の間の流路の底面に設けられた2つの電極を具備するDNA増幅装置。
この装置は、流路底面に設けられた2つの電極に電圧を印加することにより、反応溶液中の核酸、プライマー、耐熱性DNA合成酵素およびデオキシリボヌクレオシド三リン酸のみを移動させる。したがって、溶液の移動を伴わないために、DNA増幅反応に必要な熱サイクルにおいて生じる温度勾配の問題が解消される。また、溶液の移動を伴わないために、ポンプ等の機械的作動部材を必要とせず、装置の小型化および低価格化が可能となる。
(9)図13および14に対応
前記(2)の装置において、少なくとも1つの温度検出手段が設けられた位置の流路内面に耐熱性DNA合成酵素が固定化されているDNA増幅装置。
耐熱性DNA合成酵素は、その名の通り、核酸が解離するような温度においてもその活性をある程度維持することができるが、反応を繰り返す毎に活性が低下し、これがDNA増幅反応における増幅率の上限を決定する要因の一つとなっている。この装置では、この耐熱性DNA合成酵素を、核酸に結合したプライマーを伸長させる温度領域の流路内壁、例えば流路底面や上面に固定化している。これにより、増幅反応に支障をきたすことなく、酵素の劣化を大幅に抑制し、DNA増幅反応における増幅率を高めることができる。
(10)図15および16に対応
前記(2)の装置において、2つ以上の加熱手段を有し、各々の加熱手段と加熱手段との間に相当する位置の、無機もしくは有機基板の上面もしくは裏面に、基板に接して設けられた冷却液流路を具備するDNA増幅装置。
この装置では、冷却液流路に冷却液を循環させることにより、基板上に複数設けられた加熱手段の各々を熱的に分離することができる。したがって、各加熱手段によって加熱される流路内のバッファーの温度をより精密に制御することが可能となる。
(11)図17および18に対応
前記(2)の装置において、2つ以上の加熱手段を有し、所定の加熱手段と加熱手段との間に相当する位置の流路に、底面に電極が設けられた貯留セルに連通する分岐流路が設けられているDNA増幅装置。
前述のように、DNA増幅反応における増幅率の上限を決定する要因の一つは耐熱性DNA合成酵素の劣化であるが、他の要因としてプライマーの減少も挙げられる。解離した核酸にプライマーが結合することが耐熱性酵素がプライマーの伸長を開始する条件であるが、一度結合したプライマーはそのまま増幅した核酸の一部となるため、増幅反応を繰り返す毎にプライマーは消費されていく。したがって、プライマーが完全に消費された時点で増幅反応は終了する。
この装置では、予め貯留セルにプライマーを貯留することにより、増幅反応の途中であってもプライマーを追加供給することが可能であり、DNA増幅反応における増幅率を高めることができる。貯留セルから流路へのプライマーの供給は、貯留セルの底面に設けられた電極を用いて電気的に行なうことができる。
さらに、この装置では、プライマーだけではなく、4種類のデオキシリボヌクレオシド三リン酸を貯留セルに貯留してもよい。この場合には、デオキシリボヌクレオシド三リン酸が不足することも回避することができる。
(12)図19に対応
前記(2)、(8)、(9)、(10)または(11)の装置のいずれかを1ユニットとするユニットを少なくとも3つ有し、1つのユニットの下流側に他のユニットが分岐を有する流路によって連結されているDNA増幅装置。
DNA増幅反応における増幅率の上限を決定する要因としては、前述の耐熱性酵素の劣化およびプライマーの減少の他に、増幅反応の結果生じるDNAの濃度上昇も挙げることができる。DNAの濃度が上昇すると、解離した核酸とプライマーが結合するときに核酸同士が結合する可能性が高くなる。核酸がプライマーと結合する反応と核酸同士が結合する反応とは競合するので、核酸濃度に対するプライマー濃度を高めることにより相対的に核酸同士が結合する確率は低くなる。しかし、流路の容量は一定なので、プライマーの濃度を高めることにより核酸同士の再結合を抑制するのには限りがある。
この装置は、単体でDNA増幅反応を行なうことが可能な3つ以上のユニットを有し、1つのユニットの下流側に、分岐した流路を介して、他のユニットが連結されている。この装置では、まず、上流側のユニットにおいて所定の回数DNA増幅反応を繰り返した後、各ユニットの弁を開放し、上流側のユニットにおいて増幅した核酸を下流側のユニットに電気的に移動させる。この際、流路の分岐点において核酸はほぼ等分に分割されて下流側のユニットに導入される。例えば、下流側のユニットの数が2つである場合には、各ユニットに導入される核酸の濃度は、上流側のユニットにおける核酸の最終濃度のほぼ半分である。したがって、核酸とプライマーとが結合する際に核酸同士が結合する確率が低くなり、DNA増幅反応を効率的に行なうことができる。
この装置では、1つのユニットの下流側での流路の分岐数は2つ以上であればよく、特に制限はない。また、分岐したユニットの後でさらに流路を分岐して複数のユニットを設けて多段階の反応を行なうことも可能であり、その段階数にも制限はない。
(13)
前記(3)の装置において、第1の分岐流路と試料投入口との間の流路にゲル状化合物を充填する代わりに、径が 150μm以下の流路を設けたDNA増幅装置。
前記(3)の装置においては、試料投入口から投入された試料から不純物を除去するために、アフィニティを利用したキャピラリ電気泳動を利用している。キャピラリ電気泳動には、このアフィニティを利用するものの他に、毛管内の電気親和力を利用するものがある。この装置は、流路の径を 150μm以下とすることにより、この電気親和力を利用したキャピラリ電気泳動を利用して不純物の分離を行なう。したがって、ゲル状化合物のような担体は不要であり、装置構成をより単純化し、コストをさらに低くすることができる。
本発明に従えば、無機もしくは有機基板上に形成されたプレーナ状の反応セルと、該反応セルに連通する2つの流路と、該流路の各々に前記反応セルを挟んで設けられた2つ弁と、少なくとも前記反応セルの底面もしくは前記基板の反応セルが形成された面の裏面のいずれか一方に設けられた加熱手段とを具備するDNA増幅装置が提供される。
また、本発明の他の面から、無機もしくは有機基板上に設けられた流路、該流路に設けられた2つの弁、該2つの弁の間の流路の底面に設けられた2つの電極、該2つの電極の間の流路の底面に設けられた少なくとも1つの温度検出手段、該少なくとも1つの温度検出手段の各々の近傍の流路底面もしくは前記基板の流路が設けられている面の裏面の少なくともいずれか一方に、前記温度検出手段の各々と対をなして設けられた加熱手段、前記2つの電極に印加される電圧を制御する電圧制御手段、および前記温度検出手段からの情報に基づいて前記加熱手段を制御する加熱制御手段を具備するDNA増幅装置が提供される。
本発明のさらに他の面から、無機もしくは有機基板上に設けられた流路、該流路の底面に設けられた第1ないし第4の電極、第1の電極と第2の電極との間に設けられた第1の弁、第1の電極と第1の弁との間に設けられた試料投入口、該試料投入口と第1の弁との間に位置し、底面に第5の電極を有する不純物導入セルに連通する第1の分岐流路、該第1の分岐流路と前記試料投入口との間の流路内に設けられたゲル状化合物、第1の弁と第2の電極との間に位置し、底面に第6の電極を有する貯留セルに連通する第2の分岐流路、第2の電極と第3の電極との間の流路底面に設けられた少なくとも1つの温度検出手段、該少なくとも1つの温度検出手段の各々の近傍の流路底面もしくは前記基板の流路が設けられている面の裏面の少なくともいずれか一方に、前記温度検出手段の各々と対をなして設けられた加熱手段、第3の電極と第4の電極との間に設けられたDNA検出手段、該DNA検出手段と第4の電極との間に設けられた第2の弁、前記第1ないし第6の電極に印加される電圧を制御する電圧制御手段、および前記温度検出手段からの情報に基づいて前記加熱手段を制御する加熱制御手段を具備するDNA増幅装置が提供される。
[発明の効果]
以上のように、この発明による第1のDNA増幅装置は、反応セルをプレーナ状とすることにより反応溶液をより迅速に加熱および冷却することが可能であり、DNA増幅反応に必要な熱サイクルで問題となる、反応溶液中に生じる温度勾配を小さくすることができる。また、加熱手段を設ける部位および加熱手段の材質を適当に選択することにより、さらに迅速に加熱および冷却を行なうことも可能である。
また、この発明による第2のDNA増幅装置は、流路内に満たされた反応溶液に電圧を印加し、反応溶液中の核酸、耐熱性DNA合成酵素、プライマーおよびデオキシリボヌクレオシド三リン酸のみを所定の温度に維持された複数の領域の間で移動させてDNAの増幅反応を行なう。このため、最も熱容量の大きい溶媒を加熱、冷却する必要がなく、熱サイクルの際に生じる温度勾配の問題を解消することができる。また、電気的な手段で溶液中の成分のみを移動させ、溶液の移動を伴わないため、ポンプ等の機械的な作動部材が不要であり、装置の小型化および低価格化が可能となる。
さらに、この発明による第3のDNA装置では、試料の投入から、DNAを増幅し、増幅したDNAを検出するまで全て電気的な動作で行なうことが可能であり、装置を非常に小型にすることができ、また低コスト化も可能である。さらに、機械的な部材を必要としないことから全自動化も容易である。
この発明による第1のDAN増幅装置の一具体例の平面図。 図1に示す装置のA−A線断面図。 この発明による第1のDNA増幅装置の別の具体例の平面図。 図3に示す装置のB−B線断面図。 この発明による第1のDNA増幅装置のさらに別の具体例の平面図。 図5に示す装置のC−C線断面図。 この発明による第1のDNA増幅装置のさらに別の具体例の平面図。 図7に示す装置のD−D線断面図。 この発明による第1のDNA増幅装置のさらに別の具体例の平面図。 図9に示す装置のE−E線断面図。 この発明による第2のDNA増幅装置の一具体例の平面図。 図11に示す装置のF−F線断面図。 この発明による第2のDNA増幅装置の別の具体例の平面図。 図13に示す装置のG−G線断面図。 この発明による第2のDNA増幅装置のさらに別の具体例の平面図。 図15に示す装置のH−H線断面図。 この発明による第2のDNA増幅装置のさらに別の具体例の平面図。 図17に示す装置のI−I線断面図。 図11ないし図18に示す装置のいずれかを1ユニットとする複数のユニットを、1つのユニットの下流に、分岐した流路を介して連結してなる装置の平面図。 この発明による第3のDNA増幅装置の一具体例の平面図。
符号の説明
101、1101、2001…無機もしくは有機基板、 102、 701…反応セル、 103、 104、1102、2002…流路、 105、1103…透明基板、 106、 107、1104、1105、1905、1906、1907、2003、2004、2023…弁、 108、1106、1107、1108、1908、2005、2006、2007…加熱手段、 301、 302、1112、1113、1114、2011、2012、2013…温度検出手段、 501、 901…突起、1109、1110、1111、2008、2009、2010…発熱体制御手段、1115、1116、1701、1909、1910、1911、1912、2015、2016、2017、2020、2024、2027…電極、1117、2029…電圧制御手段、1301、2014…耐熱性DNA合成酵素、1501…冷却液流路、1702、2018…貯留セル、1703、1904、2019、2026…分岐流路、1901、1902、1903…ユニット、2021…試料投入口、2022…ゲル状化合物、2025…不純物セル、2028…DNA検出手段。

Claims (2)

  1. 無機もしくは有機基板上に形成された反応部と、該反応部に連通する2つの流路と、少なくとも前記反応部の底面もしくは前記基板の反応部が形成された面の裏面のいずれか一方に設けられ、DNA増幅に必要な温度に制御可能な加熱手段、前記流路と連通し、全血もしくは血清等の核酸分離前の試料から核酸を分離する試料分離部と、分離した核酸と、DNA増幅に必要なプライマー、DNA合成酵素および4種類のデオキシリボ三リン酸とを含む反応溶液を前記反応セルにおいて形成する手段と、前記分離部と前記反応部の間に分岐路を介して連通し、前記分離部で分離された核酸以外の成分を廃棄する廃棄部とを具備するDNA増幅装置。
  2. 請求項1に記載の装置であって、前記流路と連通し、前記反応部で増幅反応した反応溶液を、増幅した目的の核酸と残留する成分とに分離する反応溶液分離部をさらに具備したことを特徴とするDNA増幅装置。
JP2005365222A 2005-12-19 2005-12-19 Dna増幅装置 Expired - Fee Related JP3899360B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005365222A JP3899360B2 (ja) 2005-12-19 2005-12-19 Dna増幅装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005365222A JP3899360B2 (ja) 2005-12-19 2005-12-19 Dna増幅装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP25427095A Division JP3851672B2 (ja) 1995-09-29 1995-09-29 Dna増幅装置

Publications (2)

Publication Number Publication Date
JP2006094866A true JP2006094866A (ja) 2006-04-13
JP3899360B2 JP3899360B2 (ja) 2007-03-28

Family

ID=36235257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005365222A Expired - Fee Related JP3899360B2 (ja) 2005-12-19 2005-12-19 Dna増幅装置

Country Status (1)

Country Link
JP (1) JP3899360B2 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167639A (ja) * 2007-07-13 2013-08-29 Handylab Inc ヒータ基体及びヒータユニット
US8895311B1 (en) 2001-03-28 2014-11-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
JPWO2013027393A1 (ja) * 2011-08-22 2015-03-05 パナソニック株式会社 マイクロ流体デバイス
US9028773B2 (en) 2001-09-12 2015-05-12 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US9051604B2 (en) 2001-02-14 2015-06-09 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
USD742027S1 (en) 2011-09-30 2015-10-27 Becton, Dickinson And Company Single piece reagent holder
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US9217143B2 (en) 2007-07-13 2015-12-22 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US9222954B2 (en) 2011-09-30 2015-12-29 Becton, Dickinson And Company Unitized reagent strip
US9238223B2 (en) 2007-07-13 2016-01-19 Handylab, Inc. Microfluidic cartridge
US9259735B2 (en) 2001-03-28 2016-02-16 Handylab, Inc. Methods and systems for control of microfluidic devices
US9259734B2 (en) 2007-07-13 2016-02-16 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US9347586B2 (en) 2007-07-13 2016-05-24 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
US9670528B2 (en) 2003-07-31 2017-06-06 Handylab, Inc. Processing particle-containing samples
US9677121B2 (en) 2001-03-28 2017-06-13 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US9765389B2 (en) 2011-04-15 2017-09-19 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US9802199B2 (en) 2006-03-24 2017-10-31 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US9815057B2 (en) 2006-11-14 2017-11-14 Handylab, Inc. Microfluidic cartridge and method of making same
WO2018084017A1 (ja) * 2016-11-01 2018-05-11 日本板硝子株式会社 反応処理容器および反応処理装置
US10179910B2 (en) 2007-07-13 2019-01-15 Handylab, Inc. Rack for sample tubes and reagent holders
US10364456B2 (en) 2004-05-03 2019-07-30 Handylab, Inc. Method for processing polynucleotide-containing samples
US10799862B2 (en) 2006-03-24 2020-10-13 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US10822644B2 (en) 2012-02-03 2020-11-03 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11453906B2 (en) 2011-11-04 2022-09-27 Handylab, Inc. Multiplexed diagnostic detection apparatus and methods
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9528142B2 (en) 2001-02-14 2016-12-27 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US9051604B2 (en) 2001-02-14 2015-06-09 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US10571935B2 (en) 2001-03-28 2020-02-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US8895311B1 (en) 2001-03-28 2014-11-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US9259735B2 (en) 2001-03-28 2016-02-16 Handylab, Inc. Methods and systems for control of microfluidic devices
US9677121B2 (en) 2001-03-28 2017-06-13 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US10351901B2 (en) 2001-03-28 2019-07-16 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US10619191B2 (en) 2001-03-28 2020-04-14 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US9028773B2 (en) 2001-09-12 2015-05-12 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US10731201B2 (en) 2003-07-31 2020-08-04 Handylab, Inc. Processing particle-containing samples
US10865437B2 (en) 2003-07-31 2020-12-15 Handylab, Inc. Processing particle-containing samples
US11078523B2 (en) 2003-07-31 2021-08-03 Handylab, Inc. Processing particle-containing samples
US9670528B2 (en) 2003-07-31 2017-06-06 Handylab, Inc. Processing particle-containing samples
US10604788B2 (en) 2004-05-03 2020-03-31 Handylab, Inc. System for processing polynucleotide-containing samples
US11441171B2 (en) 2004-05-03 2022-09-13 Handylab, Inc. Method for processing polynucleotide-containing samples
US10443088B1 (en) 2004-05-03 2019-10-15 Handylab, Inc. Method for processing polynucleotide-containing samples
US10364456B2 (en) 2004-05-03 2019-07-30 Handylab, Inc. Method for processing polynucleotide-containing samples
US10494663B1 (en) 2004-05-03 2019-12-03 Handylab, Inc. Method for processing polynucleotide-containing samples
US10913061B2 (en) 2006-03-24 2021-02-09 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US10857535B2 (en) 2006-03-24 2020-12-08 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US11142785B2 (en) 2006-03-24 2021-10-12 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US9802199B2 (en) 2006-03-24 2017-10-31 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US11959126B2 (en) 2006-03-24 2024-04-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11085069B2 (en) 2006-03-24 2021-08-10 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11666903B2 (en) 2006-03-24 2023-06-06 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US9080207B2 (en) 2006-03-24 2015-07-14 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11141734B2 (en) 2006-03-24 2021-10-12 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10843188B2 (en) 2006-03-24 2020-11-24 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US10821446B1 (en) 2006-03-24 2020-11-03 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10821436B2 (en) 2006-03-24 2020-11-03 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US10799862B2 (en) 2006-03-24 2020-10-13 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10695764B2 (en) 2006-03-24 2020-06-30 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10710069B2 (en) 2006-11-14 2020-07-14 Handylab, Inc. Microfluidic valve and method of making same
US9815057B2 (en) 2006-11-14 2017-11-14 Handylab, Inc. Microfluidic cartridge and method of making same
US10717085B2 (en) 2007-07-13 2020-07-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10139012B2 (en) 2007-07-13 2018-11-27 Handylab, Inc. Integrated heater and magnetic separator
US10590410B2 (en) 2007-07-13 2020-03-17 Handylab, Inc. Polynucleotide capture materials, and methods of using same
JP2013167639A (ja) * 2007-07-13 2013-08-29 Handylab Inc ヒータ基体及びヒータユニット
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10625261B2 (en) 2007-07-13 2020-04-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10625262B2 (en) 2007-07-13 2020-04-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10632466B1 (en) 2007-07-13 2020-04-28 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US9347586B2 (en) 2007-07-13 2016-05-24 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US11845081B2 (en) 2007-07-13 2023-12-19 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
US9217143B2 (en) 2007-07-13 2015-12-22 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US11254927B2 (en) 2007-07-13 2022-02-22 Handylab, Inc. Polynucleotide capture materials, and systems using same
US10234474B2 (en) 2007-07-13 2019-03-19 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US10179910B2 (en) 2007-07-13 2019-01-15 Handylab, Inc. Rack for sample tubes and reagent holders
US11266987B2 (en) 2007-07-13 2022-03-08 Handylab, Inc. Microfluidic cartridge
US9238223B2 (en) 2007-07-13 2016-01-19 Handylab, Inc. Microfluidic cartridge
US9259734B2 (en) 2007-07-13 2016-02-16 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10844368B2 (en) 2007-07-13 2020-11-24 Handylab, Inc. Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly
US10100302B2 (en) 2007-07-13 2018-10-16 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US11549959B2 (en) 2007-07-13 2023-01-10 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US11466263B2 (en) 2007-07-13 2022-10-11 Handylab, Inc. Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly
US10875022B2 (en) 2007-07-13 2020-12-29 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10071376B2 (en) 2007-07-13 2018-09-11 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10065185B2 (en) 2007-07-13 2018-09-04 Handylab, Inc. Microfluidic cartridge
US11060082B2 (en) 2007-07-13 2021-07-13 Handy Lab, Inc. Polynucleotide capture materials, and systems using same
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
US9765389B2 (en) 2011-04-15 2017-09-19 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US11788127B2 (en) 2011-04-15 2023-10-17 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US10781482B2 (en) 2011-04-15 2020-09-22 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
JPWO2013027393A1 (ja) * 2011-08-22 2015-03-05 パナソニック株式会社 マイクロ流体デバイス
USD742027S1 (en) 2011-09-30 2015-10-27 Becton, Dickinson And Company Single piece reagent holder
USD905269S1 (en) 2011-09-30 2020-12-15 Becton, Dickinson And Company Single piece reagent holder
US10076754B2 (en) 2011-09-30 2018-09-18 Becton, Dickinson And Company Unitized reagent strip
USD831843S1 (en) 2011-09-30 2018-10-23 Becton, Dickinson And Company Single piece reagent holder
US9480983B2 (en) 2011-09-30 2016-11-01 Becton, Dickinson And Company Unitized reagent strip
US9222954B2 (en) 2011-09-30 2015-12-29 Becton, Dickinson And Company Unitized reagent strip
USD1029291S1 (en) 2011-09-30 2024-05-28 Becton, Dickinson And Company Single piece reagent holder
US11453906B2 (en) 2011-11-04 2022-09-27 Handylab, Inc. Multiplexed diagnostic detection apparatus and methods
US10822644B2 (en) 2012-02-03 2020-11-03 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
WO2018084017A1 (ja) * 2016-11-01 2018-05-11 日本板硝子株式会社 反応処理容器および反応処理装置
US11607687B2 (en) 2016-11-01 2023-03-21 Nippon Sheet Glass Company, Limited Reaction treatment container and reaction treatment device
JPWO2018084017A1 (ja) * 2016-11-01 2019-06-24 日本板硝子株式会社 反応処理容器、反応処理装置および反応処理方法

Also Published As

Publication number Publication date
JP3899360B2 (ja) 2007-03-28

Similar Documents

Publication Publication Date Title
JP3899360B2 (ja) Dna増幅装置
JP3851672B2 (ja) Dna増幅装置
JP5297651B2 (ja) 熱サイクル装置
KR101368463B1 (ko) 2개의 열 블록을 포함하는 pcr 장치
US6203683B1 (en) Electrodynamically focused thermal cycling device
US7440684B2 (en) Method and apparatus for improved temperature control in microfluidic devices
US8623637B2 (en) Nucleic acid amplification apparatus and thermal cycler
RU2385940C1 (ru) Способ определения нуклеиновых кислот методом полимеразно-цепной реакции в режиме реального времени и устройство для его осуществления
US8163489B2 (en) Method for a continuous rapid thermal cycle system
KR20100021565A (ko) 표적 핵산의 신속한 다중화 적용 방법
KR102389800B1 (ko) 액체 순환 경로를 조절할 수 있는 핵산 증폭 반응 튜브
KR101456646B1 (ko) 식중독균 검출용 키트 및 이를 이용한 식중독균 검출 방법
JP2009517075A (ja) 標識を利用しない固有のイメージングを用いたリアルタイムpcrのモニタリング
US10195607B2 (en) Microchip, DNA analysis method and DNA analysis system
US8389273B2 (en) Polymerase chain reaction method, polymerase chain reaction droplet device, and polymerase chain reaction droplet device array
CN111560310B (zh) 一种随机访问式数字核酸检测装置及使用方法
US11015218B2 (en) Method, microreactor and apparatus for carrying out real-time nucleic acid amplification
KR102028381B1 (ko) 식중독 검출용 프라이머 세트를 이용한 pcr 장치, 및 이를 이용한 식중독 검출 방법
WO2016065183A1 (en) Nucleic acid amplification apparatus and system
KR20130134040A (ko) 혈청 타입별 구제역 검출용 프라이머 세트, 이를 이용한 pcr 장치, 및 이를 이용한 구제역 검출 방법
JP2004242607A (ja) 反応装置
KR20130081948A (ko) 인플루엔자 a 바이러스 검출용 키트 및 이를 이용한 인플루엔자 a 바이러스의 검출 방법
WO2021183513A1 (en) Microfluidic temperature control systems

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20060822

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20061020

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20061219

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

LAPS Cancellation because of no payment of annual fees