JP2006091166A - Optical waveguide wiring substrate assembly, photoelectric hybrid substrate assembly, and optical coupling unit - Google Patents
Optical waveguide wiring substrate assembly, photoelectric hybrid substrate assembly, and optical coupling unit Download PDFInfo
- Publication number
- JP2006091166A JP2006091166A JP2004274043A JP2004274043A JP2006091166A JP 2006091166 A JP2006091166 A JP 2006091166A JP 2004274043 A JP2004274043 A JP 2004274043A JP 2004274043 A JP2004274043 A JP 2004274043A JP 2006091166 A JP2006091166 A JP 2006091166A
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- optical waveguide
- optical
- wiring board
- connection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Couplings Of Light Guides (AREA)
- Structure Of Printed Boards (AREA)
Abstract
Description
本発明は、光導波路配線基板又は光電気混載基板と接続部材を有する光導波路配線基板アセンブリー又は光電気混載基板アセンブリー及び光接合ユニットに関する。 The present invention relates to an optical waveguide wiring board assembly or an optical / electrical hybrid board assembly having an optical waveguide wiring board or an opto-electric hybrid board and a connecting member, and an optical junction unit.
最近、IC技術やLSI技術において、動作速度や集積度向上のために、高密度に電気配線を行う代わりに、機器装置間、機器装置内のボード間、チップ内において光配線を行うことが注目されている。また、高速大容量の光通信システムにおける光インターコネクションでは、伝送された光信号の処理は電子デバイスで行われており、光−電気混合デバイスが必要となる。
光配線のための素子として、例えば、特許文献1には、複数の光電変換素子が設けられたアレイ型光電変換素子ユニットと、複数の異なる長さをもち、その端部がミラーとなるように45°にカットされた光導波路が形成されたアレイ型光導波路ユニットと、各光電変換素子と光導波路を結合する光結合用光導波路を備えた光路変換デバイスが記載されている。
Recently, in IC technology and LSI technology, in order to improve operation speed and integration, instead of high-density electrical wiring, optical wiring has been focused on between devices, between boards in devices, and on chips. Has been. Further, in the optical interconnection in the high-speed and large-capacity optical communication system, the processing of the transmitted optical signal is performed by an electronic device, and an optical-electric mixing device is required.
As an element for optical wiring, for example, Patent Document 1 discloses an array type photoelectric conversion element unit provided with a plurality of photoelectric conversion elements and a plurality of different lengths, and an end thereof is a mirror. An optical path conversion device including an array type optical waveguide unit in which an optical waveguide cut at 45 ° is formed and an optical coupling optical waveguide for coupling each photoelectric conversion element to the optical waveguide is described.
さらに、近年、無線通信機能を備えた携帯機器の発達が著しいが、電気基板からの電磁放射ノイズ(EMI)、外界からの電波混入に対する耐性、不完全接続による信号の乱れ(SI)の問題に対処するため、電気接続の一部を高速であり且つ電磁無誘導である光接続に変える試みがなされている。
例えば、以下の特許文献2には、光導波路基板と電気回路基板を積層した光電気混載基板と、発光素子、受光素子等の光素子との光接合を、光素子及び光ピンを備えた電気チップの光ピンを光導波路基板に設けたガイド穴に挿入することにより行うことが記載されている。更に、以下の特許文献3には、光導波路シートに、光路変換手段付き光素子(発光素子、受光素子)を光導波路シートのコア部に埋め込んだものを電気回路基板に積層した光電気混載基板が記載されている。
Furthermore, in recent years, the development of portable devices having a wireless communication function is remarkable, but there are problems of electromagnetic radiation noise (EMI) from electric boards, resistance to radio wave interference from the outside world, and signal disturbance (SI) due to incomplete connection. To address this, attempts have been made to change some of the electrical connections to optical connections that are fast and electromagnetically inductive.
For example, in the following Patent Document 2, an optical junction between an opto-electric hybrid board in which an optical waveguide board and an electric circuit board are laminated and an optical element such as a light-emitting element and a light-receiving element is provided. It is described that the optical pins of the chip are inserted into guide holes provided in the optical waveguide substrate. Further, in Patent Document 3 below, an opto-electric hybrid board in which an optical waveguide sheet and an optical element (light emitting element, light receiving element) with optical path changing means embedded in the core portion of the optical waveguide sheet are laminated on an electric circuit board. Is described.
ところで、任意の位置で光の入出力が可能で、光接続が高密度で行える基板状の光導波路があれば、これを電気回路基板と積層することにより、光−電気混合デバイスのための光電気混載基板を容易に作製することが可能となる。
しかしながら、任意の位置で光の入出力が可能で、光接続が高密度で行える基板状の光導波路はこれまで知られておらず、したがって、光導波路配線基板に単に電気回路基板を積層した光電気混載基板も知られていない。
By the way, if there is a substrate-like optical waveguide that can input and output light at an arbitrary position and can perform optical connection at a high density, it can be laminated with an electric circuit board to obtain light for an optical-electric mixing device. It becomes possible to easily manufacture the electric hybrid board.
However, a substrate-like optical waveguide that can input and output light at any position and can perform optical connection at high density has not been known so far. Therefore, an optical circuit board is simply laminated with an electric circuit board. There is also no known electrical hybrid board.
このような問題点に鑑み、本発明者らは、任意の位置で光の入出力が可能で、光接続が高密度に行え、また生産性に優れた方法により作製可能であり、更に電気回路基板が積層可能な光導波路配線基板を発明し、出願した(特願2004−87918号)。この光導波路配線基板は光回路パターン内に、光導波路配線基板平面に平行な面内において光路を変換する光路変換手段を少なくとも1つ、及び/又は光導波路配線基板平面に平行な面に対して角度を有する方向へ光路を変換する光路変換手段を設けたもので、コア端面において、及び/又は光導波路配線基板平面に平行な面に対して角度を有する方向へ光路を変換する光路変換手段により、光導波路配線基板内又は外への光の入出力が可能である。 In view of such a problem, the present inventors can input and output light at an arbitrary position, optical connection can be performed at high density, and can be manufactured by a method with excellent productivity. An optical waveguide wiring board on which substrates can be stacked was invented and filed (Japanese Patent Application No. 2004-87918). The optical waveguide wiring board has at least one optical path conversion means for converting an optical path in a plane parallel to the optical waveguide wiring board plane and / or a plane parallel to the optical waveguide wiring board plane in the optical circuit pattern. Optical path conversion means for converting an optical path in a direction having an angle is provided, and at the end face of the core and / or by an optical path conversion means for converting the optical path in a direction having an angle with respect to a plane parallel to the plane of the optical waveguide wiring board. It is possible to input / output light into or out of the optical waveguide wiring board.
この光導波路配線基板又はこれに電気回路基板を積層した光電気混載基板からの(への)光信号を直接、他の基板へ入出力することができれば、光接合及び/又は電気接合をユニット化することが可能になるが、前記のごとき光導波路配線基板又は光電気混載基板の光入出力をユニット化する試みは、未だなされていない。
本発明は前記のごとき要請に基づいてなされたものであり、その目的は、光ファイバーのごとき導波素子を容易に接続可能で、平面性に優れる光導波路配線基板アセンブリー及び光電気混載基板アセンブリーを提供することにあり、また前記の光導波路配線基板アセンブリー及び光電気混載基板アセンブリーに導波素子を接続した光接合ユニット及び光電接合ユニットを提供することにある。 The present invention has been made on the basis of the above-described requirements, and an object thereof is to provide an optical waveguide wiring board assembly and an opto-electric hybrid board assembly capable of easily connecting a waveguide element such as an optical fiber and having excellent flatness. The present invention also provides an optical junction unit and a photoelectric junction unit in which a waveguide element is connected to the optical waveguide wiring board assembly and the opto-electric hybrid board assembly.
前記課題は、以下の光導波路配線基板アセンブリー、光電気混載基板アセンブリー、光接合ユニット及び光電接合ユニットを提供することにより解決される。
(1)光導波路配線基板と接続部材とが接合された光導波路配線基板アセンブリーであって、前記光導波路配線基板は導波路端面が露出形成された基板端部を有し、前記接続部材は、基板端部が接続される第1の接続部と、導波部を有し導波部端面が露出形成された端部を有する導波素子の該端部が接続されるべき第2の接続部とを有し、第1の接続部と第2の接続部との間に導光部が設けられるとともに第1の接続部と第2の接続部に導光部の端面が露出形成され、第1の接続部に基板端部が接続されて導波路端面と導光部端面が光接合されていることを特徴とする光導波路配線基板アセンブリー。
The above-mentioned problems are solved by providing the following optical waveguide wiring board assembly, opto-electric hybrid board assembly, optical junction unit, and photoelectric junction unit.
(1) An optical waveguide wiring board assembly in which an optical waveguide wiring board and a connection member are joined, wherein the optical waveguide wiring board has a substrate end portion in which a waveguide end face is exposed, and the connection member includes: A first connection portion to which the substrate end portion is connected, and a second connection portion to which the end portion of the waveguide element having the waveguide portion and the end portion in which the end face of the waveguide portion is exposed is connected. A light guide portion is provided between the first connection portion and the second connection portion, and an end face of the light guide portion is exposed and formed at the first connection portion and the second connection portion, 1. An optical waveguide wiring board assembly, wherein an end portion of a substrate is connected to one connecting portion, and an end face of a waveguide and an end face of a light guide portion are optically bonded.
(2)前記第1の接続部における導光部端面のサイズ及び/又は形状が、第2の接続部における導光部端面のサイズ及び/又は形状と異なることを特徴とする前記(1)に記載の光導波路配線基板アセンブリー。
(3)前記第1の接続部における導光部端面ピッチと、第2の接続部における導光部端面ピッチとが異なることを特徴とする前記(1)に記載の光導波路配線基板アセンブリー。
(2) In the above (1), the size and / or shape of the light guide section end face in the first connection section is different from the size and / or shape of the light guide section end face in the second connection section. An optical waveguide wiring board assembly as described.
(3) The optical waveguide wiring board assembly according to (1), wherein the light guide section end face pitch in the first connection section is different from the light guide section end face pitch in the second connection section.
(4)光導波路配線基板と接続部材とが接合された光導波路配線基板アセンブリーであって、前記光導波路配線基板は導波路端面が露出形成された基板端部を有し、前記接続部材は基板端部が接続される接続部と、導波部を有し導波部端面が露出形成された端部を有する導波素子の該端部が保持されるべき保持部を有し、前記基板端部が接続部材の接続部に接続されていることを特徴とする光導波路配線基板アセンブリー。 (4) An optical waveguide wiring board assembly in which an optical waveguide wiring board and a connection member are joined, wherein the optical waveguide wiring board has a substrate end portion in which a waveguide end face is exposed, and the connection member is a substrate. A connecting portion to which the end portion is connected; and a holding portion to which the end portion of the waveguide element having a waveguide portion and an end portion in which the end face of the waveguide portion is exposed is held; An optical waveguide wiring board assembly, wherein the portion is connected to a connection portion of a connection member.
(5)前記光導波路配線基板が、光導波路配線、光入出力部、及び光導波路配線基板平面に平行な面に対して角度を有する方向へ光の方向を変換することにより光導波路配線基板面上に設けた光入出力部と光導波路を光接続する光路変換手段Aを少なくとも1つ、及び/又は光導波路配線基板平面に平行な面内において光の方向を変換する光路変換手段Bを少なくとも1つ有することを特徴とする前記(1)ないし(4)のいずれか1に記載の光導波路配線基板アセンブリー。 (5) The optical waveguide wiring board surface is changed by changing the direction of light to a direction having an angle with respect to the plane parallel to the optical waveguide wiring, the optical input / output unit, and the optical waveguide wiring board plane. At least one optical path conversion means A for optically connecting the optical input / output unit and the optical waveguide provided above and / or at least an optical path conversion means B for converting the direction of light in a plane parallel to the plane of the optical waveguide wiring board. The optical waveguide wiring board assembly according to any one of (1) to (4), wherein the optical waveguide wiring board assembly has one.
(6)光導波路配線基板に電気回路基板が積層された光電気混載基板と接続部材とが接合された光電気混載基板アセンブリーであって、
前記光電気混載基板は導波路端面が露出形成された基板端部を有し、
前記接続部材は、電気配線と、基板端部が接続される第1の接続部と、導波部を有し導波部端面が露出形成された端部を有する導波素子の該端部が接続されるべき第2の接続部とを有し、第1の接続部と第2の接続部との間に導光部が設けられるとともに第1の接続部と第2の接続部に導光部の端面が露出形成され、
前記第1の接続部に基板端部が接続されて導波路端面と導光部端面が光接合され、かつ、接続部材の電気配線と電気回路基板における電気配線が接続されていることを特徴とする光電気混載基板アセンブリー。
(6) An opto-electric hybrid board assembly in which an opto-electric hybrid board in which an electric circuit board is laminated on an optical waveguide wiring board and a connection member are joined,
The opto-electric hybrid board has a substrate end portion in which a waveguide end face is exposed,
The connection member includes an electrical wiring, a first connection portion to which the substrate end is connected, and an end portion of the waveguide element having a waveguide portion and an end portion in which the end surface of the waveguide portion is exposed. A second connection portion to be connected, a light guide portion is provided between the first connection portion and the second connection portion, and light is guided to the first connection portion and the second connection portion. The end face of the part is exposed and formed,
A substrate end is connected to the first connection portion, a waveguide end surface and a light guide portion end surface are optically bonded, and an electrical wiring of a connection member and an electrical wiring on an electrical circuit board are connected. An opto-electric hybrid board assembly.
(7)前記第1の接続部における導光部端面のサイズ及び/又は形状が、第2の接続部における導光部端面のサイズ及び/又は形状と異なることを特徴とする前記(6)に記載の光電気混載基板アセンブリー。
(8)前記第1の接続部における導光部端面ピッチと、第2の接続部における導光部端面ピッチとが異なることを特徴とする前記(6)に記載の光電気混載基板アセンブリー。
(7) In the above (6), the size and / or shape of the light guide end face in the first connecting portion is different from the size and / or shape of the light guide end face in the second connecting portion. The opto-electric hybrid board assembly as described.
(8) The opto-electric hybrid board assembly according to (6), wherein a light guide end face pitch in the first connection portion and a light guide end face pitch in the second connection portion are different.
(9)光導波路配線基板に電気回路基板が積層された光電気混載基板と接続部材とが接合された光電気混載基板アセンブリーであって、前記光導波路配線基板は導波路端面が露出形成された基板端部を有し、前記接続部材は、電気配線と、基板端部が接続される接続部と、導波部を有し導波部端面が露出形成された端部を有する導波素子の該端部が保持されるべき保持部を有し、前記基板端部が接続部材の接続部に接続され、かつ、接続部材の電気配線と電気回路基板における電気配線が接続されていることを特徴とする光電気混載基板アセンブリー。 (9) An opto-electric hybrid board assembly in which an opto-electric hybrid board in which an electric circuit board is laminated on an optical waveguide wiring board and a connecting member are joined, wherein the end face of the waveguide is exposed in the optical waveguide wiring board The waveguide member has a substrate end portion, and the connection member includes an electrical wiring, a connection portion to which the substrate end portion is connected, a waveguide portion, and an end portion in which the waveguide end surface is exposed. The end portion has a holding portion to be held, the substrate end portion is connected to a connection portion of a connection member, and the electric wiring of the connection member and the electric wiring in the electric circuit board are connected. An opto-electric hybrid board assembly.
(10)光導波路配線基板に電気回路基板が積層された光電気混載基板と接続部材とが接合された光電気混載基板アセンブリーであって、
前記光電気混載基板はその面上に光入出力部を有し、
前記接続部材は、電気配線と、光電気混載基板面が接続される第1の接続部と、導波部を有し導波部端面が露出形成された端部を有する導波素子の該端部が接続されるべき第2の接続部を有し、第1の接続部は光電気混載基板面上の光入出力部に対応する位置に光入出力部を有し、第1の接続部の光入出力部と第2の接続部との間に導光部が設けられるとともに第2の接続部に導光部の端面が露出形成され、第2の接続部に形成される導光部端面を通る光は光電気混載基板の面と平行であり、
前記第1の接続部における光入出力部に光電気混載基板面上の光入出力部が接続され、かつ、接続部材の電気配線と電気回路基板における電気配線が接続されていることを特徴とする光電気混載基板アセンブリー。
(10) An opto-electric hybrid board assembly in which an opto-electric hybrid board in which an electrical circuit board is laminated on an optical waveguide wiring board and a connection member are joined,
The opto-electric hybrid board has a light input / output unit on its surface,
The connecting member includes an electrical wiring, a first connecting portion to which an opto-electric hybrid board surface is connected, and the end of the waveguide element having a waveguide portion and an end portion where the waveguide end surface is exposed. The first connection part has a light input / output part at a position corresponding to the light input / output part on the surface of the opto-electric hybrid board, and the first connection part A light guide unit is provided between the light input / output unit and the second connection unit, and an end surface of the light guide unit is exposed and formed at the second connection unit. The light passing through the end face is parallel to the surface of the opto-electric hybrid board,
The optical input / output unit on the opto-electric hybrid board surface is connected to the optical input / output unit in the first connection unit, and the electrical wiring of the connection member and the electrical wiring on the electrical circuit board are connected. An opto-electric hybrid board assembly.
(11)前記光導波路配線基板が、光導波路配線、光入出力部、及び光導波路配線基板平面に平行な面に対して角度を有する方向へ光の方向を変換することにより光導波路配線基板面上に設けた光入出力部と光導波路を光接続する光路変換手段Aを少なくとも1つ、及び/又は光導波路配線基板平面に平行な面内において光の方向を変換する光路変換手段Bを少なくとも1つ有することを特徴とする前記(6)ないし(10)のいずれか1に記載の光電気混載基板アセンブリー。 (11) The optical waveguide wiring board surface is changed by changing the direction of light to a direction having an angle with respect to the plane parallel to the optical waveguide wiring, the optical input / output unit, and the optical waveguide wiring board plane. At least one optical path conversion means A for optically connecting the optical input / output unit and the optical waveguide provided above and / or at least an optical path conversion means B for converting the direction of light in a plane parallel to the plane of the optical waveguide wiring board. The opto-electric hybrid board assembly according to any one of the above (6) to (10), comprising one.
(12)前記(1)ないし(5)のいずれか1に記載の光導波路配線基板アセンブリーに、導波部を有し導波部端面が露出形成された端部を有する導波素子の該端部を接続した光接合ユニット。
(13)前記(6)ないし(11)のいずれか1に記載の光電気混載基板アセンブリーに、導波部を有し導波部端面が露出形成された端部を有する導波素子の該端部を接続した光電接合ユニット。
(12) In the optical waveguide wiring board assembly according to any one of (1) to (5), the end of the waveguide element having an end portion having a waveguide portion and an exposed end surface of the waveguide portion. Optical junction unit with connected parts.
(13) In the opto-electric hybrid board assembly according to any one of (6) to (11), the end of the waveguide element having a waveguide section and an end section in which the waveguide section end face is exposed. Photoelectric junction unit with connected parts.
本発明の光導波路配線基板アセンブリー及び光電気混載基板アセンブリーは、光ファイバーのごとき導波素子を容易に接続することが可能である。また、前記アセンブリーに導波素子を接続した光接合ユニット又は光電接合ユニットを用いることにより容易に異なる基板間の光接合又は光電接合が可能となる。また、前記アセンブリー及びユニットは、平面性に優れ、かつコンパクトであるため、他の素子や部品等を周囲に配置する際の障害となりにくい。 The optical waveguide wiring board assembly and the opto-electric hybrid board assembly of the present invention can easily connect a waveguide element such as an optical fiber. Further, by using an optical junction unit or a photoelectric junction unit in which a waveguide element is connected to the assembly, optical junction or photoelectric junction between different substrates can be easily performed. In addition, the assembly and unit are excellent in flatness and are compact, so that they are unlikely to become obstacles when other elements, components, and the like are arranged around.
本発明の光導波路配線基板アセンブリー及び光電気混載基板アセンブリー(以下、まとめて「アセンブリー」ということがある。)は、接続部材に光導波路配線基板又は光電気混載基板(以下、「光導波路配線基板等」ということがある。)を第1の接続部(又は接続部)を介して接続したものであり、これらのアセンブリーに、導波部を有し導波部端面が露出形成された端部を有する導波素子を接続すべく、接続部材に第2の接続部又は保持部が設けられていることを特徴とする。 An optical waveguide wiring board assembly and an opto-electric hybrid board assembly (hereinafter sometimes referred to collectively as an “assembly”) according to the present invention include an optical waveguide wiring board or an opto-electric hybrid board (hereinafter referred to as “optical waveguide wiring board”) as a connecting member. Etc.)) are connected via a first connection part (or connection part), and these assemblies have waveguide parts and end parts where the waveguide part end faces are exposed. The connection member is provided with a second connection portion or a holding portion in order to connect the waveguide element having the above.
最初に接続部材に導波路端面が露出した基板端部を接続する態様について説明する。(なお、以下の説明では、光は光導波路配線基板から接続部材に出射する場合について説明するが、光の方向が逆でもよいことは勿論である。)
接続部材は導光部を有していても、有していなくてもよい。導光部をもつ接続部材は、基板端部が接続される第1の接続部と、導波部を有し導波部端面が露出形成された端部を有する導波素子の該端部が接続されるべき第2の接続部とを有し、第1の接続部と第2の接続部との間に導光部が設けられるとともに第1の接続部と第2の接続部に導光部の端面が露出形成されている。
光導波路配線基板等に接続する側(第1の接続部)の導光部ピッチは光導波路配線基板等の基板端部における導波路ピッチと同じに形成され、また、第1の接続部に設けられる導光部端面の形状・大きさは導波路端面の形状・大きさと一致させることが好ましい。また、導波素子が接続される側(第2の接続部)の導光部ピッチは導波素子端部における導波部ピッチと同じに形成され、また、第2の接続部に設けられる導光部端面の形状は導波素子端部における導波部端面の形状・大きさと一致させることが好ましい。
First, a mode in which the substrate end portion where the waveguide end face is exposed is connected to the connection member will be described. (In the following description, the case where light is emitted from the optical waveguide wiring board to the connection member will be described. Of course, the light direction may be reversed.)
The connecting member may or may not have the light guide portion. The connection member having the light guide portion includes a first connection portion to which the substrate end portion is connected, and the end portion of the waveguide element having the waveguide portion and the end portion in which the waveguide end surface is exposed. A second connection portion to be connected, a light guide portion is provided between the first connection portion and the second connection portion, and light is guided to the first connection portion and the second connection portion. The end surface of the part is exposed and formed.
The light guide portion pitch on the side (first connection portion) connected to the optical waveguide wiring board or the like is formed to be the same as the waveguide pitch at the substrate end portion of the optical waveguide wiring board or the like, and is provided in the first connection portion. It is preferable that the shape and size of the end face of the light guide unit to be matched with the shape and size of the end face of the waveguide. In addition, the light guide portion pitch on the side to which the waveguide element is connected (second connection portion) is formed to be the same as the waveguide portion pitch at the end portion of the waveguide element, and the light guide portion provided in the second connection portion. The shape of the end face of the optical part is preferably matched with the shape and size of the end face of the waveguide part at the end of the waveguide element.
導光部をもたない接続部材は、基板端部が接続される接続部と、導波部を有し導波部端面が露出形成された端部を有する導波素子の該端部が保持されるべき保持部を有している。 The connection member having no light guide portion is held by the end portion of the waveguide element having the connection portion to which the substrate end portion is connected and the end portion having the waveguide portion and the waveguide end surface exposed. It has a holding part to be done.
前記第1の接続部(接続部を含む)及び第2の接続部は、光導波路配線基板等の端部分及び導波素子の端部分を保持する保持部の一部として形成することが好ましい。保持部は、例えば、接続部材に設けた凹部等として設けることができる。また、光導波路配線基板の基板端部を第1の接続部に接続した後、光導波路配線基板の端部分を接続部材に接着剤等で接合することが好ましい。 The first connection part (including the connection part) and the second connection part are preferably formed as a part of the holding part for holding the end part of the optical waveguide wiring board or the like and the end part of the waveguide element. The holding part can be provided as, for example, a recess provided in the connection member. Further, it is preferable that the end portion of the optical waveguide wiring board is bonded to the connection member with an adhesive or the like after the end portion of the optical waveguide wiring board is connected to the first connection portion.
本発明のアセンブリーは、前記のごとく光導波路配線基板等の基板端部が第1接続部(接続部を含む)に接続された状態で、光導波路配線基板等と接続部材が接合されている。例えば、前記保持部において光導波路配線基板等と接続部材が接着剤等により接合される。 In the assembly of the present invention, as described above, the connection member is bonded to the optical waveguide wiring board or the like in a state where the substrate end of the optical waveguide wiring board or the like is connected to the first connection part (including the connection part). For example, the optical waveguide wiring board and the connection member are bonded to each other by an adhesive or the like in the holding portion.
また、光電気混載基板アセンブリーの場合には、接続部材に電気配線(接点を含む)を設け、電気回路基板の電気配線と接続する。 In the case of an opto-electric hybrid board assembly, electrical wiring (including contacts) is provided on the connection member and connected to the electrical wiring of the electrical circuit board.
また、本発明のアセンブリーにおいては、光導波路配線基板等の基板端部における導波路ピッチ及び導波路端面の形状・大きさが、導波素子端部における導波部ピッチ及び導波部端面の形状・大きさと異なる場合においても、接続部材の導光部を、第1の接続部及び第2の接続部において、そのピッチ及び/又は端面の形状・大きさを、接続すべき光導波路配線基板等の基板端部及び導波素子端部に対応して変更することにより、容易に光導波路配線基板と導波素子を光接合することが可能となる。
前記のごときアセンブリーは、光導波路配線基板からの光を進行方向を変えることなく導波素子に導波することが可能なため、アセンブリーの平面性が良好であり、他の素子や部品等を周囲に配置する際の障害になりにくい。
In the assembly of the present invention, the waveguide pitch and the shape / size of the waveguide end face at the end of the substrate such as an optical waveguide wiring board are the same as the waveguide pitch and the shape of the waveguide end face at the end of the waveguide element. Even when the size is different, the light guide portion of the connection member, the first connection portion and the second connection portion, the pitch and / or the shape / size of the end surface, the optical waveguide wiring board to be connected, etc. By changing correspondingly to the substrate end portion and the waveguide element end portion, the optical waveguide wiring board and the waveguide element can be easily optically joined.
Since the assembly as described above can guide the light from the optical waveguide wiring board to the waveguide element without changing the traveling direction, the flatness of the assembly is good, and other elements and components are surrounded by It is hard to become an obstacle at the time of placement.
次に、その面上に光入出力部を有する光電気混載基板の光入出力部を、接続部材の第1接続部に接続する光電気混載基板アセンブリーについて説明する。光電気混載基板アセンブリーは、電気配線の状況、電気配線に接続させる電気素子又は光学素子等の要因に基づき、導波路端面が露出した基板端面を第1の接続部に接続するよりも、光電気混載基板面上の光出力部を第1の接続部に接続する方が好都合の場合がある。この場合には、光電気混載基板の面上に光出力部を設け、これに対応した接続部材を用いる。
この態様における接続部材は、第1の接続部が、光電気混載基板面上の光出力部に対応する位置に光入力部を有し、第1の接続部の光入力部と第2の接続部との間に導光部が設けられるとともに第1の接続部の光入力部と第2の接続部に導光部の端面が露出形成され、第2の接続部に形成される導光部端面を通る光は光電気混載基板の面と平行(完全に平行な場合だけでなく、他の素子や部品等を周囲に配置するのに大きな障害にならないような角度をもつ場合を含む。)になるようにされる。第2の接続部に形成される導光部端面を通る光を、光電気混載基板の面と平行にするには、光路変換手段(ミラー等)を接続部材に適宜設ければよい。
Next, the opto-electric hybrid board assembly for connecting the optical input / output part of the opto-electric hybrid board having the optical input / output part on the surface thereof to the first connection part of the connection member will be described. The opto-electric hybrid board assembly is more optoelectric than connecting the end face of the substrate where the end face of the waveguide is exposed to the first connection portion based on the state of the electric wiring, factors such as an electric element or an optical element to be connected to the electric wiring. It may be more convenient to connect the light output part on the mixed substrate surface to the first connection part. In this case, a light output portion is provided on the surface of the opto-electric hybrid board, and a corresponding connecting member is used.
In the connection member in this aspect, the first connection portion has a light input portion at a position corresponding to the light output portion on the opto-electric hybrid board surface, and the light input portion of the first connection portion and the second connection A light guide part provided between the first light connecting part and the light input part of the first connection part and the end face of the light guide part exposed to the second connection part, and the light guide part formed on the second connection part. The light passing through the end face is parallel to the surface of the opto-electric hybrid board (including not only the case where it is completely parallel, but also the case where it has an angle that does not cause a major obstacle to disposing other elements and components). To be. In order to make the light passing through the end face of the light guide part formed in the second connection part parallel to the surface of the opto-electric hybrid board, an optical path conversion means (mirror or the like) may be appropriately provided on the connection member.
本発明において導波素子とは、光ファイバー等である。 In the present invention, the waveguide element is an optical fiber or the like.
本発明の光接合ユニット又は光電接合ユニットは、前記の光導波路配線基板アセンブリー又は光電気混載基板アセンブリーにおける第2の接続部(又は保持部)に導波素子を接続したものである。
接続部材として導光部を設けた光接合ユニット又は光電接合ユニットは、導光部を介して光導波路配線基板と導波素子が光接合される。また、導光部を設けない接続部材を用いた場合は、光導波路配線基板の導波路端面と導波素子の導波部端面が直接光接合される。
The optical junction unit or the photoelectric junction unit of the present invention is obtained by connecting a waveguide element to the second connection portion (or holding portion) in the optical waveguide wiring board assembly or the opto-electric hybrid board assembly.
In an optical junction unit or a photoelectric junction unit provided with a light guide as a connecting member, the optical waveguide wiring board and the waveguide element are optically joined via the light guide. Further, when a connection member not provided with a light guide is used, the waveguide end face of the optical waveguide wiring board and the waveguide end face of the waveguide element are directly optically joined.
次に図を用いて本発明の光導波路配線基板アセンブリーについて説明する。図1は本発明の光導波路配線基板アセンブリーの一例を示す図で、図1(A)はアセンブリーを組み立てる前の光導波路配線基板30の斜視図を、図1(B)は同じく接続部材40の斜視図を、図1(C)は、光導波路配線基板を接続部材に接合した光導波路配線基板アセンブリー50の斜視図を示す。図1(A)ないし図1(C)のその他の符号は、図2の説明において行う。
Next, the optical waveguide wiring board assembly of the present invention will be described with reference to the drawings. FIG. 1 is a view showing an example of an optical waveguide wiring board assembly of the present invention. FIG. 1A is a perspective view of an optical
図2は、図1で示す光導波路配線基板、接続部材、光導波路配線基板アセンブリーの各断面図、及び光導波路配線基板アセンブリーに導波素子を接続した光接合ユニットを示し、図2(A)中、30は光導波路配線基板を、32は導波路端面36が露出形成された基板端部を、34は導波路(コア)を示し、40は接続部材を、42は基板端部を接続する第1の接続部を、44は後述の導波素子を接続すべき第2の接続部を、46は接続部材に設けた導光部を、47は第1の接続部に露出している導光部端面を、48は第2の接続部に露出している導光部端面をそれぞれ示す。第1及び第2の接続部は、光導波路配線基板の端部分及び導波素子の端部分が保持できるような凹部の一部として形成されている。
また、図2(B)は、接続部材40の第1の接続部42に、光導波路配線基板30の基板端部32を接続し、光導波路配線基板30と接続部材40を接合した光導波路配線基板アセンブリー50である。
更に、図2(C)は、この光導波路配線基板アセンブリー50に接続すべき導波素子を接続部材40の第2の接続部44に接続させた光接合ユニットを示すもので、90は導波素子を、92は導波部を、96は導波部端面94が露出形成された導波素子の端部をそれぞれ示す。前記凹部の大きさ及び位置は、凹部に光導波路配線基板又は導波素子の端部分を挿入した場合、導光部端面と導波路端面又は導波部端面が一致するように設けることは勿論である。
図2(B)及び図2(C)が示すように、接続部材40における第1の接続部42に基板端部32が接続されて導波路端面36と導光部端面47が直接光接合し、また、第2の接続部44に導波素子の端部96が接続されて導波部端面94と導光部端面48が直接光接合する。
2 shows a cross-sectional view of the optical waveguide wiring board, the connecting member, the optical waveguide wiring board assembly shown in FIG. 1, and an optical junction unit in which a waveguide element is connected to the optical waveguide wiring board assembly. In the figure, 30 is an optical waveguide wiring board, 32 is a substrate end portion where the waveguide end face 36 is exposed, 34 is a waveguide (core), 40 is a connection member, and 42 is a substrate end portion. The
2B shows an optical waveguide wiring in which the
2C shows an optical junction unit in which a waveguide element to be connected to the optical waveguide
2B and 2C, the
図3は、他の光導波路配線基板アセンブリーを示す断面図で、この態様は、接続部材に導光部を設けず、基板端部が接続される接続部43と、導波素子の端部分を保持する保持部45が設けられている。この例でも、光導波路配線基板の端部分を挿入する凹部が設けられ、凹部の一部が接続部を構成し、凹部に光導波路配線基板が接合されている。また、導波素子の端部分は接続部材に光導波路配線基板が挿入されたことにより形成される凹部が保持部となり、この保持部に導波素子の端部分が挿入され保持される。凹部及び保持部の大きさ及び位置は、凹部又は保持部に光導波路配線基板又は導波素子の端部分をそれぞれ挿入した場合、導光部端面と導波路端面又は導波部端面が一致するように設けられ、このことにより、導波路及び導波部が直接光接合される。
FIG. 3 is a cross-sectional view showing another optical waveguide wiring board assembly. In this embodiment, the
次に、本発明の光電気混載基板アセンブリーの例について説明する。図4は、光電気混載基板アセンブリーの一例を示すもので、導波路端面が露出形成された基板端部と接続部材の第1の接続部が接続され、かつ接続部材の電気配線と電気回路基板の電気配線が接続される。図4中、図2(A)と同じ符号で示すものは同じものを意味し、49は電気配線としての接点を示す。また、60は電気回路基板を、62は電気配線を示し、70は光導波路配線基板30と電気回路基板60を積層した光電気混載基板を、80は光電気混載基板アセンブリーを示す。この例では、接続部材に電気配線(接点を含む)を設け、光電気混載基板と光接合及び電気接合の両方を行うものである。
Next, an example of the opto-electric hybrid board assembly of the present invention will be described. FIG. 4 shows an example of the opto-electric hybrid board assembly, in which the end of the substrate where the end face of the waveguide is exposed is connected to the first connecting part of the connecting member, and the electric wiring of the connecting member and the electric circuit board The electrical wiring is connected. In FIG. 4, the same reference numerals as those in FIG. 2 (A) denote the same elements, and 49 denotes a contact as an electrical wiring.
また、図5は、本発明の他の光電気混載基板アセンブリーの例を示すもので、接続部材の導光部端面を導波路端面に直接光接合する代わりに、光電気混載基板の面上に光入出力部を設け、一方、接続部材の第1の接続部にも前記光電気混載基板の光出力部に対応する位置に光入力部を形成し、ここで光接合を行うものである。
図5中、図2(A)と同じ符号で示されるものは同じものを意味し、80は光電気混載基板アセンブリー、70は光電気混載基板、30は光導波路配線基板、60は電気回路基板、40は接続部材を示す。光導波路配線基板30には後述の光路変換手段A(10)が設けられている。この例では光路変換手段A(10)により光路が90°変換される。例えば、導波路34を導波した光は、光路変換手段A(10)により90°光路変換され、電気回路基板60に設けた開口部(導波路材料で充填されていてもよい)、光電気混載基板の光出力部72、第1の接続部42に設けた光入力部42aを経て接続部材40の中に導入され、46b(例えば光路変換手段Aのごとき45°ミラー面)において再び光路変換され、導光部46を通って第2の接続部44における導光部端面48から出射する。導光部端面48から出射する光は光電気混載基板に対して平行となっている。また、この態様では導波路34とも平行になっている。
接続部材40における接点49は電気回路基板の電気配線62と接合される。
FIG. 5 shows an example of another opto-electric hybrid board assembly according to the present invention. Instead of directly optically joining the light guide portion end face of the connection member to the waveguide end face, it is formed on the surface of the opto-electric hybrid board. On the other hand, an optical input / output unit is provided, and an optical input unit is formed at a position corresponding to the optical output unit of the opto-electric hybrid board on the first connecting unit of the connecting member, and optical bonding is performed here.
In FIG. 5, the same reference numerals as those in FIG. 2A denote the same components, 80 is an opto-electric hybrid board assembly, 70 is an opto-electric hybrid board, 30 is an optical waveguide wiring board, and 60 is an electric circuit board. , 40 denotes a connecting member. The optical
The
次に、本発明において用いる光導波路配線基板及び光電気混載基板について説明する。
光導波路配線基板は、基板端部又は基板面上に光入出力部を設けたものがいずれも制限なく用いられ、例えば、光導波路配線、光入出力部、及び光導波路配線基板平面に平行な面に対して角度を有する方向へ光の方向を変換することにより光導波路配線基板面上に設けた光入出力部と光導波路を光接続する光路変換手段A(以下単に「光路変換手段A」という。)を少なくとも1つ、及び/又は光導波路配線基板平面に平行な面内において光の方向を変換する光路変換手段B(以下単に「光路変換手段B」という。)を少なくとも1つ有するものが好ましく用いられる。
このような光導波路配線基板は、任意の位置で光の入力及び出力が可能となり、光接続も高密度で行え、光電気混載基板に用いるのに適している。また、この光導波路配線基板の作製は、基材に予め光路変換手段A及び/又はBを一括して形成し、この上に光導波路を作製するため、パターン密度が高い又はパターンが複雑な光回路パターンを生産性よく作製することができる。
Next, the optical waveguide wiring board and the opto-electric hybrid board used in the present invention will be described.
As the optical waveguide wiring board, any substrate provided with an optical input / output unit on the substrate end or on the substrate surface is used without limitation. For example, the optical waveguide wiring, the optical input / output unit, and the optical waveguide wiring substrate plane are parallel to each other. Optical path conversion means A (hereinafter simply referred to as “optical path conversion means A”) which optically connects the optical input / output unit and the optical waveguide provided on the optical waveguide wiring board surface by converting the direction of light to a direction having an angle with respect to the surface. And / or at least one optical path conversion means B that converts the direction of light in a plane parallel to the plane of the optical waveguide wiring board (hereinafter simply referred to as “optical path conversion means B”). Is preferably used.
Such an optical waveguide wiring board can input and output light at an arbitrary position, and can be optically connected at high density, and is suitable for use as an opto-electric hybrid board. In addition, the optical waveguide wiring board is manufactured by previously forming the optical path changing means A and / or B on the base material in advance and forming the optical waveguide thereon, so that the light with a high pattern density or a complicated pattern is produced. Circuit patterns can be produced with high productivity.
前記「光入出力部」とは、光導波路配線基板に(から)光が入出力する部分であり、例えば、光導波路配線基板をその面に対し垂直に切断して露出した光導波路のコア端面や、光導波路配線基板の面上に設けた光入出力開口部の端面であり、前記開口部には導波路材料(コア材料)を充填してもよい。 The “light input / output part” is a part for inputting / outputting light to / from the optical waveguide wiring board. For example, the core end face of the optical waveguide exposed by cutting the optical waveguide wiring board perpendicularly to the surface thereof Alternatively, it may be an end face of an optical input / output opening provided on the surface of the optical waveguide wiring board, and the opening may be filled with a waveguide material (core material).
本発明の光導波路配線基板において、光導波路は、下部クラッド部、コア部、及び上部クラッド部を有し、コア部は下部クラッド部及び上部クラッド部により周囲を包囲されている。 In the optical waveguide wiring board of the present invention, the optical waveguide has a lower cladding part, a core part, and an upper cladding part, and the core part is surrounded by the lower cladding part and the upper cladding part.
光路変換手段Aは、入射光を光導波路配線基板平面に平行な面に対して角度を有する方向へ光路を変換するもので、反射面を設けたものが好ましい。光反射面は平面でも凹面のような曲面でもよい。図6に光路変換手段Aの一例を示す。図6において10は光路変換手段Aを、12は導波路コアを示す。
光路変換手段Aが光反射面を設けたものである場合、その形状は、少なくとも前記基板平面に対し角度を持った光反射面を有するものであれば、どのような形状のものであってもよい。また、作製方法の容易性を考慮して形状を選択してもよい。形状としては、断面が三角形、台形のものなどが挙げられる。
また、光路変換手段Aには、光の1入射に対し2つ以上の方向に変更(分岐)させるものも含まれる。この他、光路変換手段Aに関する事項は、特願2004−87918号の段落0019〜0021に記載された事項、及び図5〜図6に示されたものが適用可能である。(ただし、この出願では、「光路変換手段B」として表されている。)
The optical path conversion means A converts the optical path of incident light in a direction having an angle with respect to a plane parallel to the plane of the optical waveguide wiring board, and preferably has a reflection surface. The light reflecting surface may be a flat surface or a curved surface such as a concave surface. FIG. 6 shows an example of the optical path changing means A. In FIG. 6, 10 indicates an optical path changing means A, and 12 indicates a waveguide core.
In the case where the optical path changing means A is provided with a light reflecting surface, the shape may be any shape as long as it has a light reflecting surface having an angle with respect to at least the substrate plane. Good. Further, the shape may be selected in consideration of the ease of the manufacturing method. Examples of the shape include a triangular cross section and a trapezoidal shape.
Further, the optical path changing means A includes one that changes (branches) in two or more directions for one incident light. In addition, the matters described in paragraphs 0019 to 0021 of Japanese Patent Application No. 2004-87918 and the items shown in FIGS. (However, in this application, it is expressed as “optical path changing means B”.)
光路変換手段Bは、光導波路配線基板平面に平行な面内において光の進行方向を1方向又は複数の方向に分けて変換するもので、光反射面を有するものが好ましい。反射面は平面でも凹面のような曲面でもよい。図7に光路変換手段Bの一例を示す。図7中、20は光路変換手段Bを、12は導波路コアを示す。
光路変換手段Bが光反射面を設けたものである場合、その形状は、少なくとも前記基板平面に対し垂直な光反射面を有するものであれば、どのような形状のものであってもよい。また、作製方法の容易性を考慮して形状を選択してもよい。形状としては、三角柱、直方体、立方体などが挙げられるがこれらに限定されるものではない。
また、光路変換手段Bには、1つの入射光を2つ以上の方向に変更(分岐)させるものも含まれる。この他、光路変換手段Bに関する事項は、特願2004−87918号の段落0016〜0018に記載された事項、及び図1〜図4に示されたものが適用可能である。(ただし、この出願では、「光路変換手段A」として表されている。)
The optical path changing means B converts the traveling direction of light into one direction or a plurality of directions in a plane parallel to the plane of the optical waveguide wiring board, and preferably has a light reflecting surface. The reflecting surface may be a flat surface or a curved surface such as a concave surface. FIG. 7 shows an example of the optical path changing means B. In FIG. 7, 20 indicates an optical path conversion means B, and 12 indicates a waveguide core.
When the light path changing means B is provided with a light reflecting surface, the shape may be any shape as long as it has a light reflecting surface perpendicular to at least the substrate plane. Further, the shape may be selected in consideration of the ease of the manufacturing method. Examples of the shape include, but are not limited to, a triangular prism, a rectangular parallelepiped, and a cube.
The optical path changing means B includes one that changes (branches) one incident light in two or more directions. In addition, the items described in paragraphs 0016 to 0018 of Japanese Patent Application No. 2004-87918 and the items shown in FIGS. (However, in this application, it is expressed as “optical path changing means A”.)
光路変換手段A及びBの反射面には、光反射膜を形成することが好ましい。光反射膜としては、Au、Al等の金属、TiN等の所謂金属光沢を有する膜が挙げられる。 It is preferable to form a light reflecting film on the reflecting surfaces of the optical path changing means A and B. Examples of the light reflection film include metals such as Au and Al, and films having a so-called metallic luster such as TiN.
本発明の光導波路を構成する材料としては、公知のコア材料及びクラッド材料が用いられる。
また、本発明の光導波路配線基板を電気回路基板に積層していわゆる光電気混載基板を作製する場合には、コア及びクラッド材料は、光電気混載基板を作製する際の半田付けの温度に耐えられるよう、耐熱性の材料を用いることが好ましい。耐熱温度は280℃、好ましくは300℃程度である。例えば耐熱性材料としてはポリイミド系、エポキシアクリル系、ポリシラン系等が挙げられるが、これらに限定されるものではない。
As a material constituting the optical waveguide of the present invention, a known core material and clad material are used.
Further, when the so-called opto-electric hybrid board is manufactured by laminating the optical waveguide wiring board of the present invention on the electric circuit board, the core and the clad material can withstand the soldering temperature when the opto-electric hybrid board is manufactured. Therefore, it is preferable to use a heat resistant material. The heat resistant temperature is about 280 ° C., preferably about 300 ° C. For example, examples of the heat resistant material include polyimide, epoxy acrylic, polysilane, and the like, but are not limited thereto.
また、前記光路変換手段A及びBを構成する材料としては、光学的には反射特性に優れるものが好ましい。また、反射面が凹面の場合も同様である。
更に、前記光路変換手段A及びBを構成する材料も、前記クラッド及びコアと同程度の耐熱性を有することが必要である。
Further, as the material constituting the optical path changing means A and B, an optically excellent material having a reflection characteristic is preferable. The same applies when the reflecting surface is concave.
Furthermore, the material constituting the optical path changing means A and B needs to have the same heat resistance as the clad and the core.
[光電気混載基板]
本発明の光電気混載基板は、光導波路配線基板の上に電気回路基板を積層したものである。電気回路基板としては、印刷回路基板等の電気回路基板が用いられる。光導波路配線基板と電気回路基板の積層は、半田、接着等の積層方法のほかに、光導波路基板上に電気回路基板を形成していく所謂ビルドアップ等の手法も利用できる。また、電気回路基板にも、光導波路配線基板に積層した場合光導波路配線基板に設けた光入出力部に対応する位置に開口部が形成される。
また、光導波路配線基板と電気回路基板を積層した光電気混載基板の上に、光デバイス又は光デバイス及び電気デバイスを更に接続することができる。光デバイスとしては、VCSEL/LED/PDの様な単体の光デバイスの他に、LSIと光I/Oデバイスを一体にした、所謂、光マルチチップモジュール(MCM)等が挙げられ、電気デバイスとしては、チップコンデンサ等の受動素子からLSI/マルチチップモジュールの様な大規模な半導体素子に至るまで、通常PWBAに搭載されるすべての素子が挙げられる。
[Opto-electric hybrid board]
The opto-electric hybrid board of the present invention is obtained by laminating an electric circuit board on an optical waveguide wiring board. An electric circuit board such as a printed circuit board is used as the electric circuit board. For the lamination of the optical waveguide wiring board and the electric circuit board, a so-called build-up technique in which an electric circuit board is formed on the optical waveguide board can be used in addition to a lamination method such as soldering and bonding. Further, when the electrical circuit board is laminated on the optical waveguide wiring board, an opening is formed at a position corresponding to the optical input / output part provided on the optical waveguide wiring board.
Further, the optical device or the optical device and the electric device can be further connected on the opto-electric hybrid board in which the optical waveguide wiring board and the electric circuit board are laminated. As an optical device, in addition to a single optical device such as VCSEL / LED / PD, a so-called optical multichip module (MCM) that integrates an LSI and an optical I / O device can be cited as an electrical device. These include all elements normally mounted on PWBA, from passive elements such as chip capacitors to large-scale semiconductor elements such as LSI / multichip modules.
次に光導波路配線基板の製造方法について説明する。
[光導波路配線基板の製造方法]
本発明の光導波路配線基板は、例えば以下のごとき製造方法により作製される。第1の方法は、型基板上に光路変換手段Aに対応する第1のピットが少なくとも1つ、及び/又は光路変換手段Bに対応する第2のピットが少なくとも1つ形成された型を作製し、次に前記型のピットに樹脂を充填してピットの形状を転写することにより光路変換手段A及び/又は光路変換手段Bが作製された樹脂基材を作製し、次いで前記樹脂基材上に光導波路配線を作製する方法である。
また、第2の方法は、基材上に、光路変換手段Aの少なくとも1つ、及び/又は光路変換手段Bの少なくとも1つを形成し、その後、光路変換手段A等を形成した基材の上に光導波路配線を作製する方法である。
Next, a method for manufacturing an optical waveguide wiring board will be described.
[Method of manufacturing optical waveguide wiring board]
The optical waveguide wiring board of the present invention is manufactured by the following manufacturing method, for example. The first method is to produce a mold in which at least one first pit corresponding to the optical path changing means A and / or at least one second pit corresponding to the optical path changing means B is formed on the mold substrate. Next, a resin base material in which the optical path conversion means A and / or the optical path conversion means B are manufactured is manufactured by filling the pits of the mold with a resin and transferring the shape of the pits, and then on the resin base material This is a method for producing an optical waveguide wiring.
In the second method, at least one of the optical path conversion means A and / or at least one of the optical path conversion means B is formed on the base material, and then the optical path conversion means A is formed. This is a method for producing an optical waveguide wiring on the top.
<第1の方法>
最初に第1の方法について説明する。まず、型基板上に光路変換手段Aに対応する第1のピットが少なくとも1つ、及び/又は光路変換手段Bに対応する第2のピットが少なくとも1つ形成された型を作製するには、例えば、前記光路変換手段A等の底面形状に対応する開口部を有するエッチングマスク(例えばポジ型のフォトレジスト層を、フォトマスクを介して露光・現像して作製)を型基板の上に設け、次にエッチングによりピットを形成する方法が挙げられる。
この他に、切削等の機械加工的な方法も有力である。型基板としてはシリコン(100)基板、機械的な方法においては、通常の金属板やAlブロック等が用いられる。
また、前記方法において型基板としてシリコン(100)基板を用いると、異方性エッチングを行うことにより斜面が形成されたピットを容易に作製することができる。
<First method>
First, the first method will be described. First, to produce a mold in which at least one first pit corresponding to the optical path changing means A and / or at least one second pit corresponding to the optical path changing means B is formed on the mold substrate, For example, an etching mask having an opening corresponding to the shape of the bottom surface of the optical path changing means A or the like (for example, a positive photoresist layer is produced by exposure and development through a photomask) is provided on the mold substrate, Next, there is a method of forming pits by etching.
In addition, machining methods such as cutting are also effective. A silicon (100) substrate is used as the mold substrate, and a normal metal plate, an Al block, or the like is used in the mechanical method.
In addition, when a silicon (100) substrate is used as the mold substrate in the above method, pits having inclined surfaces can be easily produced by performing anisotropic etching.
次に前記のようにして作製した型のピットに樹脂を充填してピットの形状を転写することにより光路変換手段A等が形成された樹脂基材を作製する。具体的な作製方法としては、型のピット形成面に、硬化性樹脂を塗布・硬化して硬化層を形成し、硬化層と型の間を剥離する方法や、型のピット形成面に、加熱により軟化する樹脂基材を置き、加熱して軟化させた状態でプレスしてピットの形状を転写してもよい。
前記硬化性樹脂としては熱硬化性樹脂、紫外線硬化性樹脂、電子線硬化性樹脂等が用いられる。本発明の光導波路配線基板を光電気混載基板に用いる場合(組み立て工程で半田工程を必要とする場合)には、耐熱性を有する硬化性樹脂を用いることが好ましい。耐熱温度は略280℃以上、好ましくは300 ℃以上で、例えば、ポリイミド等が用いられる。また、前記の加熱により軟化する樹脂基材としては、例えば前記のごとき耐熱性を有するポリイミド基材等が挙げられる。
また、前記のごとき樹脂層又は樹脂基材に他の支持基材を貼り合わせて型を補強することもできる。樹脂の硬化と支持基材の接合を同時に行ってもよい。支持基材としては、例えば、樹脂基板のごときものが用いられる。
Next, a resin base material on which the optical path changing means A and the like are formed is produced by filling the pits of the mold produced as described above with resin and transferring the shape of the pits. As a specific manufacturing method, a curable resin is applied and cured on the pit forming surface of the mold to form a cured layer, and the cured layer and the mold are separated from each other, or the pit forming surface of the mold is heated. The shape of the pits may be transferred by pressing a softened resin base material and pressing in a softened state.
As the curable resin, a thermosetting resin, an ultraviolet curable resin, an electron beam curable resin, or the like is used. When the optical waveguide wiring board of the present invention is used for an opto-electric hybrid board (when a soldering process is required in the assembly process), it is preferable to use a curable resin having heat resistance. The heat resistant temperature is about 280 ° C. or higher, preferably 300 ° C. or higher. For example, polyimide or the like is used. Examples of the resin base material that is softened by heating include a polyimide base material having heat resistance as described above.
In addition, the mold can be reinforced by attaching another supporting substrate to the resin layer or the resin substrate as described above. You may perform hardening of resin and joining of a support base material simultaneously. As the support base material, for example, a resin substrate is used.
更に、光路変換手段A等が作製された樹脂基材の表面に光学的ミラー特性を改善するための反射膜を形成することができる。反射膜は金、金合金、TiNのごとき窒化膜等であり、イオンプレーティング法、スパッタ法等により形成される。前記反射膜は、例えば、光路変換手段A、BをAlやSiで形成した結果、反射部での反射特性が良好な場合には省略することができる。 Furthermore, a reflective film for improving the optical mirror characteristics can be formed on the surface of the resin base material on which the optical path changing means A and the like are produced. The reflective film is a nitride film such as gold, gold alloy, or TiN, and is formed by an ion plating method, a sputtering method, or the like. The reflection film can be omitted, for example, when the optical path conversion means A and B are made of Al or Si and the reflection characteristics at the reflection portion are good.
次に、光路変換手段A等が形成された樹脂基材の上に、光導波路配線を形成する。光導波路は下部クラッド、コア及び上部クラッドを有する。下部クラッドはクラッド用材料を含む液を塗布する等により形成される。下部クラッドを形成した後、光路変換手段A等の露出表面に付着している極く薄いクラッド材料を酸素プラズマ等により除去してもよい。 Next, optical waveguide wiring is formed on the resin base material on which the optical path changing means A and the like are formed. The optical waveguide has a lower cladding, a core, and an upper cladding. The lower clad is formed by applying a liquid containing a clad material. After forming the lower cladding, the extremely thin cladding material adhering to the exposed surface of the optical path changing means A or the like may be removed by oxygen plasma or the like.
次に、下部クラッドの上にコアを形成する。コアは光回路パターンに対応したパターンを有している。コアの形成は、下部クラッドの上にコア材料の層を形成し、これを通常の方法によりパターニングしてコアを形成する。パターニング方法としては例えば、1)フォトブリーチング法、2)反応性イオンエッチング法(RIE法)、3)直接露光法等が用いられる。
フォトブリーチング法は、有機ポリシラン材料(日本ペイント(株)製の「グラシア」等)を用い、コア部分だけを紫外線非露光とし、露光部と未露光部に屈折率の変化を起こさせる(紫外線露光部の屈折率が小さくなる)方法であり、露光部分を除去する必要がない方法である。
前記2)の反応性イオンエッチング法は、コア材料の層の上にフォトレジスト(ネガ型)を塗布し、フォトマスクを用いて露光現像し、コア部の上にレジスト層を残し、これを反応性イオンエッチング法を用いて非コア部を除去し、コア部の上のフォトレジストを除去する方法である。この方法においてはマスク材料としてシリコン含有レジストを用いると、通常の酸素プラズマにより容易にエッチングが可能である。
また、3)の直接露光法は、コア材料として感光性を有する材料を用い、これをフォトマスクを介して直接露光し、その後現像してパターニングする方法である。
Next, a core is formed on the lower cladding. The core has a pattern corresponding to the optical circuit pattern. The core is formed by forming a core material layer on the lower clad and patterning it by a usual method to form the core. As the patterning method, for example, 1) a photo bleaching method, 2) a reactive ion etching method (RIE method), 3) a direct exposure method, or the like is used.
The photobleaching method uses an organic polysilane material (such as “Gracia” manufactured by Nippon Paint Co., Ltd.), and only the core portion is not exposed to ultraviolet rays, causing a change in refractive index between the exposed and unexposed portions (ultraviolet rays). This is a method in which the refractive index of the exposed portion is reduced), and there is no need to remove the exposed portion.
In the reactive ion etching method of 2), a photoresist (negative type) is applied on the layer of the core material, exposed and developed using a photomask, and the resist layer is left on the core portion, which is reacted. In this method, the non-core portion is removed using a reactive ion etching method, and the photoresist on the core portion is removed. In this method, when a silicon-containing resist is used as a mask material, etching can be easily performed with normal oxygen plasma.
The direct exposure method 3) is a method in which a photosensitive material is used as a core material, which is directly exposed through a photomask, and then developed and patterned.
中でも、有機ポリシラン材料を用いるフォトブリーチング法は、コア材料からなる層を露光するだけでよく、現像あるいはエッチング工程が不要で、作製プロセスが簡易である。また、有機ポリシラン材料は、300℃程度の耐熱性を有しているため、光電気混載基板を作製する場合に特に有用である。 Among these, the photobleaching method using an organic polysilane material only needs to expose the layer made of the core material, and does not require a development or etching step, and the manufacturing process is simple. In addition, since the organic polysilane material has a heat resistance of about 300 ° C., it is particularly useful when an opto-electric hybrid board is manufactured.
次に、コアの上に上部クラッドを形成する。上部クラッドの形成法は、下部クラッドの形成法と同様である。
上部クラッドの表面を研磨等により平坦化してもよい。また、研磨に代え、クラッド層の多層コーティングにより平坦性を得ても良い。
Next, an upper clad is formed on the core. The formation method of the upper cladding is the same as the formation method of the lower cladding.
The surface of the upper clad may be flattened by polishing or the like. Further, flatness may be obtained by multilayer coating of the cladding layer instead of polishing.
以下に、型基板としてシリコン(100)基板(Si基板)を用い、異方性エッチングにより第1のピット及び第2のピットが形成された型を作製し、その型を用いて光方向変換手段A及びBが形成された樹脂基材を作製し、次いで樹脂基材の上に光導波路を作製する方法の一例について、図を用いて説明する。
(第1のピット及び第2のピットが形成された型を作製する工程)
図8は型基板に第1のピットを形成するまでの工程を示す概念図である。図8(A)はSi基板102に後の工程である異方性エッチングからSi基板を保護するための保護膜104を設けたものを示す。保護膜104は、例えばSi3N4膜やSiO2膜を用いることができる。Si3N4膜を用いる場合には、Si3N4膜に対して行うプロセスの際、該膜に傷がつかないように該膜の上にポリシリコン膜を積層することが好ましいが、必ずしも必要としない。保護膜の着膜方法はプラズマCVD法、減圧CVD法等の公知の方法が使用可能で特に制限はない。また、SiO2膜は熱酸化法やCVD法により形成することができる。また、図8(A)では保護膜は片面に設けられているように描かれているが、エッチング液から裏面も保護する必要があり、両面に設ける必要がある。
In the following, a silicon (100) substrate (Si substrate) is used as a mold substrate, a mold in which first pits and second pits are formed by anisotropic etching is produced, and light redirecting means is used using the mold. An example of a method of producing a resin base material on which A and B are formed and then producing an optical waveguide on the resin base material will be described with reference to the drawings.
(Process for producing a mold in which first and second pits are formed)
FIG. 8 is a conceptual diagram showing a process until the first pit is formed on the mold substrate. FIG. 8A shows a
次に、前記保護膜の上にポジ型フォトレジストを塗布し、光方向変換手段の底面形状に対応する光透過部(例えば、光方向変換手段Aが図1(A)で示すような三角柱の場合、その底面形状である長方形)を設けたフォトマスクを介して露光現像し、フォトレジスト層106に前記底面形状に対応する形状でフォトレジスト層を除去し開口部を形成する(図8(B)参照)。
また、光方向変換手段の底面形状が矩形の場合には、フォトマスクの開口部の形状を正確な矩形とせずに、4隅にRをつけることが好ましい。これにより、以下の図8(D)で示す工程において、保護膜104の開口形状が4隅にRをつけた矩形となり、後述の異方性エッチングを施す(図8(F)参照)工程において、クラックの発生が防止できる。(Rをつけないと、エッチングの際、4隅の保護膜が庇のように残り(庇の下の方までエッチングされ)、クラックが発生することがある。)
Next, a positive photoresist is applied on the protective film, and a light transmitting portion corresponding to the bottom shape of the light direction changing means (for example, the light direction changing means A has a triangular prism shape as shown in FIG. 1A). In this case, exposure and development are performed through a photomask provided with the bottom shape of the rectangle, and the photoresist layer is removed in a shape corresponding to the bottom shape in the
In addition, when the bottom shape of the light direction changing means is rectangular, it is preferable that the corners of the four corners are rounded without making the shape of the opening of the photomask an accurate rectangle. Thereby, in the process shown in FIG. 8D below, the opening shape of the
その後、図8(B)の状態のものに、等方性ドライエッチング等を施し、前記開口部に対応する形状で、保護膜を除去し(図8(C)参照)、次に、レジスト106を剥離する(図8(D)参照)。レジスト剥離は熱硫酸と過酸化水素の混液等により行われる。 Thereafter, isotropic dry etching or the like is performed on the substrate in the state of FIG. 8B to remove the protective film in a shape corresponding to the opening (see FIG. 8C). Is peeled off (see FIG. 8D). Resist stripping is performed with a mixture of hot sulfuric acid and hydrogen peroxide.
この後、異方性エッチングにより第1のピットP1(光方向変換手段Aに対応するピット)を形成する(図8(E)参照)。異方性エッチングには異方性エッチング液が用いられる。異方性エッチング液にはエチレンジアミン、KOH等のアルカリが含まれる。具体的には、エチレンジアミンとピロカテコールの混液や、KOHとイソプロピルアルコールの混液が用いられるが、シリコンの結晶異方性エッチングが可能なものであれば何でもよい。
このような異方性エッチングを行うと、結晶異方性のため、正確な45°の断面の傾斜をもったピットが形成される。
Thereafter, first pits P1 (pits corresponding to the light direction changing means A) are formed by anisotropic etching (see FIG. 8E). An anisotropic etching solution is used for the anisotropic etching. The anisotropic etching solution contains alkalis such as ethylenediamine and KOH. Specifically, a mixed solution of ethylenediamine and pyrocatechol or a mixed solution of KOH and isopropyl alcohol is used, but any material capable of crystal anisotropic etching of silicon may be used.
When such anisotropic etching is performed, pits having an accurate inclination of 45 ° are formed due to crystal anisotropy.
次に、保護膜104を除去する(図8(F)を参照)。保護膜がSi3N4膜の場合には、例えば熱燐酸が用いられる。また、保護膜がSiO2膜の場合には、フッ化水素酸水溶液が用いられる。このようにして、Si基板に第1のピットが形成される。
Next, the
次に、図9(A)に示すように、第2のピット(光方向変換手段A)を作製するために、エッチングマスク114を形成する。エッチングマスクは、フォトレジストを露光現像して作製してもよいし、また、熱酸化法やCVD法等の着膜方法によってSiO2膜を作製し、SiO2膜をフォトリソグラフィー法により、光方向変換手段Bの底面形状(図3に示す光方向変換手段の場合、直角三角形)に対応する形状に開口するSiO2膜とする方法で作製してもよい。なお、以下のドライエッチングを用いる場合には、隅にRを設ける必要はない。
その後、ドライエッチング法、例えば反応性イオンエッチング法(RIE法)を用いてエッチングし、第2のピットP2を形成する(図9(B)参照)。次いで、エッチングマスク114を除去し、型100を得る(図9(C)参照。エッチングマスクがSiO2膜の場合には、フッ化水素酸水溶液が用いられ、レジスト膜の場合には熱硫酸と過酸化水素の混液等により行われる。第1及び第2のピットが形成されたSi基板(型)が得られる。
Next, as shown in FIG. 9A, an
Thereafter, etching is performed using a dry etching method, for example, a reactive ion etching method (RIE method) to form the second pit P2 (see FIG. 9B). Next, the
エッチングによる第1及び第2のピットの深さは、光方向変換手段A及びBの高さに相当するので、その深さは、後の工程で形成される下部クラッド、コア、上部クラッドの厚さと、前記のごとき関係を有していることが好ましい。 Since the depth of the first and second pits by etching corresponds to the height of the light direction changing means A and B, the depth is the thickness of the lower clad, core, and upper clad formed in a later step. And the above relationship is preferable.
(光方向変換手段A及び光方向変換手段Bが形成された樹脂基材を作製する工程)
図10(A)ないし図10(C)により、光方向変換手段A及び光方向変換手段Bが形成された樹脂基材を作製する工程を説明する。
前記のようにして作製した型に、図10(A)に示すように、硬化性樹脂220aを塗布する。硬化性樹脂を薄く形成する場合には、補強のために、図10(B)に示すように支持基材222を積層することが好ましい。次に塗布した硬化性樹脂を硬化させ、硬化層220を形成する。硬化層220と型100の間から剥離すると、符号10で示される光方向変換手段A及び20で示される光方向変換手段Bが形成された樹脂基材200が得られる(図10(C)参照)。また、図示しないが、この後、光方向変換手段A及びBが作製された樹脂基材の表面に光学的ミラー特性を改善するための反射膜を形成することができる。
(Process for producing a resin base material on which the light direction changing means A and the light direction changing means B are formed)
With reference to FIGS. 10A to 10C, a process for producing a resin base material on which the light direction changing means A and the light direction changing means B are formed will be described.
As shown in FIG. 10A, a
(光方向変換手段が形成された樹脂基材の上に光導波路を作製する工程)
次に、図11(A)ないし図11(C)が示すように、光方向変換手段が形成された樹脂基材の上に光導波路を作製する。図11(A)は下部クラッドを、図11(B)はコアを、図11(C)は上部クラッドを作製する工程を示す。図11(A)中、220は硬化層、10は光方向変換手段A、20は光方向変換手段B、330は下部クラッドをそれぞれ示し、図11(B)中、332はコアを示し、図11(C)中、334は上部クラッドを示す。これらの工程を経て本発明の光導波路配線基板300が作製される。
(Process for producing an optical waveguide on a resin base material on which an optical direction changing means is formed)
Next, as shown in FIGS. 11A to 11C, an optical waveguide is formed on the resin base material on which the light direction changing means is formed. FIG. 11A shows a process for producing a lower clad, FIG. 11B shows a process for producing a core, and FIG. 11C shows a process for producing an upper clad. 11A, 220 is a hardened layer, 10 is a light direction changing means A, 20 is a light direction changing means B, 330 is a lower clad, and in FIG. 11B, 332 is a core. 11 (C), 334 indicates an upper cladding. Through these steps, the optical
前記のようにして、本発明の光導波路配線基板の基本的部分が作製されるが、このようにして作製した光導波路配線基板に、更に光接続のための開口部が設けられる。これについては、以下の光電気混載基板の具体的製造例について説明する箇所で述べる。 As described above, the basic portion of the optical waveguide wiring board of the present invention is manufactured. The optical waveguide wiring board manufactured in this way is further provided with an opening for optical connection. This will be described in the following description of a specific example of manufacturing an opto-electric hybrid board.
前記第1の方法において、Si基板からなる型を用いて樹脂基板を作製する代わりに、前記型に電鋳(例えばNi電鋳)を施し、これに再び金属メッキ(例えばNiメッキ)を行って、耐久性に優れた金属製の型を作製することもできる。 In the first method, instead of producing a resin substrate using a mold made of a Si substrate, the mold is subjected to electroforming (for example, Ni electroforming), and then metal plating (for example, Ni plating) is performed again. A metal mold having excellent durability can also be produced.
<第2の方法>
次に第2の方法について説明する。第2の方法では、予め光方向変換手段A及び/又は光方向変換手段Bを少なくとも1つ作製し、これを基材上の所定の位置に接着等により固定する。光方向変換手段A又は光方向変換手段Bは、精密加工により作製することができる。また、シリコン基板に異方性エッチングを行い、斜面を形成したものを用いることもできる。
次いで前記樹脂基板上に光回路パターンに対応する光導波路を作製する。光導波路の作製方法は、前記第1の方法と同様に行われる。
<Second method>
Next, the second method will be described. In the second method, at least one light direction changing means A and / or light direction changing means B is prepared in advance, and this is fixed to a predetermined position on the substrate by adhesion or the like. The light direction changing means A or the light direction changing means B can be produced by precision machining. Alternatively, a silicon substrate having an inclined surface formed by anisotropic etching can be used.
Next, an optical waveguide corresponding to the optical circuit pattern is formed on the resin substrate. The method for manufacturing the optical waveguide is performed in the same manner as the first method.
本発明において用いる光導波路配線基板の更に具体的な製造方法、及び光電気混載基板の製造不法について説明する。以下では光路変換手段A及びBを1つづつ作製する例を示すが、多数の光路変換手段A及びBを作製する場合、同種の光路変換手段をまとめて一度に作製することができる。
(製造例1)
厚さ650μmのSi基板に、プラズマCVD法を用い、Si3N4膜及びポリシリコン膜をこの順に着膜させ保護膜を形成した。前記保護膜の上にポジ型フォトレジストを塗布し、露光現像して、400×200μmの長方形にレジスト層を除去して開口部を形成した。開口部の1辺は、以下で形成される第1のピットと第2のピットを結ぶラインに対して直角となるようにした。また、長方形の四隅にRを付けた。その後、反応性イオンエッチングにより前記開口部に対応する形状で保護膜を除去した。次いで、熱硫酸と過酸化水素の混液を用いてレジスト層を除去した。この後、エチレンジアミンとピロカテコールの混液からなる異方性エッチング液を用いて、ピットの深さが100μmになるまでSi基板をエッチングした。略45°の斜面を有するピットが形成された。次に熱燐酸を用いて保護膜を除去した。光路変換手段Aに対応する第1のピット(図8(F)で示す断面形状を有する)が形成された。
A more specific manufacturing method of the optical waveguide wiring board used in the present invention and an illegal manufacturing of the opto-electric hybrid board will be described. In the following, an example in which the optical path conversion means A and B are manufactured one by one is shown. However, when a large number of optical path conversion means A and B are manufactured, the same type of optical path conversion means can be manufactured at once.
(Production Example 1)
A Si 3 N 4 film and a polysilicon film were deposited in this order on a Si substrate having a thickness of 650 μm using a plasma CVD method to form a protective film. A positive photoresist was applied on the protective film, exposed and developed, and the resist layer was removed into a 400 × 200 μm rectangle to form an opening. One side of the opening was perpendicular to the line connecting the first pit and the second pit formed below. Moreover, R was attached to the four corners of a rectangle. Thereafter, the protective film was removed in a shape corresponding to the opening by reactive ion etching. Next, the resist layer was removed using a mixed solution of hot sulfuric acid and hydrogen peroxide. Thereafter, the Si substrate was etched using an anisotropic etchant composed of a mixture of ethylenediamine and pyrocatechol until the pit depth reached 100 μm. A pit having a slope of about 45 ° was formed. Next, the protective film was removed using hot phosphoric acid. First pits (having the cross-sectional shape shown in FIG. 8F) corresponding to the optical path changing means A were formed.
第1のピットが形成されたSi基板の上に、ポジ型フォトレジストを塗布し、露光現像して、100×100μmの正方形にレジスト層を除去して開口部を形成し、エッチングマスクを作製した。正方形の開口部は、その1辺が、第1のピットと以下のエッチングにより形成される第2のピットを結ぶライン(光伝達方向)に対して45°の角度をなすようにした。エッチングマスクを介して反応性イオンエッチングを行い、ピットの深さが100μmになるまでSi基板をエッチングした。光路変換手段Bに対応する第2のピットが形成された。次に熱硫酸と過酸化水素の混液によりレジスト層を除去した。得られたものを、以下の工程で用いる型とした。 A positive photoresist was applied onto the Si substrate on which the first pits were formed, exposed and developed, the resist layer was removed into a 100 × 100 μm square, an opening was formed, and an etching mask was produced. . One side of the square opening was formed at an angle of 45 ° with respect to a line (light transmission direction) connecting the first pit and the second pit formed by the following etching. Reactive ion etching was performed through the etching mask, and the Si substrate was etched until the pit depth reached 100 μm. A second pit corresponding to the optical path changing means B was formed. Next, the resist layer was removed with a mixture of hot sulfuric acid and hydrogen peroxide. The obtained one was used as a mold used in the following steps.
前記型を原盤として、ポリイミド板(宇部興産(株)製のユーピレックス)を約280℃に熱し、軟化させた状態でプレスして、前記の第1及び第2のピット形状を転写し、光路変換手段A、Bを得た。この上に、真空蒸着法によりAuを1μmの厚さで着膜し、反射膜とした。光路変換手段A、Bが形成された樹脂基材が得られた。 Using the mold as a master, a polyimide plate (Upilex manufactured by Ube Industries, Ltd.) is heated to about 280 ° C. and pressed in a softened state, and the first and second pit shapes are transferred to change the optical path. Means A and B were obtained. On top of this, Au was deposited to a thickness of 1 μm by a vacuum deposition method to obtain a reflective film. A resin base material on which the optical path changing means A and B were formed was obtained.
光路変換手段が形成された樹脂基材の上に、日本ペイント(株)製のクラッド用グラシアを塗布し、下部クラッドを形成した。次に、下部クラッドの上にコアを形成した。コアのパターンは、光が、光路変換手段AとBとの間を通り、かつ光路変換手段Bにより90°方向変換されて、光導波路配線基板の端部から出射するようなパターンとした。コアは日本ペイント(株)製のコア用グラシアを用い、パターン形状に露光して(非露光部がコアとなる)作製した。コアの上に日本ペイント(株)製のクラッド用グラシアを塗布し、上部クラッドを形成した。コアの厚さは50μmとし、光路変換手段AとBがコアより上に出るようにした。 On the resin base material on which the optical path changing means was formed, a clad gracia manufactured by Nippon Paint Co., Ltd. was applied to form a lower clad. Next, a core was formed on the lower cladding. The core pattern was such that the light passed between the optical path conversion means A and B, changed by 90 ° by the optical path conversion means B, and emitted from the end of the optical waveguide wiring board. The core was manufactured using Nippon Paint Co., Ltd. core gracia, which was exposed to a pattern shape (the non-exposed portion becomes the core). An upper clad was formed by applying a coating gracia made by Nippon Paint Co., Ltd. on the core. The thickness of the core was set to 50 μm so that the optical path changing means A and B appeared above the core.
上部クラッドの上にポジ型レジストを塗布して露光現像することによりエッチングマスクを形成し、上部クラッドにエッチングを行って開口部(光接続口)を形成した。開口部の位置は、開口部からの入射光が光路変換手段Aの反射面により反射されコア内を伝達されるような位置とした(図12(A)参照)。
開口部を設けた光導波路配線基板に印刷回路基板(同じ位置に開口部を有する)を積層し(図12(B)参照)、前記開口部に前記コアに用いた有機ポリシラン材料を充填した(図12(C)参照)。
前記印刷回路基板の上にあらかじめ、半田をプリントし、その後、光MCMを高精度マウンターにて搭載し、半田リフロー工程を通して接続した(図12(D)参照)。以上の工程により光電気混載基板が得られた。
光MCMの光出力ポートから光導波路配線基板に入力された光は、光路変換手段Aにより光路変換されてコア内を伝達され、光方向変更手段Bにより90°方向変換され、光導波路配線基板の端部から出力された。
An etching mask was formed by applying a positive resist on the upper clad and developing it by exposure, and etching was performed on the upper clad to form an opening (optical connection port). The position of the opening was such that incident light from the opening was reflected by the reflecting surface of the optical path changing means A and transmitted through the core (see FIG. 12A).
A printed circuit board (having an opening at the same position) is laminated on the optical waveguide wiring board provided with the opening (see FIG. 12B), and the opening is filled with the organic polysilane material used for the core ( (See FIG. 12C).
Solder was printed on the printed circuit board in advance, and then optical MCM was mounted with a high-precision mounter and connected through a solder reflow process (see FIG. 12D). An opto-electric hybrid board was obtained by the above process.
The light input to the optical waveguide wiring board from the optical output port of the optical MCM is optical path converted by the optical path changing means A and transmitted through the core, and the direction is changed by 90 ° by the optical direction changing means B. Output from the edge.
10 光路変換手段A
20 光路変換手段B
30 光導波路配線基板
32 基板端部
34 導波路(コア)
36 導波路端面
40 接続部材
42 第1の接続部
44 第2の接続部
46 導光部
47 第1の接続部における導光部端面
48 第2の接続部における導光部端面
49 接点
50 光導波路配線基板アセンブリー
60 電気回路基板
62 電気配線
70 光電気混載基板
80 光電気混載基板アセンブリー
90 導波素子
10 Optical path conversion means A
20 Optical path changing means B
30 Optical
36 Waveguide end face 40
Claims (13)
前記光電気混載基板は導波路端面が露出形成された基板端部を有し、
前記接続部材は、電気配線と、基板端部が接続される第1の接続部と、導波部を有し導波部端面が露出形成された端部を有する導波素子の該端部が接続されるべき第2の接続部とを有し、第1の接続部と第2の接続部との間に導光部が設けられるとともに第1の接続部と第2の接続部に導光部の端面が露出形成され、
前記第1の接続部に基板端部が接続されて導波路端面と導光部端面が光接合され、かつ、接続部材の電気配線と電気回路基板における電気配線が接続されていることを特徴とする光電気混載基板アセンブリー。 An opto-electric hybrid board assembly in which an opto-electric hybrid board in which an electric circuit board is laminated on an optical waveguide wiring board and a connecting member are joined,
The opto-electric hybrid board has a substrate end portion in which a waveguide end face is exposed,
The connection member includes an electrical wiring, a first connection portion to which the substrate end is connected, and an end portion of the waveguide element having a waveguide portion and an end portion in which the end surface of the waveguide portion is exposed. A second connection portion to be connected, a light guide portion is provided between the first connection portion and the second connection portion, and light is guided to the first connection portion and the second connection portion. The end face of the part is exposed and formed,
A substrate end is connected to the first connection portion, a waveguide end surface and a light guide portion end surface are optically bonded, and an electrical wiring of a connection member and an electrical wiring on an electrical circuit board are connected. An opto-electric hybrid board assembly.
前記光電気混載基板はその面上に光入出力部を有し、
前記接続部材は、電気配線と、光電気混載基板面が接続される第1の接続部と、導波部を有し導波部端面が露出形成された端部を有する導波素子の該端部が接続されるべき第2の接続部を有し、第1の接続部は光電気混載基板面上の光入出力部に対応する位置に光入出力部を有し、第1の接続部の光入出力部と第2の接続部との間に導光部が設けられるとともに第2の接続部に導光部の端面が露出形成され、第2の接続部に形成される導光部端面を通る光は光電気混載基板の面と平行であり、
前記第1の接続部における光入出力部に光電気混載基板面上の光入出力部が接続され、かつ、接続部材の電気配線と電気回路基板における電気配線が接続されていることを特徴とする光電気混載基板アセンブリー。 An opto-electric hybrid board assembly in which an opto-electric hybrid board in which an electric circuit board is laminated on an optical waveguide wiring board and a connecting member are joined,
The opto-electric hybrid board has a light input / output unit on its surface,
The connecting member includes an electrical wiring, a first connecting portion to which an opto-electric hybrid board surface is connected, and the end of the waveguide element having a waveguide portion and an end portion where the waveguide end surface is exposed. The first connection part has a light input / output part at a position corresponding to the light input / output part on the surface of the opto-electric hybrid board, and the first connection part A light guide unit is provided between the light input / output unit and the second connection unit, and an end surface of the light guide unit is exposed and formed at the second connection unit. The light passing through the end face is parallel to the surface of the opto-electric hybrid board,
The optical input / output unit on the opto-electric hybrid board surface is connected to the optical input / output unit in the first connection unit, and the electrical wiring of the connection member and the electrical wiring on the electrical circuit board are connected. An opto-electric hybrid board assembly.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004274043A JP2006091166A (en) | 2004-09-21 | 2004-09-21 | Optical waveguide wiring substrate assembly, photoelectric hybrid substrate assembly, and optical coupling unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004274043A JP2006091166A (en) | 2004-09-21 | 2004-09-21 | Optical waveguide wiring substrate assembly, photoelectric hybrid substrate assembly, and optical coupling unit |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006091166A true JP2006091166A (en) | 2006-04-06 |
Family
ID=36232258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004274043A Pending JP2006091166A (en) | 2004-09-21 | 2004-09-21 | Optical waveguide wiring substrate assembly, photoelectric hybrid substrate assembly, and optical coupling unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006091166A (en) |
-
2004
- 2004-09-21 JP JP2004274043A patent/JP2006091166A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI396874B (en) | Optical wiring printing board manufacturing method and optical wiring printed circuit board | |
JP4690870B2 (en) | Opto-electric integrated wiring board and opto-electric integrated wiring system | |
WO2011049087A1 (en) | Optical waveguide substrate having positioning structure, method for manufacturing same, and method for manufacturing opto-electric hybrid substrate | |
JP2005274962A (en) | Optical waveguide wiring board, method for manufacturing same, original board for manufacturing same, and photoelectric hybrid substrate | |
JP2009175418A (en) | Opto-electronic printed wiring board and manufacturing method of same | |
US20090208167A1 (en) | Manufacturing method of opto-electric hybrid board and opto-electric hybrid board obtained thereby | |
WO2013120457A1 (en) | Apparatus and method for optical communications | |
JP2008102283A (en) | Optical waveguide, optical module and method of manufacturing optical waveguide | |
JP5328095B2 (en) | Optical transmission board, opto-electronic hybrid board, optical module, and optoelectric circuit system | |
JP5349192B2 (en) | Optical wiring structure and optical module having the same | |
JP2007086367A (en) | Optical pin, optical pin connector and optical path conversion module | |
JP2005070141A (en) | Optical waveguide structure with optical path conversion component and manufacturing method therefor and optical path conversion component | |
JP4234061B2 (en) | Manufacturing method of optical waveguide device | |
JP2006052992A (en) | Inspection method of optical waveguide wiring board or photoelectric mixed mounting circuit board | |
JP4339198B2 (en) | Manufacturing method of optical module | |
JP2005266119A (en) | Manufacturing method of photoelectric wiring board | |
JP4655674B2 (en) | PHOTOELECTRIC CONVERSION DEVICE AND ITS MANUFACTURING METHOD, OPTICAL WAVEGUIDE MODULE, AND OPTICAL INFORMATION PROCESSING DEVICE | |
JP2005099521A (en) | Optical transmission device | |
JP2006091166A (en) | Optical waveguide wiring substrate assembly, photoelectric hybrid substrate assembly, and optical coupling unit | |
JP4380462B2 (en) | Opto-electric hybrid board and manufacturing method thereof | |
JP2012088634A (en) | Optical waveguide device and method for manufacturing the same | |
JP2006310417A (en) | Photoelectric converter, its manufacturing method and optical information processor | |
JP2005070142A (en) | Optical waveguide structure with optical path conversion component, optical path conversion component, and manufacturing method of optical path conversion component | |
JP5136142B2 (en) | Optical substrate manufacturing method | |
JP4718312B2 (en) | Optical waveguide member, optical wiring board, optical wiring module, optical waveguide member manufacturing method, and optical wiring board manufacturing method |