JP2006089402A - Sterilizer, method for producing pure water and extrapure water both by using sterilizer - Google Patents

Sterilizer, method for producing pure water and extrapure water both by using sterilizer Download PDF

Info

Publication number
JP2006089402A
JP2006089402A JP2004275667A JP2004275667A JP2006089402A JP 2006089402 A JP2006089402 A JP 2006089402A JP 2004275667 A JP2004275667 A JP 2004275667A JP 2004275667 A JP2004275667 A JP 2004275667A JP 2006089402 A JP2006089402 A JP 2006089402A
Authority
JP
Japan
Prior art keywords
water
compound
membrane
treated
disinfectant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004275667A
Other languages
Japanese (ja)
Inventor
Toru Amaya
徹 天谷
Fujio Maeda
富士雄 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2004275667A priority Critical patent/JP2006089402A/en
Publication of JP2006089402A publication Critical patent/JP2006089402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sterilizer hardly damaging an RO (reverse ormosis) membrane material, having a wide-range antibacterial spectrum, and hardly affecting the water quality of pure water and extrapure water obtained by treatment in an RO membrane treatment process in the production of the pure water and the extrapure water; and to provide a method for producing the pure water and extrapure water. <P>SOLUTION: The sterilizer contains a composition obtained by mixing a compound A containing a bromine atom in the molecule, and a compound B containing an amino group in the molecule as an active ingredient. The methods for producing the pure water and the extrapure water use the sterilizer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、純水及び超純水の製造において使用される抗菌スペクトルが広い殺菌剤、該殺菌剤を使用した純水及び超純水の製造方法に関する。   The present invention relates to a bactericidal agent having a wide antibacterial spectrum used in the production of pure water and ultrapure water, and a method for producing pure water and ultrapure water using the bactericide.

純水及び超純水の製造において、微粒子、金属イオン、有機物、非金属イオン、コロイド状物質等の除去が可能であるため、逆浸透膜(以下、本発明においてRO膜という)による膜分離工程は多用されている。一般に逆浸透膜装置(以下、本発明においてRO膜装置という)には、CA膜(酢酸セルロース膜)を用いたもの、およびPA(ポリアミド膜)膜を用いたものが主に使われている。CA膜は、運転圧が高く、装置や運転コストが高価である為、純水および超純水の製造では、次第に使用されなくなってきている。   In the production of pure water and ultrapure water, it is possible to remove fine particles, metal ions, organic substances, non-metal ions, colloidal substances, etc., and therefore a membrane separation step using a reverse osmosis membrane (hereinafter referred to as RO membrane in the present invention). Is heavily used. Generally, a reverse osmosis membrane device (hereinafter referred to as an RO membrane device in the present invention) mainly uses a CA membrane (cellulose acetate membrane) and a PA (polyamide membrane) membrane. Since the CA membrane has a high operating pressure and is expensive in apparatus and operating cost, it is gradually not used in the production of pure water and ultrapure water.

一方、PA膜は、運転圧が低くできるため、CA膜に替わり多くのRO膜装置に採用されている。しかし、膜材質が次亜塩素酸をはじめとして分子内に塩素を含有する塩素系薬剤に弱いため、市水等の塩素系薬剤を含んだ水を直接処理することはできない欠点がある。   On the other hand, PA membranes are used in many RO membrane devices instead of CA membranes because the operating pressure can be lowered. However, since the membrane material is weak to chlorinated chemicals containing chlorine in the molecule including hypochlorous acid, there is a drawback that water containing chlorinated chemicals such as city water cannot be directly treated.

RO膜装置内において菌の増殖を放置すると、菌がスライム状に増殖し、これに起因して膜の性能が大きく低下する。そこで、これまで純水及び超純水製造における菌増殖の対策として、種々の殺菌剤、制菌剤が提案されている。一般に、前述のような塩素系薬剤(次亜塩素酸、遊離塩素)、分子内に臭素を含有する臭素系薬剤、硫黄系薬剤、分子内にアミノ基を含有する薬剤、有機窒素系薬剤、銀、銅、ニッケル等の抗菌性を示す重金属化合物、pH調整剤(酸)等が知られ、市販されている。
しかしPA膜の場合、上記のように塩素系薬剤に弱いため、塩素系薬剤を含まない水を供給する必要があり、RO膜モジュール内の菌の増殖がしばしば問題となる。菌の増殖によって、膜面にスライムが形成され、通水圧力の上昇や膜寿命の低下といった問題を起こす。また、処理水である純水等の水質悪化の問題を起こす。
If the growth of the bacteria is left in the RO membrane device, the bacteria grow in a slime shape, resulting in a significant decrease in membrane performance. Thus, various bactericides and antibacterial agents have been proposed as countermeasures against the growth of bacteria in the production of pure water and ultrapure water. In general, chlorinated drugs (hypochlorous acid, free chlorine) as described above, bromine drugs containing bromine in the molecule, sulfur drugs, drugs containing amino groups in the molecule, organic nitrogen drugs, silver Heavy metal compounds exhibiting antibacterial properties such as copper and nickel, pH adjusters (acids) and the like are known and commercially available.
However, in the case of a PA membrane, since it is vulnerable to a chlorinated drug as described above, it is necessary to supply water that does not contain a chlorinated drug, and the growth of bacteria in the RO membrane module is often a problem. As the bacteria grow, slime is formed on the membrane surface, causing problems such as increased water pressure and reduced membrane life. Moreover, the problem of water quality deterioration, such as pure water which is treated water, is caused.

最近では、水処理や超純水製造における殺菌剤、水処理方法及び水処理装置が開示されている。特許文献1には、生物処理水を膜分離処理する膜分離方法において、従来の塩素剤系殺菌剤の代わりに、非塩素剤系の殺菌剤及び/又は抗菌剤、或いは塩素含有非酸化性の殺菌剤を添加し、微生物による膜フラックスの低下を防止する膜分離方法が開示されている。特許文献2には、被処理水の殺菌剤として遊離塩素を用いるRO膜による分離プロセスにおいて、被処理水と遊離塩素をRO膜直前で接触させることを特徴とする殺菌方法が開示されている。特許文献3には、海水淡水化やかん水淡水化等の工程において好適に用いることができる、酸、腐食抑制剤、および分子内にアミノ基を有する有機酸を含む水処理用殺菌剤、該殺菌剤を使用する水処理方法及び水処理装置が開示されている。特許文献4には、海水淡水化やかん水淡水化等の工程において好適に用いることができる、酸、腐食抑制剤、およびアルコールを含む水処理用殺菌剤、該殺菌剤を使用する水処理方法及び水処理装置が開示されている。   Recently, disinfectants, water treatment methods and water treatment apparatuses in water treatment and ultrapure water production have been disclosed. In Patent Document 1, in a membrane separation method for membrane separation treatment of biologically treated water, a non-chlorine-based disinfectant and / or an antibacterial agent, or a chlorine-containing non-oxidizing agent is used instead of a conventional chlorinant-based disinfectant. A membrane separation method is disclosed in which a disinfectant is added to prevent a decrease in membrane flux due to microorganisms. Patent Document 2 discloses a sterilization method characterized in that water to be treated and free chlorine are brought into contact immediately before the RO membrane in a separation process using an RO membrane that uses free chlorine as a sterilizing agent for water to be treated. Patent Document 3 discloses a water treatment disinfectant containing an acid, a corrosion inhibitor, and an organic acid having an amino group in the molecule, which can be suitably used in processes such as seawater desalination and brine water desalination, A water treatment method and a water treatment apparatus using an agent are disclosed. Patent Document 4 discloses a bactericide for water treatment containing an acid, a corrosion inhibitor, and an alcohol, a water treatment method using the bactericide, and a water treatment method that can be suitably used in processes such as seawater desalination and brine water desalination. A water treatment apparatus is disclosed.

特開平11−033371号公報Japanese Patent Laid-Open No. 11-033371 特開2000−042373号公報Japanese Patent Laid-Open No. 2000-042373 特開2004−082021号公報JP 2004-082021 A 特開2004−083506号公報JP 2004-083506 A

従来、いずれの薬剤も、純水及び超純水の製造で用いられる各種のRO膜処理工程での菌の増殖抑制に満足の性能を見出すに至っていない。すなわち、現在市販され有効とされている殺菌剤は、原水の質やRO膜装置を据付けた現場によってはうまく機能をする場合もあるが、現場によってはうまく機能しない場合もある。
この原因は、薬剤の抗菌スペクトル(どの種類の菌に有効で、どの菌の種類に有効でないかを示す)の狭さ、増殖する菌の種類の多様性、長期間使用時の耐性菌の発生等が挙げられる。
従って、薬剤が効果を示すか否かは実際に殺菌剤を現場ごとに使用してみないと判断できず、また、長期間使用するとともに効果が失われる問題があった。
Conventionally, none of the chemicals has found a satisfactory performance in suppressing the growth of bacteria in various RO membrane treatment steps used in the production of pure water and ultrapure water. That is, the currently marketed and effective disinfectant may function well depending on the quality of raw water and the site where the RO membrane device is installed, but may not function properly depending on the site.
This is due to the narrowness of the antibacterial spectrum of the drug (indicating which type of bacteria is effective and which type of bacteria is not effective), the variety of types of bacteria that grow, and the generation of resistant bacteria during long-term use Etc.
Therefore, it cannot be determined whether or not the drug is effective unless the fungicide is actually used at each site, and there is a problem that the effect is lost when the drug is used for a long time.

本発明者は、このような課題に鑑み種々の殺菌剤を検討した結果、分子内に臭素を含有する化合物Aと分子内にアミノ基を含有する化合物Bとを混合した組成物を有効成分とする殺菌剤が広範囲にわたる抗菌スペクトルを有し、数多くの現場における被処理水に対して強い菌の抑制能力を有することを見出した。   As a result of studying various bactericides in view of such problems, the present inventor obtained a composition in which Compound A containing bromine in the molecule and Compound B containing an amino group in the molecule as an active ingredient. It was found that the disinfectant has a broad antibacterial spectrum and has a strong ability to suppress bacteria against treated water in many sites.

すなわち、本発明は、分子内に臭素原子を含有する化合物A及び分子内にアミノ基を含有する化合物Bを混合してなる組成物を有効成分とする殺菌剤を提案するものである。   That is, the present invention proposes a disinfectant comprising as an active ingredient a composition obtained by mixing compound A containing a bromine atom in the molecule and compound B containing an amino group in the molecule.

本発明の殺菌剤は、広範囲にわたる抗菌スペクトルを有し、現場ごとに異なる原水及び被処理水であってもそれらの種類を問わず使用することができる。また、純水及び超純水の製造において汎用的に使用されるPA膜といったRO膜を侵食せず、水質についても満足することができる処理水(純水及び超純水)を製造することができる。   The disinfectant of the present invention has a broad antibacterial spectrum, and even raw water and treated water that differ from site to site can be used regardless of their type. In addition, it is possible to produce treated water (pure water and ultrapure water) that does not erode RO membranes such as PA membranes that are generally used in the production of pure water and ultrapure water, and can satisfy the water quality. it can.

以下に本発明の詳細な実施態様を説明する。本発明の範囲が以下に説明した実施態様の範囲に限定されるものではない。
また、本発明における数値範囲の上限値及び下限値は、本発明が特定する数値範囲から僅かに外れる場合であっても、当該数値範囲内と同様の作用効果を備えている限り本発明の範囲に含まる意を包含するものである。
Detailed embodiments of the present invention will be described below. The scope of the present invention is not limited to the scope of the embodiments described below.
Further, the upper and lower limits of the numerical range in the present invention are within the scope of the present invention as long as they have the same operational effects as those within the numerical range even if they are slightly outside the numerical range specified by the present invention. Is included.

(殺菌剤、殺菌剤の調整)
本発明の殺菌剤は、分子内に臭素を含有する化合物A及び分子内にアミノ基を含有する化合物Bを混合してなる組成物を有効成分とする殺菌剤である。
(Adjustment of disinfectant and disinfectant)
The bactericidal agent of the present invention is a bactericide containing as an active ingredient a composition obtained by mixing compound A containing bromine in the molecule and compound B containing an amino group in the molecule.

「化合物A(又は、化合物B)を有効成分とする」の「有効成分とする」とは、殺菌効果を備えていれば、分子内に臭素を含有する化合物A及び分子内にアミノ基を含有する化合物Bのそれぞれ一種類以上の成分を含んでいればよい。   “As an active ingredient” in “compound A (or compound B) as an active ingredient” means that compound A containing bromine in the molecule and an amino group in the molecule as long as it has a bactericidal effect It is sufficient that each compound B contains one or more components.

分子内に臭素を含有する化合物A(以下、本発明において化合物Aという)は、分子内に臭素を含有する化合物や該化合物を有効成分とする殺菌剤を包含する。本発明で使用される化合物Aは、すでに市販されている薬剤や殺菌剤であれば特に制限は無い。例えば、
2−ブロモー2−ニトロプロパンー1,3−ジオール(商品名:ブロノポール、ナガセ化成工業(株)製)、α−ブロモシンナムアルデヒド、2、2−ジブロモ−3−ニトリロプロピオンアミド(DBNPA)、1,2−ジブロモ−2、4−ジシアノブタン(商品名:テクタメール38、(株)イー・シー・シーインターナショナル製)、2、2−ジブロモ−2−ニトロエタノール(DBNE)といった化合物を有効成分とする薬剤や殺菌剤が市販されている。
Compound A containing bromine in the molecule (hereinafter referred to as compound A in the present invention) includes a compound containing bromine in the molecule and a fungicide containing the compound as an active ingredient. Compound A used in the present invention is not particularly limited as long as it is a commercially available drug or fungicide. For example,
2-bromo-2-nitropropane-1,3-diol (trade name: bronopol, manufactured by Nagase Kasei Kogyo Co., Ltd.), α-bromocinnamaldehyde, 2,2-dibromo-3-nitrilopropionamide (DBNPA), 1 , 2-dibromo-2,4-dicyanobutane (trade name: Tekta Mail 38, manufactured by EC Sea International Co., Ltd.), 2,2-dibromo-2-nitroethanol (DBNE) as active ingredients Drugs and disinfectants are commercially available.

分子内にアミノ基を含有する化合物B(以下、本発明において化合物Bという)は、分子内にアミノ基を含有する化合物や該化合物を有効成分とする殺菌剤を包含する。本発明で使用される化合物Bは、すでに市販されている薬剤や殺菌剤であれば特に制限は無い。例えば、塩化ベンザルコニウム、塩化ジデシルジメチルアンモニウム、塩化ベンゾトニウム、N−デシル−N−イソノニル−N、N‘−ジメチルアンモニウム(商品名:バーダック170P、ロンザジャパン(株)製)、4,4‘−(テトラメチケンヂカルボニlヂアミノ)ビス(1−デシルピリヂニウム)(商品名:ダイマー136、イヌイ(株)製)、N,N‘−ヘキサメチレンビス(4−カルバモイル−1−デシlピリヂニウム)(商品名:ダイマー38、イヌイ(株)製)といった薬剤や殺菌剤が市販されている。また、化合物BはpHによっては4級アンモニウム塩の形で存在する。   Compound B containing an amino group in the molecule (hereinafter referred to as compound B in the present invention) includes a compound containing an amino group in the molecule and a fungicide containing the compound as an active ingredient. Compound B used in the present invention is not particularly limited as long as it is a commercially available drug or fungicide. For example, benzalkonium chloride, didecyldimethylammonium chloride, benzotonium chloride, N-decyl-N-isononyl-N, N′-dimethylammonium (trade name: Bardac 170P, Lonza Japan Co., Ltd.), 4,4 '-(Tetramethicenedicarbonyldiamino) bis (1-decylpyridinium) (trade name: Dimer 136, manufactured by Inui Corporation), N, N'-hexamethylenebis (4-carbamoyl-1-deci 1 pyridinium) (trade name: Dimer 38, manufactured by Inui Co., Ltd.) and a bactericidal agent are commercially available. Compound B exists in the form of a quaternary ammonium salt depending on the pH.

本発明の殺菌剤は、上記に例示した化合物A及び化合物Bを混合して調整することができる。このとき混合比率は、質量比で2:8〜8:2の範囲であれば好ましく、中でも4:6〜6:4であればより好ましい範囲である。化合物A又は化合物Bの混合比率が2:8〜8:2の範囲にある場合、化合物A及び化合物Bのいずれかの殺菌効果が支配的とならず化合物A及び化合物Bを混合した複合的な殺菌効果が発揮でき、広い抗菌スペクトルを得ることができるため好ましい。
なお、PA膜に化合物Bを有効成分とする殺菌剤を単独で使用した場合、化合物Bが膜面に徐々に付着してRO膜の性能を低下させる問題がまれに生じる可能性がある。しかし、本発明の殺菌剤は、化合物Bを有効成分とする殺菌剤を単独で使用する場合に比べ、化合物Bの使用量が少ないため、殺菌剤が膜面に付着して膜性能を低下させることはほとんどないと考えられる。
The disinfectant of the present invention can be prepared by mixing Compound A and Compound B exemplified above. At this time, the mixing ratio is preferably in the range of 2: 8 to 8: 2 by mass ratio, and more preferably in the range of 4: 6 to 6: 4. When the mixing ratio of Compound A or Compound B is in the range of 2: 8 to 8: 2, the bactericidal effect of either Compound A or Compound B is not dominant and the compound A and Compound B are mixed. A bactericidal effect can be exhibited and a wide antibacterial spectrum can be obtained, which is preferable.
In addition, when the bactericide which uses the compound B as an active ingredient independently is used for PA membrane, the problem that the compound B adheres to a membrane | film | coat surface gradually and the performance of RO membrane may fall may arise rarely. However, the disinfectant of the present invention has a smaller amount of compound B used than the disinfectant containing compound B as an active ingredient alone, so that the disinfectant adheres to the film surface and degrades the film performance. There seems to be almost nothing.

上記に例示した化合物A及び化合物Bは、通常、固形状を呈している。従って、本発明の殺菌剤は上記の混合比率で調整した固形状の殺菌剤とすることができる。
さらに、固形状の化合物A及び化合物Bを水に溶解させ、水溶液状の殺菌剤とすると被処理水に所望の濃度添加しやすいことから好ましい。
水溶液状の殺菌剤は、上記混合した固形状の殺菌剤を水に溶解させて調製してもよく、また化合物A及び化合物Bのそれぞれを一旦水に溶解させ、これらを所望の濃度になるように混合して調製してもよく、さらに、化合物A及び化合物Bが混合比率になるような量を一度に水に溶解させて調製することもできる。
なお、上記に例示した化合物A及び化合物Bが液状の場合、上記のように所望の濃度の水溶液に調製すればよい。
The compound A and the compound B exemplified above are usually in a solid form. Therefore, the disinfectant of the present invention can be a solid disinfectant adjusted with the above mixing ratio.
Furthermore, it is preferable that the solid compound A and the compound B are dissolved in water to form an aqueous disinfectant because a desired concentration can be easily added to the water to be treated.
The aqueous disinfectant may be prepared by dissolving the mixed solid disinfectant in water. Alternatively, each of compound A and compound B is once dissolved in water so that they have a desired concentration. In addition, it may be prepared by dissolving an amount such that Compound A and Compound B are mixed in water at a time.
In addition, what is necessary is just to prepare in aqueous solution of desired density | concentration as mentioned above, when the compound A and the compound B which were illustrated above are liquid.

本発明の水溶液の殺菌剤は、有効成分である化合物A及び化合物Bが水に溶解する濃度であれば任意の濃度の水溶液とすることができ、化合物A及び化合物Bの合計質量が0.1質量%〜50質量%であるとよく、中でも、化合物A及び化合物Bの合計質量が1質量%〜10質量%であるとより好ましい。
このように本発明の殺菌剤の有効成分濃度が0.1質量%〜50質量%であれば、被処理水に対して所望濃度に達するまで添加しやすく、さらに、本発明の殺菌剤が被処理水に短時間で十分に混合・溶解・拡散され殺菌効果を得やすくなるため好ましい。
The aqueous fungicide of the present invention can be an aqueous solution having any concentration as long as compound A and compound B, which are active ingredients, are dissolved in water, and the total mass of compound A and compound B is 0.1. It is good that it is mass%-50 mass%, and it is more preferable especially that the total mass of the compound A and the compound B is 1 mass%-10 mass%.
Thus, if the active ingredient density | concentration of the fungicide of this invention is 0.1 mass%-50 mass%, it will be easy to add until it reaches a desired density | concentration with respect to to-be-processed water, and also the fungicide of this invention will be covered. It is preferable because it can be sufficiently mixed, dissolved, and diffused in the treated water in a short time, and the sterilizing effect can be easily obtained.

ここで、溶解に用いる水は純水が好ましい。また、本発明の殺菌剤又は本発明の殺菌剤を構成する化合物A或いは化合物Bは、保存安定性や殺菌効果の持続を考慮して、使用する直前に、上記の如く、混合又は溶解させるとよい。   Here, the water used for dissolution is preferably pure water. In addition, the compound A or compound B constituting the bactericidal agent of the present invention or the bactericidal agent of the present invention is mixed or dissolved as described above immediately before use in consideration of preservation stability and bactericidal effect. Good.

なお、本発明の殺菌剤を構成する化合物A及び化合物Bは、本発明の殺菌効果に影響しない範囲で安定化剤等のほかの薬品を含有していてもよい。また、本発明の殺菌剤は、その性能に影響しない範囲で、例えば通常市販されているスケール防止剤等といった他の薬品を混合し、使用することも可能である。   In addition, the compound A and compound B which comprise the bactericidal agent of this invention may contain other chemical | medical agents, such as a stabilizer, in the range which does not affect the bactericidal effect of this invention. In addition, the disinfectant of the present invention can be used by mixing other chemicals such as, for example, a commercially available scale inhibitor, as long as the performance is not affected.

(殺菌剤の使用形態、純水又は超純水の製造)
本発明の殺菌剤は、RO膜装置を用いる純水又は超純水の製造における被処理水の殺菌に使用し、純水又は超純水を製造することができる。
以下に、本発明の殺菌剤の使用方法、及び本発明の殺菌剤を使用した純水又は超純水の製造について説明する。但し、本発明の殺菌剤の用途は、以下に示す用途に限定するものではない。
(Use of bactericide, production of pure water or ultrapure water)
The disinfectant of the present invention can be used for sterilization of water to be treated in the production of pure water or ultrapure water using an RO membrane device, and can produce pure water or ultrapure water.
Below, the usage method of the disinfectant of this invention and manufacture of the pure water or ultrapure water using the disinfectant of this invention are demonstrated. However, the use of the disinfectant of the present invention is not limited to the following uses.

(超純水製造工程、製造設備)
一般に、超純水は以下に示す工程により製造され、また、一般的な超純水の製造設備は以下に示す構成により成る。
(1)取水工程 :工業用水、井戸水、市水といった原水を取り込む工程である。通常、製造設備は、取水ポンプ、原水受入槽、薬品注入設備等から構成される。
(2)前処理工程 :原水中の懸濁物質の除去を行い、後段の一次純水システムに低濁質の原水を安定供給させるための工程である。製造設備は、原水水質や処理水量等ごとに構成は一部異なるが、通常、凝集沈殿装置や砂ろ過塔、活性炭塔、膜前処理設備等から構成される。
(3)一次純水工程 :前処理水に含まれる不純物の除去を行い、一次純水を製造する工程である。製造設備は、イオン交換樹脂塔、RO膜装置、電気再生式イオン交換装置(EDI)、脱気塔、真空脱気塔(VDG)、有機物除去装置(TOC−UV)等から構成される。
(4)超純水工程 :一次純水に含まれる不純物をさらに除去し、要求されている超純水水質まで高める工程である。製造設備は、TOC−UV、非再生型イオン交換樹脂塔(ポリッシャー)、限外ろ過膜(UF)等から構成される。
(5)回収工程 :ユースポイントで使用された純水を回収・再利用する工程である。ユースポイントにより酸・アルカリ系、フッ酸系、有機系等の濃度や種類が異なり、これらの分離・除去装置から構成される。
(Ultra pure water production process, production equipment)
In general, ultrapure water is manufactured by the following steps, and a general ultrapure water manufacturing facility has the following configuration.
(1) Water intake step: This is a step of taking in raw water such as industrial water, well water, and city water. Usually, the manufacturing equipment is composed of a water intake pump, raw water receiving tank, chemical injection equipment and the like.
(2) Pretreatment step: This is a step for removing suspended substances in raw water and stably supplying low-turbid raw water to the primary primary water system in the subsequent stage. The manufacturing equipment is usually composed of a coagulating sedimentation apparatus, a sand filtration tower, an activated carbon tower, a membrane pretreatment equipment, etc., although the construction is partially different depending on the raw water quality and the amount of treated water.
(3) Primary pure water process: This is a process for producing primary pure water by removing impurities contained in pretreated water. The production equipment is composed of an ion exchange resin tower, an RO membrane device, an electric regenerative ion exchange device (EDI), a degassing tower, a vacuum degassing tower (VDG), an organic substance removing device (TOC-UV), and the like.
(4) Ultrapure water process: A process of further removing impurities contained in primary pure water and increasing the required quality of ultrapure water. The manufacturing equipment consists of TOC-UV, non-regenerative ion exchange resin tower (polisher), ultrafiltration membrane (UF), and the like.
(5) Recovery process: A process for recovering and reusing pure water used at the point of use. Depending on the point of use, the concentration and type of acid / alkali, hydrofluoric acid, organic, etc. are different, and these separation / removal devices are used.

本発明の超純水製造に供される原水は、工業用水、井戸水、市水等を原水とし被処理水とすればよい。また、回収工程より回収された純水も原水として再利用することができ、回収された純水を被処理水とすればよい。
次いで、上記(1)の取水工程にて超純水製造プロセスに取り込まれた被処理水は、上記(2)前処理工程に供される。本発明の殺菌剤は、(1)取水工程又は(2)前処理工程にて被処理水に所望量添加することにより、被処理水を殺菌することができる。
The raw water used for the production of ultrapure water of the present invention may be industrial water, well water, city water or the like as raw water to be treated. Moreover, the pure water recovered from the recovery step can be reused as raw water, and the recovered pure water may be used as the water to be treated.
Next, the water to be treated taken into the ultrapure water production process in the (1) water intake step is provided to the (2) pretreatment step. The disinfectant of the present invention can sterilize the water to be treated by adding a desired amount to the water to be treated in (1) water intake step or (2) pretreatment step.

次に、前処理された被処理水は、(3)一次純水工程に供される。ここで、被処理水に含まれる、(2)前処理工程にて除去し切れなかった微粒子、金属イオン、有機物、非金属イオン、コロイド状物質等をRO膜装置にて除去する。
本発明の殺菌剤は、超純水製造工程における(1)〜(5)の被処理水に使用することができ、中でも(1)又は(2)といった(3)の前工程で被処理水に添加するのがよく、特に、(3)一次純水工程を構成するRO膜処理に供する直前にて被処理水に所望量添加して、被処理水を殺菌するとよい。
Next, the pretreated water to be treated is subjected to (3) primary pure water process. Here, (2) fine particles, metal ions, organic substances, non-metal ions, colloidal substances, etc., which are not completely removed in the pretreatment process, are removed by the RO membrane device.
The disinfectant of the present invention can be used for the water to be treated (1) to (5) in the ultrapure water production process, and in particular, the water to be treated in the preceding step (3) such as (1) or (2). In particular, (3) a desired amount may be added to the water to be treated immediately before being subjected to the RO membrane treatment constituting the primary pure water step, and the water to be treated may be sterilized.

(添加量)
本発明の殺菌剤の添加量は、被処理水の水質によっても異なる。通常、本発明の殺菌剤の有効成分濃度が、被処理水に対して、0.01ppm〜5ppmであれはよく、0.1ppm〜1ppmであればより好ましい。また、上記の如く本発明の水溶液の殺菌剤である場合、例えば有効成分濃度が1質量%であれば、添加量は被処理水に対して1ppm〜500ppmであるとよい。
被処理水に添加する殺菌剤の有効成分濃度が0.01ppm〜5ppmであれば、経済的な添加量で十分な殺菌効果を有し、かつ得られる処理水である純水又は超純水の水質も満足することができる。
(Addition amount)
The addition amount of the disinfectant of the present invention varies depending on the quality of the water to be treated. Usually, the active ingredient concentration of the fungicide of the present invention may be 0.01 ppm to 5 ppm, more preferably 0.1 ppm to 1 ppm, relative to the water to be treated. Moreover, when it is the fungicide of the aqueous solution of this invention as mentioned above, for example, if an active ingredient density | concentration is 1 mass%, it is good that the addition amount is 1 ppm-500 ppm with respect to to-be-processed water.
If the active ingredient concentration of the bactericide to be added to the water to be treated is 0.01 ppm to 5 ppm, it has a sufficient bactericidal effect with an economical addition amount and is pure water or ultrapure water that is the treated water to be obtained. The water quality can also be satisfied.

(RO膜装置)
RO膜装置は、低圧ポンプ、高圧ポンプ及びRO膜モジュール、その他付帯設備から構成される。
ここで、RO膜は、被処理液中の一部である分子量の小さい成分、一般には溶媒分子のみを透過させ、大きい分子量である溶質分子を透過させない(濃縮させる)半透膜である。ナノフィルトレーション(NF)膜又はルーズRO膜も広義ではRO膜に含まれる。代表的なRO膜は、上述したCA膜やPA膜といった非対称膜及びポリアミド系、ポリ尿素系の複合膜が挙げられる。
(RO membrane device)
The RO membrane device includes a low pressure pump, a high pressure pump, an RO membrane module, and other incidental equipment.
Here, the RO membrane is a semipermeable membrane that transmits only a component having a low molecular weight, which is a part of the liquid to be treated, generally solvent molecules and does not transmit (concentrate) solute molecules having a large molecular weight. A nanofiltration (NF) film or a loose RO film is also included in the RO film in a broad sense. Typical RO membranes include asymmetric membranes such as the aforementioned CA membrane and PA membrane, and polyamide-based and polyurea-based composite membranes.

RO膜モジュールは、RO膜を平膜モジュール、スパイラルモジュール、中空糸モジュール等から選ばれ、本発明の純水又は超純水の製造では、これらの構成によらず適宜使用することができる。また、原水、所望の造水量、所望の超純水の水質によってRO膜の必要膜面積が設定され、この膜面積に併せてRO膜モジュールの大きさや使用本数が設定される。膜モジュールはベッセルに充填され使用される。ベッセルには1モジュール充填できるものと、複数モジュール充填できるものがある。またベッセルを複数本使用する場合、該ベッセルを並列又は/及び直列に連設して使用してもよい。このとき、ベッセルの連接の仕方をアレーという。例えば、供給水を4つのベッセルに供給し、次いで、その濃縮水を2つのベッセルに供給し、次いで、その濃縮水を1つのベッセルに供給した場合、4−2−1のアレーという。   As the RO membrane module, the RO membrane is selected from a flat membrane module, a spiral module, a hollow fiber module, and the like, and can be appropriately used in the production of pure water or ultrapure water of the present invention regardless of these configurations. Further, the required membrane area of the RO membrane is set according to the raw water, the desired amount of fresh water, and the desired quality of ultrapure water, and the size and number of RO membrane modules used are set in accordance with this membrane area. The membrane module is used by being filled in a vessel. Some vessels can be filled with one module and others can be filled with multiple modules. When a plurality of vessels are used, the vessels may be used in parallel or / and in series. At this time, the way of connecting the vessels is called an array. For example, when supply water is supplied to four vessels, then the concentrated water is supplied to two vessels, and then the concentrated water is supplied to one vessel, it is called an array of 4-2-1.

RO膜装置の運転条件について説明する。運転圧力は、膜の種類によって異なる。現在広く使われているものとしては、通常、30MPa以下で使われる中圧膜、15MPa以下で使われる低圧膜、7.5MPa以下で使われる超低圧膜がある。本発明の殺菌剤は、いずれの膜を使用する場合にも使用することができる。また、運転温度は、膜の耐熱性、寿命、及び通水特性を考慮すると20〜30℃が好ましい。また、水の回収率は、原水、所望の造水量、所望の超純水の水質によって異なるが、通常50〜98%で運転される。なお、回収率は、RO膜の透過(処理)液量を被処理液量で割りパーセントで表示した値である。   The operating conditions of the RO membrane device will be described. The operating pressure depends on the type of membrane. Currently, there are a medium pressure film used at 30 MPa or lower, a low pressure film used at 15 MPa or lower, and an ultra-low pressure film used at 7.5 MPa or lower. The disinfectant of the present invention can be used when any membrane is used. The operating temperature is preferably 20 to 30 ° C. in consideration of the heat resistance, life and water flow characteristics of the membrane. Further, the water recovery rate varies depending on the raw water, the desired water production amount, and the desired ultrapure water quality, but it is usually operated at 50 to 98%. The recovery rate is a value obtained by dividing the RO membrane permeation (treatment) liquid volume by the liquid volume to be treated and expressed as a percentage.

本発明の超純水製造において、本発明の殺菌剤は、所定量を被処理水に対してバッチ式、半バッチ式、連続式に添加することができる。中でも、超純水製造中に、(1)取水工程、(2)前処理工程又は/及び(3)一次純水工程を構成するRO膜処理に供する直前のいずれかで被処理水に所望量の本発明の殺菌剤を連続的に添加し、被処理水を殺菌するのが好ましい。   In the ultrapure water production of the present invention, a predetermined amount of the disinfectant of the present invention can be added to the water to be treated in a batch, semi-batch or continuous manner. Among these, during the production of ultrapure water, the desired amount of water to be treated is either immediately before being subjected to (1) water intake step, (2) pretreatment step or / and (3) RO membrane treatment constituting the primary pure water step. It is preferable to continuously add the bactericidal agent of the present invention to sterilize the water to be treated.

以下に本発明の実施例を示すが、これらにより本発明は何ら制限を受けるものではない。   Examples of the present invention are shown below, but the present invention is not limited by these.

(サンプル採取)
(サンプルA)
神奈川県内における市水(導電率220μS/cm)を原水とし、前処理としてMF膜処理(野村マイクロサイエンス社製、ファインセップを8本使用)し、次いで、RO処理(ダウケミカル社製BW30−400を9本使用、アレー2−1、造水量9.5m3/h、水回収率75%)している現場AのROモジュールを抜き出し、これを解体し、取り出したRO膜を約2cm角に切り出し、これを純水に漬け、これをサンプルAとした。なお、このRO膜は長期間通水したため、RO膜の表面には菌が付着していると考えられる。
(サンプルB)
神奈川県厚木市における市水(導電率190μS/cm)を、前処理としてMF膜処理(野村マイクロサイエンス社製、ファインセップを1本使用)し、さらにRO処理(東レ製、SU−710を8本使用、アレー2−2−1、水回収率70%、造水量1.4m3/h)している現場Bの濃縮側の水を採取し、サンプルBとした。
(サンプルC)
神奈川県における工業用水(導電率272μS/cm)を、前処理として砂ろ過(ろ材:ろ過砂、粒子径0.5mm、SV=10)、次いで活性炭処理(ダイアホープ006、三菱化学(株)製、容量2400L、SV=10)、次いでカチオン樹脂塔(デュオライトC−20、ローム・アンド・ハース(株)製、容量1600リットル、SV=15)、次いでDG塔にて脱気し、次いでアニオン樹脂塔にて処理(デュオライトA113plus、ローム・アンド・ハース(株)製、容量2400リットル、SV=10)したものを、RO処理((株)東レ製、SU720を18本使用、アレー4−2、水回収率75%、造水量18m3/h)している現場Cの濃縮側の水を採取し、サンプルCとした。
(サンプルD)
神奈川県における井戸水(導電率280μS/cm)を、前処理としてMF膜処理(野村マイクロサイエンス社製、ファインセップを2本使用)、RO処理(東レ製、SU−720を2本使用、水回収率50%、造水量1.4m3/h)している現場Dの濃縮側の水を採取し、サンプルDとした。
(サンプルE)
静岡県における井戸水(導電率250μS/cm)をMF膜処理(野村マイクロサイエンス社製、ファインセップを20本使用)したものを、RO処理((株)東レ製SUL−G20を24本使用、アレー4−2、水回収率75%、造水量21m3/h)している現場Eの濃縮側の水を採取し、サンプルEとした。
(Sample collection)
(Sample A)
City water (conductivity 220 μS / cm) in Kanagawa Prefecture is used as raw water, MF membrane treatment (manufactured by Nomura Micro Science Co., Ltd., using 8 fine ceps) as pre-treatment, and then RO treatment (BW 30-400, Dow Chemical Co., Ltd.) 9), array 2-1, water production 9.5m 3 / h, water recovery rate 75%), extract the RO module at the site A, disassemble it, and remove the RO membrane to about 2cm square Cut out and dipped in pure water, this was designated as sample A. In addition, since this RO membrane permeated for a long period of time, it is considered that bacteria are attached to the surface of the RO membrane.
(Sample B)
City water in Atsugi City, Kanagawa Prefecture (conductivity 190μS / cm) is pre-treated with MF membrane treatment (manufactured by Nomura Micro Science Co., Ltd., using one fine cep), and further RO treatment (manufactured by Toray, SU-710 8) Sample B was collected on the concentrated side of the site B where this use, array 2-2-1, water recovery rate 70%, water production amount 1.4 m 3 / h).
(Sample C)
Industrial water in Kanagawa Prefecture (conductivity 272 μS / cm) is pre-treated with sand filtration (filter medium: filtered sand, particle size 0.5 mm, SV = 10), then activated carbon treatment (Dia Hope 006, manufactured by Mitsubishi Chemical Corporation) Capacity 2400L, SV = 10), then cationic resin tower (Duolite C-20, manufactured by Rohm and Haas Co., Ltd., capacity 1600 liters, SV = 15), then degassed in DG tower, then anion resin RO treatment (made by Toray Industries, Inc., using 18 SU720s), array 4-2, processed in a tower (Duolite A113plus, manufactured by Rohm and Haas Co., Ltd., capacity 2400 liters, SV = 10) The water on the concentration side of the site C where the water recovery rate was 75% and the amount of water produced was 18 m 3 / h) was collected and used as sample C.
(Sample D)
Well water in Kanagawa Prefecture (conductivity 280μS / cm), MF membrane treatment (manufactured by Nomura Micro Science Co., Ltd., using two fine ceps), RO treatment (manufactured by Toray, two SU-720s), water recovery Sample D was collected on the concentrated side of the site D where the rate was 50% and the amount of water produced was 1.4 m 3 / h).
(Sample E)
Well water (conductivity 250μS / cm) in Shizuoka Prefecture treated with MF membrane (Nomura Microscience, using 20 fine cep) RO treatment (using 24 SUL-G20 manufactured by Toray Industries, Inc.) 4-2, water recovery rate 75%, water production amount 21 m 3 / h).

(殺菌剤)
殺菌剤は、有効成分濃度が3質量%となるように調製した。なお、かっこ内[X:Y]は薬剤Xと薬剤Yとの配合比(有効成分の質量比)を示す。
殺菌剤1:2−ブロモー2−ニトロプロパンー1,3−ジオール(商品名:ブロノポール、ナガセ化成工業(株)製)とN,N‘−ヘキサメチレンビス(4−カルバモイル−1−デシlピリヂニウム)(商品名:ダイマー38、イヌイ(株)製)との混合[5:5]
殺菌剤2:1,2−ジブロモ−2、4−ジシアノブタン(商品名:テクタメール38、(株)イー・シー・シーインターナショナル製)と塩化ベンザルコニウムとの混合[6:4]
殺菌剤3:DBNPAとN,N‘−ヘキサメチレンビス(4−カルバモイル−1−デシlピリヂニウム)(商品名:ダイマー38、イヌイ(株)製)との混合[4:6]
殺菌剤21:2−ブロモー2−ニトロプロパンー1,3−ジオール(商品名:ブロノポール、ナガセ化成工業(株)製)
殺菌剤22:N,N‘−ヘキサメチレンビス(4−カルバモイル−1−デシlピリヂニウム)(商品名:ダイマー38、イヌイ(株)製)
殺菌剤23:DBNPA
殺菌剤24:2−ブロモー2−ニトロプロパンー1,3−ジオール(商品名:ブロノポール、ナガセ化成工業(株)製)と(5-クロロ−2−メチル−4−イソチゾロリン−3−オンと2−メチル−4−イソチアゾリン−3−オン)との混合[6:4]
殺菌剤25:5-クロロ−2−メチル−4−イソチゾロリン−3−オンと2−メチル−4−イソチアゾリン−3−オンとの混合[5:5]
(Fungicide)
The disinfectant was prepared so that the active ingredient concentration was 3% by mass. [X: Y] in parentheses indicates the compounding ratio of drug X and drug Y (mass ratio of active ingredients).
Bactericide 1: 2-bromo-2-nitropropane-1,3-diol (trade name: bronopol, manufactured by Nagase Kasei Kogyo Co., Ltd.) and N, N′-hexamethylenebis (4-carbamoyl-1-decylpyridinium ) (Product name: Dimer 38, manufactured by Inui Corporation) [5: 5]
Disinfectant 2: Mixing of 1,2-dibromo-2,4-dicyanobutane (trade name: TECTAMER 38, manufactured by EC Sea International Co., Ltd.) and benzalkonium chloride [6: 4]
Bactericidal agent 3: Mixing of DBNPA and N, N′-hexamethylenebis (4-carbamoyl-1-decylpyridinium) (trade name: Dimer 38, manufactured by Inui Corporation) [4: 6]
Disinfectant 21: 2-bromo-2-nitropropane-1,3-diol (trade name: bronopol, manufactured by Nagase Chemical Industries)
Disinfectant 22: N, N′-hexamethylenebis (4-carbamoyl-1-decylpyridine) (trade name: Dimer 38, manufactured by Inui Co., Ltd.)
Disinfectant 23: DBNPA
Disinfectant 24: 2-bromo-2-nitropropane-1,3-diol (trade name: bronopol, manufactured by Nagase Kasei Kogyo Co., Ltd.) and (5-chloro-2-methyl-4-isotizololin-3-one and 2 -Methyl-4-isothiazolin-3-one) [6: 4]
Bactericide 25: Mixing of 5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one [5: 5]

(試験1)殺菌剤の殺菌作用
サンプルA〜Eそれぞれに、殺菌剤1〜3、21〜25のいずれかを10ppmとなるように添加した。このようにしたものを、3日間室温にて放置した。次いで、サンプルAの場合は、寒天培地((株)アテクト社製標準寒天培地)に、菌が付着している面を数分押し付けた。また、放置後のサンプルA〜Eの場合、寒天培地に、それぞれのサンプル水を3滴滴下した。このような処理をした後、寒天培地をインキュベーターに入れ、30℃にて3日間さらに放置した。3日後、寒天培地を取り出し、菌のコロニーの発生具合を観察した。
また、対照実験として、サンプルA〜Eに殺菌剤を添加しなかった以外は上記と同様に、準備した寒天培地上の菌のコロニー発生具合を観察した。
(Test 1) Bactericidal action of bactericide One of bactericides 1-3, 21-25 was added to each of samples A to E so as to be 10 ppm. This was left at room temperature for 3 days. Next, in the case of sample A, the surface to which the bacteria were attached was pressed for several minutes on an agar medium (standard agar medium manufactured by Actec Co., Ltd.). In the case of samples A to E after standing, 3 drops of each sample water was dropped on the agar medium. After such treatment, the agar medium was placed in an incubator and further left at 30 ° C. for 3 days. Three days later, the agar medium was taken out, and the occurrence of fungal colonies was observed.
In addition, as a control experiment, the state of bacterial colonies on the prepared agar medium was observed in the same manner as described above except that no bactericidal agent was added to Samples A to E.

表1〜4に結果を示す。表中の記号は、コロニーの発生状況を示したものである。記号の意味は、コロニー発生量を殺菌剤の無い対照実験と目視にて比較したものである。
◎:コロニーがほとんど発生しなかった。
○:対照実験と比較して、コロニーは半分以下になっていた。
△:対照実験と比較して、コロニー量は減少したが、かなりの菌が生き残っていた。
×:対照実験と比較して、コロニーの減少は見られなかった。
Tables 1 to 4 show the results. The symbols in the table indicate the occurrence of colonies. The meaning of the symbol is a visual comparison of the amount of colonies generated with a control experiment without a bactericide.
A: Almost no colonies were generated.
○: The colonies were less than half compared to the control experiment.
(Triangle | delta): Compared with control experiment, although the amount of colonies decreased, considerable microbe survived.
X: No decrease in colonies was observed as compared with the control experiment.

表1から表5より、化合物A及び化合物Bを混合した殺菌剤1〜3は、どの現場においても、ほぼ十分な殺菌能力を示すことが分かった。
一方、分子内に臭素を含有する殺菌剤、又は分子内にアミノ基を含有する殺菌剤のみを使用した場合では、現場によって効果がある場合と無い場合があり、殺菌剤1〜3と同量の添加量で殺菌効果を有するか否かは実際に使用してみないと判断できす、実用的ではなかった。
From Table 1 to Table 5, it was found that the bactericides 1 to 3 in which the compound A and the compound B were mixed exhibited almost sufficient bactericidal ability at any site.
On the other hand, when only a bactericide containing bromine in the molecule or a bactericide containing an amino group in the molecule is used, it may or may not be effective depending on the site. Whether or not it has a bactericidal effect at the added amount can be judged as not actually used, which is not practical.

また、サンプルAに関する試験結果写真を図1〜4に示す。
図1に示す殺菌剤を用いなかった対照実験では、緑色の小さなコロニー1及び白色の大きなコロニー2が発生していた。
図2に殺菌剤21の実験結果を示す。殺菌剤21によってコロニー2は発生しなかったが、コロニー1は発生していた。また、図3に殺菌剤22の実験結果を示す。殺菌剤22によってコロニー1は発生しなかったが、コロニー2は発生していた。
図4に示す殺菌剤1の実験結果を示す。殺菌剤1を添加した寒天培地には、コロニー1及びコロニー2共にほとんど見られなかった。
Moreover, the test result photograph regarding the sample A is shown in FIGS.
In the control experiment in which the bactericidal agent shown in FIG. 1 was not used, a small green colony 1 and a large white colony 2 were generated.
FIG. 2 shows the experimental results of the disinfectant 21. Although the colony 2 was not generated by the bactericidal agent 21, the colony 1 was generated. Moreover, the experimental result of the bactericidal agent 22 is shown in FIG. Although the colony 1 was not generated by the bactericidal agent 22, the colony 2 was generated.
The experimental result of the disinfectant 1 shown in FIG. 4 is shown. Neither colony 1 nor colony 2 was found on the agar medium supplemented with the fungicide 1.

(試験2)RO膜装置にて実際に長期間適用した場合のデータ
サンプルAを採取した現場Aにおいて、殺菌剤1、殺菌剤21、殺菌剤25を、それぞれ原水に対して10ppmとなるように添加して、RO膜装置による長期における運転を行った。なお、現場AにおけるRO膜装置の設備構成及び運転条件は上記の通りである。
(Test 2) Data when actually applied for a long time with RO membrane device At site A where sample A was collected, disinfectant 1, disinfectant 21, and disinfectant 25 were each 10 ppm relative to the raw water. In addition, long-term operation was performed using the RO membrane device. Note that the equipment configuration and operating conditions of the RO membrane apparatus at the site A are as described above.

図1に、RO膜装置における被処理水入口圧力と濃縮側出口圧力の差圧の経時変化を示す。各通水時間(横軸)において、被処理水入口圧力と濃縮側出口圧力を測定し、その差圧を運転開始時の値で割った増加率(縦軸)を示す。
殺菌剤1を使用した場合、RO膜の詰まりはほとんど起こらなかったため、差圧の増加はほとんど見られず、RO膜モジュールを交換せずに長期運転を行うことができた。
一方殺菌剤を使用しない場合、3ヶ月後菌の繁殖により差圧が大きくなった。また、殺菌剤21、もしくは殺菌剤25を使用した場合、3ヵ月後の差圧を見ると、殺菌剤を用いない場合と比較してRO膜の差圧増加、すなわち詰まりが抑制されるものの、その後差圧は増加傾向にあり、詰まりはとまらなかった。
FIG. 1 shows the change over time in the differential pressure between the treated water inlet pressure and the concentration side outlet pressure in the RO membrane device. In each water flow time (horizontal axis), the treated water inlet pressure and the concentration side outlet pressure are measured, and the rate of increase (vertical axis) obtained by dividing the differential pressure by the value at the start of operation is shown.
When the bactericidal agent 1 was used, the RO membrane was hardly clogged, so the increase in the differential pressure was hardly observed, and a long-term operation could be performed without replacing the RO membrane module.
On the other hand, when no fungicide was used, the differential pressure increased due to the growth of the bacteria after 3 months. In addition, when the bactericidal agent 21 or the bactericidal agent 25 is used, the difference in pressure after three months is observed, but the increase in the RO membrane differential pressure, that is, clogging, is suppressed as compared with the case where the bactericidal agent is not used. After that, the differential pressure tended to increase and clogging did not stop.

サンプルAに殺菌剤を用いなかった対照実験でのコロニー発生状況を示す写真である。It is a photograph which shows the colony generation | occurrence | production situation in the control experiment which did not use a disinfectant for sample A. サンプルAに殺菌剤21を添加した場合のコロニー発生状況を示す写真である。It is a photograph which shows the colony generation | occurrence | production situation at the time of adding the disinfectant 21 to the sample A. サンプルAに殺菌剤22を添加した場合のコロニー発生状況を示す写真である。It is a photograph which shows the colony generation | occurrence | production situation at the time of adding the disinfectant 22 to the sample A. サンプルAに殺菌剤1を添加した場合のコロニー発生状況を示す写真である。It is a photograph which shows the colony generation | occurrence | production situation at the time of adding the disinfectant 1 to the sample A. 現場AでのRO膜装置運転における、差圧(被処理水入口圧力と濃縮側出口圧力の差)の増加率の経時変化を示す図である。It is a figure which shows the time-dependent change of the increase rate of the differential pressure | voltage (difference of to-be-processed water inlet pressure and concentration side outlet pressure) in RO membrane apparatus operation | movement in the spot A.

Claims (5)

分子内に臭素原子を含有する化合物A及び分子内にアミノ基を含有する化合物Bを混合してなる組成物を有効成分とする殺菌剤。   A bactericide comprising as an active ingredient a composition comprising a compound A containing a bromine atom in the molecule and a compound B containing an amino group in the molecule. 化合物A及び化合物Bの混合比率が、質量比で2:8〜8:2であることを特徴とする請求項1に記載の殺菌剤。   The mixing ratio of the compound A and the compound B is 2: 8 to 8: 2 by mass ratio, The disinfectant according to claim 1, 化合物A及び化合物Bの合計の濃度が0.1〜50質量%の水溶液であることを特徴とする、請求項1又は2に記載の殺菌剤。   The disinfectant according to claim 1 or 2, wherein the total concentration of Compound A and Compound B is an aqueous solution having a concentration of 0.1 to 50% by mass. 逆浸透膜装置を用いる純水又は超純水の製造方法において、請求項1〜3のいずれかに記載の殺菌剤を被処理水に添加し、該被処理水を殺菌することを特徴とする純水又は超純水の製造方法。   In the method for producing pure water or ultrapure water using a reverse osmosis membrane device, the bactericidal agent according to any one of claims 1 to 3 is added to the water to be treated, and the water to be treated is sterilized. A method for producing pure water or ultrapure water. 逆浸透膜装置を用いる純水又は超純水の製造方法において、請求項1〜3のいずれかに記載の殺菌剤を該逆浸透膜装置で処理する前の被処理水に添加し、該被処理水を殺菌することを特徴とする純水又は超純水の製造方法。


In a method for producing pure water or ultrapure water using a reverse osmosis membrane device, the bactericidal agent according to any one of claims 1 to 3 is added to water to be treated before being treated by the reverse osmosis membrane device, A method for producing pure water or ultrapure water, which comprises sterilizing treated water.


JP2004275667A 2004-09-22 2004-09-22 Sterilizer, method for producing pure water and extrapure water both by using sterilizer Pending JP2006089402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004275667A JP2006089402A (en) 2004-09-22 2004-09-22 Sterilizer, method for producing pure water and extrapure water both by using sterilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004275667A JP2006089402A (en) 2004-09-22 2004-09-22 Sterilizer, method for producing pure water and extrapure water both by using sterilizer

Publications (1)

Publication Number Publication Date
JP2006089402A true JP2006089402A (en) 2006-04-06

Family

ID=36230719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004275667A Pending JP2006089402A (en) 2004-09-22 2004-09-22 Sterilizer, method for producing pure water and extrapure water both by using sterilizer

Country Status (1)

Country Link
JP (1) JP2006089402A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326029A (en) * 2006-06-07 2007-12-20 Kurita Water Ind Ltd Method and apparatus for manufacturing pure water or ultrapure water
JP2008272667A (en) * 2007-04-27 2008-11-13 Japan Organo Co Ltd Reverse osmosis membrane treatment agent and reverse osmosis membrane treatment method using it
JP2012527350A (en) * 2009-05-18 2012-11-08 ダウ グローバル テクノロジーズ エルエルシー Halogenated amide biocidal compounds and methods of treating aqueous systems from near neutral to high pH
JP2012527351A (en) * 2009-05-18 2012-11-08 ダウ グローバル テクノロジーズ エルエルシー Halogenated amide biocidal compounds and methods of treating aqueous systems from near neutral to high pH
JP2012527352A (en) * 2009-05-18 2012-11-08 ダウ グローバル テクノロジーズ エルエルシー Biofilm control with halogenated amides as biocides
JP2013086046A (en) * 2011-10-20 2013-05-13 Japan Organo Co Ltd Slime prevention method for separation membrane and slime prevention device for the separation membrane
WO2022153831A1 (en) * 2021-01-13 2022-07-21 栗田工業株式会社 Agent for suppressing biofouling in reverse osmosis membrane treatment and water treatment method
EP3995519A4 (en) * 2019-07-05 2023-08-09 Sumitomo Seika Chemicals Co., Ltd. Method for producing water absorbent resin particles and aqueous monomer solution

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326029A (en) * 2006-06-07 2007-12-20 Kurita Water Ind Ltd Method and apparatus for manufacturing pure water or ultrapure water
JP4720630B2 (en) * 2006-06-07 2011-07-13 栗田工業株式会社 Method and apparatus for producing pure water or ultrapure water
JP2008272667A (en) * 2007-04-27 2008-11-13 Japan Organo Co Ltd Reverse osmosis membrane treatment agent and reverse osmosis membrane treatment method using it
JP2012527350A (en) * 2009-05-18 2012-11-08 ダウ グローバル テクノロジーズ エルエルシー Halogenated amide biocidal compounds and methods of treating aqueous systems from near neutral to high pH
JP2012527351A (en) * 2009-05-18 2012-11-08 ダウ グローバル テクノロジーズ エルエルシー Halogenated amide biocidal compounds and methods of treating aqueous systems from near neutral to high pH
JP2012527352A (en) * 2009-05-18 2012-11-08 ダウ グローバル テクノロジーズ エルエルシー Biofilm control with halogenated amides as biocides
JP2013086046A (en) * 2011-10-20 2013-05-13 Japan Organo Co Ltd Slime prevention method for separation membrane and slime prevention device for the separation membrane
EP3995519A4 (en) * 2019-07-05 2023-08-09 Sumitomo Seika Chemicals Co., Ltd. Method for producing water absorbent resin particles and aqueous monomer solution
WO2022153831A1 (en) * 2021-01-13 2022-07-21 栗田工業株式会社 Agent for suppressing biofouling in reverse osmosis membrane treatment and water treatment method
JP2022108669A (en) * 2021-01-13 2022-07-26 栗田工業株式会社 Bio-fouling inhibitor in reverse osmosis membrane treatment and water treatment method
JP7131640B2 (en) 2021-01-13 2022-09-06 栗田工業株式会社 Biofouling inhibitor and water treatment method in reverse osmosis membrane treatment

Similar Documents

Publication Publication Date Title
TWI532525B (en) Combined chlorine agent, preparation method thereof, and use thereof
EP2609990B1 (en) Method for preventing microbial growth on filtration membrane
CN101983176A (en) Environmentally friendly hybrid microbiological control technologies for cooling towers
CN104014247A (en) Sterilization method capable of preventing reverse osmosis membrane from being polluted and plugged by microbe
JP5190908B2 (en) Water treatment method and water treatment apparatus
JP2009183825A (en) Water treatment apparatus
Qrenawi et al. A review on sources, types, mechanisms, characteristics, impacts and control strategies of fouling in RO membrane systems
Allaoui et al. Recent developments in functionalized polymer NF membranes for biofouling control
JP2006089402A (en) Sterilizer, method for producing pure water and extrapure water both by using sterilizer
JP2006015236A (en) Apparatus and method for preparing regenerated water
JP2009028724A (en) Method for water treatment and apparatus for water treatment
JP2005342664A (en) Method for producing mineral water
JP6252297B2 (en) Forward osmosis treatment method and forward osmosis treatment apparatus
JP2011088151A (en) Apparatus and method for preparing regenerated water
WO2005123233A1 (en) Storage solution for fluid separator and/or membrane element, fluid separator and membrane element, and method of storing the same
JP5093883B2 (en) Separation membrane modification method and apparatus, separation membrane modified by the method, and separation membrane operation method and apparatus
JP2001029752A (en) Manufacture of high-purity water and device therefor
EP3240622B1 (en) Multifunctional method for membrane protection and biofouling control
JP2005185985A (en) Method and apparatus for producing water
JP2000300966A (en) Membrane sterilization method and membrane separation device
JP3087750B2 (en) Sterilization method of membrane
JP3269496B2 (en) Sterilization method and fresh water method of membrane
Pavlova Study on the cleaning of new ultrafiltration spiral-woundmodules to prevent membrane fouling (including biological fouling)
JP2004244345A (en) Fungicide for water treatment, method for water treatment and apparatus for water treatment
JP6777130B2 (en) Membrane water treatment chemicals and membrane treatment methods