JP2006088162A - Linear heating deformation method for steel sheet - Google Patents

Linear heating deformation method for steel sheet Download PDF

Info

Publication number
JP2006088162A
JP2006088162A JP2004273028A JP2004273028A JP2006088162A JP 2006088162 A JP2006088162 A JP 2006088162A JP 2004273028 A JP2004273028 A JP 2004273028A JP 2004273028 A JP2004273028 A JP 2004273028A JP 2006088162 A JP2006088162 A JP 2006088162A
Authority
JP
Japan
Prior art keywords
steel sheet
heating
deformation
deformed
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004273028A
Other languages
Japanese (ja)
Other versions
JP4733950B2 (en
Inventor
Tadashi Kasuya
正 糟谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004273028A priority Critical patent/JP4733950B2/en
Publication of JP2006088162A publication Critical patent/JP2006088162A/en
Application granted granted Critical
Publication of JP4733950B2 publication Critical patent/JP4733950B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating deformation method mainly applicable in the case a welded structure for a vessel is produced, where a steel sheet having properties capable of obtaining a large heat deformation quantity in accordance with a heating deformation form even under the same heating conditions is selected, and the steel sheet can be bent to an objective shape at an operating efficiency higher than the conventional case. <P>SOLUTION: Regarding the linear heating deformation method for a steel sheet, in a linear heating deformation method where the surface or back face of a steel sheet is linearly heated by a gas burner and is thereafter water-cooled, so as to be angularly deformed or horizontally deformed, as the steel sheet to be angularly deformed, a steel sheet whose yield strength at 600°C is ≥1/3 of the yield strength in room temperature is used, and, as the steel sheet to be horizontally deformed, a steel sheet whose yield strength in room temperature is ≤80% of its tensile strength is used. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、造船分野などにおいて、複数の曲率面を有する鋼板を溶接して流線形状の溶接構造体を製造する際に適用される鋼板の加熱変形方法に関し、特にガスバーナーにより鋼板の表面または裏面を線状に加熱後、水冷して鋼板を変形加工する際の作業効率を向上させる鋼板の線状熱変形方法に関するものである。   The present invention relates to a method for heating and deforming a steel sheet applied when manufacturing a streamline-shaped welded structure by welding steel sheets having a plurality of curvature surfaces in the shipbuilding field and the like. The present invention relates to a linear thermal deformation method for a steel sheet that improves work efficiency when the back surface is linearly heated and then cooled by water to deform the steel sheet.

造船分野における船殻などの船舶構造体は、航海中の水流抵抗を少なくするために外面が連続したなめらかな曲率面とする必要があり、予め鋼板を所定形状に曲げ加工した後、鋼板の端面同士を溶接して連続したなめらかな曲率面を有する溶接構造体とする。   Ship structures such as hulls in the shipbuilding field need to have a smooth surface with a continuous outer surface in order to reduce water flow resistance during voyage. A welded structure having a smooth and continuous curvature surface is formed by welding each other.

この鋼板の曲げ加工は、船舶構造体の部位によって複雑かつ微妙な曲率に加工する必要があるため、単純かつ画一的なプレス加工などでは対処できず、通常は線状加熱変形による曲げ加工が行われている。この線状加熱変形は、ガスバーナー等を用いて鋼板を線状に局所加熱し、加熱部分が熱膨張しその周囲からの拘束により塑性変形させ、通常は作業効率を高めるために加熱直後に水冷を行う方法である。   Since this steel plate needs to be bent with a complex and delicate curvature depending on the part of the ship structure, it cannot be handled by simple and uniform press work. Has been done. In this linear heating deformation, the steel sheet is locally heated linearly using a gas burner or the like, and the heated portion is thermally expanded and plastically deformed by restraint from its surroundings. Usually, water cooling is performed immediately after heating to increase work efficiency. It is a method to do.

実際の船舶構造体の製造では、なめらかな曲率面を得るために鋼板面の複数箇所を線状加熱変形させ、かつ一箇所の線状加熱変形には複数回の線状加熱、水冷を繰り返し行い、また、これらは全て熟練者の勘や技能により行うため、1つの鋼板を所定形状に曲げ加工させるために5日以上の時間を要する場合がある。このため、造船コスト低減および製造日数の短縮の点から、鋼板の線状加熱変形による曲げ加工における作業効率の向上および自動化が従来から検討されている。   In the actual production of ship structures, in order to obtain a smooth curvature surface, a plurality of locations on the steel sheet surface are linearly heated and deformed, and a single linear heating deformation is repeated a plurality of times of linear heating and water cooling. In addition, since these are all performed by the intuition and skill of the skilled person, it may take 5 days or more to bend one steel plate into a predetermined shape. For this reason, from the viewpoint of reducing shipbuilding costs and the number of manufacturing days, improvement of work efficiency and automation in bending work by linear heat deformation of steel sheets have been studied.

近年、鋼板の線状加熱変形による曲げ加工の作業効率向上、さらには自動化を狙って、有限要素法(FEM)による数値解析を用いて鋼板を線状加熱変形させる際の熱変形を予測し、目的とする形状に変形するための加熱条件を決定する方法が提案されている(例えば、特許文献1、特許文献2参照)。しかし、有限要素法(FEM)の数値解析による推定式の精度が充分でないため、これに基づき設定された加熱条件では目的形状とならないことがあり、作業環境や加熱条件の変更に合わせてその都度推定式を修正しなければならず、未だに自動化は実現されていない。   In recent years, with the aim of improving the work efficiency of bending work by linear heat deformation of steel plates, and further aiming for automation, predicting the heat deformation at the time of linear heat deformation of steel plates using numerical analysis by the finite element method (FEM), A method for determining a heating condition for deformation into a target shape has been proposed (see, for example, Patent Document 1 and Patent Document 2). However, since the accuracy of the estimation formula by numerical analysis of the finite element method (FEM) is not sufficient, the target shape may not be obtained under the heating conditions set based on this, and each time according to changes in the work environment and heating conditions. The estimation formula must be corrected, and automation has not yet been realized.

また、鋼板の成分組成及び組織に依存する機械的特性と線状加熱変形との関係について詳しくは解明されておらず、同じ加熱条件で線状加熱変形する場合であっても鋼板によっては、目的形状に対して実際の変形形状が大きくばらつくことがある。
このような従来技術の現状から、鋼板の線状加熱変形による曲げ加工の加熱変形を安定して制御し、さらに作業効率を向上させる方法が望まれている。
In addition, the relationship between the mechanical properties depending on the composition and structure of the steel sheet and the linear heating deformation has not been elucidated in detail, and even if the linear heating deformation occurs under the same heating conditions, depending on the steel sheet, The actual deformed shape may vary greatly with respect to the shape.
From such a state of the art, there is a demand for a method for stably controlling the heating deformation of the bending process by the linear heating deformation of the steel sheet and further improving the working efficiency.

特開平09−285823号公報JP 09-285823 A 特開平09−323129号公報JP 09-323129 A

これら従来技術の問題点に鑑み、本発明は、主として複雑かつ微妙な曲率面を有する船舶用溶接構造体を製造する場合に適用され、同一加熱条件でも加熱変形形態に応じて大きな熱変形量が得られる特性を有する鋼板を選定し、従来に比べて高い作業能率で鋼板を目標形状に曲げ加工できる加熱変形方法を提供することを目的とする。   In view of these problems of the prior art, the present invention is mainly applied when manufacturing a marine welded structure having a complicated and delicate curvature surface, and a large amount of thermal deformation is caused depending on the heating deformation form even under the same heating condition. An object of the present invention is to provide a heating deformation method capable of selecting a steel plate having the obtained characteristics and bending the steel plate into a target shape with a higher work efficiency than in the past.

本発明者らは、以上の観点から、これまでまったく試みられていなかった、鋼板の特性に着目し、その熱変形特性を鋭意研究してきた。そして、熱加工にあう鋼材の特性を規定することにより、これまでにない高能率な熱加工方法を見出すにいたった。本発明は、このような研究によってなされたものであり、その要旨は以下のとおりである。   From the above viewpoint, the present inventors have intensively studied the thermal deformation characteristics of the steel sheet, focusing on the characteristics of the steel sheet, which has never been attempted. And by defining the characteristics of the steel materials that are suitable for thermal processing, the inventors have found an unprecedented highly efficient thermal processing method. This invention is made | formed by such a research, The summary is as follows.

(1) ガスバーナーにより鋼板の表面または裏面を線状に加熱し、水冷して鋼板を曲げ変形させる線状加熱変形方法において、600℃における降伏強度が室温における降伏強度の1/3以上である鋼板を用いて、該鋼板面を前記ガスバーナーで線状加熱し、線状加熱領域における厚み方向の加熱面側の横収縮量が非加熱面側に比べて増加する角変形をさせることを特徴とする鋼板の線状加熱変形方法。   (1) In a linear heating deformation method in which the surface or the back surface of a steel sheet is linearly heated by a gas burner, and the steel sheet is bent and deformed by water cooling, the yield strength at 600 ° C. is 1/3 or more of the yield strength at room temperature. Using a steel plate, the steel plate surface is linearly heated with the gas burner, and the lateral deformation amount on the heating surface side in the thickness direction in the linear heating region is increased in angular deformation as compared with the non-heating surface side. A method for linearly heating and deforming a steel sheet.

(2) 前記角変形させる鋼板がベイナイト相を面積率で70%以上含有する組織であることを特徴とする前記(1)記載の鋼板の線状加熱変形方法。   (2) The method for linearly heating and deforming a steel sheet according to (1), wherein the angularly deformed steel sheet has a structure containing a bainite phase in an area ratio of 70% or more.

(3) 前記角変形させる鋼板が、質量%で、C:0.001〜0.10%、Si:0.02〜0.60%、Mn:0.80〜3.0%を含有し、P:0.03%以下、S:0.02%以下に制限し、さらに、Nb:0.005〜0.20%、Ti:0.005〜0.20%、V:0.005 〜0.20%、および、Mo:0.05〜0.5%を1種または2種以上含有し、残部が鉄および不可避的不純物であることを特徴とする前記(1)または(2)記載の鋼板の線状加熱変形方法。   (3) The steel sheet to be angularly deformed contains, in mass%, C: 0.001 to 0.10%, Si: 0.02 to 0.60%, Mn: 0.80 to 3.0%, P: 0.03% or less, S: 0.02% or less, Nb: 0.005-0.20%, Ti: 0.005-0.20%, V: 0.005-0 .20% and Mo: 0.05 to 0.5%, or one or more, and the balance is iron and unavoidable impurities as described in (1) or (2) above A method of linearly heating and deforming steel sheets.

(4) 前記角変形させる鋼板が、質量%で、さらに、B:0.0003〜0.0050%を含有することを特徴とする前記(1)〜(3)の何れかに記載の鋼板の線状加熱変形方法。   (4) The steel sheet according to any one of (1) to (3), wherein the steel sheet to be angularly deformed further contains B: 0.0003 to 0.0050% in mass%. Linear heating deformation method.

(5) 前記角変形させる鋼板が、質量%で、さらに、Al:0.01〜0.10%を含有することを特徴とする前記(1)〜(4)の何れかに記載の鋼板の線状加熱変形方法。   (5) The steel sheet according to any one of (1) to (4), wherein the steel sheet to be angularly deformed further contains Al: 0.01 to 0.10% in mass%. Linear heating deformation method.

(6) 前記角変形させる鋼板が、質量%で、さらに、Cu:0.5〜2.0%、Ni:0.1〜2.0%、Cr:0.05〜0.5%、W:0.05〜0.5%、および、Zr:0.05〜0.5%を1種または2種以上含有することを特徴とする前記(1)〜(5)の何れかに記載の鋼板の線状加熱変形方法。   (6) The steel plate to be angularly deformed is in mass%, and Cu: 0.5 to 2.0%, Ni: 0.1 to 2.0%, Cr: 0.05 to 0.5%, W : 0.05 to 0.5%, and Zr: 0.05 to 0.5%, or one or more, containing any one of (1) to (5) A method of linearly heating and deforming steel sheets.

(7) 前記角変形させる鋼板が、質量%で、さらに、REM:0.001〜0.02%、および、Ca:0.0005〜0.02%の1種または2種を含有することを特徴とする前記(1)〜(6)の何れかに記載の鋼板の線状加熱変形方法。   (7) The steel plate to be angularly deformed contains, by mass%, REM: 0.001 to 0.02% and Ca: 0.0005 to 0.02%, or one or two of them. The method of linearly heating and deforming a steel sheet according to any one of (1) to (6), wherein

(8) ガスバーナーにより鋼板の表面または裏面を線状に加熱し、水冷して鋼板を曲げ変形させる加熱変形方法において、室温における降伏強度が引っ張り強度の80%以下である鋼板を用いて、該鋼板面を鋼板の何れか一辺に対して略垂直な方向に前記ガスバーナーで線状加熱し、線状加熱方向およびその垂直方向に線状加熱領域と非加熱領域を形成した後、線状加熱領域における厚み方向の横収縮量が均一になる横変形をさせることを特徴とする鋼板の線状加熱変形方法。   (8) In a heating deformation method in which the front or back surface of a steel sheet is linearly heated by a gas burner, and the steel sheet is bent and deformed by water cooling, using a steel sheet whose yield strength at room temperature is 80% or less of the tensile strength, The steel plate surface is linearly heated by the gas burner in a direction substantially perpendicular to one side of the steel plate, and the linear heating region and the non-heated region are formed in the linear heating direction and the vertical direction, and then linear heating is performed. A method of linearly heating and deforming a steel sheet, wherein the transverse deformation is performed so that the amount of lateral shrinkage in the thickness direction in the region is uniform.

(9) 前記横変形させる鋼板がフェライトパーライト相を面積率で30〜70%含有するフェライトパーライト相とベイナイト相の混合組織であることを特徴とする前記(8)に記載の鋼板の線状加熱変形方法。   (9) The linear heating of the steel sheet according to (8), wherein the steel sheet to be laterally deformed is a mixed structure of a ferrite pearlite phase and a bainite phase containing a ferrite pearlite phase in an area ratio of 30 to 70%. Deformation method.

(10) 前記横変形させる鋼板が、質量%で、C:0.05〜0.18%、Si:0.05〜0.6%、Mn:0.5〜2.0%を含有し、P:0.03%以下、S:0.03%以下に制限し、残部が鉄および不可避不純物であることを特徴とする前記(8)または(9)に記載の鋼板の線状加熱変形方法。   (10) The steel sheet to be laterally deformed contains, in mass%, C: 0.05 to 0.18%, Si: 0.05 to 0.6%, Mn: 0.5 to 2.0%, P: 0.03% or less, S: 0.03% or less, the balance being iron and inevitable impurities, the method for linearly heating and deforming a steel sheet according to (8) or (9) above .

(11) 前記横変形させる鋼板が、質量%で、さらに、Ni:0.1〜2.0%、Cu:0.1〜0.5%、Cr:0.05〜0.5%を1種または2種以上含有することを特徴とする前記(8)〜(10)の何れかに記載の鋼板の線状加熱変形方法。   (11) The steel plate to be laterally deformed is in mass%, and further, Ni: 0.1 to 2.0%, Cu: 0.1 to 0.5%, Cr: 0.05 to 0.5% 1 The method of linearly heating and deforming a steel sheet according to any one of the above (8) to (10), comprising a seed or two or more kinds.

本発明によれば、主として複雑かつ微妙な曲率面を有する船舶用溶接構造体を製造する場合に適用され、これまで多くの加熱・冷却作業工程を繰り返し行う必要があった加熱変形における作業工程を少なくし、従来に比べて作業効率を飛躍的に向上することができるため、本発明による造船分野など産業上の貢献は非常に多大である。   According to the present invention, a work process in heating deformation, which is mainly applied when manufacturing a marine welded structure having a complicated and subtle curvature surface, has been required to repeatedly perform many heating and cooling work processes so far. The working efficiency can be dramatically improved as compared with the prior art, and the industrial contribution such as the shipbuilding field according to the present invention is very large.

以下に、本発明を詳細に説明する。   The present invention is described in detail below.

一般に船舶用溶接構造体の製造において主として用いられる鋼板の線状加熱変形による曲げ加工は、概略以下のように行われる。   In general, bending by linear heating deformation of a steel plate mainly used in the manufacture of a marine welded structure is performed as follows.

つまり、通常ガスバーナー等の加熱源を用いて鋼板の表面または裏面の所定位置を900℃以上の温度まで線状に局所加熱し、加熱部分が熱膨張し、その周囲(非加熱部分)からの拘束により塑性変形させる。この際、通常作業効率を高めるために加熱による塑性変形後、水冷が行われる。この際、鋼板の線状加熱部分の塑性変形、つまり、塑性ひずみの発生は、加熱温度域での鋼板の降伏強度に依存する。例えば、高温での降伏強度が高い鋼板の場合は同じ加熱条件でも塑性ひずみ発生がし難くなり、鋼板は変形しにくくなる。また、加熱源の強度や移動速度、複数箇所を線状加熱する際には加熱部同士の間隔などの加熱条件により、鋼板の加熱変形形態が異なるため、変形の形状が変わる。実際の船舶溶接構造体を製造する際には、1つの鋼板の複数箇所について線状加熱、水冷を繰り返し行い、それぞれ所定量曲げ変形させてなめらかな曲率面を有する目的形状の曲げ加工を達成できる。   In other words, a predetermined position on the front or back surface of the steel sheet is usually locally heated linearly to a temperature of 900 ° C. or higher using a heating source such as a gas burner, and the heated portion expands thermally from the surrounding (non-heated portion). It is plastically deformed by restraint. At this time, water cooling is performed after plastic deformation by heating in order to increase normal working efficiency. Under the present circumstances, the plastic deformation of the linear heating part of a steel plate, ie, generation | occurrence | production of a plastic strain, is dependent on the yield strength of the steel plate in a heating temperature range. For example, in the case of a steel plate having a high yield strength at a high temperature, plastic strain hardly occurs even under the same heating conditions, and the steel plate is difficult to deform. In addition, when the heating source is heated and deformed, the shape of the deformation changes depending on the heating conditions such as the strength and moving speed of the heating source, and the heating conditions such as the interval between the heating parts. When manufacturing an actual ship welded structure, it is possible to achieve bending of a desired shape having a smooth curvature surface by repeatedly performing linear heating and water cooling on a plurality of locations on a single steel plate, and bending them by a predetermined amount. .

一般に鋼板が加熱変形する際の変形形態は、面外変形と面内変形の大きく2種類に分類され、これらの内、線状加熱による曲げ加工は主として面外変形を利用する。   In general, deformation forms when a steel sheet is thermally deformed are roughly classified into two types, an out-of-plane deformation and an in-plane deformation. Among these, bending by linear heating mainly uses out-of-plane deformation.

面外変形の代表例は図1−(B)に示される角変形であり、鋼板の板厚方向で何れか一方の鋼板面側の横収縮量が他方の鋼板面側に比べて大きくなる、つまり、表裏面側の横収縮量の差が相対的に大きくなる場合に生じ、鋼板は相対的に横収縮量の大きい鋼板面側(この場合は鋼板表面側)に屈曲する。ここで、横収縮量とは、線状加熱方向に対して垂直な方向(横方向)の収縮を意味する。   A representative example of out-of-plane deformation is the angular deformation shown in FIG. 1- (B), and the amount of lateral shrinkage on either one of the steel sheet surfaces is greater than that on the other steel sheet surface side in the sheet thickness direction of the steel sheet. That is, it occurs when the difference in lateral shrinkage between the front and back surfaces becomes relatively large, and the steel sheet bends toward the steel sheet surface side (in this case, the steel sheet surface side) with a relatively large lateral shrinkage. Here, the amount of lateral contraction means contraction in a direction perpendicular to the linear heating direction (lateral direction).

一方、面内変形の代表例として、図1−(A)に示される横変形が知られている。横変形は、角変形の場合とは対象的に、鋼板の板厚方向の表裏面側での横収縮量の差が小さい場合、つまり、鋼板の板厚方向での横収縮量がほぼ均一な場合に生じる。この際、鋼板の線状加熱方向の全長を線状加熱し、加熱領域を形成する場合は、図1−(A)に示されるように、加熱領域において横変形が生じ、鋼板の線状加熱方向に対し垂直な方向(横方向)の長さが短くなる面内変形が生じる。   On the other hand, as a representative example of in-plane deformation, a lateral deformation shown in FIG. 1- (A) is known. In contrast to the case of angular deformation, the lateral deformation is a case where the difference in lateral shrinkage between the front and back surfaces in the sheet thickness direction of the steel sheet is small, that is, the lateral shrinkage in the sheet thickness direction of the steel sheet is substantially uniform. Occurs in some cases. At this time, when the entire length of the steel sheet in the linear heating direction is linearly heated to form a heating region, lateral deformation occurs in the heating region, as shown in FIG. In-plane deformation occurs in which the length in the direction perpendicular to the direction (lateral direction) is shortened.

但し、この横変形を利用して、面外変形させることも可能であり、実際の鋼板の線状加熱変形による曲げ加工において用いられている。例えば、図2は、長方形の鋼板の辺1および辺2に対して略垂直な方向に線状加熱し、線状加熱方向の中央部(非加熱領域)を除く辺1および辺2の両側に線状加熱領域3(図中のハッチング部分)を形成し、かつ辺1および辺2の両側に複数の線状加熱領域3を間隔的に形成した実施形態を示す。この場合は、鋼板の辺1および辺2の両側に形成された線状加熱領域3において横変形が生じ、中央部(非加熱領域)に対して鋼板の辺1および辺2の両側(線状加熱領域3)の横方向(線状加熱方向に対して垂直な方向)の長さが相対的に短くなることで面外変形は発生する。   However, this lateral deformation can be used to perform out-of-plane deformation, and is used in bending work by linear heating deformation of an actual steel plate. For example, FIG. 2 shows a linear heating in a direction substantially perpendicular to sides 1 and 2 of a rectangular steel plate, and on both sides of sides 1 and 2 except for the central portion (non-heated region) in the linear heating direction. An embodiment in which a linear heating region 3 (hatched portion in the figure) is formed and a plurality of linear heating regions 3 are formed at intervals on both sides of the side 1 and the side 2 is shown. In this case, lateral deformation occurs in the linear heating region 3 formed on both sides of the side 1 and side 2 of the steel plate, and both sides of the side 1 and side 2 of the steel plate (linear shape) with respect to the central portion (non-heating region). Out-of-plane deformation occurs when the length of the heating region 3) in the lateral direction (direction perpendicular to the linear heating direction) becomes relatively short.

図3の実施形態では、線状加熱方向の中央部に非加熱領域を形成し、鋼板の辺1および辺2の両側に複数の線状加熱領域3を間隔的に形成する例を示すが、線状加熱方向に形成する非加熱領域および線状加熱領域3の位置、横方向(線状加熱方向に対して垂直な方向)に形成する線状加熱領域3の個数および間隔有無などの条件は、目的とする曲げ形状に応じて適宜設定すれば良い。   In the embodiment of FIG. 3, an example is shown in which a non-heated region is formed at the center in the linear heating direction, and a plurality of linear heating regions 3 are formed at intervals on both sides of the side 1 and the side 2 of the steel plate. Conditions such as the position of the non-heating region and the linear heating region 3 formed in the linear heating direction, the number of the linear heating regions 3 formed in the lateral direction (a direction perpendicular to the linear heating direction), and the presence or absence of a gap are as follows. What is necessary is just to set suitably according to the target bending shape.

このように横変形の利用により鋼板の面外変形は可能であり、図2に示す例では、方向4から鋼板形状を観察すると、図3に示すような形状になり、角変形に類似した形状に見える。しかし、図2に示すように鋼板の横変形の利用による面外変形は、非加熱領域である鋼板中央部に比べて加熱領域である辺1および辺2の付近の長さが横変形により短くなる。これに対して鋼板の角変形の利用による面外変形は、例えば、図4示すように鋼板中央部に線状加熱領域3’を配置し、図5に示すように表裏面で大きさが異なる横収縮を生じさせ、方向4’から観察すると横収縮が相対的に小さい側に鋼板を曲げ変形させる。このため、図4において、鋼板中央部に対して辺1’および辺2’の付近の長さはほとんど変化しない。このように鋼板の横変形の利用による面外変形は、鋼板の角変形の利用による面外変形とは、厳密には変形により得られる形状が異なるものである。   Thus, the out-of-plane deformation of the steel plate is possible by utilizing the lateral deformation. In the example shown in FIG. 2, when the steel plate shape is observed from the direction 4, the shape shown in FIG. 3 is obtained, which is similar to the angular deformation. Looks like. However, as shown in FIG. 2, the out-of-plane deformation due to the use of the lateral deformation of the steel sheet is shorter due to the lateral deformation in the vicinity of the side 1 and the side 2 as the heating region than in the central part of the steel plate as the non-heating region. Become. On the other hand, the out-of-plane deformation due to the use of the angular deformation of the steel plate, for example, arranges a linear heating region 3 ′ at the center of the steel plate as shown in FIG. When the transverse shrinkage is caused and observed from the direction 4 ', the steel sheet is bent and deformed to the side where the transverse shrinkage is relatively small. For this reason, in FIG. 4, the lengths in the vicinity of the side 1 'and the side 2' with respect to the central portion of the steel plate hardly change. As described above, the out-of-plane deformation by using the lateral deformation of the steel sheet is strictly different from the out-of-plane deformation by using the angular deformation of the steel sheet.

なお、上記の説明において横変形とは、線状加熱方向に対して垂直な方向での面内変形を意味する。実際の鋼板の線状加熱では、横変形の他に、線状加熱方向での面内変形を意味する縦変形も存在する。しかし、縦変形は、横変形に比べて面内変形量が非常に小さいため、鋼板を目的形状に曲げ加工するには、線状加熱変形において角変形と横変形を考慮すればよい。   In the above description, lateral deformation means in-plane deformation in a direction perpendicular to the linear heating direction. In actual linear heating of a steel sheet, in addition to lateral deformation, there is also vertical deformation that means in-plane deformation in the linear heating direction. However, since the longitudinal deformation has a very small in-plane deformation amount compared to the lateral deformation, in order to bend the steel sheet into the target shape, it is only necessary to consider angular deformation and lateral deformation in the linear heating deformation.

従来、上述した鋼板の線状加熱変形の自動化を目的に、加熱源の強度や移動速度、加熱部の間隔などの加熱条件や鋼板変形特性などから変形量を予測し、目的形状に曲げ加工するために必要な加熱条件を決定する方法が試みられている。しかし、予測モデルの精度が十分でないため、現状の鋼板線状加熱変形による曲げ加工のほとんどは、熟練者の勘や技能により行なわれている。また、1つの鋼板を線状加熱変形によりなめらかな曲率形状に曲げ加工させるためには複雑なもので5日以上の時間を要するため、作業効率の向上が望まれている。   Conventionally, for the purpose of automating the linear heating deformation of the steel plate described above, the deformation amount is predicted from the heating conditions such as the strength and moving speed of the heating source, the heating unit interval, and the deformation characteristics of the steel plate, and bent into the target shape. Attempts have been made to determine the heating conditions necessary for this purpose. However, since the accuracy of the prediction model is not sufficient, most of the current bending work by the steel wire linear heat deformation is performed by the intuition and skill of a skilled person. Moreover, since it is complicated and requires more than 5 days to bend a single steel plate into a smooth curvature shape by linear heating deformation, improvement of work efficiency is desired.

本発明者らは、上記現状を踏まえ、従来、線状加熱変形を制御するうえで十分な検討がなされていなかった加熱変形形態(角変形または横変形)に及ぼす鋼板特性の影響に着目し、鋼板特性をもとに線状加熱変形時の作業効率向上を図る方法について鋭意検討した。   Based on the above-mentioned present situation, the present inventors pay attention to the influence of the steel sheet characteristics on the heating deformation mode (angular deformation or lateral deformation) that has not been sufficiently studied to control linear heat deformation, Based on the characteristics of the steel plate, we have intensively studied how to improve the working efficiency during linear heating deformation.

その結果、以下に示すように、角変形または横変形の加熱変形形態に応じて鋼板特性を最適化することが鋼板の線状加熱変形における作業効率向上のために有効であることを知見した。   As a result, as shown below, it was found that optimizing the steel sheet characteristics according to the heating deformation mode of angular deformation or lateral deformation is effective for improving the working efficiency in linear heating deformation of the steel sheet.

(1)引張強度(TS)に対する降伏強度(YP)の比(YP/TS)、つまり降伏比(YR)が80%以下の鋼板では、線状加熱時に同じ加熱条件でも直接加熱面側に比べて温度が低くなる非加熱面側の塑性ひずみ発生量を十分に増加し、線状加熱領域の厚み方向において板厚方向の表裏面側での横収縮量を均一に増加させ、主として鋼板の横変形を効率的に発生させることができる。また、この鋼板を用いて、図2に示すように、鋼板の何れか一辺に対して略垂直な方向にガスバーナーで線状加熱し、線状加熱方向およびその垂直方向に線状加熱領域(図2の場合は鋼板の両端部側に複数箇所形成)と非加熱領域(図2の場合は鋼板の中央部に形成)を形成した後、線状加熱領域での横変形の発生を促進させることで鋼板の曲げ変形量を増加できる。したがって、前記降伏比(YR)が80%以下の鋼板を適用することにより、線状加熱時の加熱条件を変更することなく、図1−(A)に示されるような鋼板の横変形を主体とした線状加熱変形における変形量を増加させ、図2に示すような曲げ変形の作業効率を向上することが可能となる。   (1) Ratio of yield strength (YP) to tensile strength (TS) (YP / TS), that is, a steel sheet with a yield ratio (YR) of 80% or less, compared with the direct heating surface side even under the same heating conditions during linear heating. The amount of plastic strain generated on the non-heated surface side where the temperature decreases is sufficiently increased, and the amount of lateral shrinkage on the front and back sides in the plate thickness direction is increased uniformly in the thickness direction of the linear heating region. Deformation can be generated efficiently. Further, using this steel plate, as shown in FIG. 2, linear heating is performed with a gas burner in a direction substantially perpendicular to any one side of the steel plate, and a linear heating region ( In the case of FIG. 2, after forming a plurality of locations on both ends of the steel plate and a non-heated region (in the case of FIG. 2, formed at the center of the steel plate), the occurrence of lateral deformation in the linear heating region is promoted. Thus, the amount of bending deformation of the steel sheet can be increased. Therefore, by applying a steel sheet having a yield ratio (YR) of 80% or less, it is mainly responsible for lateral deformation of the steel sheet as shown in FIG. 1- (A) without changing the heating conditions during linear heating. It is possible to increase the deformation amount in the linear heating deformation, and to improve the work efficiency of the bending deformation as shown in FIG.

(2)室温での降伏強度(YP)に対する600℃での降伏強度(YP600)の比(YP600/YP)が1/3以上の鋼板では、線状加熱時に同じ加熱条件でも直接加熱面側での塑性ひずみ発生量を最低限確保しつつ相対的に非加熱面側での塑性ひずみ発生量を減少し、加熱領域における板厚方向の表裏面側での横収縮量の差を大きくすることができる。 (2) The ratio of the yield strength (YP 600 ) at 600 ° C. to the yield strength (YP) at room temperature (YP 600 / YP) is 1/3 or more. The amount of plastic strain on the non-heated surface side is relatively reduced while ensuring the minimum amount of plastic strain on the side, and the difference in lateral shrinkage on the front and back sides in the plate thickness direction in the heating region is increased. be able to.

したがって、前記YP600/YPが1/3以上の鋼板を適用することにより、線状加熱時の加熱条件を変更することなく、図1−(B)に示されるような鋼板の角変形を主体とした線状加熱変形における変形量を増加させ、図4に示すような曲げ変形の作業効率を向上することが可能となる。 Therefore, by applying a steel plate having a YP 600 / YP of 1/3 or more, the angular deformation of the steel plate as shown in FIG. 1- (B) is mainly performed without changing the heating conditions during linear heating. It is possible to increase the deformation amount in the linear heating deformation, and improve the working efficiency of the bending deformation as shown in FIG.

本発明は、以上の知見および技術思想を基になされたものである。   The present invention has been made on the basis of the above knowledge and technical idea.

本発明はガスバーナーにより鋼板の表面または裏面を線状に加熱し、水冷して鋼板の角変形、または、横変形を利用した線状加熱変形方法を前提とし、角変形させる鋼板、または、横変形させる鋼板を機械的特性から最適化することを特徴とするものである。以下に、本発明の特徴とする角変形させる鋼板および横変形させる鋼板のうち、まず、角変形させる鋼板機械的特性の限定理由、さらに、好ましい鋼板の組織および成分組成について説明する。   The present invention presupposes a linear heating deformation method that uses a gas burner to linearly heat the front or back surface of a steel sheet, and then water-cools the steel sheet to perform angular deformation or lateral deformation of the steel sheet. The steel sheet to be deformed is optimized from the mechanical characteristics. Below, among the steel plates to be angularly deformed and the steel plates to be laterally deformed, which are the characteristics of the present invention, first, the reasons for limiting the mechanical properties of the steel plates to be angularly deformed, and the preferable structure and composition of the steel plates will be described.

(角変形させる鋼板の機械的特性)
本発明は、線状加熱変形方法において角変形させる鋼板として600℃における降伏強度が室温における降伏強度の1/3以上である鋼板を用いることを特徴とする。
鋼板の線状加熱、冷却により、図1−(B)に示されるような鋼板の角変形を主体とした線状加熱変形を発生させるためには、加熱領域の厚み方向において鋼板の表裏面側での横収縮量の差を大きくすることが必要になる。このための手段として、加熱や冷却条件を制御して、何れか一方の鋼板面の横収縮量を増加または減少させることも可能であるが、作業方法を複雑化し、作業効率を低下させることとなり好ましくない。
(Mechanical characteristics of steel plate to be angularly deformed)
The present invention is characterized in that a steel sheet having a yield strength at 600 ° C. that is 1/3 or more of the yield strength at room temperature is used as the steel sheet to be angularly deformed in the linear heating deformation method.
In order to generate linear heating deformation mainly composed of angular deformation of a steel sheet as shown in FIG. 1- (B) by linear heating and cooling of the steel sheet, the front and back sides of the steel sheet in the thickness direction of the heating region It is necessary to increase the difference in lateral shrinkage. As a means for this, it is possible to control the heating and cooling conditions to increase or decrease the lateral shrinkage of either one of the steel sheet surfaces, but this complicates the work method and lowers the work efficiency. It is not preferable.

本発明では、鋼板の線状加熱、冷却において加熱や冷却条件を変えずに角変形を主体とした線状加熱変形を発生させるために、室温での降伏強度(YP)に対する600℃での降伏強度(YP600)の比(YP600/YP)が1/3以上の鋼板を適用することにより、直接加熱面側での塑性ひずみ発生量を最低限確保しつつ相対的に非加熱面側での塑性ひずみ発生量を減少し、加熱領域の厚み方向において鋼板の表裏面側での横収縮量の差を大きくする、作用が得られる。室温での降伏強度(YP)に対する600℃での降伏強度(YP600)の比(YP600/YP)が1/3未満である鋼板では、鋼板の角変形を主体とした線状加熱変おける変形量を増加させ、角変形を利用した曲げ変形の作業効率を向上する効果が十分に得られない。 In the present invention, the yield at 600 ° C. with respect to the yield strength (YP) at room temperature in order to generate linear heating deformation mainly consisting of angular deformation without changing the heating and cooling conditions in the linear heating and cooling of the steel sheet. By applying a steel sheet having a strength (YP 600 ) ratio (YP 600 / YP) of 1/3 or more, the minimum amount of plastic strain on the direct heating surface side is ensured, while the relative non-heating surface side. This reduces the amount of plastic strain generated and increases the difference in lateral shrinkage on the front and back sides of the steel sheet in the thickness direction of the heating region. A steel sheet having a ratio of yield strength (YP 600 ) at 600 ° C. to yield strength (YP) at room temperature (YP 600 / YP) of less than 1/3 can be subjected to linear heating change mainly due to angular deformation of the steel sheet. The effect of increasing the amount of deformation and improving the working efficiency of bending deformation using angular deformation cannot be obtained sufficiently.

したがって、本発明では、加熱や冷却条件を変えずに角変形を主体とした線状加熱変形における変形量を増加させ、工業的に作業効率を十分に向上させるために、室温での降伏強度(YP)に対する600℃での降伏強度(YP600)の比(YP600/YP)が1/3以上の鋼板に限定した。 Therefore, in the present invention, the yield strength at room temperature (in order to increase the amount of deformation in linear heating deformation mainly consisting of angular deformation without changing the heating and cooling conditions, and to sufficiently improve the working efficiency industrially, ( The ratio (YP 600 / YP) of the yield strength (YP 600 ) at 600 ° C. to YP) was limited to a steel sheet having a value of 1/3 or more.

なお、鋼板の600℃での降伏強度は、工業的に測定できる0.2%耐力として一般に定義され、本発明においてもこの測定方法を採用することができる。   The yield strength at 600 ° C. of the steel sheet is generally defined as 0.2% proof stress that can be measured industrially, and this measuring method can also be adopted in the present invention.

(角変形させる鋼板の組織)
本発明における角変形させる鋼板の好ましい組織としては、室温での降伏強度(YP)に対する600℃での降伏強度(YP600)の比(YP600/YP)が1/3以上を満足し、かつ溶接構造用鋼としての靭性を維持できる組織とする必要がある。
(Structure of steel plate to be angularly deformed)
As a preferable structure of the steel sheet to be angularly deformed in the present invention, the ratio (YP 600 / YP) of the yield strength (YP 600 ) at 600 ° C. to the yield strength (YP) at room temperature satisfies 1/3 or more, and It is necessary to have a structure capable of maintaining the toughness as a welded structural steel.

鋼板組織中にミクロ組織の中で最も強度が高いマルテンサイト相を増加することでも600℃での降伏強度(YP600)を向上させることはできるが、マルテンサイト相の増加は鋼板の靭性を確保するうえで好ましくない。また、鋼板組織中のベイナイト相が面積率で70%未満の場合には、室温での降伏強度(YP)に対する600℃での降伏強度(YP600)の比(YP600/YP)が1/3以上を満足させることが困難となり、線状加熱、冷却時に鋼板の角変形を主体とした線状加熱変形おける変形量を増加させ、曲げ変形の作業効率を向上する効果が十分に得られない。 Increasing the martensite phase, which has the highest strength in the microstructure of the steel sheet, can improve the yield strength (YP 600 ) at 600 ° C, but increasing the martensite phase ensures the toughness of the steel sheet. This is not preferable. Further, when the bainite phase in the steel sheet structure is less than 70% in area ratio, the ratio (YP 600 / YP) of the yield strength (YP 600 ) at 600 ° C. to the yield strength (YP) at room temperature is 1 / It becomes difficult to satisfy 3 or more, and the effect of increasing the work efficiency of bending deformation by increasing the amount of deformation in linear heating deformation mainly of angular deformation of the steel sheet during linear heating and cooling cannot be obtained sufficiently. .

このため、本発明では、角変形させる鋼板として室温での降伏強度(YP)に対する600℃での降伏強度(YP600)の比(YP600/YP)が1/3以上を満足させ、かつ溶接構造用鋼としての靭性を維持させるうえで、好ましい組織として、ベイナイト相を面積率で70%以上含有するベイナイト主体組織に限定する。 For this reason, in the present invention, the ratio (YP 600 / YP) of the yield strength (YP 600 ) at 600 ° C. to the yield strength (YP) at room temperature as the steel plate to be angularly deformed satisfies 1/3 or more, and is welded. In order to maintain the toughness as structural steel, the preferred structure is limited to a bainite-based structure containing a bainite phase in an area ratio of 70% or more.

なお、鋼板組織中のベイナイト相以外の組織は、特に限定する必要はなく、本発明の目的とする基本特性を阻害しない範囲でその他の目的に応じて選択することが可能である。   It should be noted that the structure other than the bainite phase in the steel sheet structure is not particularly limited, and can be selected according to other purposes within a range that does not impair the basic characteristics of the present invention.

(角変形させる鋼板の成分組成)
本発明における角変形させる鋼板の好ましい成分組成としては、上記鋼板の機械的特性およびベイナイト主体組織を安定して確保するために以下のように規定するのが好ましい。
以下に角変形させる鋼板の好ましい成分組成の限定理由を説明する。
(Component composition of steel plate to be angularly deformed)
The preferable component composition of the steel sheet to be angularly deformed in the present invention is preferably defined as follows in order to stably secure the mechanical properties and the bainite main structure of the steel sheet.
The reason for limiting the preferred component composition of the steel sheet to be angularly deformed will be described below.

なお、下記の説明において「%」は特段の説明がない限り、「質量%」を意味するものとする。   In the following description, “%” means “% by mass” unless otherwise specified.

C:Cは、鋼板の強度を上げ、かつ焼入性も上げる元素である。C含有量の下限は、焼入性を高めて組織中に70%以上のベイナイト相を確保するための最低限の値として0.001%とした。一方、Cの過度の添加は、鋼板組織中のマルテンサイトを増加させることにより、硬さ増加および靭性低下の問題、さらには、鋼板の表面と裏面での硬さの差が増加する問題などを生じ、鋼板の良好な特性を確保するために好ましくないため、C含有量の上限を0.10%とした。なお、本発明では、鋼板の焼入性はMn添加でも確保でき、また、鋼板機械的特性の観点から、C含有量の上限を低く押さえることが好ましいため、C含有量の上限を0.07%とするのがより望ましい。   C: C is an element that increases the strength of the steel sheet and increases the hardenability. The lower limit of the C content was set to 0.001% as a minimum value for enhancing hardenability and ensuring a bainite phase of 70% or more in the structure. On the other hand, excessive addition of C increases the problem of increased hardness and reduced toughness by increasing martensite in the steel sheet structure, and further increases the difference in hardness between the front and back surfaces of the steel sheet. The upper limit of the C content is set to 0.10% because it is not preferable for ensuring good characteristics of the steel sheet. In the present invention, the hardenability of the steel sheet can be ensured by addition of Mn, and from the viewpoint of steel sheet mechanical properties, it is preferable to keep the upper limit of the C content low, so the upper limit of the C content is 0.07. % Is more desirable.

Si:Siは、鋼中の脱酸元素として、また強度維持元素として作用する。Siの脱酸および強度確保の効果を十分えるためにSi含有量の下限を0.02%にする。一方、Si含有量が0.60%を超えると、鋼板を溶接する際に溶接部靱性が劣化するため、Si含有量の上限を0.60%とした。   Si: Si acts as a deoxidizing element in steel and as a strength maintaining element. In order to sufficiently obtain the effects of deoxidizing Si and ensuring the strength, the lower limit of the Si content is set to 0.02%. On the other hand, when the Si content exceeds 0.60%, the weld zone toughness deteriorates when the steel sheet is welded, so the upper limit of the Si content is set to 0.60%.

Mn:Mnは、鋼板の強度確保するため、また焼入性を向上させベイナイト組織を効率よく増加するには必須の元素である。これらの作用により、鋼板組織中に70%以上のベイナイト組織を確保するための最低限の量としてMn含有量の下限を0.8%とした。一方、Mn含有量が過度に増加すると、鋼板を溶接する際に硬化が著しく高まって溶接熱影響部(HAZ)の靭性を劣化させ好ましくないため、Mn含有量の上限を3.0%とした。   Mn: Mn is an essential element for ensuring the strength of the steel sheet and for improving the hardenability and increasing the bainite structure efficiently. By these actions, the lower limit of the Mn content was set to 0.8% as a minimum amount for securing a bainite structure of 70% or more in the steel sheet structure. On the other hand, if the Mn content is excessively increased, hardening is significantly enhanced when welding the steel sheet, which deteriorates the toughness of the weld heat affected zone (HAZ), which is not preferable. Therefore, the upper limit of the Mn content is set to 3.0%. .

P、S:PおよびSは、鋼中の不可避的不純物であり、これら元素が過度に含有すると鋼板および鋼板を溶接する際のHAZの靭性が劣化するため、PおよびSの含有量の上限をそれぞれ0.03%、0.02%に制限した。   P, S: P and S are unavoidable impurities in the steel, and if these elements are contained excessively, the toughness of the HAZ when welding the steel plate and the steel plate deteriorates, so the upper limit of the content of P and S They were limited to 0.03% and 0.02%, respectively.

Nb、Ti、V、Mo:Nb、Ti、V、および、Moは、鋼中に析出または固溶することで高温降伏強度を向上させる元素であり、この作用を有効に活用するためにこれらの成分をそれぞれ以下の含有量で1種または2種以上含有する。   Nb, Ti, V, Mo: Nb, Ti, V, and Mo are elements that improve the high-temperature yield strength by precipitation or solid solution in steel, and in order to effectively utilize this action, Each component contains one or more of the following contents.

Nbは鋼板中のCと共に炭化物として析出し、鋼板の高温強度を向上するために有効な元素である。また、NbはAr変態温度を下げ低冷却速度側までベイナイト生成範囲を広げる作用効果があり、安定してベイナイト相を生成させるために必要である。これらのNb添加による作用効果を十分に得るための最低限の値としてNb含有量の下限を0.005%とする。一方、Nb含有量が0.20%を超えると、硬さが過度に高まり靭性を確保することが困難となるため、Nb含有量の上限を0.20%とする。 Nb is an effective element for precipitating as carbide together with C in the steel sheet and improving the high temperature strength of the steel sheet. Nb has the effect of lowering the Ar 3 transformation temperature and extending the bainite generation range to the low cooling rate side, and is necessary for stably generating the bainite phase. The lower limit of the Nb content is set to 0.005% as a minimum value for sufficiently obtaining the action and effect of the addition of Nb. On the other hand, if the Nb content exceeds 0.20%, the hardness is excessively increased and it is difficult to ensure toughness, so the upper limit of the Nb content is 0.20%.

TiもNbと同様に鋼板中に炭化物を形成し析出硬化により高温強度を上げるために有効な元素である。さらには、Ar変態温度を下げてベイナイト組織の形成に寄与する上、溶接の際にTiNを形成して溶接熱影響部の靭性を向上させる作用効果がある。これら作用効果を十分に得るためにTi含有量の下限値を0.005%とした。一方0.20%を越えるTiの含有は、靭性を劣化させ好ましくないため、Ti含有量の上限を0.20%とした。 Ti, like Nb, is an effective element for forming carbides in the steel sheet and increasing the high temperature strength by precipitation hardening. In addition, the Ar 3 transformation temperature is lowered to contribute to the formation of a bainite structure, and TiN is formed during welding to improve the toughness of the weld heat affected zone. In order to sufficiently obtain these effects, the lower limit value of the Ti content is set to 0.005%. On the other hand, the Ti content exceeding 0.20% is not preferable because it deteriorates toughness, so the upper limit of the Ti content is set to 0.20%.

VもNbと同様に析出強化元素であり鋼板中での炭化物の析出硬化により高温強度を上げるためにはV含有量の下限を0.005%とする必要がある。一方、0.20%を超えてVを含有させても鋼板の析出強化向上効果は飽和し、さらに靭性劣化を招くのでV含有量の上限を0.20%とする。   V is also a precipitation strengthening element like Nb. In order to increase the high temperature strength by precipitation hardening of carbides in the steel sheet, the lower limit of the V content needs to be 0.005%. On the other hand, even if the content of V exceeds 0.20%, the effect of improving the precipitation strengthening of the steel sheet is saturated and further toughness deterioration is caused. Therefore, the upper limit of the V content is set to 0.20%.

Moは、常温および高温での降伏強度を上昇する効果がある元素である。これらの強度上昇効果を十分に得るためにMo含有量の下限を0.05%とする。一方、Mo含有量が0.5%をこえると、溶接性が劣化するため、Mo含有量の上限を0.5%とした。   Mo is an element that has the effect of increasing the yield strength at room temperature and high temperature. In order to sufficiently obtain these strength increasing effects, the lower limit of the Mo content is set to 0.05%. On the other hand, when the Mo content exceeds 0.5%, the weldability deteriorates, so the upper limit of the Mo content is set to 0.5%.

以上が角変形させる鋼板の好ましい成分組成としての基本成分であるが、これに加えて、以下の成分を以下の理由で添加することも可能である。   The above is a basic component as a preferable component composition of the steel sheet to be angularly deformed. In addition to this, the following components can be added for the following reasons.

B:Bは典型的な焼入性元素であり、オーステナイト粒界に偏析して、そこからのフェライト変態を抑制するため、少量の添加で大きな焼入性向上が期待できる。そのため、本発明でもこの作用を有効に利用し、焼入性を確保するためにB含有量の下限を0.0003%とした。一方、Bの過度の含有は鋼中にBNを析出させ、溶接性を劣化させるためその含有量の上限を0.0050%とした。   B: B is a typical hardenable element, segregates at the austenite grain boundary, and suppresses ferrite transformation therefrom, so that a great improvement in hardenability can be expected with a small addition. Therefore, in the present invention, the lower limit of the B content is set to 0.0003% in order to effectively use this action and ensure hardenability. On the other hand, excessive content of B causes BN to precipitate in the steel and deteriorates weldability, so the upper limit of its content was made 0.0050%.

Al:AlはSi同様に脱酸元素であり、Siの脱酸作用を補完し、鋼板中の酸素を低減し鋼板特性を確保する効果を有効に得るためにAl含有量の下限を0.010%とした。一方、Alの過度の添加は鋼板の溶接性を損ねるため、Al含有量の上限を0.10%とする。   Al: Al is a deoxidizing element similar to Si, and in order to effectively obtain the effect of supplementing the deoxidizing action of Si and reducing the oxygen in the steel sheet and ensuring the steel sheet characteristics, the lower limit of the Al content is 0.010. %. On the other hand, excessive addition of Al impairs the weldability of the steel sheet, so the upper limit of Al content is 0.10%.

Cu、Ni、Cr、W、Zr:Cu、Ni、Cr、W、および、Zrは、強度向上のために有効な元素であり、この作用を有効に活用するためにこれらの成分をそれぞれ以下の含有量で1種または2種以上含有することができる。   Cu, Ni, Cr, W, Zr: Cu, Ni, Cr, W, and Zr are effective elements for improving the strength, and in order to effectively utilize this action, these components are respectively It can contain 1 type (s) or 2 or more types by content.

Cuは、単体で析出し強度を向上させる元素であり、この点ではNbなどの炭化物を形成する析出元素とは強度向上機構が異なる。Cuを析出させ十分に強度を向上させるためには、Cu含有量の下限を0.5%とする必要がある。一方、Cu含有量が2.0%を超えると鋼板の靭性が急激に劣化し好ましくないため、Cu含有量の上限を2.0%とした。   Cu is an element that precipitates as a single substance and improves the strength. In this respect, the mechanism for improving the strength is different from the precipitation element that forms carbides such as Nb. In order to precipitate Cu and sufficiently improve the strength, the lower limit of the Cu content needs to be 0.5%. On the other hand, if the Cu content exceeds 2.0%, the toughness of the steel sheet deteriorates rapidly, which is not preferable. Therefore, the upper limit of the Cu content is set to 2.0%.

Niは、鋼板の強度および靭性をともに向上し、またCuを含有する鋼板では圧延時のCu割れを防止するために有効な元素である。これらの作用効果を十分に得るためNi含有量の下限を0.1%とした。一方、2.0%を超えてNiを過剰添加してもその効果は飽和し、Ni元素は高価であるため、Ni含有量の上限を2.0%とした。   Ni is an effective element for improving both strength and toughness of the steel sheet and for preventing Cu cracking during rolling in a steel sheet containing Cu. In order to sufficiently obtain these functions and effects, the lower limit of the Ni content is set to 0.1%. On the other hand, even if Ni is added in excess of 2.0%, the effect is saturated and Ni element is expensive, so the upper limit of Ni content was set to 2.0%.

Crは、鋼板の強度を上昇する効果があり、この効果が発現できる最低の値としてCr含有量の下限を0.05%とした。一方、0.5%をこえてCrを添加すると溶接により溶接部靱性が劣化するため、Cr含有量の上限を0.5%とした。   Cr has an effect of increasing the strength of the steel sheet, and the lower limit of the Cr content is set to 0.05% as the lowest value at which this effect can be manifested. On the other hand, if Cr is added over 0.5%, the weld toughness deteriorates due to welding, so the upper limit of Cr content was set to 0.5%.

Wは、鋼板の高温降伏強度を上昇する効果があり、この効果を十分に得るためにW含有量の下限を0.05%とした。一方、Wは高価である上、W含有量が0.5%をこえると靭性が劣化するためW含有量の上限を0.5%とした。   W has an effect of increasing the high-temperature yield strength of the steel sheet, and the lower limit of the W content is set to 0.05% in order to sufficiently obtain this effect. On the other hand, since W is expensive and the toughness deteriorates when the W content exceeds 0.5%, the upper limit of the W content is set to 0.5%.

Zrは、鋼板の強度を上昇する効果に加えて、亜鉛めっきを施した鋼板の場合には、耐めっき割れ性を向上する効果がある元素である。これらの効果が発現できる最低の値としてZr含有量の下限を0.05%とした。一方、Zrは0.5%をこえて添加すると溶接により溶接部靱性が劣化し好ましくないため、Zr含有量の上限を0.5%とした。   In addition to the effect of increasing the strength of the steel sheet, Zr is an element that has the effect of improving the plating cracking resistance in the case of a steel sheet that has been galvanized. As the lowest value at which these effects can be exhibited, the lower limit of the Zr content was set to 0.05%. On the other hand, if Zr is added over 0.5%, the weld toughness deteriorates due to welding, which is not preferable. Therefore, the upper limit of the Zr content is set to 0.5%.

REM、Ca:REMおよびCaは、溶接による鋼板の溶接熱影響部の靭性を向上させるために有効な元素であり、REMおよびCaの1種または2種を添加することができる。   REM, Ca: REM and Ca are effective elements for improving the toughness of the weld heat affected zone of the steel sheet by welding, and one or two of REM and Ca can be added.

REMは、鋼板中でオキシサルファイドとなってオーステナイト粒の粒成長を抑制して溶接による鋼板の溶接熱影響部の靭性を向上させる。この効果を十分にえるためにREM含有量の下限を0.001%とした。一方、0.02%をこえてREMを添加すると鋼の清浄度を損なうため、REM含有量の上限を0.02%とする。   REM becomes oxysulfide in the steel sheet, suppresses the grain growth of austenite grains, and improves the toughness of the weld heat affected zone of the steel sheet by welding. In order to sufficiently obtain this effect, the lower limit of the REM content was set to 0.001%. On the other hand, if REM is added over 0.02%, the cleanliness of the steel is impaired, so the upper limit of the REM content is set to 0.02%.

Caは、溶接による鋼板の溶接熱影響部の靭性向上に有効であるとともに、鋼中の硫化物の形態制御により鋼板の板厚方向の材質改善にも有効である。これらの効果を十分にえるためにCa含有量の下限を0.0005%とした。一方、0.02%をこえてCaを添加すると、鋼中の非金属介在物量を増大させ内部欠陥の原因となるため、Ca含有量の上限を0.02%にした。   Ca is effective for improving the toughness of the weld heat-affected zone of the steel sheet by welding, and is effective for improving the material in the thickness direction of the steel sheet by controlling the form of sulfides in the steel. In order to obtain these effects sufficiently, the lower limit of the Ca content is set to 0.0005%. On the other hand, if Ca is added over 0.02%, the amount of non-metallic inclusions in the steel is increased and causes internal defects, so the upper limit of Ca content was made 0.02%.

角変形させる鋼板の機械的特性およびこの鋼板の好ましい組織および成分組成の限定理由は上述のとおりである。   The reasons for limiting the mechanical properties of the steel sheet to be angularly deformed and the preferable structure and composition of the steel sheet are as described above.

本発明において角変形させる鋼板の製造方法は本発明の目的を達成するために特に限定する必要はなく、例えば、以下のような方法で上記機械的特性および組織の鋼板を容易に製造することが可能である。   In the present invention, the method of manufacturing the angularly deformed steel sheet need not be particularly limited in order to achieve the object of the present invention. For example, the steel sheet having the above mechanical properties and structure can be easily manufactured by the following method. Is possible.

つまり、上述した成分組成を含有する鋼片をAc3〜1350℃の温度に加熱後、30%以上の圧下率で800℃以上のオーステナイト未再結晶温度域で圧延を終了し、その後、0.1〜80℃/sの冷却速度で冷却することで70%以上のベイナイト相を含有する組織の鋼板を製造できる。なお、これらの圧延条件及び冷却条件は以下の理由から設定するものであるが、本発明の目的を達成するためにこれらに限定するものではない。   That is, after heating the steel slab containing the above-described component composition to a temperature of Ac3 to 1350 ° C., the rolling is finished at an austenite non-recrystallization temperature range of 800 ° C. or more at a rolling reduction of 30% or more, and then 0.1% By cooling at a cooling rate of ˜80 ° C./s, a steel sheet having a structure containing 70% or more of a bainite phase can be produced. In addition, although these rolling conditions and cooling conditions are set for the following reasons, in order to achieve the objective of this invention, it does not limit to these.

鋼片の加熱温度は、鋼材組織をオーステナイト単体組織とする温度領域、つまりAc変態温度以上とし、かつ加熱温度の上限はエネルギーの過度な浪費を抑制し、加熱効果の飽和を考慮して1350℃以下とすることが望ましい。
圧延終了温度は、オーステナイト未再結晶域で圧延し、加工転位の導入によりベイナイト組織を微細化し、靭性を向上する効果をえるために800℃以上とすることが望ましい。
また、この際の圧下率は、靭性向上効果が顕著になるように30%以上とするのが好ましい。
The heating temperature of the steel slab, the temperature range for the steel structure and the austenite single tissue, ie the Ac 3 transformation temperature or more and the upper limit of the heating temperature is suppressed excessive waste of energy, in consideration of the saturation of the heating effect 1350 It is desirable that the temperature is not higher than ° C.
The rolling end temperature is preferably set to 800 ° C. or higher in order to obtain the effect of rolling in an austenite non-recrystallized region, refining the bainite structure by introducing work dislocations, and improving toughness.
Further, the rolling reduction at this time is preferably 30% or more so that the effect of improving toughness becomes remarkable.

圧延終了後の冷却は、空冷または加速冷却のいずれでもよく、その冷却速度はフェライトパーライトの生成を抑制しベイナイト相を増加するために0.1℃/s以上とし、かつ冷却速度の増加によりベイナイト・ラス間隔が密になり強度が上昇し、母材靭性の劣化を抑制するために80℃/s以下とするのが好ましい。   The cooling after the end of rolling may be either air cooling or accelerated cooling. The cooling rate is set to 0.1 ° C./s or more in order to suppress the formation of ferrite pearlite and increase the bainite phase, and the bainite is increased by increasing the cooling rate. -In order to increase the strength of the lath interval and suppress the deterioration of the toughness of the base metal, it is preferably 80 ° C./s or less.

さらに、より高温降伏強度を向上させた鋼板を製造するためには、上記方法において、圧延終了後に以下の熱処理または冷却の何れかの方法で析出強化元素の析出処理を行うことが好ましい。なお、以下の2種の析出処理方法は、製造上の諸事情を考慮して適宜選択すればよい。   Furthermore, in order to produce a steel sheet with improved high-temperature yield strength, it is preferable to perform precipitation treatment of the precipitation strengthening element by any one of the following heat treatment or cooling after the rolling in the above method. The following two types of precipitation treatment methods may be appropriately selected in consideration of various manufacturing circumstances.

第1の析出処理方法は、上記の圧延及び冷却条件で得られた鋼板を500〜800℃未満の加熱温度で再加熱し、保持することにより鋼板中の析出強化元素を析出処理する。再加熱温度は、十分に析出物が形成させるために500℃以上とし、過度の加熱により導入されたベイナイト相が変質するのを抑制するために800℃未満とすることが望ましい。   In the first precipitation treatment method, the steel sheet obtained under the above rolling and cooling conditions is reheated at a heating temperature of less than 500 to 800 ° C. and held to precipitate the precipitation strengthening element in the steel sheet. The reheating temperature is preferably 500 ° C. or higher in order to sufficiently form precipitates, and is preferably less than 800 ° C. in order to prevent the bainite phase introduced by excessive heating from being altered.

第2の析出処理方法は、上記と同じ圧延条件で圧延終了後、500〜800℃未満の温度域まで0.1〜80℃/sの冷却速度で加速冷却した後、この温度域で30s以上の等温保持を行うか、または、この温度域において1℃/s 以下の冷却速度でかつ30s以上の冷却時間で冷却することにより、鋼板中の析出強化元素を析出処理する。   In the second precipitation treatment method, after rolling under the same rolling conditions as described above, accelerated cooling is performed at a cooling rate of 0.1 to 80 ° C./s to a temperature range of less than 500 to 800 ° C., and then 30 seconds or more in this temperature range. In this temperature range, the precipitation strengthening element in the steel sheet is subjected to precipitation treatment by cooling at a cooling rate of 1 ° C./s or less and a cooling time of 30 seconds or more.

圧延終了後の500〜800℃未満の温度域までの冷却速度は、フェライトパーライトの生成を抑制しベイナイト相を増加するために0.1℃/s以上とし、かつ冷却速度の増加によりベイナイト・ラス間隔が密になり強度が上昇し、母材靭性の劣化を抑制するために80℃/s以下とするのが好ましい。   The cooling rate to a temperature range of 500 to less than 800 ° C. after the end of rolling is set to 0.1 ° C./s or more in order to suppress the formation of ferrite pearlite and increase the bainite phase. In order to increase the strength of the gaps and suppress the deterioration of the toughness of the base material, the temperature is preferably set to 80 ° C./s or less.

500〜800℃未満の温度域での等温保持時間は、鋼板中の析出強化元素を析出させるために30s以上とすることが望ましい。   It is desirable that the isothermal holding time in the temperature range below 500 to 800 ° C. be 30 s or longer in order to precipitate the precipitation strengthening element in the steel sheet.

また、500〜800℃未満の温度域での冷却速度及び冷却時間は、上記等温保持と同様な作用効果をえるために冷却速度を1℃/s以下とし、かつ冷却時間を30s以上とすることが望ましい。   The cooling rate and cooling time in the temperature range of 500 to 800 ° C. should be 1 ° C./s or less and the cooling time should be 30 s or more in order to obtain the same effect as the above isothermal holding. Is desirable.

次に、本発明の特徴とする横変形させる鋼板の限定理由、さらに、好ましい鋼板の組織および成分組成について説明する。   Next, the reason for limiting the steel sheet to be laterally deformed, which is a feature of the present invention, and the preferable structure and composition of the steel sheet will be described.

(横変形させる鋼板の機械的特性)
本発明は、線状加熱変形方法において横変形させる鋼板として引張強度(TS)に対する降伏強度(YP)の比(YP/TS)、つまり降伏比(YR)が80%以下である鋼板を用いることを特徴とする。
(Mechanical properties of steel plate to be laterally deformed)
In the present invention, a steel sheet having a yield strength (YP) ratio to a tensile strength (TS) (YP / TS), that is, a yield ratio (YR) of 80% or less is used as a steel sheet to be laterally deformed in the linear heating deformation method. It is characterized by.

鋼板の線状加熱、冷却により、図1−(A)に示されるような鋼板の横変形を主体とした線状加熱変形を発生させるためには、線状加熱領域における板厚方向の表裏面側での横収縮量を均一に増加させることが必要になる。このための手段として、加熱や冷却条件を制御して、鋼板表裏面の横収縮量を大きくすることは可能であるが、作業方法を複雑化し、作業効率を低下させることとなり好ましくない。   In order to generate linear heating deformation mainly composed of lateral deformation of the steel sheet as shown in FIG. 1- (A) by linear heating and cooling of the steel sheet, the front and back surfaces in the thickness direction in the linear heating region It is necessary to uniformly increase the lateral shrinkage on the side. As a means for this, it is possible to increase the lateral shrinkage of the front and back surfaces of the steel sheet by controlling heating and cooling conditions, but this is not preferable because it complicates the work method and lowers work efficiency.

本発明では、鋼板の線状加熱、冷却において加熱や冷却条件を変えずに横変形を主体とした線状加熱変形による横変形を利用した曲げ変形を発生させるために、引張強度(TS)に対する降伏強度(YP)の比(YP/TS)、つまり降伏比(YR)が80%以下である鋼板を適用することにより、高温での降伏強度が低下するため、直接加熱面側に比べて温度が低くなる非加熱面側の塑性ひずみ発生量を十分に増加し、線状加熱領域における板厚方向の横収縮量を均一に増加することが可能となる。また、上記降伏比(YR)の上限規定により、溶接構造用鋼材として要求される室温での引張強度レベルを維持しつつ、室温での降伏強度の低減により高温での降伏強度を低く押さえることが可能となる。上記降伏比(YR)が80%を超える鋼板では、加熱温度が加熱面側に比べて相対的に低くなる非加熱面側において発生する横収縮は小さくなり、線状加熱領域における横変形を均一に増加することは困難となる。そのため、鋼板の横変形を主体とした線状加熱変形おける変形量を増加させ、横変形を利用した曲げ変形の作業効率を向上する効果が十分に得られない。   In the present invention, in order to generate bending deformation using lateral deformation by linear heating deformation mainly in the lateral deformation without changing the heating and cooling conditions in the linear heating and cooling of the steel sheet, the tensile strength (TS) By applying a steel sheet having a yield strength (YP) ratio (YP / TS), that is, a yield ratio (YR) of 80% or less, the yield strength at high temperatures is reduced, so the temperature is higher than that on the direct heating surface side. It is possible to sufficiently increase the amount of plastic strain generated on the non-heated surface side where the temperature decreases, and to uniformly increase the amount of lateral shrinkage in the thickness direction in the linear heating region. In addition, the upper limit of the yield ratio (YR) allows the yield strength at high temperatures to be kept low by reducing the yield strength at room temperature while maintaining the tensile strength level at room temperature required as a steel material for welded structures. It becomes possible. In a steel sheet having a yield ratio (YR) exceeding 80%, the lateral shrinkage generated on the non-heated surface side where the heating temperature is relatively lower than that on the heated surface side is reduced, and the lateral deformation in the linear heating region is uniform. It will be difficult to increase. For this reason, it is not possible to sufficiently obtain the effect of increasing the amount of deformation in the linear heating deformation mainly including the lateral deformation of the steel sheet and improving the work efficiency of the bending deformation using the lateral deformation.

したがって、本発明では、加熱や冷却条件を変えずに横変形を主体とした線状加熱変形における変形量を増加させ、工業的に曲げ変形の作業効率を十分に向上させるために、引張強度(TS)に対する降伏強度(YP)の比(YP/TS)、つまり降伏比(YR)が80%以下の鋼板に限定した。   Therefore, in the present invention, the tensile strength (in order to increase the deformation amount in the linear heating deformation mainly composed of lateral deformation without changing the heating and cooling conditions and to sufficiently improve the work efficiency of the bending deformation industrially, The ratio (YP / TS) of the yield strength (YP) to TS), that is, the yield ratio (YR) was limited to 80% or less.

なお、本発明では、上記降伏比(YR)の下限は特に規定する必要はないが、この鋼板を実現するための製造条件が厳しくなり、コストの増加を招くため、本発明では上記降伏比(YR)の下限を60%とするのが好ましい。   In the present invention, the lower limit of the yield ratio (YR) does not need to be specified in particular. However, the manufacturing conditions for realizing the steel sheet become strict and the cost increases. Therefore, in the present invention, the yield ratio ( The lower limit of YR) is preferably 60%.

(横変形させる鋼板の組織)
本発明における横変形させる鋼板の好ましい組織としては、引張強度(TS)に対する降伏強度(YP)の比(YP/TS)、つまり降伏比(YR)が80%以下を満足し、かつ溶接構造用鋼としての引張強度および靭性を維持できる組織である。
(Structure of steel plate to be laterally deformed)
As a preferable structure of the steel sheet to be laterally deformed in the present invention, the ratio (YP / TS) of the yield strength (YP) to the tensile strength (TS), that is, the yield ratio (YR) satisfies 80% or less, and for the welded structure. It is a structure that can maintain the tensile strength and toughness of steel.

上記降伏比(YR)が80%以下を満足し、かつ溶接構造用鋼としての引張強度を維持するためには、ミクロ組織を低強度のフェライトパーライト相と高強度のベイナイト相の混合組織とし、相対的に低強度側のフェライトパーライト相に塑性ひずみを導入させ、かつ全体の引張強度を高強度のベイナイト相で確保することが有効である。鋼板組織中のフェライトパーライト相の含有量が面積率で30%を下回る場合には、低応力で降伏する領域が小さくなり、上記降伏比(YR)を80%以下にすることが困難となるため、線状加熱、冷却時に導入される塑性ひずみ量は少なくなり、結果的に、鋼板の横変形を主体とした線状加熱変形おける変形量を増加させ、横変形を利用した曲げ変形の作業効率を向上する効果が十分に得られない。このため、鋼板組織中のフェライトパーライト相の含有量を面積率で30%以上とした。一方、フェライトパーライト相が面積率で70%を上回る場合は、引張強度を確保するためには、高強度組織としてベイナイトよりさらに高い強度のマルテンサイト相を利用せざるを得えなくなる。鋼板組織中にマルテンサイト相が増加すると母材靭性が劣化し、溶接構造用鋼として要求される靭性を確保することが困難となり好ましくないため、フェライトパーライト相の含有量の上限を面積率で70%とした。   In order to satisfy the yield ratio (YR) of 80% or less and maintain the tensile strength as a welded structural steel, the microstructure is a mixed structure of a low-strength ferrite pearlite phase and a high-strength bainite phase. It is effective to introduce plastic strain into the ferrite pearlite phase on the relatively low strength side and to ensure the overall tensile strength with a high strength bainite phase. When the content of the ferrite pearlite phase in the steel sheet structure is less than 30% in terms of area ratio, the yield region with low stress becomes small, and it becomes difficult to make the yield ratio (YR) 80% or less. The amount of plastic strain introduced at the time of linear heating and cooling is reduced, and as a result, the amount of deformation in linear heating deformation mainly in the lateral deformation of the steel sheet is increased, and the work efficiency of bending deformation using lateral deformation is increased. The effect of improving is not sufficiently obtained. For this reason, the content of the ferrite pearlite phase in the steel sheet structure is set to 30% or more by area ratio. On the other hand, when the ferrite pearlite phase exceeds 70% in area ratio, a martensite phase having a higher strength than bainite must be used as a high-strength structure in order to ensure tensile strength. When the martensite phase increases in the steel sheet structure, the base material toughness deteriorates, and it becomes difficult to secure the toughness required for welded structural steel, so the upper limit of the ferrite pearlite phase content is 70 in area ratio. %.

このような理由から、本発明では、横変形させる鋼板として、上記降伏比(YR)が80%以下を満足し、かつ溶接構造用鋼としての引張強度を維持させるうえで、好ましい組織として、フェライトパーライト相を面積率で30〜70%含有する低強度のフェライトパーライト相と高強度のベイナイト相の混合組織に限定する。   For these reasons, in the present invention, as a steel sheet to be laterally deformed, the above yield ratio (YR) satisfies 80% or less, and a preferable structure for maintaining the tensile strength as a welded structural steel is ferrite. It is limited to a mixed structure of a low-strength ferrite pearlite phase and a high-strength bainite phase containing 30 to 70% of the pearlite phase by area ratio.

(横変形させる鋼板の成分組成)
本発明における横変形させる鋼板の好ましい成分組成としては、上記鋼板の機械的特性およびフェライトパーライト相とベイナイト相の混合組織を安定して確保するために以下のように規定するのが好ましい。
(Component composition of steel plate to be laterally deformed)
The preferable component composition of the steel sheet to be laterally deformed in the present invention is preferably defined as follows in order to stably ensure the mechanical properties of the steel sheet and the mixed structure of the ferrite pearlite phase and the bainite phase.

以下に横変形させる鋼板の好ましい成分組成の限定理由を説明する。   The reason for limiting the preferred component composition of the steel sheet to be laterally deformed will be described below.

なお、下記の説明において「%」は特段の説明がない限り、「質量%」を意味するものとする。   In the following description, “%” means “% by mass” unless otherwise specified.

C:Cは、鋼板の引張強度を高める元素であり、その効果を十分に利用するため、C含有量の下限は0.05%とする。一方、過度にCが多くなると鋼板の溶接性を阻害するため、C含有量の上限は0.18%とする。   C: C is an element that increases the tensile strength of the steel sheet, and the lower limit of the C content is 0.05% in order to fully utilize the effect. On the other hand, if C increases excessively, the weldability of the steel sheet is hindered, so the upper limit of the C content is 0.18%.

Si:Siは、鋼中の脱酸元素として有効な元素であり、この効果を十分にえるためにはSi含有量の下限を0.05%とする。一方、過度にSiが多くなると鋼板の溶接性を阻害するため、Si含有量の上限を0.6%とする。   Si: Si is an element effective as a deoxidizing element in steel. In order to sufficiently obtain this effect, the lower limit of the Si content is set to 0.05%. On the other hand, if the amount of Si is excessively increased, the weldability of the steel sheet is hindered, so the upper limit of the Si content is set to 0.6%.

Mn:Mnは鋼板の引張強度確保のため必要であり、引張強度向上効果を十分に得るために、Mn含有量の下限を0.5%とする。一方、過度にMnが多くなりすぎると鋼板の溶接性を阻害するため、Mn含有量の上限を2.0%とする。
P、S:PおよびSは、鋼中の不可避的不純物であり、これら元素が過度に含有すると鋼板および鋼板を溶接する際のHAZの靭性が劣化するため、PおよびSの含有量の上限はいずれも0.03%に制限する。
Mn: Mn is necessary for securing the tensile strength of the steel sheet, and the lower limit of the Mn content is set to 0.5% in order to sufficiently obtain the tensile strength improvement effect. On the other hand, if Mn is excessively increased, the weldability of the steel sheet is hindered, so the upper limit of the Mn content is set to 2.0%.
P, S: P and S are unavoidable impurities in the steel, and if these elements are contained excessively, the toughness of the HAZ when welding the steel sheet and the steel sheet deteriorates, so the upper limit of the content of P and S is Both are limited to 0.03%.

以上が横変形(収縮)させる鋼板の好ましい成分組成としての基本成分であるが、これに加えて、以下の成分を以下の理由で添加することも可能である。   The above is the basic component as a preferable component composition of the steel sheet to be laterally deformed (shrinked). In addition to this, the following components can be added for the following reasons.

Ni、Cu、Cr:Ni、Cu、および、Crは、強度靭性を向上させるために有効な元素であり、この作用を有効に活用するためにこれらの成分をそれぞれ以下の含有量で1種または2種以上含有することができる。   Ni, Cu, Cr: Ni, Cu, and Cr are effective elements for improving strength toughness, and in order to effectively utilize this action, each of these components is used in the following content, or It can contain 2 or more types.

Niは、鋼板の強度および靭性をともに向上し、またCuを含有する鋼板では圧延時のCu割れを防止するために有効な元素である。これらの作用効果を十分に得るためNi含有量の下限を0.1%とした。一方、2.0%を超えてNiを過剰添加してもその効果は飽和し、Ni元素は高価であるため、Ni含有量の上限を2.0%とした。   Ni is an effective element for improving both strength and toughness of the steel sheet and for preventing Cu cracking during rolling in a steel sheet containing Cu. In order to sufficiently obtain these functions and effects, the lower limit of the Ni content is set to 0.1%. On the other hand, even if Ni is added in excess of 2.0%, the effect is saturated and Ni element is expensive, so the upper limit of Ni content was set to 2.0%.

Cuは、単体で析出し強度を向上させる元素であり、Cuの析出により十分に鋼板強度を向上させるためには、Cu含有量の下限を0.1%とする必要がある。一方、Cu含有量が0.5%を超えるとやわらかいフェライトパーライトの強度を不必要に向上させ、鋼板の横変形(収縮)を主体とした線状加熱変形おける変形量を増加させる効果が低減する。また、Cuの増加により溶接部靱性が劣化するため好ましくない。これらの理由でCu含有量の上限を0.5%とした。   Cu is an element that precipitates alone and improves the strength. In order to sufficiently improve the steel plate strength by the precipitation of Cu, the lower limit of the Cu content needs to be 0.1%. On the other hand, when the Cu content exceeds 0.5%, the strength of the soft ferrite pearlite is unnecessarily improved, and the effect of increasing the deformation amount in linear heat deformation mainly composed of lateral deformation (shrinkage) of the steel sheet is reduced. . Moreover, since the toughness of the welded portion deteriorates due to an increase in Cu, it is not preferable. For these reasons, the upper limit of the Cu content is set to 0.5%.

Crは、鋼板の強度を上昇させる効果があり、十分に鋼板強度を向上させるためには、Cr含有量の下限を0.05%とする必要がある。一方、0.5%をこえてCrを添加すると鋼板が析出硬化し、やわらかいフェライトパーライトの強度を不必要に向上させ、鋼板の横変形(収縮)を主体とした線状加熱変形おける変形量を増加させる効果が低減する。また、Crの増加により溶接部靱性が劣化するため好ましくない。これらの理由でCr含有量の上限を0.5%とした。   Cr has the effect of increasing the strength of the steel sheet. In order to sufficiently improve the steel sheet strength, the lower limit of the Cr content needs to be 0.05%. On the other hand, if Cr is added in excess of 0.5%, the steel sheet precipitates and hardens, unnecessarily improves the strength of the soft ferrite pearlite, and the amount of deformation in linear heating deformation mainly composed of lateral deformation (shrinkage) of the steel sheet is reduced. The effect of increasing is reduced. Moreover, since the weld toughness deteriorates due to an increase in Cr, it is not preferable. For these reasons, the upper limit of the Cr content is set to 0.5%.

横変形させる鋼板の機械的特性およびこの鋼板の好ましい組織および成分組成の限定理由は上述のとおりである。   The reasons for limiting the mechanical properties of the steel sheet to be laterally deformed and the preferred structure and composition of the steel sheet are as described above.

本発明において横変形させる鋼板の製造方法は本発明の目的を達成するために特に限定する必要はなく、例えば、以下のような方法で上記機械的特性および組織の鋼板を容易に製造することが可能である。   In the present invention, the method for producing a laterally deformed steel sheet need not be particularly limited in order to achieve the object of the present invention. For example, a steel sheet having the above mechanical properties and structure can be easily produced by the following method. Is possible.

つまり、上述した成分組成を含有する鋼片をAc〜1350℃の温度に加熱後、25%以上の圧下率でAr3℃〜900℃のオーステナイト再結晶温度域で圧延を終了し、その後、Ar3℃以上の温度から5〜20℃/sの冷却速度で400〜600℃の温度域まで冷却することにより、面積率で30〜70%のフェライトパーライト相を含有するフェライトパーライト相とベイナイト相の混合組織の鋼板を製造できる。なお、これらの圧延条件及び冷却条件は以下の理由から設定するものであるが、本発明の目的を達成するためにこれらに限定するものではない。 That is, after heating the steel slab containing the above-described component composition to a temperature of Ac 3 to 1350 ° C., rolling was completed at an austenite recrystallization temperature range of Ar 3 ° C. to 900 ° C. at a rolling reduction of 25% or more, and then Ar 3 Mixing of ferrite pearlite phase and bainite phase containing 30% to 70% ferrite pearlite phase by area ratio by cooling to a temperature range of 400 to 600 ° C. at a cooling rate of 5 to 20 ° C./s from a temperature of 5 ° C. or higher. Steel sheets with a structure can be manufactured. In addition, although these rolling conditions and cooling conditions are set for the following reasons, in order to achieve the objective of this invention, it does not limit to these.

鋼片の加熱温度は、鋼材組織をオーステナイト単体組織とする温度領域、つまりAc変態温度以上とし、かつ加熱温度の上限はエネルギーの過度な浪費を抑制し、加熱効果の飽和を考慮して1350℃以下とすることが望ましい。 The heating temperature of the steel slab, the temperature range for the steel structure and the austenite single tissue, ie the Ac 3 transformation temperature or more and the upper limit of the heating temperature is suppressed excessive waste of energy, in consideration of the saturation of the heating effect 1350 It is desirable that the temperature is not higher than ° C.

圧延終了温度は、Ar3℃以上のオーステナイト再結晶域で圧延し、オーステナイト単相組織の結晶粒を微細化し、かつ適度な焼入れ性をえるために900℃以下とすることが望ましい。また、この際の圧下率は、オーステナイト結晶粒の微細化効果が顕著になるように25%以上とするのが好ましい。   The rolling end temperature is preferably 900 ° C. or lower in order to perform rolling in an austenite recrystallization region of Ar 3 ° C. or higher, to refine the crystal grains of the austenite single phase structure and to obtain appropriate hardenability. In addition, the rolling reduction at this time is preferably 25% or more so that the effect of refining austenite crystal grains becomes remarkable.

圧延終了後の冷却は、Ar3℃以上のオーステナイト単相温度域から冷却開始し、ベイナイト相を適度に生成させために冷却速度を5℃/s以上とし、かつ、フェライトパーライト相を確保するために冷却速度を20℃/s以下とするのが好ましい。また、冷却停止温度は、島状サイトの生成による靭性低下を抑制するため400℃以上とし、かつフェライトパーライト相の増加による強度低下を抑制するために600℃以下とするのがのぞましい。   Cooling after the end of rolling starts cooling from an austenite single phase temperature range of Ar 3 ° C. or higher, a cooling rate of 5 ° C./s or higher in order to appropriately generate a bainite phase, and to secure a ferrite pearlite phase The cooling rate is preferably 20 ° C./s or less. The cooling stop temperature is preferably 400 ° C. or higher in order to suppress a decrease in toughness due to the formation of island sites, and 600 ° C. or lower in order to suppress a decrease in strength due to an increase in ferrite pearlite phase.

以上の他の方法としては、熱延鋼板をオーステナイトとフェライトの2相域に再加熱し、その後空冷する方法、または、熱間圧延後にオーステナイトとフェライトの2相域まで空冷しその後水冷する方法などがある。これら方法は、熱延鋼板を一度オーステナイトとフェライトの2相域状態にし、その後の冷却過程でオーステナイト相をベイナイト相に変態しフェライト相とベイナイト相の混合組織の鋼板と得るものである。   Other methods described above include reheating the hot-rolled steel sheet to a two-phase region of austenite and ferrite and then air-cooling, or air-cooling to a two-phase region of austenite and ferrite after hot rolling, and then water-cooling, etc. There is. In these methods, the hot rolled steel sheet is once brought into a two-phase state of austenite and ferrite, and the austenite phase is transformed into a bainite phase in the subsequent cooling process to obtain a steel sheet having a mixed structure of ferrite phase and bainite phase.

(実施例1)
以下の実施例を基に本発明法により加熱や冷却条件を変えずに角変形を主体とした線状加熱変形における変形量を増加させことにより、角変形を利用した曲げ変形の作業効率向上の効果について説明する。
Example 1
Based on the following examples, the method of the present invention improves the work efficiency of bending deformation using angular deformation by increasing the amount of deformation in linear heating deformation mainly consisting of angular deformation without changing the heating and cooling conditions. The effect will be described.

表1には、鋼片の成分を示す。この成分系の鋼片を、表2に示す製造条件にて、鋼板を製造した。表3には、鋼片と製造条件の組み合わせと鋼板の特性を示した。鋼板特性は、破面遷移温度(vTrs)、降伏強度(YP)、引っ張り強度(TS)および600℃での降伏強度である。なお、600℃での降伏強度は0.2%耐力で定義した。本発明は、所定の鋼板を用いてバーナー加熱とその後の水冷をして鋼板を角変形させる高能率熱加工方法に関するもので、単に、鋼板そのものを提供する技術ではない。そのため、表3の鋼板だけでは、本発明の範囲内であるかどうかの判断はできないが、参考のため、表3の備考の欄には本発明の範囲内の鋼材かどうかがわかるようにした。   Table 1 shows the components of the steel slab. A steel plate was produced from the steel bills of this component system under the production conditions shown in Table 2. Table 3 shows the combinations of steel slabs and manufacturing conditions and the characteristics of the steel sheets. Steel sheet properties are fracture surface transition temperature (vTrs), yield strength (YP), tensile strength (TS) and yield strength at 600 ° C. The yield strength at 600 ° C. was defined as 0.2% proof stress. The present invention relates to a high-efficiency thermal processing method in which a steel sheet is angularly deformed by performing burner heating and subsequent water cooling using a predetermined steel sheet, and is not simply a technique for providing the steel sheet itself. Therefore, it is not possible to judge whether the steel sheet is within the scope of the present invention only with the steel sheet in Table 3, but for reference, the remarks column in Table 3 shows whether the steel is within the scope of the present invention. .

表4は、表3にある鋼材を用いて、ガスバーナー加熱および水冷をする熱加工を施し、そのときに生じたはね上がり量を測定した結果を示している。加熱方法および測定値に関しては、図6にその説明図を示した。すなわち、鋼板の中央線に沿って、ガスバーナー6で加熱し、その後冷却水7を散布する。加熱領域8は、図6に示されているように、鋼板の一方の辺からもう一方の辺まで連続的に実施した。また、加熱は、各鋼板に対して3回実施し、その後鋼板そのものが室温まで冷却してから、はね上がり量h:9を測定した。はね上がり量hの定義は、図6に示した。この値は、角変形量に対応するもので、この測定値を相対比較することにより、本発明の効果を調べることができる。なお、表4のNo19,20については、水冷をしなかった例である。   Table 4 shows the results of measuring the amount of splashing that occurred when the steel materials listed in Table 3 were subjected to thermal processing with gas burner heating and water cooling. The heating method and measured values are shown in FIG. That is, it heats with the gas burner 6 along the centerline of a steel plate, and sprays the cooling water 7 after that. As shown in FIG. 6, the heating region 8 was continuously performed from one side of the steel plate to the other side. Heating was performed three times for each steel plate, and after that, the steel plate itself was cooled to room temperature, and then the amount of splash h: 9 was measured. The definition of the amount of splash h is shown in FIG. This value corresponds to the amount of angular deformation, and the effect of the present invention can be examined by relatively comparing the measured values. In addition, about No19 and 20 of Table 4, it is the example which was not water-cooled.

表4において、No1〜15は、加熱速度15cm/分、バーナー加熱位置および水冷位置の距離が10cmの場合の実施例である。No1の比較例では、はね上がり量は3.6mmであり、本発明例であるNo2の6.0mmよりはね上がり量はかなり低い。No1実施例に用いられている鋼材は表3のS1鋼材であり、これは、鋼板成分は本発明例の中に入っているもののベイナイト組織率が本発明例の範囲外であるためはね上がり量が小さくなった例である。No3実施例は、ベイナイト率およびNb、Ti、V、Moのいずれもが本発明例の範囲外であるため、高温強度不足となり、はね上がり量は小さくなった。これらに対して、No4、6,7,8,10,11,12、14、15は、はね上がり量は全て6mmを超えており、効率的に角変形させることができる。それに対して、比較例であるNo1,3,9は全てはね上がり量が4mm未満であり、本発明例よりはね上がり量は小さい。No5、No13は、はね上がり量hは、本発明例であり比較例より充分高いが、No5の鋼材はCが請求項3の範囲外の例であり、No13の鋼材はベイナイト率が請求項2の範囲外の鋼材である。これら実施例では、冷却速度が75℃/秒と速い場合で、部分的にマルテンサイトが生成し、その結果、母材vTrsが他の鋼材より高くなっている例である。そのため、はね上がり量が大きくかつvTrsが充分低い、すなわち良好な母材靭性を有するためには、本発明の請求項1のみならず請求項2以下の範囲内にする必要がある。   In Table 4, Nos. 1 to 15 are examples when the heating rate is 15 cm / min and the distance between the burner heating position and the water cooling position is 10 cm. In the comparative example of No1, the amount of protrusion is 3.6 mm, and the amount of protrusion is considerably lower than 6.0 mm of No2 which is an example of the present invention. The steel material used in the No. 1 example is the S1 steel material in Table 3, and this is because the steel sheet component is included in the example of the present invention, but the bainite structure ratio is outside the range of the example of the present invention. This is a small example. In the No. 3 example, since the bainite ratio and Nb, Ti, V, and Mo were all outside the range of the present invention example, the high-temperature strength was insufficient and the amount of splash was small. On the other hand, No. 4, 6, 7, 8, 10, 11, 12, 14, and 15 all have the amount of splash exceeding 6 mm, and can be efficiently angularly deformed. On the other hand, No1, 3 and 9 which are comparative examples all have the amount of protrusion less than 4 mm, and the amount of protrusion is smaller than the example of this invention. In No5 and No13, the amount of splash h is an example of the present invention and is sufficiently higher than that of the comparative example. However, the steel material of No5 is an example in which C is outside the scope of claim 3, and the steel material of No13 has a bainite ratio of claim 2. The steel is out of range. In these examples, when the cooling rate is as high as 75 ° C./second, martensite is partially generated, and as a result, the base material vTrs is higher than other steel materials. Therefore, in order to have a large amount of splash and vTrs sufficiently low, that is, to have good base material toughness, it is necessary to be within the range of not only Claim 1 but also Claim 2 and below.

表4の実施例16,17,18は、加熱速度を20cm/分にした場合であるが、本発明例であるNo15,16実施例は、比較例であるNo16実施例よりはね上がり量が大きく高能率熱加工が可能である。   Examples 16, 17, and 18 in Table 4 are cases where the heating rate was set to 20 cm / min. However, No15 and 16 examples of the present invention had a larger amount of protrusion than the No16 example that was a comparative example. Efficient thermal processing is possible.

表4の実施例No19,20は、水冷しない場合であり、特にNo20は、鋼板成分およびベイナイト率が本発明の範囲内のものである。しかし、水冷していないため、本発明である高能率熱加工方法にはなっていない。特に、はね上がり量は、No19,20ともに4.0〜4.5mmと両者で差があまりない。本発明例の鋼板範囲外であるS1を用いている実施例No19では、水冷ありの条件であるNo1よりはね上がり量が大きい。そのため、現在産業界で実施されている熱加工方法に対し、水冷を中止するだけでそれなりの変形量増大の効果が期待できる。しかし、水冷していないため、最終形状に達する、すなわち室温までに冷却される時間が1時間程度と長かった。一般に、作業者は、施工中、すなわち施工しながら鋼板形状を確認しつつ作業を行うため、冷却時間が1時間近いのは作業効率上非常に問題となる。この場合は、1回の施工でのはね上がり量が小さい実施例No1を用いた方が、最終形状までに仕上げる時間は短くてすみ、高能率という観点からは、むしろNo1実施例のほうが優れている。   Examples No. 19 and 20 in Table 4 are cases where water cooling is not performed, and in particular, No. 20 has a steel plate component and a bainite ratio within the scope of the present invention. However, since it is not water-cooled, it is not the high-efficiency thermal processing method according to the present invention. In particular, the amount of splash is 4.0 to 4.5 mm for both No. 19 and 20, and there is not much difference between the two. In Example No19 which uses S1 which is outside the steel plate range of the example of the present invention, the amount of protrusion is larger than No1 which is a condition with water cooling. For this reason, it is possible to expect an effect of increasing the amount of deformation by simply stopping the water cooling for the thermal processing method currently practiced in the industry. However, since it was not water-cooled, the time to reach the final shape, that is, to cool to room temperature, was as long as about 1 hour. In general, since the worker performs the work while confirming the shape of the steel sheet during the construction, that is, during the construction, it is very problematic in terms of work efficiency that the cooling time is close to one hour. In this case, the time required to finish to the final shape can be shortened by using Example No1 with a small amount of protrusion in one construction. From the viewpoint of high efficiency, the No1 Example is rather superior. .

以上は、3回加熱を実施したときのはね上がり量についての実施例であるが、6mmを上回るはね上がり量を得るために必要な加熱回数も表4に示した。この加熱回数が少ないということは、それだけ短い時間で充分なはね上がり量、すなわち変形量を得ることができるという意味で、効率よい熱変形加工であることがわかる。本発明例である、No2、4、6〜8、10〜15、17、18については、加熱回数が、2〜4と少なく、比較例であるNo1、3、9、16、19、20は、加熱回数が5〜8と多いことがわかる。すなわち、本発明例は効率よい熱加工方法であることを示している。   The above is an example of the amount of splash when the heating is performed three times. Table 4 also shows the number of times of heating necessary to obtain the amount of splash exceeding 6 mm. The fact that the number of times of heating is small means that a sufficient amount of splashing, that is, a deformation amount can be obtained in such a short time, and it is understood that the heat deformation processing is efficient. About No2,4,6-8,10-15,17,18 which is an example of this invention, the frequency | count of a heating is few with 2-4, and No1,3,9,16,19,20 which is a comparative example is It can be seen that the number of times of heating is as large as 5-8. That is, the example of the present invention is an efficient thermal processing method.

Figure 2006088162
Figure 2006088162

Figure 2006088162
Figure 2006088162

Figure 2006088162
Figure 2006088162

Figure 2006088162
Figure 2006088162

(実施例2)
以下の実施例を基に本発明法により加熱や冷却条件を変えずに横変形を主体とした線状加熱変形における変形量を増加させことにより、横変形を利用した曲げ変形の作業効率向上の効果について説明する。
(Example 2)
Based on the following examples, the method of the present invention improves the work efficiency of bending deformation using lateral deformation by increasing the amount of deformation in linear heating deformation mainly in lateral deformation without changing the heating and cooling conditions. The effect will be described.

表5に、鋼片成分を示す。この成分系の鋼片を表6に示す製造条件にて鋼板を製造した。表7には、鋼片と製造条件の組み合わせと鋼板の特性を示した。鋼板特性は、YP、TS、YR、フェライトパーライト組織率およびvTrsである。   Table 5 shows the billet components. A steel plate was produced under the production conditions shown in Table 6 for this component steel slab. Table 7 shows the combination of steel slabs and manufacturing conditions and the characteristics of the steel sheet. The steel sheet characteristics are YP, TS, YR, ferrite pearlite texture and vTrs.

本発明は、所定の鋼板を用いてバーナー加熱とその後の水冷をして鋼板を効率よく横変形する方法を提供するものであり、単に鋼板そのものを提供する技術ではない。そのため、表7の鋼板だけでは本発明の範囲内であるかどうかの判断はできないが、参考のため、表7の備考の欄に本発明の範囲内の鋼板であるかどうかがわかるようにした。   The present invention provides a method for efficiently laterally deforming a steel sheet by performing burner heating and subsequent water cooling using a predetermined steel sheet, and is not simply a technique for providing the steel sheet itself. Therefore, it is not possible to judge whether the steel sheet is within the scope of the present invention only with the steel sheet in Table 7, but for reference, the remarks column in Table 7 shows whether the steel sheet is within the scope of the present invention. .

図7は加熱冷却方法と横変形量Wを示す概念図である。図7では、加熱領域8’を、鋼板の辺から辺まで連続的に実施した。これは、横変形量Wの比較を容易にするためである。鋼板に曲がり変形を与える場合は、加熱領域を途中で中断すれば言いが、それに対する実施結果は後ほど述べる。表8は、表7にある鋼板を用いて、ガスバーナー加熱6’および水冷7’をする熱加工を施し、そのときに生じた横変形測定結果(W)を示したものである。ガスバーナー加熱は実施例1と同じように、3回加熱し、その後横変形量W:10を測定した。表8では、No21〜30は、加熱速度15cm/分、バーナー加熱位置および水冷位置の距離が10cmの場合の実施例である。No21〜24、27、30は、本発明例であり、横変形Wは、0.86〜1.14mmと大きいが、比較例であるNo28、29は、Wは0.53,0.58mmと小さい。また、No25は、Wが1mmを上回る場合の比較例である。No25で用いられている鋼材は表7のS25であり、YRが80%を上回る場合で本発明例と同等のWを得ているため、TSが425MPaと、S21〜S24より低く、本発明例の鋼材を用いたほうが強度確保してかつ横変形が大きいことがわかる。No26は、Wが1.89mm最も大きくなった例であるが、本発明における請求項9の成分範囲外の例である。そのため、No26の鋼材S26の強度が本発明例のS21〜S24のそれより低い。この強度で構造物の必要強度が確保できる場合は、この鋼材を用いることが望ましいが、そうでない場合は、請求項9以下の範囲内にするほうが望ましい。これらの選択は、当業者が、状況により判断することができる。なお、本発明例で、No30実施例は、鋼板がS30であり、YRは本発明請求項1の範囲内であるものの、フェライトパーライト組織率で請求項8の範囲外である。この条件下で、YRを抑えるるようにしたため、マルテンサイトなどの硬い組織が母材に導入され、結果的に母材vTrsが−25℃と低い。すなわち、本発明例の他の鋼材より母材靭性が劣り、構造物上問題がない場合はよいが、問題が生じる場合は、請求項8を満たすような鋼材を採用することが望ましい。   FIG. 7 is a conceptual diagram showing a heating / cooling method and a lateral deformation amount W. In FIG. 7, the heating region 8 ′ is continuously performed from side to side of the steel plate. This is to facilitate comparison of the lateral deformation amount W. When bending deformation is given to the steel sheet, it is said that the heating region is interrupted in the middle, and the results for that will be described later. Table 8 shows the lateral deformation measurement result (W) generated at the time when the steel plate shown in Table 7 was subjected to thermal processing with gas burner heating 6 'and water cooling 7'. In the same manner as in Example 1, the gas burner was heated three times, and then the lateral deformation amount W: 10 was measured. In Table 8, Nos. 21 to 30 are examples when the heating rate is 15 cm / min and the distance between the burner heating position and the water cooling position is 10 cm. No. 21 to 24, 27 and 30 are examples of the present invention, and the lateral deformation W is as large as 0.86 to 1.14 mm, but No. 28 and 29 which are comparative examples have W of 0.53 and 0.58 mm. small. Moreover, No25 is a comparative example when W exceeds 1 mm. The steel material used in No25 is S25 in Table 7, and when YR exceeds 80%, W equivalent to the present invention example is obtained, so TS is 425 MPa, lower than S21 to S24, and the present invention example. It can be seen that the use of this steel material ensures the strength and the lateral deformation is larger. No. 26 is an example in which W is 1.89 mm, which is an example outside the component range of claim 9 in the present invention. Therefore, the strength of the steel material S26 of No. 26 is lower than that of S21 to S24 of the example of the present invention. If this strength can ensure the required strength of the structure, it is desirable to use this steel material. These choices can be determined by those skilled in the art according to the situation. In the example of the present invention, in No. 30 example, the steel sheet is S30, and YR is within the scope of claim 1 of the present invention, but the ferrite pearlite structure ratio is outside the scope of claim 8. Since YR is suppressed under these conditions, a hard structure such as martensite is introduced into the base material, and as a result, the base material vTrs is as low as −25 ° C. That is, the base material toughness is inferior to that of other steel materials of the present invention and there is no structural problem. However, when a problem occurs, it is desirable to employ a steel material that satisfies claim 8.

実施例No31〜35は、バーナー速度を20cm/分にした場合の結果である。本発明例は、No31、32であり、横変形は0.98mm、0.92mmであるのに対して、比較例であるNo33,34は、0.51mm、0.54mmと小さかった。また、No33は、横変形が最も大きかった例であるが、鋼板強度が低く、構造物としての強度確保上問題がある。   Example No 31-35 is a result at the time of setting a burner speed to 20 cm / min. The examples of the present invention were Nos. 31 and 32, and the lateral deformations were 0.98 mm and 0.92 mm, whereas Nos. 33 and 34 as comparative examples were as small as 0.51 mm and 0.54 mm. Moreover, No33 is an example in which the lateral deformation was the largest, but the steel plate strength was low, and there was a problem in securing the strength as a structure.

以上は、加熱回数を3回と固定し、かつ線状加熱を鋼板の一方の辺から反対側の辺まで実施した例である。この横変形Wを用いて鋼板に曲がり変形を与えるためには、線状加熱を途中で中断するようにすればよい。そこで、図8−(A)のように、向かい合っている二つの辺から、ほぼ垂直に内側に向かって加熱領域11を設定し、鋼板の曲がり変形HW12を測定した。図8−(B)は、HW12を説明した概念図である。また、鋼板および加熱速度、バーナー水冷距離の組み合わせは先に示した表8と同じであり、HWが15mm以上になるまで各加熱領域11を線状加熱し、その回数を測定した。   The above is an example in which the number of heating is fixed to 3 and linear heating is performed from one side of the steel plate to the opposite side. In order to bend and deform the steel plate using the lateral deformation W, the linear heating may be interrupted halfway. Therefore, as shown in FIG. 8- (A), the heating region 11 was set almost vertically inward from two opposing sides, and the bending deformation HW12 of the steel sheet was measured. FIG. 8- (B) is a conceptual diagram illustrating the HW 12. Moreover, the combination of the steel plate, the heating rate, and the burner water cooling distance was the same as in Table 8 described above, and each heating region 11 was linearly heated until the HW was 15 mm or more, and the number of times was measured.

表8に、その回数測定結果を示している。本発明例の場合は、全て4回以下の加熱回数でHWを15mm以上にすることができる。一方、比較例No28、29、34、35では、6回以上の加熱回数が必要であった。比較例で加熱回数が低いNo25、33は、鋼板強度が低い場合のものである。   Table 8 shows the measurement results. In the case of the present invention example, the HW can be increased to 15 mm or more by the number of heating times of 4 times or less. On the other hand, in comparative example No28, 29, 34, 35, the frequency | count of a heating of 6 times or more was required. No. 25 and 33 with a low heating frequency in the comparative example are those when the steel plate strength is low.

実施例No36,37は水冷を実施しない場合であるが、横変形Wは鋼板S21、S29で大きな差はなかった。また、水冷していないため、冷却終了まで長い時間が必要で、高能率とはいえない。さらに、曲がり変形HWが15mm以上にするためには、線状加熱回数を8回以上する必要があり、この意味からも高能率とはいえない。   Example Nos. 36 and 37 are cases where water cooling is not performed, but the lateral deformation W was not significantly different between the steel plates S21 and S29. Moreover, since it is not water-cooled, it takes a long time to complete the cooling, and it cannot be said that the efficiency is high. Furthermore, in order to make the bending deformation HW 15 mm or more, it is necessary to increase the number of times of linear heating to 8 times or more. From this point of view, it cannot be said that the efficiency is high.

Figure 2006088162
Figure 2006088162

Figure 2006088162
Figure 2006088162

Figure 2006088162
Figure 2006088162

Figure 2006088162
Figure 2006088162

横変形が大きい場合(A)と角変形が大きい場合(B)の加熱変形を説明する概念図である。It is a conceptual diagram explaining the heat deformation in the case where the lateral deformation is large (A) and the case where the angular deformation is large (B). 中央部分と辺の長さの差が形成する角変形を説明する概念図である。It is a conceptual diagram explaining the angular deformation which the difference of the length of a center part and a side forms. 鋼板の形状を説明する概念図である。It is a conceptual diagram explaining the shape of a steel plate. 表裏面の横収縮の差が形成する角変形を示す概念図である。It is a conceptual diagram which shows the angular deformation which the difference of the horizontal contraction of the front and back forms. 表裏面の横収縮の差が角変形を形成する機構を説明する概念図である。It is a conceptual diagram explaining the mechanism in which the difference in lateral shrinkage of the front and back surfaces forms angular deformation. 加熱冷却方法と跳ね上がり量(h)を説明する概念図である。It is a conceptual diagram explaining the heating-cooling method and the amount of jumps (h). 加熱冷却方法と横変形量(W)を説明する概念図である。It is a conceptual diagram explaining the heating-cooling method and lateral deformation (W). 加熱方法と鋼板の曲がり変形(HW)を説明する概念図である。It is a conceptual diagram explaining the bending method (HW) of a heating method and a steel plate.

符号の説明Explanation of symbols

1、1’、2、2’ :線状加熱される長方形鋼板における辺
3、3’、8、8’、11:線状加熱領域
4、4’ :鋼板形状観察方向
5、5’ :変形方向
6、6’ :ガスバーナー
7、7’ :冷却水
9 :はねあがり量、h
10 :横変形量、W
12 :曲がり変形量、HW
1, 1 ′, 2, 2 ′: Sides of a rectangular steel plate to be linearly heated 3, 3 ′, 8, 8 ′, 11: Linear heating region 4, 4 ′: Steel plate shape observation direction 5, 5 ′: Deformation Direction 6, 6 ': Gas burner 7, 7': Cooling water 9: Splashing amount, h
10: lateral deformation, W
12: Bending deformation, HW

Claims (11)

ガスバーナーにより鋼板の表面または裏面を線状に加熱し、水冷して鋼板を曲げ変形させる線状加熱変形方法において、600℃における降伏強度が室温における降伏強度の1/3以上である鋼板を用いて、該鋼板面を前記ガスバーナーで線状加熱し、線状加熱領域における厚み方向の加熱面側の横収縮量が非加熱面側に比べて増加する角変形をさせることを特徴とする鋼板の線状加熱変形方法。   In a linear heating deformation method in which the front or back surface of a steel sheet is linearly heated with a gas burner, and the steel sheet is bent and deformed by water cooling, a steel sheet having a yield strength at 600 ° C. of 1/3 or more of the yield strength at room temperature The steel sheet surface is linearly heated by the gas burner, and the steel sheet is subjected to angular deformation in which the amount of lateral shrinkage on the heating surface side in the thickness direction in the linear heating region increases compared to the non-heating surface side. Linear heating deformation method. 前記角変形させる鋼板がベイナイト相を面積率で70%以上含有する組織であることを特徴とする請求項1記載の鋼板の線状加熱変形方法。   The method for linearly heating and deforming a steel sheet according to claim 1, wherein the steel sheet to be angularly deformed has a structure containing a bainite phase in an area ratio of 70% or more. 前記角変形させる鋼板が、質量%で、C:0.001〜0.10%、Si:0.02〜0.60%、Mn:0.80〜3.0%を含有し、P:0.03%以下、S:0.02%以下に制限し、さらに、Nb:0.005〜0.20%、Ti:0.005〜0.20%、V:0.005〜0.20%、および、Mo:0.05〜0.5%を1種または2種以上含有し、残部が鉄および不可避的不純物であることを特徴とする請求項1または2記載の鋼板の線状加熱変形方法。   The steel sheet to be angularly deformed contains, in mass%, C: 0.001 to 0.10%, Si: 0.02 to 0.60%, Mn: 0.80 to 3.0%, P: 0 0.03% or less, S: limited to 0.02% or less, Nb: 0.005 to 0.20%, Ti: 0.005 to 0.20%, V: 0.005 to 0.20% And Mo: 0.05 to 0.5% of one or more, and the balance is iron and inevitable impurities, the linear heat deformation of the steel sheet according to claim 1 or 2 Method. 前記角変形させる鋼板が、質量%で、さらに、B:0.0003〜0.0050%を含有することを特徴とする請求項1〜3の何れかに記載の鋼板の線状加熱変形方法。   The method for linearly heating and deforming a steel sheet according to any one of claims 1 to 3, wherein the steel sheet to be angularly deformed contains, in mass%, B: 0.0003 to 0.0050%. 前記角変形させる鋼板が、質量%で、さらに、Al:0.01〜0.10%を含有することを特徴とする請求項1〜4の何れかに記載の鋼板の線状加熱変形方法。   The method for linearly heating and deforming a steel sheet according to any one of claims 1 to 4, wherein the angularly deformed steel sheet further contains Al: 0.01 to 0.10% in mass%. 前記角変形させる鋼板が、質量%で、さらに、Cu:0.5〜2.0%、Ni:0.1〜2.0%、Cr:0.05〜0.5%、W:0.05〜0.5%、および、Zr:0.05〜0.5%を1種または2種以上含有することを特徴とする請求項1〜5の何れかに記載の鋼板の線状加熱変形方法。   The steel plate to be angularly deformed is in mass%, and Cu: 0.5 to 2.0%, Ni: 0.1 to 2.0%, Cr: 0.05 to 0.5%, W: 0.00. The linear heat deformation of the steel sheet according to any one of claims 1 to 5, characterized by containing one or more of 05 to 0.5% and Zr: 0.05 to 0.5%. Method. 前記角変形させる鋼板が、質量%で、さらに、REM:0.001〜0.02%、および、Ca:0.0005〜0.02%の1種または2種を含有することを特徴とする請求項1〜6の何れかに記載の鋼板の線状加熱変形方法。   The steel sheet to be angularly deformed is mass% and further contains one or two of REM: 0.001 to 0.02% and Ca: 0.0005 to 0.02%. The method for linearly heating and deforming a steel sheet according to any one of claims 1 to 6. ガスバーナーにより鋼板の表面または裏面を線状に加熱し、水冷して鋼板を曲げ変形させる加熱変形方法において、室温における降伏強度が引っ張り強度の80%以下である鋼板を用いて、該鋼板面を鋼板の何れか一辺に対して略垂直な方向に前記ガスバーナーで線状加熱し、線状加熱方向およびその垂直方向に線状加熱領域と非加熱領域を形成した後、線状加熱領域における厚み方向の横収縮量が均一になる横変形をさせることを特徴とする鋼板の線状加熱変形方法。   In a heating deformation method in which the front or back surface of a steel sheet is linearly heated by a gas burner, and the steel sheet is bent and deformed by water cooling, a steel sheet having a yield strength at room temperature of 80% or less of the tensile strength is used. After heating linearly with the gas burner in a direction substantially perpendicular to any one side of the steel sheet, forming a linear heating region and a non-heating region in the linear heating direction and the vertical direction, the thickness in the linear heating region A method of linearly heating and deforming a steel sheet, wherein the transverse deformation is performed so that the amount of lateral shrinkage in the direction becomes uniform. 前記横変形させる鋼板がフェライトパーライト相を面積率で30〜70%含有するフェライトパーライト相とベイナイト相の混合組織であることを特徴とする請求項8に記載の鋼板の線状加熱変形方法。   9. The method of linearly heating and deforming a steel sheet according to claim 8, wherein the laterally deformed steel sheet is a mixed structure of a ferrite pearlite phase and a bainite phase containing a ferrite pearlite phase in an area ratio of 30 to 70%. 前記横変形させる鋼板が、質量%で、C:0.05〜0.18%、Si:0.05〜0.6%、Mn:0.5〜2.0%を含有し、P:0.03%以下、S:0.03%以下に制限し、残部が鉄および不可避不純物であることを特徴とする請求項8または9に記載の鋼板の線状加熱変形方法。   The steel sheet to be laterally deformed contains, in mass%, C: 0.05 to 0.18%, Si: 0.05 to 0.6%, Mn: 0.5 to 2.0%, P: 0 The linear heat deformation method for a steel sheet according to claim 8 or 9, characterized by being limited to 0.03% or less and S: 0.03% or less, and the balance being iron and inevitable impurities. 前記横変形させる鋼板が、質量%で、さらに、Ni:0.1〜2.0%、Cu:0.1〜0.5%、Cr:0.05〜0.5%を1種または2種以上含有することを特徴とする請求項8〜10の何れかに記載の鋼板の線状加熱変形方法。   The steel plate to be laterally deformed is in mass%, and further, Ni: 0.1 to 2.0%, Cu: 0.1 to 0.5%, Cr: 0.05 to 0.5%, one or two The linear heating deformation method of the steel sheet according to any one of claims 8 to 10, comprising at least one seed.
JP2004273028A 2004-09-21 2004-09-21 Linear heating deformation method of steel sheet Expired - Fee Related JP4733950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004273028A JP4733950B2 (en) 2004-09-21 2004-09-21 Linear heating deformation method of steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004273028A JP4733950B2 (en) 2004-09-21 2004-09-21 Linear heating deformation method of steel sheet

Publications (2)

Publication Number Publication Date
JP2006088162A true JP2006088162A (en) 2006-04-06
JP4733950B2 JP4733950B2 (en) 2011-07-27

Family

ID=36229631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004273028A Expired - Fee Related JP4733950B2 (en) 2004-09-21 2004-09-21 Linear heating deformation method of steel sheet

Country Status (1)

Country Link
JP (1) JP4733950B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024715A1 (en) * 2009-08-24 2011-03-03 新日本製鐵株式会社 Bow structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576947A (en) * 1991-09-18 1993-03-30 Ishikawajima Harima Heavy Ind Co Ltd Working method for bending steel sheet by strip heating
JPH05125438A (en) * 1991-11-06 1993-05-21 Nippon Steel Corp Manufacture of low yield ratio high tensile strength steel
JPH07136720A (en) * 1993-09-20 1995-05-30 Nippon Steel Corp Steel plate which is small in weld strain and easily bendable by linear heating, welding material and its welding method
JPH09310117A (en) * 1996-03-18 1997-12-02 Kawasaki Steel Corp Production of high strength and high toughness steel plate with small variation in material constitution and excellent in weldability
JP2000256778A (en) * 1999-03-11 2000-09-19 Kobe Steel Ltd Steel sheet with two layer structure excellent in impact characteristic
JP2003268484A (en) * 2002-03-12 2003-09-25 Nippon Steel Corp Steel plate with little welding distortion
JP2004074200A (en) * 2002-08-13 2004-03-11 Mitsubishi Heavy Ind Ltd Method for producing metal sheet having curved surface, manufacturing apparatus thereof, and metal sheet having curved surface

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576947A (en) * 1991-09-18 1993-03-30 Ishikawajima Harima Heavy Ind Co Ltd Working method for bending steel sheet by strip heating
JPH05125438A (en) * 1991-11-06 1993-05-21 Nippon Steel Corp Manufacture of low yield ratio high tensile strength steel
JPH07136720A (en) * 1993-09-20 1995-05-30 Nippon Steel Corp Steel plate which is small in weld strain and easily bendable by linear heating, welding material and its welding method
JPH09310117A (en) * 1996-03-18 1997-12-02 Kawasaki Steel Corp Production of high strength and high toughness steel plate with small variation in material constitution and excellent in weldability
JP2000256778A (en) * 1999-03-11 2000-09-19 Kobe Steel Ltd Steel sheet with two layer structure excellent in impact characteristic
JP2003268484A (en) * 2002-03-12 2003-09-25 Nippon Steel Corp Steel plate with little welding distortion
JP2004074200A (en) * 2002-08-13 2004-03-11 Mitsubishi Heavy Ind Ltd Method for producing metal sheet having curved surface, manufacturing apparatus thereof, and metal sheet having curved surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024715A1 (en) * 2009-08-24 2011-03-03 新日本製鐵株式会社 Bow structure

Also Published As

Publication number Publication date
JP4733950B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP4751137B2 (en) Steel plate manufacturing method that can be easily bent by linear heating
JP4951997B2 (en) A method for producing a high-tensile steel sheet having a tensile strength of 550 MPa or more.
JP2005320619A (en) Steel plate excellent in fatigue crack propagation characteristic and method for production thereof
KR20170107070A (en) A steel plate having high crack-controllability and a manufacturing method thereof
JP7339339B2 (en) Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same
JP2022512191A (en) High-strength steel products and their manufacturing methods
JPWO2014175122A1 (en) H-section steel and its manufacturing method
JP4630158B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP2013181183A (en) High strength cold rolled steel sheet having low in-plane anisotropy of yield strength, and method of producing the same
JP5287553B2 (en) Non-tempered high-tensile steel plate with yield strength of 885 MPa or more and method for producing the same
JP5151354B2 (en) High tensile cold-rolled steel sheet and method for producing high-tensile cold-rolled steel sheet
US20110036469A1 (en) Steel plate that exhibits excellent low-temperature toughness in base material and weld heat-affected zone and has small strength anisotropy, and manufacturing method thereof
JP2008189973A (en) Method for producing high-toughness and high-tension steel sheet excellent in strength-elongation balance
JP2005171300A (en) High tensile steel for high heat input welding, and weld metal
JP4959167B2 (en) Thermal processing method for steel sheet
JP4985086B2 (en) High tensile thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP2007277629A (en) Extra-thick steel material and manufacturing method therefor
JP4038166B2 (en) Steel plate excellent in earthquake resistance and weldability and manufacturing method thereof
JP2008261012A (en) Method for producing high strength steel having 500 mpa or more yield stress and 570 mpa or more tensile strength and excellent in toughness of welding heat-affected part
JP2010037612A (en) High-strength steel pipe excellent in workability and method for manufacturing the same
JP2002294391A (en) Steel for building structure and production method therefor
JP2005298962A (en) Method for manufacturing high-strength steel plate superior in workability
JP2006088162A (en) Linear heating deformation method for steel sheet
JP6926409B2 (en) Manufacturing method of high-strength steel plate and welded joint
JP2008221318A (en) Method for producing steel sheet pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4733950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees