JPH0576947A - Working method for bending steel sheet by strip heating - Google Patents

Working method for bending steel sheet by strip heating

Info

Publication number
JPH0576947A
JPH0576947A JP23794891A JP23794891A JPH0576947A JP H0576947 A JPH0576947 A JP H0576947A JP 23794891 A JP23794891 A JP 23794891A JP 23794891 A JP23794891 A JP 23794891A JP H0576947 A JPH0576947 A JP H0576947A
Authority
JP
Japan
Prior art keywords
strain
bending
heating
steel sheet
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23794891A
Other languages
Japanese (ja)
Other versions
JP2924354B2 (en
Inventor
Hiroshi Fujino
宏 藤野
Yasuhisa Okumoto
泰久 奥本
Ryoichi Kamichika
亮一 神近
Yukio Ueda
幸雄 上田
Hidekazu Murakawa
英一 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP23794891A priority Critical patent/JP2924354B2/en
Publication of JPH0576947A publication Critical patent/JPH0576947A/en
Application granted granted Critical
Publication of JP2924354B2 publication Critical patent/JP2924354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a working method for bending a steel sheet by means of strip heating by which the bending of the steel plate is easily performed by numerically determining a position for the strip heating and the amount of inherent strain. CONSTITUTION:Geometrical information concerning the initial shape of the steel sheet before the bending and the final shape of the steel plate post the bending is inputted; simultaneously the mesh division of a finite element method in accordance with the initial shape is performed; an elastic deformation is forcedly performed from the initial shape to the final shape; after a strain generated in the process is calculated, the calculated strain is separated into in-plane component and out-of-plane bending component; the distribution of each main strain is graphically displayed; for the distribution of the in-plane strain, an area where the main strain from compression is large is selected as the area for heating, and the wire heating is performed in a direction perpendicular to the direction of the main strain; for the bending strain, an area where the absolute value of the bending strain is large is made as an area for heating, and the wire heating is performed in a direction perpendicular to the main direction where the absolute value is the largest to the direction of the strain; a prescribed specific strain is imparted to each; and the above-mentioned steel plate is bent in a prescribed final shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は線状加熱を用いて平板状
あるいは半円筒形状の初期形状の鋼板を曲面形状の最終
形状に曲げ加工するための線状加熱による鋼板の曲げ加
工方法に係り、特に、最終形状を得るために必要な固有
ひずみの関係を有限要素法を用いて解析し、さらに得ら
れた知見に基づき線状加熱をするべき位置や固有ひずみ
の量を数値的に決定して鋼板の曲げ加工を容易に行える
ことを達成した線状加熱による鋼板の曲げ加工方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for bending a steel sheet by linear heating for bending a flat or semi-cylindrical initial shape steel sheet into a curved final shape by using linear heating. , In particular, the relationship between the intrinsic strains required to obtain the final shape is analyzed using the finite element method, and based on the obtained knowledge, the position to be linearly heated and the amount of the intrinsic strains are numerically determined. The present invention relates to a method of bending a steel sheet by linear heating, which achieves that the bending of the steel sheet can be easily performed.

【0002】[0002]

【従来の技術】一般に、造船所における鋼板の曲げ加工
の多くは線状加熱によって行われている。この線状加熱
による曲げ加工は平板状あるいは半円筒形状の鋼板の所
定の位置に線状加熱を施し、生じた塑性ひずみによる板
の面内収縮や角変形を利用して、目的とする3次元形状
を作り出すものであり、これら面内収縮率や角変形量は
線状加熱の加熱位置や方向等によって決定される。
2. Description of the Related Art Generally, most of the bending work of a steel plate in a shipyard is performed by linear heating. In this bending by linear heating, linear heating is applied to a predetermined position of a flat plate or semi-cylindrical steel plate, and the in-plane contraction and angular deformation of the plate due to the generated plastic strain are used to achieve the desired three-dimensional The shape is created, and the in-plane shrinkage rate and the amount of angular deformation are determined by the heating position and direction of the linear heating.

【0003】[0003]

【発明が解決しようとする課題】ところで、この線状加
熱よる曲げ加工は加熱位置や加熱条件といったものが重
要となってくるが、従来、これらの曲げ加工は全て熟練
工の勘や技能によって行われてきた。
By the way, in the bending process by the linear heating, the heating position and the heating condition are important, but conventionally, all the bending processes are performed by the intuition and skill of a skilled worker. Came.

【0004】しかしながら、最近はこれら熟練工の高齢
化および作業者の数の減少、さらに技能の継承が困難で
あるといった問題が顕著化してきており、処理能力の低
下が危惧されている。
However, recently, the problems such as the aging of skilled workers, the decrease in the number of workers, and the difficulty in inheriting the skills have become more prominent, and there is a fear that the processing capacity will decrease.

【0005】そこで、本発明はこれらの問題点を有効に
解決するために案出されたものであり、その主な目的は
熟練を要する線状加熱作業を技術化することで特殊な技
能を要せずに処理能力の向上を達成できる線状加熱方法
を提供するものである。
Therefore, the present invention has been devised in order to effectively solve these problems, and the main purpose thereof is to technicalize the linear heating work which requires skill and requires special skill. It is intended to provide a linear heating method capable of achieving an improvement in processing capacity without doing so.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、第一の基本的な発明は平板状あるいは半円筒形をし
た初期形状の鋼板を任意の曲面形状をした最終形状に曲
げ加工を行うための線状加熱による鋼板の曲げ加工方法
において、曲げ加工前の鋼板の初期形状と曲げ加工後の
鋼板の最終形状に関する幾何学情報を入力すると共に、
初期形状に対応した有限要素法のメッシュ分割を行い、
初期形状から最終形状まで強制的に弾性変形させて、そ
の過程で生じる歪みを計算した後、計算された歪みを面
内成分と面外曲げ成分に分離すると共に、それぞれの主
ひずみ分布をグラフィック表示し、面内歪み分布に対し
ては圧縮の主ひずみが大きい領域を加熱領域として選択
してその主ひずみの方向に垂直な方向を線状加熱し、曲
げ歪みに対しては曲げ歪みの絶対値が大きい領域を加熱
領域とし、そのひずみ方向に絶対値が最大である主方向
に垂直な方向を線状加熱して、それぞれに所定の固有歪
みを与えて、上記鋼板を所定の最終形状に曲げ加工する
ものである。
In order to achieve the above object, the first basic invention is to bend a flat plate or semi-cylindrical steel sheet having an initial shape into a final shape having an arbitrary curved shape. In the method for bending a steel sheet by linear heating for the purpose of inputting geometric information on the initial shape of the steel sheet before bending and the final shape of the steel sheet after bending,
Mesh division of the finite element method corresponding to the initial shape,
After forcibly elastically deforming from the initial shape to the final shape and calculating the strain that occurs in the process, the calculated strain is separated into in-plane and out-of-plane bending components, and the main strain distribution of each is displayed graphically. However, for the in-plane strain distribution, a region with a large compression main strain is selected as the heating region, and the direction perpendicular to the direction of the main strain is linearly heated. Is a heating area, the strain direction is linearly heated in a direction perpendicular to the main direction whose absolute value is the maximum, and given a specific intrinsic strain to each, bending the steel sheet into a predetermined final shape. It is to be processed.

【0007】[0007]

【作用】上述したように、本発明は有限要素法を用いて
初期形状から最終形状に至るまでの鋼板のひずみを計算
し、鋼板のどの位置に、どの様な形態の、いかなる大き
さのひずみを付与すべきが正確にかつ容易に把握できる
ため、線状加熱による曲げ加工作業が容易となる上に、
曲げ加工に際して特殊な熟練や勘といったものが不要と
なる。
As described above, according to the present invention, the strain of the steel sheet from the initial shape to the final shape is calculated by using the finite element method, and the position of the steel sheet, the shape of the strain and the magnitude of the strain are calculated. Although it should be given, it can be grasped accurately and easily, so bending work by linear heating is easy and
No special skill or intuition is required for bending.

【0008】[0008]

【実施例】次に、本発明の好適実施例を説明する。Next, preferred embodiments of the present invention will be described.

【0009】本発明の線状加熱による鋼板の曲げ加工方
法は、線状加熱時に生じる塑性ひずみによる板の面内収
縮や角変形を利用し、目的とする3次元形状を作り出す
加工方法である。
The method for bending a steel sheet by linear heating according to the present invention is a method for producing a desired three-dimensional shape by utilizing in-plane contraction and angular deformation of the sheet due to plastic strain generated during linear heating.

【0010】そこで、まず成形すべき曲り部材の形状と
線状加熱により与えるべき面内収縮量および角変形量に
ついて説明する。図2は平板から部分球殻を作成した場
合を例に、線状加熱の位置と線状加熱によって生ずる角
変形(収縮量が板厚方向に変化)と面内収縮(収縮量が
板厚方向に一様)の関係を模式的に示したものである。
図中aは曲げ加工後の形状と加熱線を示し、bは3次元
曲面を有する曲り部材を加熱線に沿って切り込みを入
れ、これを平面展開した状態を示したものである。直感
的にはb図中に示された切り込みに生じた開き量が線状
加熱によって与えるべき面内縮小量および角変形量を示
している。この例が示すように、一方向のみに曲率を有
するシリンダ形状を作成するためには角変形のみが必要
であるが、2方向に曲率を有する部分球殻の場合には、
面内収縮も考慮しなければならない。従って、任意の形
状を対象とした板曲げ加工を行うためには、目的とした
形状に合わせて面内収縮と角変形の両者を意識的に使い
分ける必要がある。一方、これらの面内収縮量や角変形
量はスプリングバックなどの2次的影響を無視すれば幾
何学的な計算により求めることができ、線状加熱方案を
理論的に作成する一つの方法として、幾何学的計算に基
づく手法がすでに提案されており、固有変形として面内
収縮のみを考慮した場合については幾何学的条件から加
熱位置及び付与すべき縮み量を決定することができる。
Therefore, first, the shape of the bending member to be molded and the in-plane shrinkage amount and the angular deformation amount to be given by the linear heating will be described. Fig. 2 shows an example of the case where a partial spherical shell is created from a flat plate, and the position of linear heating and the angular deformation (contraction amount changes in the plate thickness direction) and in-plane contraction (contraction amount in the plate thickness direction). Is uniform).
In the figure, a shows a shape after bending and a heating wire, and b shows a state in which a bending member having a three-dimensional curved surface is cut along the heating wire and is flatly developed. Intuitively, it shows the in-plane reduction amount and the angular deformation amount that the opening amount generated in the cut shown in FIG. As this example shows, in order to create a cylindrical shape having curvature in only one direction, only angular deformation is necessary, but in the case of a partial spherical shell having curvature in two directions,
In-plane shrinkage must also be considered. Therefore, in order to perform plate bending for an arbitrary shape, it is necessary to consciously properly use both in-plane contraction and angular deformation according to the target shape. On the other hand, the amount of in-plane contraction and the amount of angular deformation can be obtained by geometrical calculation if secondary effects such as springback are ignored, and as a method for theoretically creating a linear heating plan. A method based on geometric calculation has already been proposed, and when only in-plane shrinkage is taken into consideration as the intrinsic deformation, the heating position and the amount of shrinkage to be applied can be determined from the geometric conditions.

【0011】しかしながら、一般には面内収縮及び面外
曲げ固有ひずみの両方を状況に応じて適宜使い分ける必
要があり、また、ロール加工やプレス加工による一次曲
げ加工を受けた部材の二次曲げ加工等への対応性を考え
ると幾何学的な計算に基づく手法には限界がある。一
方、曲げ変形を現象に忠実に模擬するという点において
は有限要素法が優れており、最近のEWS等の性能向上
とあいまって日常的な道具の一つとなっている。そこ
で、本発明ではFEMによる弾性解析に基づき、線状加
熱の位置および固有変形量を決定する方法の可能性を案
出した。
However, it is generally necessary to properly use both the in-plane shrinkage and the out-of-plane bending specific strain depending on the situation, and the secondary bending of a member that has been subjected to primary bending by roll processing or press processing. There is a limit to the method based on the geometrical calculation considering the correspondence to. On the other hand, the finite element method is superior in that it faithfully simulates the bending deformation, and it is one of the everyday tools in combination with the recent performance improvement of EWS and the like. Therefore, in the present invention, the possibility of a method for determining the position of linear heating and the amount of intrinsic deformation was devised based on elasticity analysis by FEM.

【0012】すなわち、本発明の線状加熱による鋼板の
曲げ加工方法は以上の見解に基づいて案出されたもので
あり、図1はその線状加熱の加熱位置と方向決定要領を
示したフローチャート図である。
That is, the method for bending a steel sheet by linear heating according to the present invention has been devised based on the above viewpoints, and FIG. 1 is a flow chart showing the heating position and the direction for determining the linear heating. It is a figure.

【0013】先ず、初期形状(一次曲げ後の形状でも良
い)と最終成形形状に関する幾何学情報の入力(ステッ
プ1)した後、初期形状に対応したFEMのメッシュ分
割を行う(ステップ2)。次に、加熱位置及び方向の決
定として、先ず、初期形状から最終形状まで強制的に弾
性変形させ、その過程で生じるひずみを計算した後、計
算されたひずみを面内成分と、曲げ成分に分離し、それ
ぞれの主ひずみ分布をグラフィック画面に表示する(ス
テップ3)。次に、面内のひずみ分布に注目し、圧縮の
主ひずみが大きい領域を加熱領域に選び、加熱の方向は
主ひずみの方向に垂直な方向とし(ステップ4)、ま
た、曲げひずみの分布に注目し、曲げひずみの絶対値が
大きい領域を加熱領域に加え、加熱の方向はひずみの絶
対値が最大である主方向に垂直な方向とする(ステップ
5)。
First, after inputting the initial shape (which may be the shape after the primary bending) and the geometrical information on the final formed shape (step 1), the FEM mesh division corresponding to the initial shape is performed (step 2). Next, to determine the heating position and direction, first, forcibly elastically deform from the initial shape to the final shape, calculate the strain that occurs in the process, and then divide the calculated strain into the in-plane component and the bending component. Then, each principal strain distribution is displayed on the graphic screen (step 3). Next, paying attention to the in-plane strain distribution, select the region where the main strain of compression is large as the heating region, and set the heating direction to be the direction perpendicular to the direction of the principal strain (step 4). Paying attention, a region where the absolute value of bending strain is large is added to the heating region, and the heating direction is perpendicular to the main direction in which the absolute value of strain is maximum (step 5).

【0014】次に、付与すべき固有ひずみの種類と大き
さの決定として、固有変形量は図2に示したように板に
切り込みを入れ、平面展開した時の隙間に対応してお
り、この切り込みを模擬するため、加熱位置にある要素
の弾性係数を他の部分の1/1000に設定する(ステ
ップ6)。この状態では初期形状から最終形状までの変
形を弾性解析すると、本来、板全体に分散しているひず
みが加熱部分に集中し、その値は線状加熱で付与すべき
固有ひずみあるいは固有変形の大きさを与える。そし
て、これらの計算に基づき線状加熱を施して固有ひずみ
を発生させることによって所定の最終形状に加工するこ
とになる(ステップ7)。
Next, to determine the type and magnitude of the intrinsic strain to be applied, the amount of the intrinsic deformation corresponds to the gap when the plate is cut and the plane is developed as shown in FIG. In order to simulate the cut, the elastic modulus of the element in the heating position is set to 1/1000 of that of the other portion (step 6). In this state, when performing elastic analysis of the deformation from the initial shape to the final shape, the strains that were originally dispersed throughout the plate were concentrated in the heated part, and the value was the magnitude of the intrinsic strain or the intrinsic deformation that should be applied by linear heating. Give Then, based on these calculations, linear heating is performed to generate an intrinsic strain, thereby processing into a predetermined final shape (step 7).

【0015】次に、この実施例として実船の曲り部材に
近い例題について説明する。
Next, an example similar to the bending member of an actual ship will be described as this embodiment.

【0016】実船の曲り部材は図3に示すように2方向
に曲率を有するドーナツ型曲面に近く、曲率半径Rおよ
びrの値を実船について調査した結果が文献(西岡、西
牧、松石、田中、安川、山内、東郷:ユニバーサル多点
プレス法による船体外板曲げ作業の自動化に関する研究
(第1報:基礎研究)、日本造船学会論文集、第132
号。pp481〜501、(1972))に報告されて
おり、その範囲は、 −1.0×10-4<1/r<3.0×10-4(1/mm) 0.0 <1/R<3.0×10-5(1/mm) である。実験などとの相似則を考えると、板厚tも考慮
したパラメータt/r、t/Rで整理した方が良いの
で、実船の板厚を20mmと仮定すると、パラメータの範
囲は、 −2.0×10-3<t/r<6.0×10-3 0.0 <t/R<6.0×10-4 となる。そこでこの範囲に含まれ、 t/r=±2.5×10-3 t/R= 5.0×10-4 である二つのケースを検討する。それらの寸法および曲
率が図4に示されており、(a)は同方向の曲率を有す
る枕型、(b)は曲率の方向が異なる鞍型である。
The bending member of the actual ship is close to a donut type curved surface having curvatures in two directions as shown in FIG. Tanaka, Yasukawa, Yamauchi, Togo: Study on automation of hull outer panel bending work by universal multi-point press method (1st report: Basic research), Proceedings of the Shipbuilding Society of Japan, 132nd
issue. pp481-501, (1972)), and the range is -1.0 x 10 -4 <1 / r <3.0 x 10 -4 (1 / mm) 0.0 <1 / R. <3.0 × 10 −5 (1 / mm). Considering the similarity rule with experiments, etc., it is better to arrange by parameters t / r and t / R that also consider the plate thickness t, so assuming the plate thickness of the actual ship is 20 mm, the range of parameters is -2 0.0 × 10 −3 <t / r <6.0 × 10 −3 0.0 <t / R <6.0 × 10 −4 . Therefore, two cases included in this range and having t / r = ± 2.5 × 10 −3 t / R = 5.0 × 10 −4 will be examined. The dimensions and curvatures thereof are shown in FIG. 4, where (a) is a pillow type having curvatures in the same direction, and (b) is a saddle type having different curvature directions.

【0017】まず、枕型aの曲面を平板から加工すると
想定して、切り込みを入れない状態でのひずみ分布を計
算した。尚、解析は対称性を考慮し、板の1/4につい
て行った。計算結果として得られた面内ひずみの分布を
示したのが図5であり、面内ひずみεm の絶対値の最大
値は3.17×10-3である。一方、曲げひずみは短辺
方向の曲げが支配的でt/2r=1.25×10-3に相
当するひずみが、ほぼ一様に分布する(図は省略)。こ
の場合は面内ひずみと曲げひずみの大きさが同じオーダ
ーであるので面内の固有ひずみのみでは曲げ加工は不可
能である。従って、現場で実際行われているように、先
ずロールで短辺方向の一様曲げを行い、その後線状加熱
する方法が有効である。そこでここでは一次加工で曲率
rの円筒状に成形された板を、長辺上の中央点での高さ
0 が100mmの枕型に加工する工程を考える。図6は
面内のひずみ分布を主ひずみ分布として示したものであ
り、矢印は主ひずみの方向と大きさを示している。一
方、図7は曲げひずみについて、表面の最大主ひずみの
分布を示したものである。面内と曲げひずみ分布を比較
すると、面内ひずみはx−y平面上で大きく変化してい
るが、曲げひずみはほぼ一様である。また、ひずみの最
大値に注目すると、面内および曲げひずみの最大値はそ
れぞれ3.15×10-3、2.48×10-4であり、こ
の場合は平板から成形する場合と比較して曲げひずみの
大きさは減少し、面内ひずみの大きさより一桁小さくな
っている。このように、面内ひずみが支配的であるので
加熱位置と方向を面内ひずみ分布から定めることででき
る。大きい圧縮ひずみが生じている部分をひずみの方向
と垂直に加熱するとすれば、加熱領域は図8にように定
まる。同図は中心部を残し、板の周辺部を加熱すべきで
あることを示しており、これは現場での実際の作業と対
応している。なお、図6に示されたように板の中心部で
x軸に沿った位置にかなりの大きさの引張りひずみが生
じている。この引張りひずみの影響も固有ひずみに取り
入れるため、加熱領域に引張が生じる部分を一部含め
た。次に、加熱領域のヤング率が他の1/1000であ
るとして変形解析を実施し、得られた面内ひずみ分布が
図9に示されている。ひずみはほとんど加熱領域に集中
しており、図6に見られた引張ひずみは消えていること
がわかる。さらに加熱領域のひずみを固有ひずみとして
円筒板に与えたときの変形を計算した。その結果を板の
A、B、C点の高さha 、hb 、hc について図12に
示した。
First, assuming that the curved surface of the pillow type a is machined from a flat plate, the strain distribution without cutting is calculated. The analysis was performed on 1/4 of the plate in consideration of symmetry. FIG. 5 shows the distribution of the in-plane strain obtained as the calculation result, and the maximum absolute value of the in-plane strain ε m is 3.17 × 10 −3 . On the other hand, bending strain is dominated by bending in the short side direction, and strain corresponding to t / 2r = 1.25 × 10 −3 is distributed almost uniformly (not shown). In this case, since the magnitudes of the in-plane strain and the bending strain are of the same order, it is not possible to perform bending with only the in-plane intrinsic strain. Therefore, as is actually done in the field, it is effective to first perform uniform bending in the short side direction with a roll, and then perform linear heating. Therefore, here, consider a process in which a plate formed into a cylindrical shape with a curvature r by primary processing is processed into a pillow shape having a height h 0 at the center point on the long side of 100 mm. FIG. 6 shows the in-plane strain distribution as the principal strain distribution, and the arrows indicate the direction and magnitude of the principal strain. On the other hand, FIG. 7 shows the distribution of the maximum principal strain on the surface regarding bending strain. Comparing the in-plane and bending strain distributions, the in-plane strain changes greatly on the xy plane, but the bending strain is almost uniform. Also, paying attention to the maximum value of strain, the maximum values of in-plane and bending strain are 3.15 × 10 -3 and 2.48 × 10 -4 , respectively. In this case, compared with the case of molding from a flat plate. The magnitude of bending strain has decreased and is one digit smaller than the magnitude of in-plane strain. Thus, since the in-plane strain is dominant, the heating position and direction can be determined from the in-plane strain distribution. If the portion where a large compressive strain is generated is heated perpendicularly to the strain direction, the heating region is determined as shown in FIG. The figure shows that the periphery should be heated, leaving the center, which corresponds to the actual work on site. Incidentally, as shown in FIG. 6, a considerable amount of tensile strain is generated at the position along the x-axis at the center of the plate. In order to incorporate the influence of this tensile strain into the intrinsic strain, a part where tension occurs is included in the heating region. Next, deformation analysis was performed assuming that the Young's modulus of the heating region was 1/1000 of the others, and the obtained in-plane strain distribution is shown in FIG. It can be seen that the strain is mostly concentrated in the heating region, and the tensile strain seen in FIG. 6 disappears. Furthermore, the deformation when the strain in the heating region was given to the cylindrical plate as the intrinsic strain was calculated. The results of the plate A, B, the height h a of the point C, h b, as shown in FIG. 12 for h c.

【0018】次に、円筒から鞍型bを成形する場合を説
明する。まず、枕型aと同様、円筒から鞍型に変形させ
た時のひずみを解析した。曲げひずみ分布は枕型と絶対
値がほぼ同じで符号が逆の分布となるので、面内ひずみ
分布のみを図10に示している。このひずみ分布を基に
加熱領域を図11のように定め、固有ひずみの計算、さ
らに固有ひずみを与えた時の変形を解析した。その結果
を枕型の場合と合わせて図12に示した。この表1に基
づき固有ひずみを与えることにより得られた形状につい
て検討すると、円筒にさらに付与したい変形量、すなわ
ちh0 が100mmであるのに対し、枕型の場合は各点に
おける高さの誤差が約8mm以内の形状が得られている。
一方、鞍型の場合はやや誤差が大きく、その値は17〜
27mmである。このことは、場合により、成形誤差が相
対的に大きくなることもあるが、ここで案出した方法
が、実際の板曲げ加工に対しても有効な方法となり得る
ことを示している。
Next, the case of molding the saddle mold b from a cylinder will be described. First, similarly to the pillow type a, the strain when deformed from a cylinder to a saddle type was analyzed. Since the bending strain distribution has the same absolute value as that of the pillow type and the sign is opposite, only the in-plane strain distribution is shown in FIG. Based on this strain distribution, the heating region was determined as shown in FIG. 11, the intrinsic strain was calculated, and the deformation when the intrinsic strain was applied was analyzed. The result is shown in FIG. 12 together with the case of the pillow type. Examining the shape obtained by applying the intrinsic strain based on Table 1, the amount of deformation to be further applied to the cylinder, that is, h 0 is 100 mm, whereas in the case of the pillow type, the height error at each point is The shape is within about 8 mm.
On the other hand, in the case of the saddle type, the error is rather large, and the value is 17-
It is 27 mm. This indicates that the forming error may be relatively large depending on the case, but the method devised here can be an effective method for actual plate bending.

【0019】このように本発明は有限要素法を用いて初
期形状から目的とする最終形状までの変形を弾性解析
し、面内および面外曲げひずみの主方向および大きさか
ら線状加熱の位置と方向を決めることによって、鋼板の
どの位置に、どの様な形態の、いかなる大きさのひずみ
を付与すべきが正確にかつ容易に把握できるため、線状
加熱による曲げ加工に際して特殊な熟練や勘といったも
のが不要となる。
As described above, the present invention elastically analyzes the deformation from the initial shape to the desired final shape using the finite element method, and determines the position of linear heating from the main direction and magnitude of in-plane and out-of-plane bending strains. By determining the direction and the direction, it is possible to accurately and easily grasp what position, what shape, and what kind of strain should be applied to which position of the steel sheet. Is unnecessary.

【0020】[0020]

【発明の効果】以上要するに本発明によれば、線状加熱
による鋼板の曲げ加工が容易に行えるため、熟練工の高
齢化および作業者の数の減少、さらに技能の継承が困難
であるといった問題を解消することができると共に、そ
の処理能力を一層向上させることができるといった優れ
た効果を有する。
In summary, according to the present invention, since bending of a steel sheet by linear heating can be easily performed, there are problems that the skilled worker is aging, the number of workers is reduced, and it is difficult to inherit the skill. It has an excellent effect that it can be eliminated and the processing capacity can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すフローチャート図であ
る。
FIG. 1 is a flowchart showing an embodiment of the present invention.

【図2】(a)は曲げ加工後の形状と加熱線を示す斜視
図、(b)は3次元曲面を有する曲り部材を加熱線に沿
って切り込みを入れ、これを平面展開した状態を示す平
面図である。
FIG. 2 (a) is a perspective view showing a shape and a heating wire after bending, and FIG. 2 (b) shows a state in which a bending member having a three-dimensional curved surface is cut along the heating wire and flattened. It is a top view.

【図3】ドーナツ型をした実船の曲り部材の一部を示し
た部分拡大図である。
FIG. 3 is a partially enlarged view showing a part of a bending member of a donut-shaped actual ship.

【図4】(a)は枕型の部材を示した斜視図、(b)は
鞍型の部材を示した斜視図である。
4A is a perspective view showing a pillow-shaped member, and FIG. 4B is a perspective view showing a saddle-shaped member.

【図5】計算結果として得られた枕型部材の面内ひずみ
の分布を示した図である。
FIG. 5 is a diagram showing a distribution of in-plane strain of the pillow-shaped member obtained as a calculation result.

【図6】枕型部材の面内のひずみ分布を主ひずみ分布と
して示した図である。
FIG. 6 is a diagram showing an in-plane strain distribution of a pillow-shaped member as a main strain distribution.

【図7】枕型部材の曲げひずみについて、表面の最大主
ひずみの分布を示した図である。
FIG. 7 is a diagram showing the distribution of the maximum principal strain on the surface with respect to the bending strain of the pillow-shaped member.

【図8】枕型部材の加熱領域を示した図である。FIG. 8 is a diagram showing a heating region of a pillow-shaped member.

【図9】枕型部材の面内ひずみ分布を示した図である。FIG. 9 is a diagram showing an in-plane strain distribution of a pillow type member.

【図10】鞍型部材の面内ひずみ分布のみを示した図で
ある。
FIG. 10 is a diagram showing only the in-plane strain distribution of the saddle type member.

【図11】鞍型部材の加熱領域を示した図である。FIG. 11 is a diagram showing a heating region of the saddle-shaped member.

【図12】加熱領域のひずみを固有ひずみとして円筒板
に与えたときの変形を計算した結果を示した表図であ
る。
FIG. 12 is a table showing the results of calculating the deformation when the strain of the heating region is applied to the cylindrical plate as the intrinsic strain.

フロントページの続き (72)発明者 上田 幸雄 大阪府茨木市美穂ケ丘11−1 大阪大学溶 接工学研究所内 (72)発明者 村川 英一 大阪府茨木市美穂ケ丘11−1 大阪大学溶 接工学研究所内Front page continuation (72) Inventor Yukio Ueda 11-1 Mihogaoka, Ibaraki City, Osaka Prefecture, Research Institute for Welding Engineering, Osaka University (72) Inventor Eiichi Murakawa 11-1, Mihogaoka, Ibaraki City, Osaka Prefecture, Welding Engineering Laboratory, Osaka University

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平板状あるいは半円筒形をした初期形状
の鋼板を任意の曲面形状をした最終形状に曲げ加工を行
うための線状加熱による鋼板の曲げ加工方法において、
曲げ加工前の鋼板の初期形状と曲げ加工後の鋼板の最終
形状に関する幾何学情報を入力すると共に、初期形状に
対応した有限要素法のメッシュ分割を行い、初期形状か
ら最終形状まで強制的に弾性変形させて、その過程で生
じる歪みを計算した後、計算された歪みを面内成分面外
曲げ成分に分離すると共に、それぞれの主ひずみ分布を
グラフィック表示し、面内歪み分布に対しては圧縮の主
ひずみが大きい領域を加熱領域として選択してその主ひ
ずみの方向に垂直な方向を線状加熱し、面外曲げ歪みに
対しては曲げ歪みの絶対値が大きい領域を加熱領域と
し、そのひずみ方向に絶対値が最大である主方向に垂直
な方向を線状加熱して、それぞれに所定の固有歪みを与
え、上記鋼板を所定の最終形状に曲げ加工することを特
徴とする線状加熱による鋼板の曲げ加工方法。
1. A method of bending a steel sheet by linear heating for bending a plate-shaped or semi-cylindrical steel sheet having an initial shape into a final shape having an arbitrary curved surface shape,
Enter geometric information about the initial shape of the steel sheet before bending and the final shape of the steel sheet after bending, and perform mesh division of the finite element method corresponding to the initial shape to force elasticity from the initial shape to the final shape. After deforming and calculating the strain that occurs in the process, the calculated strain is separated into in-plane components and out-of-plane bending components, and each main strain distribution is displayed graphically and compressed for in-plane strain distribution. The area with a large main strain of is selected as the heating area and linearly heated in the direction perpendicular to the direction of the main strain, and for the out-of-plane bending distortion, the area with a large absolute value of the bending strain is set as the heating area. Linear heating characterized by linearly heating the direction perpendicular to the main direction, which has the maximum absolute value in the strain direction, and imparting a specific intrinsic strain to each, and bending the steel sheet into a specific final shape. To Bending method of that steel sheet.
JP23794891A 1991-09-18 1991-09-18 Method of bending steel sheet by linear heating Expired - Lifetime JP2924354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23794891A JP2924354B2 (en) 1991-09-18 1991-09-18 Method of bending steel sheet by linear heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23794891A JP2924354B2 (en) 1991-09-18 1991-09-18 Method of bending steel sheet by linear heating

Publications (2)

Publication Number Publication Date
JPH0576947A true JPH0576947A (en) 1993-03-30
JP2924354B2 JP2924354B2 (en) 1999-07-26

Family

ID=17022840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23794891A Expired - Lifetime JP2924354B2 (en) 1991-09-18 1991-09-18 Method of bending steel sheet by linear heating

Country Status (1)

Country Link
JP (1) JP2924354B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192239A (en) * 2000-12-22 2002-07-10 Ishikawajima Harima Heavy Ind Co Ltd Method for selecting heating sequence of heating filament
JP2002192240A (en) * 2000-12-26 2002-07-10 Ishikawajima Harima Heavy Ind Co Ltd Method for drawing up line heating plan
JP2002205113A (en) * 2001-01-11 2002-07-23 Ishikawajima Harima Heavy Ind Co Ltd Method for bending metal plate by lineal heating
JP2004074200A (en) * 2002-08-13 2004-03-11 Mitsubishi Heavy Ind Ltd Method for producing metal sheet having curved surface, manufacturing apparatus thereof, and metal sheet having curved surface
JP2006088162A (en) * 2004-09-21 2006-04-06 Nippon Steel Corp Linear heating deformation method for steel sheet
JP4731019B2 (en) * 2001-01-22 2011-07-20 株式会社アイ・エイチ・アイ マリンユナイテッド Vertical curved surface processing method for metal plate by linear heating

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192239A (en) * 2000-12-22 2002-07-10 Ishikawajima Harima Heavy Ind Co Ltd Method for selecting heating sequence of heating filament
JP4688287B2 (en) * 2000-12-22 2011-05-25 株式会社アイ・エイチ・アイ マリンユナイテッド Heating sequence selection method for linear heating
JP2002192240A (en) * 2000-12-26 2002-07-10 Ishikawajima Harima Heavy Ind Co Ltd Method for drawing up line heating plan
JP4688288B2 (en) * 2000-12-26 2011-05-25 株式会社アイ・エイチ・アイ マリンユナイテッド Heating plan formulation method for linear heating
JP2002205113A (en) * 2001-01-11 2002-07-23 Ishikawajima Harima Heavy Ind Co Ltd Method for bending metal plate by lineal heating
JP4743972B2 (en) * 2001-01-11 2011-08-10 株式会社アイ・エイチ・アイ マリンユナイテッド Metal plate bending method by linear heating
JP4731019B2 (en) * 2001-01-22 2011-07-20 株式会社アイ・エイチ・アイ マリンユナイテッド Vertical curved surface processing method for metal plate by linear heating
JP2004074200A (en) * 2002-08-13 2004-03-11 Mitsubishi Heavy Ind Ltd Method for producing metal sheet having curved surface, manufacturing apparatus thereof, and metal sheet having curved surface
JP2006088162A (en) * 2004-09-21 2006-04-06 Nippon Steel Corp Linear heating deformation method for steel sheet

Also Published As

Publication number Publication date
JP2924354B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
EP2333684B1 (en) Press forming simulation method, press forming simulation device, program, recording medium, and press forming method based on simulation result
EP0527570B1 (en) Method of developing complex tool shapes
Lu et al. Fixture layout optimization for deformable sheet metal workpiece
US20100030362A1 (en) Curved surface forming method of a metal plate
US5463558A (en) Method for designing a binder ring surface for a sheet metal part
Burchitz Improvement of springback prediction in sheet metal forming
JP2924354B2 (en) Method of bending steel sheet by linear heating
JPH10146621A (en) Method for bending metallic plate by linear heating
JP2666674B2 (en) Method of bending metal plate by linear heating
JP3169787B2 (en) Press forming method for sheet material
Hsu et al. Finite element modeling of sheet forming process with bending effects
JP2626496B2 (en) Method of bending metal plate by linear heating
Wang et al. Process simulation and springback control in plane strain sheet bending
Kutt et al. Non‐linear finite element analysis of springback
US6564646B1 (en) Measuring method for determining the biaxial shaping behavior of metallic materials, more particularly sheet metal
Bellet et al. Numerical simulation of thin sheet forming processes by the finite element method
Lindberg Sheet metal forming simulations with FEM
Wang Mechanics of bending, flanging, and deep drawing and a computer-aided modeling system for predictions of strain, fracture, wrinkling and springback in sheet metal forming
JPH10230326A (en) Method for calculating arrangement of heating wire for line shaped heating
Sklad et al. Modelling of Die Tryout
Fu et al. Analysis and elimination for drum warpage of U-shaped workpiece with super length and large opening of sheet metal
Shi et al. Issues concerning material constitutive laws and parameters in springback simulations
Fukuchi et al. Dynamic Instability Analysis of Thin Shell Structures subjected to Follower Forces (1st Report) The Shell Governing Equations in Monoclinically Convected Coordinates
Thomas et al. Prediction of springback and final shape in stamped automotive assemblies: Comparison of Finite Element Predictions and Experiments
Sigvant et al. FE‐Simulation Of Hemming In The Automotive Industry

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080507

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090507

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100507

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100507

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110507

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120507

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120507