JP4743972B2 - Metal plate bending method by linear heating - Google Patents

Metal plate bending method by linear heating Download PDF

Info

Publication number
JP4743972B2
JP4743972B2 JP2001004009A JP2001004009A JP4743972B2 JP 4743972 B2 JP4743972 B2 JP 4743972B2 JP 2001004009 A JP2001004009 A JP 2001004009A JP 2001004009 A JP2001004009 A JP 2001004009A JP 4743972 B2 JP4743972 B2 JP 4743972B2
Authority
JP
Japan
Prior art keywords
strain
heating
metal plate
bending
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001004009A
Other languages
Japanese (ja)
Other versions
JP2002205113A (en
Inventor
隆庸 石山
順 小林
Original Assignee
株式会社アイ・エイチ・アイ マリンユナイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイ・エイチ・アイ マリンユナイテッド filed Critical 株式会社アイ・エイチ・アイ マリンユナイテッド
Priority to JP2001004009A priority Critical patent/JP4743972B2/en
Publication of JP2002205113A publication Critical patent/JP2002205113A/en
Application granted granted Critical
Publication of JP4743972B2 publication Critical patent/JP4743972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Straightening Metal Sheet-Like Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は造船における船殻曲り外板の加工の如く、金属板の各個所を局所加熱して金属板を目的曲面形状へ曲げ加工するために用いる線状加熱による金属板曲げ加工方法に関するものである。
【0002】
【従来の技術】
近年、船舶等に用いられる金属板の曲げ加工には、線状加熱による曲げ加工方法が採用されている。
【0003】
線状加熱は、金属板をガスバーナ等の点熱源で線状に局所加熱すると周囲から拘束を受けて塑性歪を発生して変形する性質を利用し、金属板上に加熱個所を適当に配置することで対象金属板を目的曲面に曲げ加工する技術である。
【0004】
従来、線状加熱による金属板の曲げ加工は長い経験を経て修得する技能とされていて、熟練者が勘や技能により加熱位置、方向、加熱条件などを定めて行われていたが、近年では、線状加熱を機械的に行う方法として、有限要素法(FEM)を応用して、曲げ加工すべき金属板表面を多数の領域に分割すると共に、該各分割領域毎に、目的形状に曲げ加工するために要する目的固有歪を求め、該目的固有歪の面内収縮歪成分と曲げ歪成分を与えるべく、たとえば、金属板の一方の面における上記分割領域に曲線状の加熱線を交差配置して、該加熱線に沿って加熱源を移動させながら、該加熱源の移動速度を制御パラメータとして所定の入熱量となるように局所加熱することにより、各分割領域を目的形状に曲げて金属板全体を目的曲面に曲げるようにする手法が採られるようになってきている。
【0005】
【発明が解決しようとする課題】
ところが、線状加熱による金属板の曲面加工には複数の歪、すなわち、板の中性面に沿った面内収縮歪の直交する2つの主軸方向、及び、板の面外方向に働く曲げ歪の直交する2つの主軸方向方向の4つの成分が関与しており、目的形状を与えるためには、これら4つの独立した成分をすべて満足させる必要がある。
【0006】
一方、一つの加熱線が作り出す歪には、加熱線に直交する方向の面内収縮歪、加熱線の接線方向の面内収縮歪、加熱線に直交する方向の面内曲げ歪、及び、加熱線の接線方向の面内曲げ歪、の4つの歪成分が含まれているが、これら4つの歪成分は、たとえば、加熱源の移動速度等、1つの制御パラメータで制御される上記加熱線の加熱条件に対して同時に決まってしまう要素であり、そのため、加熱源の移動速度だけを制御変数として、金属板の一表面に配置した曲線状の加熱線に沿って局所加熱する上記従来の線状加熱による金属板曲げ加工方法では、金属板の目的形状への曲面加工に要求される4つの独立した成分をすべて同時に満足させることはできないという問題があり、したがって、加熱線が作り出す4つの歪成分のうち、比較的構成比率の小さい歪成分、たとえば、面内収縮歪の接線成分を無視して誤差を容認することで加熱条件を求めざるを得ないというのが実情である。
【0007】
なお、上記誤差を避ける手段として、金属板の両面に加熱線を配置し、該各表面の加熱線上にて、金属板の両側に配置した加熱源を同期させて移動することで、制御パラメータを、熱源の移動速度と、表裏入出力の関係の2つとし、これを直交させることで精度よく歪を与える方法も提案されているが、この場合は、金属板の両側で各加熱源を同期して移動させるために、大型で且つ複雑な装置を要するという問題がある。
【0008】
そこで、本発明は、金属板の一表面からの加熱により、曲面形成に必要な4つの独立した歪成分をすべて同時に与えることができる線状加熱による金属板曲げ加工方法を提供しようとするものである。
【0009】
【課題を解決するための手段】
本発明は、上記課題を解決するために、金属板に目的曲面を与えるための面内収縮歪成分と曲げ歪成分とからなる固有歪を求め、加熱源にて金属板の所要個所に配した加熱線に沿って局所加熱することにより上記固有歪を付与して金属板を目的形状に曲げ加工するようにしてある線状加熱による金属板曲げ加工方法において、上記面内収縮歪成分の主歪の方向を、上記曲げ歪成分の主歪の方向に揃えると共に、上記面内収縮歪成分を、伸びを含まず且つどの方向にも等しい大きさを持つ歪に置き換え、次に、上記金属板を上記曲げ歪成分の主歪の方向に沿って多数のメッシュ領域に分割して、該メッシュ領域毎に上記面内収縮歪成分と曲げ歪成分を分割することにより、上記各メッシュ領域の目的とする変形を求め、次いで、該各メッシュ領域の目的とする変形のために要求される、上記曲げ歪成分の主歪の方向に沿う、面内収縮歪の接線方向と該接線方向に直交する方向、及び、曲げ歪の接線方向と該接線方向に直交する方向の4つの歪成分に合致するように、加熱線を所要の幅で進行方向に対して左右に蛇行させてなる2つの直交する状加熱領域の加熱源移動速度と蛇行ピッチを計算して、該計算に基づいて上記帯状加熱領域を、金属板面に直交配置し、しかる後、上記加熱源移動速度と蛇行ピッチを制御して上記各帯状加熱領域における加熱線に沿って局所加熱することにより金属板を曲げ加工する方法とする。
【0010】
加熱線を蛇行させてなる帯状の加熱領域を加熱すると、該帯状加熱領域に形成される高温域において金属板の収縮が生じるので、帯状加熱領域の中心線方向と、それに直交する方向に面内収縮歪と曲げ歪が形成されて金属板は変形させられる。この際、加熱源の移動速度と蛇行のピッチを制御パラメータとしてそれぞれ制御すると、金属板の板厚方向に関する高温域の分布を自在に制御することができ、このため面内収縮量の指標となる加熱面側と裏面側の収縮平均値、及び、曲り変形の指標となる加熱面側と裏面側の収縮差の1/2の値を自在に制御することができることから、一つの帯状加熱領域の加熱により中心線方向と、それに直交する方向に形成される面内収縮変形と、曲げ変形の構成比率は自在に変化させることができる。
【0011】
したがって、加熱源移動速度と蛇行ピッチをそれぞれ適宜設定した2つの帯状加熱領域を直交させて配置することにより、該2つの帯状加熱領域毎にそれぞれ形成される面内収縮変形と曲げ変形を足し合わせて、金属板の目的形状への曲面加工に要求される板の中性面に沿った面内収縮歪の接線方向と、該接線方向に直交する方向、及び、板の面外方向に働く曲げ歪の接線方向と、該接線方向に直交する方向の4つの独立した成分をすべて満足させる変形を与えることができる。
【0012】
又、金属板に目的曲面を与えるための面内収縮歪成分と曲げ歪成分とからなる固有歪を求め、加熱源にて金属板の所要個所に配した加熱線に沿って局所加熱することにより上記固有歪を付与して金属板を目的形状に曲げ加工するようにしてある線状加熱による金属板曲げ加工方法において、上記面内収縮歪成分の主歪の方向を、上記曲げ歪成分の主歪の方向に揃えると共に、上記面内収縮歪成分を、伸びを含まず且つどの方向にも等しい大きさを持つ歪に置き換え、次に、上記金属板を上記曲げ歪成分の主歪の方向に沿って多数のメッシュ領域に分割して、該メッシュ領域毎に上記面内収縮歪成分と曲げ歪成分を分割することにより、上記各メッシュ領域の目的とする変形を求め、次いで、該各メッシュ領域の目的とする変形のために要求される、上記曲げ歪成分の主歪の方向に沿う、面内収縮歪の接線方向と該接線方向に直交する方向、及び、曲げ歪の接線方向と該接線方向に直交する方向の4つの歪成分に合致するように、加熱線を所要の幅で進行方向に対して左右に蛇行させてなる2つの直交する帯状加熱領域の加熱源移動速度と蛇行幅を計算して、該計算に基づいて上記帯状加熱領域を、金属板の表面に直交配置し、しかる後、上記加熱源移動速度と蛇行幅を制御して、上記各帯状加熱領域における加熱線に沿って局所加熱することにより、金属板を曲げ加工するようにすることによっても、帯状加熱領域において金属板の板厚方向に形成される高温域の分布を自在に制御することができて、一つの帯状加熱領域の加熱により中心線方向と、それに直交する方向に形成される面内収縮変形と、曲げ変形の構成比率は自在に変化させることができることから、加熱源移動速度と蛇行幅をそれぞれ適宜設定した2つの帯状加熱領域を直交配置することにより金属板の目的形状への曲面加工に要求される4つの独立した成分をすべて満足させる変形を与えることができる。
【0013】
更に、金属板に目的曲面を与えるための面内収縮歪成分と曲げ歪成分とからなる固有歪を求め、加熱源にて金属板の所要個所に配した加熱線に沿って局所加熱することにより上記固有歪を付与して金属板を目的形状に曲げ加工するようにしてある線状加熱による金属板曲げ加工方法において、上記面内収縮歪成分の主歪の方向を、上記曲げ歪成分の主歪の方向に揃えると共に、上記面内収縮歪成分を、伸びを含まず且つどの方向にも等しい大きさを持つ歪に置き換え、次に、上記金属板を上記曲げ歪成分の主歪の方向に沿って多数のメッシュ領域に分割して、該メッシュ領域毎に上記面内収縮歪成分と曲げ歪成分を分割することにより、上記各メッシュ領域の目的とする変形を求め、次いで、該各メッシュ領域の目的とする変形のために要求される、上記曲げ歪成分の主歪の方向に沿う、面内収縮歪の接線方向と該接線方向に直交する方向、及び、曲げ歪の接線方向と該接線方向に直交する方向の4つの歪成分に合致するように、加熱線を所要の幅で進行方向に対して左右に蛇行させてなる2つの直交する帯状加熱領域の加熱源移動速度と蛇行ピッチと蛇行幅を計算して、該計算に基づいて上記帯状加熱領域を、金属板の表面に直交配置し、しかる後、上記加熱源移動速度と蛇行ピッチと蛇行幅を制御して、上記各帯状加熱領域における加熱線に沿って局所加熱することにより、金属板を曲げ加工するようにしても、帯状加熱領域において金属板の板厚方向に形成される高温域の分布を自在に制御することができ、一つの帯状加熱領域の加熱により中心線方向と、それに直交する方向に形成される面内収縮変形と、曲げ変形の構成比率は自在に変化させることができて、加熱源移動速度と蛇行ピッチと蛇行幅をそれぞれ適宜設定した2つの帯状加熱領域を直交配置することにより金属板の目的形状への曲面加工に要求される4つの独立した成分をすべて満足させる変形を与えることができる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0015】
図1乃至図4(イ)(ロ)は本発明の線状加熱による金属板曲げ加工方法の実施の一形態を示すもので、金属板に目的曲面を与える面内収縮歪成分と曲げ歪成分とからなる固有歪を求め、加熱源にて金属板の所要個所に配した加熱線に沿って局所加熱することにより上記固有歪を付与して金属板を目的形状に曲げ加工するようにしてある金属板曲げ加工方法において、たとえば、図2にフローを示す如き加熱方案に従って、金属板1の表面の所要領域に、図1に示す如く、所定の幅で進行方向に対して加熱線2を左右方向に蛇行(斜行)させてなる帯状の加熱領域3を直交配置し、加熱源の移動速度と、1回蛇行したときの加熱線2の前後の距離(蛇行ピッチ)を制御して上記直交する各帯状加熱領域3における加熱線2をそれぞれ局所加熱することにより金属板1を曲げ加工するようにする。
【0016】
ここで、先ず、上記帯状加熱領域3の加熱線2の加熱により形成される金属板1の変形について図5乃至図7(イ)(ロ)(ハ)(ニ)を用いて説明する。
【0017】
図5に示す如く、金属板1の表面に、図示しない加熱源を移動させる方向に対して加熱線2を左右方向に所要の蛇行幅で蛇行させてなる帯状加熱領域3を配置して、該帯状加熱領域3の加熱線2に沿って単位時間当たりの発熱量を一定とした図示しない加熱源を移動させると、金属板1が加熱されて内部に高温域が形成される。この際、加熱源の移動速度と蛇行ピッチを制御パラメータとして、加熱源の移動速度と蛇行ピッチをP,Pの如く各々変化させると、発生する変形成分の構成比率が変る。今、加熱源移動速度が遅くて蛇行ピッチが大きい(P)場合には、図6(イ)に金属板1断面の概略を示す如く、形成される高温域4は金属板1の表面(加熱面)側Fから裏面(反加熱面)側Bに達するように形成されるが、その裏面側Bにおける分布幅は表面側Fに比べて狭くなる。又、加熱源移動速度が速くて蛇行ピッチが大きい(P)場合には、図6(ロ)に示す如く、高温域4は金属板1の表面側Fのみに形成されるようになる。加熱源移動速度が遅くて蛇行ピッチが小さい(P)場合には、図6(ハ)に示す如く、高温域4は金属板の裏面側Bに達するように形成され、しかも、該裏面側Bにおける分布幅は表面側Fの幅に近い分布となる。熱源移動速度が速くて蛇行ピッチが小さい(P)場合には、図6(ニ)に示す如く、高温域4は裏面側Bに達するように形成されるが、該裏面側Bにおける分布幅は表面側Fに比して狭くなる。
【0018】
このような温度分布の結果、得られる金属板1の変形は図7(イ)(ロ)(ハ)(ニ)に概念的に示すとおりである。なお、図7(イ)(ロ)(ハ)(ニ)は、各図ともに、左端の上面を原点として、右向き矢印の方向に収縮の大きさを示しており、又、板の上面から下面への左下がりの斜線5は、収縮量の板厚方向の分布を概念的に示している。熱源移動速度が遅くて蛇行ピッチが大きい場合の収縮量の分布は、図7(イ)に示す如く、図6(イ)に示した板厚方向の高温域4の分布と対応するように、金属板1の表面側Fから裏面側Bまで収縮し、該裏面側Bの収縮量は表面側Fの収縮量よりも小さいものとなる。熱源移動速度が速くて蛇行ピッチが大きい図6(ロ)の場合には、図7(ロ)に示す如く、金属板1の表面側Fでは大きく収縮するが、裏面側Bでは逆に伸び変形を示すようになる。熱源移動速度が遅くて蛇行ピッチが小さい図6(ハ)の場合は、図7(ハ)に示す如く、金属板1の裏面側Bまで収縮し、裏面側Bの収縮量は表面側Fの収縮量に近いものとなる。更に、熱源移動速度が速くて蛇行ピッチが小さい図6(ニ)場合は、図7(ニ)に示す如く、金属板1の裏面側Bでも収縮は起きるが、その分布幅は表面側Fに比して大幅に狭いものとなる。
【0019】
ここで、面内収縮量の指標となる表面の加熱面と裏面の収縮平均値をδmとし、又、曲り変形の指標となる加熱面と裏面の収縮差の1/2の値をδbとすると、図7(イ)(ロ)(ハ)(ニ)より明らかなように、熱源移動速度一定の条件下では、蛇行ピッチを小さくすると、面内収縮量は増加するが、曲り変形はあまり増加しない。よって、熱源移動速度に加えて蛇行ピッチを制御変数として導入することにより、帯状加熱領域3の加熱により形成される面内収縮変形と曲げ変形の構成比率を自在に変化させることができるようになる。
【0020】
したがって、図2に示す如く、先ず、ステップS1として、目的曲面を与える固有歪に対して、該目的固有歪の面内収縮歪成分を、伸びを含まず且つどの方向にも等しい大きさを持つ方向性のない等方性の歪に置きかえて、面内歪成分の主軸(主歪)の方向(図3(イ)参照)を、曲げ歪成分の主軸(主歪)の方向に揃える(図3(ロ)を参照)ようにして、剪断歪の影響を受けずに曲げ歪成分と面内収縮歪成分とを同時に与えることができるようにし、次に、ステップS2として、通常のFEMメッシュ(図4(イ)参照)を、図4(ロ)に示す曲げ歪成分の接線方向と、該接線に直角な方向となる主軸の方向に沿って沢山の小さなメッシュ領域に分割する。
【0021】
上記分割された1つ1つのメッシュ領域で、それぞれ一定の変形が得られれば、その集合として金属板全体は目的の曲面形状に曲ると考えられる。すなわち、金属板全体の変形は、目的固有歪を分割したメッシュ領域内の変形を積分した値に相当することから、上記ステップS3では、目的固有歪の面内収縮歪成分と曲げ歪成分を各メッシュ領域毎に分割することにより、各メッシュ領域の目的とする変形を求めるようにする。したがって、該各メッシュ領域の目的とする変形は、直交する2つの主軸方向にそれぞれ面内収縮成分と曲げ成分を有し、合計4つの独立した成分を要求するものとなる。なお、面内成分に対する前処理と併せ、曲げ主軸方向に分割しているため、ここには剪断成分は存在しない。
【0022】
しかる後、ステップS4として、上記ステップS3にて分割された各分割領域のうち一つの曲げ加工を行うべきメッシュ領域に着目し、このメッシュ領域の目的形状への変形のために要求される4つの歪成分に合致するよう、2つの直交する帯状加熱領域の加熱源移動速度と蛇行ピッチを計算し、該メッシュ領域6に、図1に示す如く、加熱源移動速度と蛇行ピッチをそれぞれ上記計算に基いて設定した2つの帯状加熱領域3を直交させて配置して加熱を実施することにより、該2つの帯状加熱領域3毎に形成される面内収縮変形と曲げ変形を足し合わせ、これにより、目的の変形を与えるために要求される4つの成分に合致するような変形を作り出すようにし、同様に、ステップS2にて分割したすべてのメッシュ領域6に対して、それぞれ直交する2つの帯状加熱領域3を配置して加熱することにより目的形状を与えるために要求される4つの成分をすべて満たすような変形を与えることができるようにして、金属板1全体の曲げ加工を行うようにする。
【0023】
上記において各メッシュ領域6に変形を与えるための2つの帯状加熱領域3の加熱源移動速度と蛇行ピッチを計算する場合は、目的の変形のために要求される4つの成分、すなわち、直交する2つの主軸方向にそれぞれ存在する面内収縮成分と曲げ成分毎に、これを目的変数とし、2つの帯状加熱領域3の該当する面内収縮変形と曲げ変形成分の和がこの目的変数に等しいと置いた関係式を4本たて、この連立式の解である2つの帯状加熱領域3の面内収縮と曲げの各変形成分を介して、それぞれの帯状加熱領域3における加熱源の移動速度と蛇行ピッチからなる4つの制御変数を未知数としてこの関係式を解くことで得られる。この際、上記各帯状加熱領域3の変形成分を実現するような加熱源移動速度と蛇行ピッチとの組み合わせを求めるためには、多次元のニュートン法のような計算手法を利用すればよい。
【0024】
このように、金属板1を目的形状に変形させるために要求される4つの独立した歪成分を、直交配置した2つの帯状加熱領域3のそれぞれ構成比率を自在に変化させることが可能な面内収縮変形と曲げ変形の足し合わせにより正確に再現することができることから、1度の曲げ加工により正確な目的形状を得ることができる。
【0025】
又、加熱源の移動速度及び蛇行ピッチは連続的に変化させることができるので、滑らかに制御することができ、残留応力の発生による誤差も少なくすることができる。更に、金属板1の加熱は一方の表面から行えばよいので、従来の加熱装置をそのまま使用できて、金属板1の両面に配置した加熱線を同期して加熱する場合に要する如き大型で且つ複雑な装置を要することはない。
【0026】
次に、図8及び図9は本発明の実施の他の形態を示すもので、図1乃至図4(イ)(ロ)に示したものと同様の線状加熱による金属板曲げ加工方法において、金属板1の表面の所要領域に、所定の幅で進行方向に対して加熱線2を左右方向に蛇行させてなる帯状の加熱領域3を直交配置して、加熱源の移動速度と蛇行ピッチを制御して上記直交する各帯状加熱領域3における加熱線2をそれぞれ局所加熱することに代えて、金属板1の表面の所要領域に、所定のピッチで進行方向に対して加熱線2を左右方向に蛇行させてなる帯状の加熱領域3を直交配置し、加熱源の移動速度と蛇行幅を制御して上記直交する各帯状加熱領域3における加熱線2をそれぞれ局所加熱することにより金属板1を曲げ加工するようにする。
【0027】
ここで、上記帯状加熱領域3の加熱線2の加熱により形成される金属板1の変形について図10乃至図12(イ)(ロ)(ハ)を用いて説明する。
【0028】
図10に示す如く、図示しない加熱源を移動させる方向に対して加熱源の移動速度及び蛇行ピッチを一定にしたまま蛇行幅をW,W,W(Wは蛇行幅が0、すなわち、加熱線が直進する場合を示す)の如く各々変化させると、発生する変形成分の構成比率が変わる。
【0029】
すなわち、加熱線2を蛇行させたときの蛇行幅の中に投入される平均熱量は、おおよそ面積あたりの加熱線の長さに対応するので、一回の蛇行(1サイクル)当たりに投入される平均熱量は、式(1)で表される。
【0030】

Figure 0004743972
したがって、加熱速度と蛇行ピッチが一定の下では、蛇行幅が増えると、蛇行幅範囲内に含まれる加熱線の長さが増えるが、同時に蛇行幅の占める面積も大きくなる。したがって、加熱進行方向の単位長さ当たりの入熱量は増加するが、単位面積当たりの平均入熱量は小さくなる。このため、今、加熱源移動速度一定の下で、蛇行幅が狭い場合(W1)と、蛇行幅が広い場合(W2)とを比較すると、図11(イ)と、図11(ロ)にそれぞれ金属板1断面の概略を示す如く、金属板1の表面側Fに形成される高温域の分布幅は、蛇行幅が広い場合(W2)の方が広くなるが、この場合(W2)の方が平均入熱量が小さいため、裏面側Bに向かって高温域4の分布幅の減少が急になり、一方、蛇行幅が狭い場合(W1)は、金属板1の表面側Fにおける高温域4の分布幅は狭いものの、裏面側Bに向かっての高温域4の分布幅の減少は緩やかになり、蛇行幅が0の場合(W3)には、図11(ハ)に示す如く、その傾向がより顕著となる。
【0031】
このような温度分布の結果、得られる金属板1の変形は図12(イ)(ロ)(ハ)に概念的に示すとおりである。なお、図12(イ)(ロ)(ハ)は、図7(イ)(ロ)(ハ)(ニ)と同様に、板の上面から下面への左下がりの斜線5により収縮量の板厚方向の分布を概念的に示している。この際、面内収縮量の指標となる表面の加熱面と裏面の収縮平均値δmと、又、曲り変形の指標となる加熱面と裏面の収縮差の1/2の値δbは、図12(イ)に示す如き蛇行幅が狭い図11(イ)の場合と、図12(ロ)に示す如き蛇行幅が広い図11(ロ)の場合と、図12(ハ)に示す如き蛇行幅が0の図11(ハ)の場合の比較により明らかなように、蛇行幅が広くなるにつれて、入熱の絶対量が大きくなるのでδm、δb共に大きくなるが、面積当たりの入熱量は蛇行幅が狭いほうが大きく且つ蛇行幅が広くなると高温域4の分布は金属板1の表面側Fに偏るため、収縮量は表面側Fでは大きく変化するが、裏面側Bではそれほど変化しないので、曲り変形は大きく増加するが、面内収縮量はあまり増加しない。
【0032】
よって、熱源移動速度に加えて蛇行幅を制御変数として導入することにより、帯状加熱領域3の加熱により形成される面内収縮変形と曲げ変形の構成比率を自在に変化させることができるようになる。
【0033】
したがって、図9に加熱方案のフローを示す如く、図2に示した手順と同様にして、目的固有歪の面内収縮歪成分を等方性の歪に置きかえた(ステップS1)後、曲げ歪成分の主軸の方向に沿って金属板1の表面を多数の小さなメッシュ領域に分割し(ステップS2)、各メッシュ領域毎に要求される面内収縮歪成分と曲げ歪成分を求め(ステップS3)、しかる後、ステップS5として、上記ステップS3にて分割されたメッシュ領域の一つに着目して、目的形状への変形のために要求される4つの歪成分に合致するように2つの直交する帯状加熱領域の加熱源移動速度と蛇行幅を計算し、該メッシュ領域6に、図8に示す如く、加熱源移動速度と蛇行幅をそれぞれ上記計算に基いて設定した2つの帯状加熱領域3を直交させて配置して加熱を実施することにより、該2つの帯状加熱領域3毎に形成される面内収縮変形と曲げ変形を足し合わせ、これにより、目的の変形を与えるために要求される4つの成分に合致するような変形を作り出すようにし、同様に、ステップS2にて分割したすべてのメッシュ領域6に対して、それぞれ直交する2つの帯状加熱領域3を配置して加熱することにより目的形状を与えるために要求される4つの成分をすべて満たすような変形を与えることができるようにして、金属板1全体の曲げ加工を行うようにする。
【0034】
上記において各メッシュ領域6に変形を与えるための2つの帯状加熱領域3の加熱源移動速度と蛇行幅を計算する場合は、図2におけるステップS4の場合と同様に、目的の変形のために要求される4つの成分を目的変数として、2つの帯状加熱領域3の該当する面内収縮変形と曲げ変形成分の和がこの目的変数に等しいと置いた関係式を4本たて、この連立式の解である2つの帯状加熱領域3の面内収縮と曲げの各変形成分を、それぞれの帯状加熱領域3における加熱源の移動速度と蛇行幅からなる4つの制御変数を未知数としてこの関係式を解くようにすればよい。
【0035】
本実施の形態によっても上記実施の形態と同様な効果を得ることができる。
【0036】
なお、本発明は上記実施の形態のみに限定されるものではなく、帯状加熱領域3に対する加熱の制御パラメータとしては、加熱源の移動速度と、加熱線2の蛇行ピッチ及び蛇行幅を共に制御するようにしてもよいこと、加熱方案のステップS2において曲げ歪の主軸の方向に沿って金属板1を多数のメッシュ領域に分割する場合は、対象となる金属板1の目的形状の複雑さや寸法に応じて分割数を増減させて自在に決定してよいこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0037】
【発明の効果】
以上述べた如く、本発明の線状加熱による金属板曲げ加工方法によれば、金属板に目的曲面を与えるための面内収縮歪成分と曲げ歪成分とからなる固有歪を求め、加熱源にて金属板の所要個所に配した加熱線に沿って局所加熱することにより上記固有歪を付与して金属板を目的形状に曲げ加工するようにしてある線状加熱による金属板曲げ加工方法において、上記面内収縮歪成分の主歪の方向を、上記曲げ歪成分の主歪の方向に揃えると共に、上記面内収縮歪成分を、伸びを含まず且つどの方向にも等しい大きさを持つ歪に置き換え、次に、上記金属板を上記曲げ歪成分の主歪の方向に沿って多数のメッシュ領域に分割して、該メッシュ領域毎に上記面内収縮歪成分と曲げ歪成分を分割することにより、上記各メッシュ領域の目的とする変形を求め、次いで、該各メッシュ領域の目的とする変形のために要求される、上記曲げ歪成分の主歪の方向に沿う、面内収縮歪の接線方向と該接線方向に直交する方向、及び、曲げ歪の接線方向と該接線方向に直交する方向の4つの歪成分に合致するように、加熱線を所要の幅で進行方向に対して左右に蛇行させてなる2つの直交する状加熱領域の加熱源移動速度と蛇行ピッチを計算して、該計算に基づいて上記帯状加熱領域を、金属板面に直交配置し、しかる後、上記加熱源移動速度と蛇行ピッチを制御して上記各帯状加熱領域における加熱線に沿って局所加熱することにより金属板を曲げ加工するようにしてあるので、加熱線を左右に蛇行させて前進させてなる帯状の加熱領域の加熱する際、加熱源の移動速度と蛇行のピッチを制御パラメータとしてそれぞれ制御することにより、金属板の板厚方向に関する高温域の分布を自在に制御して、帯状加熱領域の加熱により中心線方向と、それに直交する方向に形成される面内収縮変形と、曲げ変形の構成比率は自在に変化させることができ、したがって、2つの帯状加熱領域を直交させて配置することにより、それぞれ形成される面内収縮変形と曲げ変形を足し合わせて、金属板の目的形状への曲面加工に要求される板の中性面に沿った面内収縮歪の直交する2つの主軸方向、及び、板の面外方向に働く曲げ歪の直交する2つの主軸方向の4つの独立した成分をすべて満足させる変形を与えることができることから、1度の曲げ加工により正確な目的形状を得ることができ、又、加熱源の移動速度及び蛇行ピッチは連続的に変化させることができるので、滑らかに制御することができ、残留応力の発生による誤差も少なくすることができ、更に、金属板の加熱は一表面から行えばよいので、従来の加熱装置をそのまま使用できて、金属板の両面に配置した加熱線を同期して加熱する場合に要する如き大型で且つ複雑な装置を要することはないという優れた効果を発揮する。又、金属板に目的曲面を与えるための面内収縮歪成分と曲げ歪成分とからなる固有歪を求め、加熱源にて金属板の所要個所に配した加熱線に沿って局所加熱することにより上記固有歪を付与して金属板を目的形状に曲げ加工するようにしてある線状加熱による金属板曲げ加工方法において、上記面内収縮歪成分の主歪の方向を、上記曲げ歪成分の主歪の方向に揃えると共に、上記面内収縮歪成分を、伸びを含まず且つどの方向にも等しい大きさを持つ歪に置き換え、次に、上記金属板を上記曲げ歪成分の主歪の方向に沿って多数のメッシュ領域に分割して、該メッシュ領域毎に上記面内収縮歪成分と曲げ歪成分を分割することにより、上記各メッシュ領域の目的とする変形を求め、次いで、該各メッシュ領域の目的とする変形のために要求される、上記曲げ歪成分の主歪の方向に沿う、面内収縮歪の接線方向と該接線方向に直交する方向、及び、曲げ歪の接線方向と該接線方向に直交する方向の4つの歪成分に合致するように、加熱線を所要の幅で進行方向に対して左右に蛇行させてなる2つの直交する帯状加熱領域の加熱源移動速度と蛇行幅を計算して、該計算に基づいて上記帯状加熱領域を、金属板の表面に直交配置し、しかる後、上記加熱源移動速度と蛇行幅を制御して、上記各帯状加熱領域における加熱線に沿って局所加熱するようにしたり、金属板に目的曲面を与えるための面内収縮歪成分と曲げ歪成分とからなる固有歪を求め、加熱源にて金属板の所要個所に配した加熱線に沿って局所加熱することにより上記固有歪を付与して金属板を目的形状に曲げ加工するようにしてある線状加熱による金属板曲げ加工方法において、上記面内収縮歪成分の主歪の方向を、上記曲げ歪成分の主歪の方向に揃えると共に、上記面内収縮歪成分を、伸びを含まず且つどの方向にも等しい大きさを持つ歪に置き換え、次に、上記金属板を上記曲げ歪成分の主歪の方向に沿って多数のメッシュ領域に分割して、該メッシュ領域毎に上記面内収縮歪成分と曲げ歪成分を分割することにより、上記各メッシュ領域の目的とする変形を求め、次いで、該各メッシュ領域の目的とする変形のために要求される、上記曲げ歪成分の主歪の方向に沿う、面内収縮歪の接線方向と該接線方向に直交する方向、及び、曲げ歪の接線方向と該接線方向に直交する方向の4つの歪成分に合致するように、加熱線を所要の幅で進行方向に対して左右に蛇行させてなる2つの直交する帯状加熱領域の加熱源移動速度と蛇行ピッチと蛇行幅を計算して、該計算に基づいて上記帯状加熱領域を、金属板の表面に直交配置し、しかる後、上記加熱源移動速度と蛇行ピッチと蛇行幅を制御して、上記各帯状加熱領域における加熱線に沿って局所加熱するようにしても、帯状加熱領域において金属板の板厚方向に形成される高温域の分布を自在に制御することができ、金属板の目的形状への曲面加工に要求される4つの独立した成分をすべて満足させる変形を与えることができるという優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明の線状加熱による金属板曲げ加工方法の実施の一形態を示す概略平面図である。
【図2】図1の方法に用いる加熱方案のフローを示す図である。
【図3】図2に示すフローのステップS1の内容を示すもので、(イ)は面内収縮歪分布を示す概略図、(ロ)は曲げ歪分布を示す概略図である。
【図4】図2に示すフローのステップS2の内容を示すもので、(イ)は割り直し前のFEMメッシュ分割図、(ロ)は割り直し後のメッシュ分割図である。
【図5】帯状加熱領域により形成される変形を説明するためのもので、金属板表面に配置した帯状加熱領域を示す図である。
【図6】帯状加熱領域の加熱により金属板内に形成される高温域の分布の概略を示すもので、(イ)(ロ)(ハ)(ニ)は加熱源の移動速度と蛇行ピッチを制御パラメータとしてそれぞれ変化させた場合を示すものである。
【図7】帯状加熱領域の加熱により生じる金属板内におけるの収縮量の分布の概略を示すもので、(イ)(ロ)(ハ)(ニ)は加熱源の移動速度と蛇行ピッチを制御パラメータとしてそれぞれ変化させた場合を示すものである。
【図8】本発明の実施の他の形態を示す概略平面図である。
【図9】図8の方法に用いる加熱方案のフローを示す図である。
【図10】帯状加熱領域により形成される変形を説明するためのもので、金属板表面に配置した帯状加熱領域を示す図である。
【図11】帯状加熱領域の加熱により金属板内に形成される高温域の分布の概略を示すもので、(イ)(ロ)(ハ)は蛇行幅を制御パラメータとしてそれぞれ変化させた場合を示すものである。
【図12】帯状加熱領域の加熱により生じる金属板内におけるの収縮量の分布の概略を示すもので、(イ)(ロ)(ハ)は蛇行幅を制御パラメータとしてそれぞれ変化させた場合を示すものである。
【符号の説明】
1 金属板
2 加熱線
3 帯状加熱領域
6 メッシュ領域 [0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of bending a metal plate by linear heating, which is used for bending a metal plate into a desired curved shape by locally heating each part of the metal plate, such as processing a hull bent outer plate in shipbuilding. is there.
[0002]
[Prior art]
In recent years, a bending method by linear heating has been adopted for bending a metal plate used for ships and the like.
[0003]
Linear heating uses the property that when a metal plate is locally heated linearly with a point heat source such as a gas burner, it is constrained by the surroundings to generate plastic strain and deform, and the heating location is appropriately arranged on the metal plate. This is a technique for bending a target metal plate into a target curved surface.
[0004]
Conventionally, bending of metal plates by linear heating is a skill that can be acquired through a long experience, and skilled workers have determined the heating position, direction, heating conditions, etc. by intuition and skill, but in recent years, As a method of performing linear heating mechanically, the finite element method (FEM) is applied to divide the surface of the metal plate to be bent into a number of regions and bend the target shape for each of the divided regions. For example, in order to obtain the target inherent strain required for processing, and to provide the in-plane shrinkage strain component and the bending strain component of the target inherent strain, a curved heating line is arranged in the above-mentioned divided region on one surface of the metal plate. Then, while moving the heating source along the heating line, by locally heating the moving source to a predetermined amount of heat using the moving speed of the heating source as a control parameter, each divided region is bent into a target shape and metal Bend the entire plate to the desired curved surface As a method to have come to be taken.
[0005]
[Problems to be solved by the invention]
However, the curved surface processing of a metal plate by linear heating has a plurality of strains, that is, bending strains acting in the two principal axis directions perpendicular to the in-plane shrinkage strain along the neutral surface of the plate and in the out-of-plane direction of the plate. In order to give a target shape, it is necessary to satisfy all of these four independent components.
[0006]
On the other hand, the strain produced by one heating line includes in-plane shrinkage strain in the direction perpendicular to the heating line, in-plane shrinkage strain in the tangential direction of the heating line, in-plane bending strain in the direction perpendicular to the heating line, and heating. The four strain components of in-plane bending strain in the tangential direction of the line are included. These four strain components are, for example, those of the heating line controlled by one control parameter such as the moving speed of the heating source. It is an element that is determined simultaneously with respect to the heating conditions. Therefore, only the moving speed of the heating source is used as a control variable, and the above conventional linear shape that locally heats along a curved heating line arranged on one surface of the metal plate In the metal plate bending method by heating, there is a problem that all four independent components required for the curved surface processing to the target shape of the metal plate cannot be satisfied at the same time. Therefore, the four distortion components generated by the heating wire Comparison Small distortion component of the component ratio, for example, because ignoring tangential components of the in-plane shrinkage distortion inevitably determined heating conditions by tolerate errors in actuality.
[0007]
As a means for avoiding the above error, the heating parameters are arranged on both surfaces of the metal plate, and the control parameters are adjusted by moving the heating sources arranged on both sides of the metal plate in synchronization on the heating wires on each surface. There is also a method of giving distortion accurately by making the relationship between the movement speed of the heat source and the input / output of the front and back orthogonal, but in this case, each heating source is synchronized on both sides of the metal plate. Therefore, there is a problem that a large and complicated device is required to move the device.
[0008]
Therefore, the present invention is intended to provide a metal plate bending method by linear heating that can simultaneously give all four independent strain components necessary for curved surface formation by heating from one surface of the metal plate. is there.
[0009]
[Means for Solving the Problems]
  In order to solve the above-mentioned problems, the present invention obtains an inherent strain composed of an in-plane shrinkage strain component and a bending strain component for giving a target curved surface to the metal plate, and arranges it at a required portion of the metal plate with a heating source. In the method of bending a metal plate by linear heating, which is designed to bend the metal plate into a target shape by applying the above-described inherent strain by locally heating along the heating line,The direction of principal strain of the in-plane shrinkage strain component is aligned with the direction of principal strain of the bending strain component, and the in-plane shrinkage strain component is a strain that does not include elongation and has the same magnitude in any direction. Next, the metal plate is divided into a number of mesh regions along the direction of the main strain of the bending strain component, and the in-plane shrinkage strain component and the bending strain component are divided for each mesh region. Obtaining the desired deformation of each mesh region, and then tangential direction of the in-plane shrinkage strain along the direction of the main strain of the bending strain component required for the desired deformation of each mesh region And the direction perpendicular to the tangential direction, and the four strain components of the tangential direction of the bending strain and the direction perpendicular to the tangential direction,The heating wire is meandered left and right with respect to the direction of travel with the required width.Two orthogonalbandConditionThermal zoneThe heating source moving speed and meander pitch are calculated, and the belt-like heating region is calculated based on the calculation.The metal plateoftableOn the faceArranged orthogonally,After that, aboveheatingSourceBy controlling the speed and meandering pitch,By locally heating along the heating line in each of the above belt-like heating regions,A method of bending a metal plate is used.
[0010]
Heating a belt-shaped heating region made by meandering heating lines causes shrinkage of the metal plate in a high-temperature region formed in the belt-shaped heating region, so that in-plane in the direction of the center line of the belt-shaped heating region and the direction perpendicular thereto Shrinkage strain and bending strain are formed, and the metal plate is deformed. At this time, if the moving speed of the heating source and the pitch of the meandering are controlled as control parameters, the distribution of the high temperature region in the thickness direction of the metal plate can be controlled freely, and this is an index of the in-plane shrinkage amount. Since it is possible to freely control the shrinkage average value on the heating surface side and the back surface side, and a value that is 1/2 of the shrinkage difference between the heating surface side and the back surface side, which is an index of bending deformation, The composition ratio of the in-plane contraction deformation and the bending deformation formed in the center line direction and the direction orthogonal to the center line direction by heating can be freely changed.
[0011]
Therefore, by arranging the two belt-shaped heating regions with the heating source moving speed and the meandering pitch appropriately set to be orthogonal to each other, the in-plane contraction deformation and bending deformation formed for each of the two belt-shaped heating regions are added together. Bending acting in the tangential direction of the in-plane shrinkage strain along the neutral surface of the plate required for processing the curved surface of the metal plate to the target shape, the direction perpendicular to the tangential direction, and the out-of-plane direction of the plate It is possible to give a deformation that satisfies all four independent components of the tangential direction of the strain and the direction orthogonal to the tangential direction.
[0012]
  or,The inherent strain consisting of the in-plane shrinkage strain component and bending strain component for giving the target curved surface to the metal plate is obtained, and the above-mentioned inherent strain is obtained by locally heating along the heating line arranged at the required location of the metal plate with a heating source. In the method of bending a metal plate by linear heating, in which a metal plate is bent into a target shape by applying strain, the direction of the main strain of the in-plane shrinkage strain component is set to the direction of the main strain of the bending strain component. The in-plane shrinkage strain component is replaced with a strain that does not include elongation and has the same magnitude in any direction, and then the metal plate is aligned along the direction of the main strain of the bending strain component. Dividing into a large number of mesh areas, and dividing the in-plane shrinkage strain component and the bending strain component for each mesh area, the desired deformation of each mesh area is obtained, and then the purpose of each mesh area Required for deformation Matches the four strain components along the tangential direction of the in-plane shrinkage strain and the direction perpendicular to the tangential direction, and the direction of the bending strain tangential direction and the direction perpendicular to the tangential direction along the principal strain direction of the bending strain component. As described above, the heating source moving speed and the meandering width of two orthogonal belt-like heating regions formed by meandering the heating line to the left and right with the required width are calculated, and the belt-like heating is performed based on the calculation. The region is arranged orthogonally to the surface of the metal plate, and then the aboveheatingSourceControl the speed and meandering width,the aboveLocal heating along the heating line in each strip heating zoneThe metal plate by bendingBy doing so, it is possible to freely control the distribution of the high temperature region formed in the thickness direction of the metal plate in the belt-like heating region, and by the heating of one belt-like heating region, the center line direction is orthogonal to it. Since the composition ratio of in-plane shrinkage deformation and bending deformation formed in the direction to be changed can be freely changed, by arranging two belt-like heating regions with heating source moving speed and meandering width appropriately set, orthogonally arranged It is possible to give a deformation satisfying all four independent components required for processing the curved surface of the metal plate into the target shape.
[0013]
  Furthermore,The inherent strain consisting of the in-plane shrinkage strain component and bending strain component for giving the target curved surface to the metal plate is obtained, and the above-mentioned inherent strain is obtained by locally heating along the heating line arranged at the required location of the metal plate with a heating source. In the method of bending a metal plate by linear heating, in which a metal plate is bent into a target shape by applying strain, the direction of the main strain of the in-plane shrinkage strain component is set to the direction of the main strain of the bending strain component. The in-plane shrinkage strain component is replaced with a strain that does not include elongation and has the same magnitude in any direction, and then the metal plate is aligned along the direction of the main strain of the bending strain component. Dividing into a large number of mesh areas, and dividing the in-plane shrinkage strain component and the bending strain component for each mesh area, the desired deformation of each mesh area is obtained, and then the purpose of each mesh area Required for deformation Matches the four strain components along the tangential direction of the in-plane shrinkage strain and the direction perpendicular to the tangential direction, and the direction of the bending strain tangential direction and the direction perpendicular to the tangential direction along the principal strain direction of the bending strain component. The heating source moving speed, the meandering pitch, and the meandering width of the two orthogonal belt-like heating regions formed by meandering the heating line with the required width to the left and right with respect to the traveling direction are calculated. The belt-like heating region is disposed orthogonally to the surface of the metal plate, and then the aboveheatingSourceBy controlling the dynamic speed, meander pitch and meander width,the aboveLocal heating along the heating line in each strip heating zoneThe metal plate by bendingEven in this case, the distribution of the high temperature region formed in the thickness direction of the metal plate in the belt-like heating region can be freely controlled, and the heating in one belt-like heating region can be performed in the direction of the center line and in the direction perpendicular thereto. The composition ratio of the in-plane shrinkage deformation and the bending deformation to be formed can be freely changed, and by arranging two belt-like heating regions in which the heating source moving speed, the meandering pitch, and the meandering width are respectively set appropriately, It is possible to give a deformation satisfying all four independent components required for processing the curved surface of the metal plate into the target shape.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
1 to 4 (a) and 4 (b) show an embodiment of a method for bending a metal plate by linear heating according to the present invention. In-plane shrinkage strain components and bending strain components that give the target curved surface to the metal plate. The inherent strain is obtained, and the metal plate is bent into a desired shape by applying the above-mentioned inherent strain by locally heating along a heating line arranged at a required portion of the metal plate with a heating source. In the metal plate bending method, for example, according to a heating method as shown in the flow in FIG. 2, the heating wire 2 is moved to the required region on the surface of the metal plate 1 with a predetermined width and a traveling direction as shown in FIG. The belt-shaped heating regions 3 meandering (skewed) in the direction are arranged orthogonally, and the above-mentioned orthogonality is controlled by controlling the moving speed of the heating source and the distance (meandering pitch) of the heating wire 2 when meandering once. Heating the heating wire 2 in each belt-like heating region 3 So that bending a metal plate 1 by Rukoto.
[0016]
Here, first, the deformation of the metal plate 1 formed by heating the heating wire 2 in the belt-like heating region 3 will be described with reference to FIGS. 5 to 7 (A), (B), (C), and (D).
[0017]
  As shown in FIG. 5, a belt-like heating region 3 is disposed on the surface of the metal plate 1 in which the heating wire 2 meanders in the left-right direction with a required meandering width with respect to the direction in which a heating source (not shown) is moved. When a heating source (not shown) having a constant calorific value per unit time is moved along the heating line 2 of the belt-shaped heating region 3, the metal plate 1 is heated and the inside is heated to a high temperature region.4Is formed. At this time, the moving speed of the heating source and the meandering pitch are used as control parameters, and the moving speed of the heating source and the meandering pitch are set to P1, P2If each is changed as described above, the composition ratio of the generated deformation components changes. Now, the heating source moving speed is slow and the meander pitch is large (P2), The formed high temperature region 4 reaches the back surface (heating surface) side B from the front surface (heating surface) side F of the metal plate 1 as shown in FIG. However, the distribution width on the back surface side B is narrower than that on the front surface side F. Also, the heating source moving speed is fast and the meander pitch is large (P2), The high temperature region 4 is formed only on the surface side F of the metal plate 1 as shown in FIG. Heating source moving speed is slow and meander pitch is small (P1), The high temperature region 4 is a metal plate as shown in FIG.1In addition, the distribution width on the back surface side B is close to the width on the front surface side F.AdditionHeat source moving speed is fast and meander pitch is small (P1), The high temperature region 4 is formed so as to reach the back surface side B as shown in FIG. 6 (d), but the distribution width on the back surface side B is narrower than that of the front surface side F.
[0018]
  As a result of such temperature distribution, the deformation of the metal plate 1 obtained is conceptually shown in FIGS. 7 (a), (b), (c) and (d). 7 (a), (b), (c), and (d) all show the magnitude of contraction in the direction of the arrow pointing to the right with the upper surface at the left end as the origin, and from the upper surface to the lower surface of the plate. A slanting line 5 that descends to the left indicates a distribution of shrinkage in the thickness direction.AdditionThe distribution of shrinkage when the heat source moving speed is slow and the meander pitch is large, as shown in FIG. 7 (a), corresponds to the distribution of the high temperature region 4 in the thickness direction shown in FIG. 6 (a). From the surface side F of the metal plate 1Back sideShrink to side B,Back sideThe shrinkage amount on the side B is smaller than the shrinkage amount on the surface side F.AdditionIn the case of FIG. 6B in which the heat source moving speed is high and the meandering pitch is large, as shown in FIG. 7B, the metal plate 1 is greatly contracted on the front surface side F but is reversely deformed on the back surface side B. Will come to show.AdditionIn the case of FIG. 6C in which the moving speed of the heat source is slow and the meandering pitch is small, as shown in FIG.Back sideIt contracts to the side B, and the contraction amount on the back side B is close to the contraction amount on the front side F. Furthermore,AdditionIn the case of FIG. 6 (d) where the moving speed of the heat source is high and the meandering pitch is small, shrinkage also occurs on the back side B of the metal plate 1 as shown in FIG. 7 (d). Will be much narrower.
[0019]
  Here, the average value of shrinkage of the heating surface and the back surface serving as an index of in-plane shrinkage is δm, and the heating surface serving as an index of bending deformationBack sideIf the value of ½ of the contraction difference of δb is δb, as is clear from FIGS. 7 (a), (b), (c) and (d)AdditionUnder the condition that the moving speed of the heat source is constant, if the meandering pitch is reduced, the amount of in-plane shrinkage increases, but the bending deformation does not increase much. Therefore,AdditionBy introducing the meandering pitch as a control variable in addition to the heat source moving speed, the constituent ratio of in-plane contraction deformation and bending deformation formed by heating the belt-shaped heating region 3 can be freely changed.
[0020]
Therefore, as shown in FIG. 2, first, in step S1, the in-plane shrinkage strain component of the target inherent strain has the same magnitude in any direction with respect to the inherent strain that gives the target curved surface. The direction of the principal axis (principal strain) of the in-plane strain component (see FIG. 3 (a)) is aligned with the direction of the principal axis (principal strain) of the bending strain component, replacing isotropic strain with no directionality (see Fig. 3). 3 (see (b)) so that the bending strain component and the in-plane shrinkage strain component can be simultaneously applied without being affected by the shear strain. Next, as step S2, a normal FEM mesh ( 4 (a)) is divided into many small mesh regions along the tangential direction of the bending strain component shown in FIG. 4 (b) and the direction of the main axis that is perpendicular to the tangent.
[0021]
If a certain deformation is obtained in each of the divided mesh regions, the entire metal plate is considered to be bent into a target curved shape. That is, since the deformation of the entire metal plate corresponds to a value obtained by integrating the deformation in the mesh region obtained by dividing the target intrinsic strain, in step S3, the in-plane contraction strain component and the bending strain component of the target intrinsic strain are set for each. By dividing each mesh region, the desired deformation of each mesh region is obtained. Therefore, the target deformation of each mesh region has in-plane contraction components and bending components in two orthogonal principal axis directions, and requires a total of four independent components. In addition, since it has divided | segmented into the bending principal axis direction with the pre-processing with respect to an in-plane component, there is no shear component here.
[0022]
Thereafter, as step S4, attention is paid to a mesh region to be subjected to one of the divided regions divided in step S3, and the four regions required for deformation of the mesh region into a target shape are required. The heating source moving speed and meandering pitch of two orthogonal belt-like heating areas are calculated so as to match the strain component, and the heating source moving speed and meandering pitch are calculated in the mesh area 6 as shown in FIG. By arranging and heating the two belt-shaped heating regions 3 set based on each other, the in-plane shrinkage deformation and bending deformation formed for each of the two belt-shaped heating regions 3 are added, A deformation that matches the four components required to give the desired deformation is created, and similarly, for each of the mesh regions 6 divided in step S2, each of the mesh areas 6 is generated. The bending of the entire metal plate 1 is performed by arranging and heating two orthogonal belt-shaped heating regions 3 so as to be able to give deformation that satisfies all four components required to give a target shape. To do.
[0023]
  When calculating the heating source moving speed and meandering pitch of the two belt-shaped heating regions 3 for applying deformation to each mesh region 6 in the above, four components required for the target deformation, that is, two orthogonal For each in-plane shrinkage component and bending component existing in each of the principal axis directions, this is set as an objective variable, and the sum of the corresponding in-plane shrinkage deformation and bending deformation components of the two belt-like heating regions 3 is equal to this objective variable. The relationship between the moving speed of the heating source and the meandering in each of the belt-like heating regions 3 is obtained through the in-plane contraction and bending deformation components of the two belt-like heating regions 3 which are the solutions of the simultaneous equations. Solving this relational expression with four control variables consisting of pitches as unknownsGain inIt is done. At this time, a calculation method such as a multidimensional Newton method may be used to obtain a combination of the heating source moving speed and the meandering pitch so as to realize the deformation component of each band-shaped heating region 3.
[0024]
In this way, the four independent strain components required for deforming the metal plate 1 into the target shape can be freely changed in the composition ratio of the two belt-like heating regions 3 arranged orthogonally. Since it can be accurately reproduced by adding shrinkage deformation and bending deformation, an accurate target shape can be obtained by one bending process.
[0025]
Further, since the moving speed and meandering pitch of the heating source can be continuously changed, it can be controlled smoothly and errors due to the generation of residual stress can be reduced. Furthermore, since heating of the metal plate 1 may be performed from one surface, a conventional heating device can be used as it is, and it is large as required when heating wires arranged on both sides of the metal plate 1 are synchronously heated. No complicated equipment is required.
[0026]
Next, FIGS. 8 and 9 show another embodiment of the present invention. In the metal plate bending method by linear heating similar to that shown in FIGS. 1 to 4 (a) and (b). In the required area on the surface of the metal plate 1, a belt-like heating area 3 in which the heating wire 2 meanders in the left-right direction with a predetermined width is arranged orthogonally, and the moving speed and meandering pitch of the heating source are arranged. Instead of locally heating the heating wires 2 in each of the orthogonal belt-like heating regions 3, the heating wires 2 are left and right at a predetermined pitch on the surface of the metal plate 1 with respect to the traveling direction. The metal plate 1 is formed by arranging the belt-shaped heating regions 3 meandering in the direction orthogonal to each other and locally heating the heating wires 2 in the orthogonal belt-shaped heating regions 3 by controlling the moving speed and the meandering width of the heating source. To bend.
[0027]
Here, the deformation | transformation of the metal plate 1 formed by the heating of the heating wire 2 of the said strip | belt-shaped heating area | region 3 is demonstrated using FIG. 10 thru | or FIG. 12 (A) (B) (C).
[0028]
As shown in FIG. 10, the meandering width is set to W while the moving speed and meandering pitch of the heating source are kept constant with respect to the direction in which the unillustrated heating source is moved.1, W2, W3(W3When the meander width is 0, that is, when the heating wire goes straight), the composition ratio of the generated deformation component changes.
[0029]
That is, the average amount of heat input into the meandering width when the heating wire 2 is meandering corresponds approximately to the length of the heating wire per area, so it is introduced per one meandering (one cycle). The average heat quantity is represented by the formula (1).
[0030]
Figure 0004743972
Therefore, when the heating speed and the meandering pitch are constant, as the meandering width increases, the length of the heating line included in the meandering width range increases, but at the same time, the area occupied by the meandering width also increases. Therefore, although the heat input per unit length in the heating progress direction increases, the average heat input per unit area decreases. For this reason, when the meandering width is narrow (W1) and the meandering width is wide (W2) under a constant heat source moving speed, FIG. 11 (A) and FIG. 11 (B) are compared. As schematically shown in the cross section of the metal plate 1, the distribution width of the high temperature region formed on the surface side F of the metal plate 1 is wider when the meandering width is wide (W2), but in this case (W2) Since the average heat input is smaller, the distribution width of the high-temperature region 4 decreases rapidly toward the back surface side B. On the other hand, when the meandering width is narrow (W1), the high-temperature region on the front surface side F of the metal plate 1 Although the distribution width of 4 is narrow, the decrease in the distribution width of the high temperature region 4 toward the back side B becomes moderate. When the meandering width is 0 (W3), as shown in FIG. The trend becomes more prominent.
[0031]
  As a result of such temperature distribution, the deformation of the obtained metal plate 1 is as conceptually shown in FIGS. 12 (a), (b), and (c) are similar to FIGS. 7 (a), (b), (c), and (d), and the amount of contraction is indicated by the slanting line 5 from the upper surface to the lower surface of the plate. The distribution in the thickness direction is conceptually shown. At this time, the heating surface on the front surface serving as an index of in-plane shrinkage and the shrinkage average value δm on the back surface, and the heating surface serving as an index of bending deformation,Back sideThe value δb which is a half of the shrinkage difference of FIG. 12 (b) has a narrow meandering width as shown in FIG. 11 (a) and a wide meandering width as shown in FIG. 12 (b). As is clear from the comparison between the case of FIG. 12 and the case of FIG. 11C where the meandering width is 0 as shown in FIG. 12C, the absolute amount of heat input increases as the meandering width increases, so that δm, Although both δb increase, the amount of heat input per area is larger when the meandering width is narrower, and when the meandering width is wider, the distribution of the high temperature region 4 is biased toward the surface side F of the metal plate 1. However, since it does not change so much on the back side B, the bending deformation greatly increases, but the in-plane shrinkage amount does not increase so much.
[0032]
  Therefore,AdditionBy introducing the meandering width as a control variable in addition to the heat source moving speed, the constituent ratio of in-plane shrinkage deformation and bending deformation formed by heating the belt-shaped heating region 3 can be freely changed.
[0033]
Therefore, as shown in the flow of the heating method in FIG. 9, the in-plane shrinkage strain component of the target intrinsic strain is replaced with an isotropic strain in the same manner as in the procedure shown in FIG. The surface of the metal plate 1 is divided into a number of small mesh regions along the direction of the principal axis of the component (step S2), and the in-plane shrinkage strain component and bending strain component required for each mesh region are obtained (step S3). Then, as step S5, paying attention to one of the mesh regions divided in step S3, two orthogonal parts are matched so as to match the four distortion components required for deformation to the target shape. The heating source moving speed and the meandering width of the belt-like heating region are calculated, and the two belt-like heating regions 3 in which the heating source moving speed and the meandering width are respectively set based on the above calculation are shown in FIG. Arranged perpendicularly By performing the above, the in-plane shrinkage deformation and bending deformation formed for each of the two belt-like heating regions 3 are added, so that the four components required to give the desired deformation are met. Similarly, it is required to give a target shape by arranging and heating two orthogonal belt-like heating regions 3 for all the mesh regions 6 divided in step S2 so as to create a deformation. The entire metal plate 1 is bent so as to be able to be deformed so as to satisfy all four components.
[0034]
When calculating the heating source moving speed and the meandering width of the two belt-like heating regions 3 for applying deformation to each mesh region 6 in the above, as in the case of step S4 in FIG. The four components are set as objective variables, and four relational expressions are set by assuming that the sum of the corresponding in-plane shrinkage deformation and bending deformation components of the two belt-like heating regions 3 is equal to the objective variable. The relational expression is solved with the in-plane contraction and bending deformation components of the two belt-like heating regions 3 as the solution, and four control variables consisting of the moving speed and meandering width of the heating source in the respective belt-like heating regions 3 as unknowns. What should I do?
[0035]
According to this embodiment, the same effect as that of the above embodiment can be obtained.
[0036]
In addition, this invention is not limited only to the said embodiment, As a heating control parameter with respect to the strip | belt-shaped heating area | region 3, both the moving speed of a heating source, the meandering pitch and meandering width of the heating wire 2 are controlled. If the metal plate 1 is divided into a large number of mesh areas along the direction of the bending strain main axis in step S2 of the heating plan, the complexity and size of the target shape of the target metal plate 1 may be increased. Of course, the number of divisions may be arbitrarily determined by increasing or decreasing the number of divisions, and various modifications can be made without departing from the scope of the present invention.
[0037]
【The invention's effect】
  As described above, according to the method for bending a metal plate by linear heating according to the present invention, an intrinsic strain composed of an in-plane shrinkage strain component and a bending strain component for giving a target curved surface to the metal plate is obtained, and the heating source is used. In the method of bending a metal plate by linear heating, the metal plate is bent into a desired shape by locally heating along a heating line disposed at a required portion of the metal plate,The direction of principal strain of the in-plane shrinkage strain component is aligned with the direction of principal strain of the bending strain component, and the in-plane shrinkage strain component is a strain that does not include elongation and has the same magnitude in any direction. Next, the metal plate is divided into a number of mesh regions along the direction of the main strain of the bending strain component, and the in-plane shrinkage strain component and the bending strain component are divided for each mesh region. Obtaining the desired deformation of each mesh region, and then tangential direction of the in-plane shrinkage strain along the direction of the main strain of the bending strain component required for the desired deformation of each mesh region And the direction perpendicular to the tangential direction, and the four strain components of the tangential direction of the bending strain and the direction perpendicular to the tangential direction,The heating wire is meandered left and right with respect to the direction of travel with the required width.Two orthogonalbandConditionThermal zoneThe heating source moving speed and meander pitch are calculated, and the belt-like heating region is calculated based on the calculation.The metal plateoftableOn the faceArranged orthogonally,After that, aboveheatingSourceBy controlling the speed and meandering pitch,By locally heating along the heating line in each of the above belt-like heating regions,Because the metal plate is bent, the heating speed of the heating source and the pitch of the meander must be controlled as control parameters when heating the belt-shaped heating area that is moved forward by meandering the heating wire left and right. By freely controlling the distribution of the high temperature region in the plate thickness direction of the metal plate, the composition ratio of in-plane shrinkage deformation and bending deformation formed in the direction of the center line and the direction orthogonal thereto by heating in the belt-shaped heating region Therefore, by arranging the two belt-shaped heating regions at right angles, the in-plane shrinkage deformation and bending deformation that are formed are added together, and the curved surface processing to the target shape of the metal plate is performed. All four independent components of the two principal axis directions perpendicular to the in-plane shrinkage strain along the neutral plane of the plate and the two principal axis directions perpendicular to the bending strain acting in the out-of-plane direction of the plate are required. Since it is possible to add deformation, an accurate target shape can be obtained by one bending process, and the moving speed and meandering pitch of the heating source can be continuously changed, so that it can be controlled smoothly. It is possible to reduce the error due to the occurrence of residual stress. Furthermore, since the heating of the metal plate may be performed from one surface, the conventional heating device can be used as it is, and it is arranged on both surfaces of the metal plate. An excellent effect that a large and complicated apparatus is not required as in the case of heating the heating wires synchronously is exhibited. or,The inherent strain consisting of the in-plane shrinkage strain component and bending strain component for giving the target curved surface to the metal plate is obtained, and the above-mentioned inherent strain is obtained by locally heating along the heating line arranged at the required location of the metal plate with a heating source. In the method of bending a metal plate by linear heating, in which a metal plate is bent into a target shape by applying strain, the direction of the main strain of the in-plane shrinkage strain component is set to the direction of the main strain of the bending strain component. The in-plane shrinkage strain component is replaced with a strain that does not include elongation and has the same magnitude in any direction, and then the metal plate is aligned along the direction of the main strain of the bending strain component. Dividing into a large number of mesh areas, and dividing the in-plane shrinkage strain component and the bending strain component for each mesh area, the desired deformation of each mesh area is obtained, and then the purpose of each mesh area Required for deformation Matches the four strain components along the tangential direction of the in-plane shrinkage strain and the direction perpendicular to the tangential direction, and the direction of the bending strain tangential direction and the direction perpendicular to the tangential direction along the principal strain direction of the bending strain component. As described above, the heating source moving speed and the meandering width of two orthogonal belt-like heating regions formed by meandering the heating line to the left and right with the required width are calculated, and the belt-like heating is performed based on the calculation. The region is arranged orthogonally to the surface of the metal plate, and then the aboveheatingSourceControl speed and meandering widthAnd locally heating along the heating line in each of the belt-like heating regions.OrThe inherent strain consisting of the in-plane shrinkage strain component and bending strain component for giving the target curved surface to the metal plate is obtained, and the above-mentioned inherent strain is obtained by locally heating along the heating line arranged at the required location of the metal plate with a heating source. In the method of bending a metal plate by linear heating, in which a metal plate is bent into a target shape by applying strain, the direction of the main strain of the in-plane shrinkage strain component is set to the direction of the main strain of the bending strain component. The in-plane shrinkage strain component is replaced with a strain that does not include elongation and has the same magnitude in any direction, and then the metal plate is aligned along the direction of the main strain of the bending strain component. Dividing into a large number of mesh areas, and dividing the in-plane shrinkage strain component and the bending strain component for each mesh area, the desired deformation of each mesh area is obtained, and then the purpose of each mesh area Required for deformation Matches the four strain components along the tangential direction of the in-plane shrinkage strain and the direction perpendicular to the tangential direction, and the direction of the bending strain tangential direction and the direction perpendicular to the tangential direction along the principal strain direction of the bending strain component. The heating source moving speed, the meandering pitch, and the meandering width of the two orthogonal belt-like heating regions formed by meandering the heating line with the required width to the left and right with respect to the traveling direction are calculated. The belt-like heating region is disposed orthogonally to the surface of the metal plate, and then the aboveheatingSourceBy controlling the dynamic speed, meander pitch and meander width,the aboveEven if local heating is performed along the heating line in each strip heating region, the distribution of the high temperature region formed in the thickness direction of the metal plate in the strip heating region can be freely controlled, and the target shape of the metal plate It exhibits an excellent effect of being able to give deformation that satisfies all four independent components required for curved surface processing.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing an embodiment of a method for bending a metal plate by linear heating according to the present invention.
FIG. 2 is a diagram showing a flow of a heating method used in the method of FIG.
3 shows the contents of step S1 in the flow shown in FIG. 2, in which (a) is a schematic diagram showing an in-plane shrinkage strain distribution, and (b) is a schematic diagram showing a bending strain distribution.
4 shows the contents of step S2 of the flow shown in FIG. 2, in which (a) is an FEM mesh division diagram before re-assignment, and (b) is a mesh division diagram after re-assignment.
FIG. 5 is a diagram illustrating a belt-like heating region disposed on the surface of a metal plate for explaining a deformation formed by the belt-like heating region.
FIG. 6 shows an outline of the distribution of a high temperature region formed in a metal plate by heating in a belt-shaped heating region. (A), (b), (c) and (d) indicate the moving speed and meander pitch of the heating source. The case where it changes as a control parameter is shown, respectively.
FIGS. 7A and 7B show an outline of a distribution of shrinkage amount in a metal plate caused by heating in a belt-shaped heating region. FIGS. The case where it changes as a parameter is shown, respectively.
FIG. 8 is a schematic plan view showing another embodiment of the present invention.
9 is a diagram showing a flow of a heating method used in the method of FIG.
FIG. 10 is a diagram for explaining the deformation formed by the belt-shaped heating region, and shows the belt-shaped heating region arranged on the surface of the metal plate.
FIGS. 11A and 11B show an outline of a distribution of a high temperature region formed in a metal plate by heating in a belt-like heating region, and FIGS. It is shown.
FIGS. 12A and 12B show an outline of distribution of shrinkage amount in a metal plate caused by heating of a belt-shaped heating region, and FIGS. Is.
[Explanation of symbols]
  1 Metal plate
  2 Heating wire
  3 Strip heating zone
  6 Mesh area

Claims (3)

金属板に目的曲面を与えるための面内収縮歪成分と曲げ歪成分とからなる固有歪を求め、加熱源にて金属板の所要個所に配した加熱線に沿って局所加熱することにより上記固有歪を付与して金属板を目的形状に曲げ加工するようにしてある線状加熱による金属板曲げ加工方法において、上記面内収縮歪成分の主歪の方向を、上記曲げ歪成分の主歪の方向に揃えると共に、上記面内収縮歪成分を、伸びを含まず且つどの方向にも等しい大きさを持つ歪に置き換え、次に、上記金属板を上記曲げ歪成分の主歪の方向に沿って多数のメッシュ領域に分割して、該メッシュ領域毎に上記面内収縮歪成分と曲げ歪成分を分割することにより、上記各メッシュ領域の目的とする変形を求め、次いで、該各メッシュ領域の目的とする変形のために要求される、上記曲げ歪成分の主歪の方向に沿う、面内収縮歪の接線方向と該接線方向に直交する方向、及び、曲げ歪の接線方向と該接線方向に直交する方向の4つの歪成分に合致するように、加熱線を所要の幅で進行方向に対して左右に蛇行させてなる2つの直交する状加熱領域の加熱源移動速度と蛇行ピッチを計算して、該計算に基づいて上記帯状加熱領域を、金属板面に直交配置し、しかる後、上記加熱源移動速度と蛇行ピッチを制御して上記各帯状加熱領域における加熱線に沿って局所加熱することにより金属板を曲げ加工することを特徴とする線状加熱による金属板曲げ加工方法。The inherent strain consisting of the in-plane shrinkage strain component and bending strain component for giving the target curved surface to the metal plate is obtained, and the above-mentioned inherent strain is obtained by locally heating along the heating line arranged at the required location of the metal plate with a heating source. In the method of bending a metal plate by linear heating, in which a metal plate is bent into a target shape by applying strain, the direction of the main strain of the in-plane shrinkage strain component is set to the direction of the main strain of the bending strain component. The in-plane shrinkage strain component is replaced with a strain that does not include elongation and has the same magnitude in any direction, and then the metal plate is aligned along the direction of the main strain of the bending strain component. Dividing into a large number of mesh areas, and dividing the in-plane shrinkage strain component and the bending strain component for each mesh area, the desired deformation of each mesh area is obtained, and then the purpose of each mesh area Required for deformation Matches the four strain components along the tangential direction of the in-plane shrinkage strain and the direction perpendicular to the tangential direction, and the direction of the bending strain tangential direction and the direction perpendicular to the tangential direction along the principal strain direction of the bending strain component. as to the heat source moving speed and the meandering pitch of the strip-like pressurized heat area is meander two orthogonal comprising a lateral to the traveling direction of the heating wire in a required width calculated, the based on the calculation a strip heating area, disposed perpendicularly to the front surface of the metal plate, and thereafter, it controls the meandering pitch and the heating MinamotoUtsuri dynamic rate, by local heating along the heating line in the respective strip-like heating region, metal A method for bending a metal plate by linear heating, characterized by bending the plate. 金属板に目的曲面を与えるための面内収縮歪成分と曲げ歪成分とからなる固有歪を求め、加熱源にて金属板の所要個所に配した加熱線に沿って局所加熱することにより上記固有歪を付与して金属板を目的形状に曲げ加工するようにしてある線状加熱による金属板曲げ加工方法において、上記面内収縮歪成分の主歪の方向を、上記曲げ歪成分の主歪の方向に揃えると共に、上記面内収縮歪成分を、伸びを含まず且つどの方向にも等しい大きさを持つ歪に置き換え、次に、上記金属板を上記曲げ歪成分の主歪の方向に沿って多数のメッシュ領域に分割して、該メッシュ領域毎に上記面内収縮歪成分と曲げ歪成分を分割することにより、上記各メッシュ領域の目的とする変形を求め、次いで、該各メッシュ領域の目的とする変形のために要求される、上記曲げ歪成分の主歪の方向に沿う、面内収縮歪の接線方向と該接線方向に直交する方向、及び、曲げ歪の接線方向と該接線方向に直交する方向の4つの歪成分に合致するように、加熱線を所要の幅で進行方向に対して左右に蛇行させてなる2つの直交する状加熱領域の加熱源移動速度と蛇行幅を計算して、該計算に基づいて上記帯状加熱領域を、金属板面に直交配置し、しかる後、上記加熱源移動速度と蛇行幅を制御して上記各帯状加熱領域における加熱線に沿って局所加熱することにより、金属板を曲げ加工することを特徴とする線状加熱による金属板曲げ加工方法。The inherent strain consisting of the in-plane shrinkage strain component and bending strain component for giving the target curved surface to the metal plate is obtained, and the above-mentioned inherent strain is obtained by locally heating along the heating line arranged at the required location of the metal plate with a heating source. In the method of bending a metal plate by linear heating, in which a metal plate is bent into a target shape by applying strain, the direction of the main strain of the in-plane shrinkage strain component is set to the direction of the main strain of the bending strain component. The in-plane shrinkage strain component is replaced with a strain that does not include elongation and has the same magnitude in any direction, and then the metal plate is aligned along the direction of the main strain of the bending strain component. Dividing into a large number of mesh areas, and dividing the in-plane shrinkage strain component and the bending strain component for each mesh area, the desired deformation of each mesh area is obtained, and then the purpose of each mesh area Required for deformation Matches the four strain components along the tangential direction of the in-plane shrinkage strain and the direction perpendicular to the tangential direction, and the direction of the bending strain tangential direction and the direction perpendicular to the tangential direction along the principal strain direction of the bending strain component. as to, to calculate the heat source moving speed and meandering width of the band-like pressurized thermal region the heating wire is serpentine in the lateral to the traveling direction at the required width of the two orthogonal comprising, above based on the calculation a strip heating area, disposed perpendicularly to the front surface of the metal plate, and thereafter, it controls the meander width as the heating MinamotoUtsuri dynamic rate, by local heating along the heating line in the respective strip-like heating region, metal A method for bending a metal plate by linear heating , characterized by bending the plate. 金属板に目的曲面を与えるための面内収縮歪成分と曲げ歪成分とからなる固有歪を求め、加熱源にて金属板の所要個所に配した加熱線に沿って局所加熱することにより上記固有歪を付与して金属板を目的形状に曲げ加工するようにしてある線状加熱による金属板曲げ加工方法において、上記面内収縮歪成分の主歪の方向を、上記曲げ歪成分の主歪の方向に揃えると共に、上記面内収縮歪成分を、伸びを含まず且つどの方向にも等しい大きさを持つ歪に置き換え、次に、上記金属板を上記曲げ歪成分の主歪の方向に沿って多数のメッシュ領域に分割して、該メッシュ領域毎に上記面内収縮歪成分と曲げ歪成分を分割することにより、上記各メッシュ領域の目的とする変形を求め、次いで、該各メッシュ領域の目的とする変形のために要求される、上記曲げ歪成分の主歪の方向に沿う、面内収縮歪の接線方向と該接線方向に直交する方向、及び、曲げ歪の接線方向と該接線方向に直交する方向の4つの歪成分に合致するように、加熱線を所要の幅で進行方向に対して左右に蛇行させてなる2つの直交する状加熱領域の加熱源移動速度と蛇行ピッチと蛇行幅を計算して、該計算に基づいて上記帯状加熱領域を、金属板面に直交配置し、しかる後、上記加熱源移動速度と蛇行ピッチと蛇行幅を制御して上記各帯状加熱領域における加熱線に沿って局所加熱することにより、金属板を曲げ加工することを特徴とする線状加熱による金属板曲げ加工方法。The inherent strain consisting of the in-plane shrinkage strain component and bending strain component for giving the target curved surface to the metal plate is obtained, and the above-mentioned inherent strain is obtained by locally heating along the heating line arranged at the required location of the metal plate with a heating source. In the method of bending a metal plate by linear heating, in which a metal plate is bent into a target shape by applying strain, the direction of the main strain of the in-plane shrinkage strain component is set to the direction of the main strain of the bending strain component. The in-plane shrinkage strain component is replaced with a strain that does not include elongation and has the same magnitude in any direction, and then the metal plate is aligned along the direction of the main strain of the bending strain component. Dividing into a large number of mesh areas, and dividing the in-plane shrinkage strain component and the bending strain component for each mesh area, the desired deformation of each mesh area is obtained, and then the purpose of each mesh area Required for deformation Matches the four strain components along the tangential direction of the in-plane shrinkage strain and the direction perpendicular to the tangential direction, and the direction of the bending strain tangential direction and the direction perpendicular to the tangential direction along the principal strain direction of the bending strain component. to way, the heat source moving speed and the meandering pitch and the meandering width of the band-like pressurized thermal region the heating wire is serpentine in the lateral to the traveling direction at the required width of the two orthogonal comprising calculated, on the calculation the strip heating region based, orthogonally arranged on the front surface of the metal plate, and thereafter, controls the meander width as the heating MinamotoUtsuri dynamic speed and meandering pitch, along the heating line in the respective strip-like heating region topical by heating, the metal plate bending method according to the linear heating, characterized by bending a metal plate.
JP2001004009A 2001-01-11 2001-01-11 Metal plate bending method by linear heating Expired - Fee Related JP4743972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001004009A JP4743972B2 (en) 2001-01-11 2001-01-11 Metal plate bending method by linear heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001004009A JP4743972B2 (en) 2001-01-11 2001-01-11 Metal plate bending method by linear heating

Publications (2)

Publication Number Publication Date
JP2002205113A JP2002205113A (en) 2002-07-23
JP4743972B2 true JP4743972B2 (en) 2011-08-10

Family

ID=18872257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001004009A Expired - Fee Related JP4743972B2 (en) 2001-01-11 2001-01-11 Metal plate bending method by linear heating

Country Status (1)

Country Link
JP (1) JP4743972B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5241991B2 (en) * 2004-06-16 2013-07-17 川崎重工業株式会社 Deformation estimation method, program, and recording medium
CN100434203C (en) * 2006-02-28 2008-11-19 江南造船(集团)有限责任公司 Fire-water correcting technology of aluminum-magnesium alloy ship

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576947A (en) * 1991-09-18 1993-03-30 Ishikawajima Harima Heavy Ind Co Ltd Working method for bending steel sheet by strip heating
JPH09155459A (en) * 1995-12-01 1997-06-17 Nkk Corp Method for automatic heating bend-working of hull shell
JP2000094044A (en) * 1998-09-17 2000-04-04 Nkk Corp Method for bending plate by linear heating

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197165A (en) * 1997-09-24 1999-04-09 Mitsubishi Heavy Ind Ltd High frequency heating coil device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576947A (en) * 1991-09-18 1993-03-30 Ishikawajima Harima Heavy Ind Co Ltd Working method for bending steel sheet by strip heating
JPH09155459A (en) * 1995-12-01 1997-06-17 Nkk Corp Method for automatic heating bend-working of hull shell
JP2000094044A (en) * 1998-09-17 2000-04-04 Nkk Corp Method for bending plate by linear heating

Also Published As

Publication number Publication date
JP2002205113A (en) 2002-07-23

Similar Documents

Publication Publication Date Title
Sun et al. Numerical investigation of a novel pattern for reducing residual stress in metal additive manufacturing
Zhang et al. Investigation of Lagrangian and Eulerian finite element methods for modeling the laser forming process
Zhang et al. Mechanics of ultra-stretchable self-similar serpentine interconnects
Snyder et al. Tailoring surface roughness using additive manufacturing to improve internal cooling
US8715556B2 (en) Gas turbine engine blade for aircraft and manufacturing method thereof
JP2018529926A (en) FIN FOR PLATE TYPE HEAT EXCHANGER AND METHOD FOR PRODUCING THE FIN
CN103180122B (en) Stretched film and method for producing stretched film
US10310487B2 (en) Optimal fiber path generation method for composite part manufacturing
CN103392281A (en) Bus bar and method for manufacturing bus bar
WO2019049981A1 (en) Method and device for analyzing lamination-shaped article, and method and device for manufacturing lamination-shaped article
Chen et al. Flower pattern and roll positioning design for the cage roll forming process of ERW pipes
JP4743972B2 (en) Metal plate bending method by linear heating
JP2004074200A (en) Method for producing metal sheet having curved surface, manufacturing apparatus thereof, and metal sheet having curved surface
CN108415367B (en) Automatic wire laying track global curvature fairing algorithm
Liu et al. Development of a novel rectangular–circular grid filling pattern of fused deposition modeling in cellular lattice structures
US11430582B2 (en) Routing material and manufacturing method thereof
Abolhasani et al. A double raster laser scanning strategy for rapid die-less bending of 3D shape
Adzima et al. Springback prediction for a mechanical micro connector using CPFEM based numerical simulations
JP5797071B2 (en) Heating method calculation method for linear heating
Shi et al. Laser bending angle and surface quality with preload at low heating temperature
Seong et al. Geometrical approach for flame forming of single curved ship hull plate
Sheikh et al. An assessment of finite element software for application to the roll-forming process
Min et al. Influence of exit velocity distribution on self-bending extrusion
Madadnia et al. Technological development for the reduction of out-of-plane deformation of metallic meander structures in thermoformed electronics
JP2666674B2 (en) Method of bending metal plate by linear heating

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4743972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees