JP2006088110A - Cleaning material for organic chlorine based compound contamination and cleaning method - Google Patents

Cleaning material for organic chlorine based compound contamination and cleaning method Download PDF

Info

Publication number
JP2006088110A
JP2006088110A JP2004280077A JP2004280077A JP2006088110A JP 2006088110 A JP2006088110 A JP 2006088110A JP 2004280077 A JP2004280077 A JP 2004280077A JP 2004280077 A JP2004280077 A JP 2004280077A JP 2006088110 A JP2006088110 A JP 2006088110A
Authority
JP
Japan
Prior art keywords
cement
soil
based compound
organic chlorine
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004280077A
Other languages
Japanese (ja)
Other versions
JP4620419B2 (en
Inventor
Nobuyasu Okuda
信康 奥田
Masamitsu Ishibashi
正光 石橋
Satoshi Saito
聰 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd, Takenaka Doboku Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2004280077A priority Critical patent/JP4620419B2/en
Publication of JP2006088110A publication Critical patent/JP2006088110A/en
Application granted granted Critical
Publication of JP4620419B2 publication Critical patent/JP4620419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make cleaning of VOC contamination ground and reversal of ground strength compatible regardless of a kind of solidifying material added to a metal based reducing agent. <P>SOLUTION: The cleaning material for the organic chlorine based compound contamination is formed by adding a cement based or a lime based solidifying material having pH of 11 or higher or a solidifying material formed by combining these to an iron particulate powder having an average particle diameter of 0.05-0.50 μm and α-Fe content of 30 wt.%-90 wt.%. In the cleaning method, the organic chlorine based compound contamination ground is scavenged, the cleaning material for the organic chlorine based compound contamination is added and mixed to the scavenged soil and this is refilled again in a site or is conveyed to the outside of the site. The organic chlorine based compound contamination ground is not scavenged and the cleaning material for the organic chlorine based compound contamination is delivered and mixed into the organic chlorine based compound contamination ground as a powder or a slurry loaded with water. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機塩素系化合物(以下、VOCと称する)で汚染された土壌や地下水を浄化する浄化材および浄化方法に関する。   The present invention relates to a purification material and a purification method for purifying soil and groundwater contaminated with an organic chlorine-based compound (hereinafter referred to as VOC).

VOCで汚染された土壌、地下水の浄化法として、鉄粉などの金属系還元剤を汚染土と混合したり、汚染土に注入したりすることにより、汚染物質を分解して浄化する方法がある(例えば、特許文献1,2,3,4、非特許文献1参照)。この方法を大別すると、汚染土をバックホウやオールケーシングなどにより掘削して地上で処理する方法と、原位置で処理する方法(注入または混合)とに分けられる。   As a method for purifying soil and groundwater contaminated with VOC, there is a method of decomposing and purifying pollutants by mixing a metallic reducing agent such as iron powder with contaminated soil or injecting it into the contaminated soil. (For example, refer to Patent Documents 1, 2, 3, and 4 and Non-Patent Document 1). This method is roughly divided into a method of excavating contaminated soil with a backhoe or an all casing and treating it on the ground, and a method of in-situ treatment (injection or mixing).

しかし、わが国の地盤は、攪乱すると著しく強度を低下することが多いため、VOCで汚染された土壌、地下水に鉄粉などの金属系還元剤を混合したり、注入したりする従来工法で汚染物質を分解して浄化した場合、浄化処理後の地盤強度は著しく低下する。
表1は、不攪乱土(乱さない土)の一軸圧縮強度と、その土をミキサーで完全に攪乱した直後、および攪乱後静置1ヶ月後の一軸圧縮強度とを示している。これより、土は攪乱によって著しく強度が低下すること、およびその後の強度回復によっても以前の乱さない土の強度には遠く及ばないことが判る。このため、汚染土を掘削し地上で処理する場合は、泥濘化した大量の浄化処理土はその処理に困ることになり、混合処理機を用いて原位置処理する場合は、浄化の施工を行なった全ての領域が著しく強度の低下した地盤になってしまい、浄化作業の危険性(例えば、処理機やその他重機の転倒)はもちろん、汚染が敷地境界に広がっていて、その境界のそばに建物や土構造物が存在する場合は、その建物や土構造物が傾いたり、すべり破壊を生じたりすることになる。
However, because the ground in Japan often significantly decreases in strength when disturbed, soils contaminated with VOCs and groundwater are mixed and injected with metal-based reducing agents such as iron powder. When decomposing and purifying the soil, the ground strength after the purification treatment is significantly reduced.
Table 1 shows the uniaxial compressive strength of undisturbed soil (undisturbed soil) and the uniaxial compressive strength immediately after the soil is completely disturbed by a mixer and after one month of standing after the disturbance. From this, it can be seen that the soil is significantly reduced in strength due to disturbance, and that the subsequent strength recovery is far from the previous undisturbed soil strength. For this reason, when contaminated soil is excavated and treated on the ground, a large amount of muddy purified soil will be difficult to treat, and when in-situ treatment is performed using a mixing treatment machine, purification work is performed. In addition to the danger of purification work (eg, the fall of a processing machine or other heavy machinery), the contamination has spread to the boundary of the site, and there is a building near the boundary. If there is an earthen structure, the building or earthen structure may tilt or cause slip failure.

Figure 2006088110
そこで、鉄粉などの金属系還元剤の地盤中への混合・注入に伴う強度低下を生じさせない工法として、VOC汚染土用浄化材およびこれを用いた汚染土浄化施工方法(特許文献1)および酸化鉄と石膏系固化材とを用いたVOC処理技術(非特許文献1)が提案されている。特許文献1、非1特許文献1に開示される技術は、金属系還元剤にpH11以下であるセメント系の固化材(低アルカリ性)や石膏系の固化材を加えた浄化材(粉体またはスラリー)、およびこれを用いた汚染物質の浄化と汚染地盤の強度回復を両立することを特徴とする工法に関する技術である。
Figure 2006088110
Therefore, as a construction method that does not cause a decrease in strength due to mixing and injection of a metallic reducing agent such as iron powder into the ground, a VOC-contaminated soil purification material and a contaminated soil purification construction method using the same (Patent Document 1) and A VOC processing technique (non-patent document 1) using iron oxide and a gypsum-based solidifying material has been proposed. The technology disclosed in Patent Document 1 and Non-Patent Document 1 is a purification material (powder or slurry) in which a cement-based solidifying material (low alkalinity) or a gypsum-based solidifying material having a pH of 11 or less is added to a metal-based reducing agent. ), And a technique related to a construction method characterized by achieving both purification of pollutants and recovery of the strength of the contaminated ground.

なお、VOCで汚染された土壌や地下水を浄化する方法としては、例えば、過酸化水素を用いたVOCの土壌浄化方法(例えば、特許文献2参照)、鉄粉/鉄粉スラリーと低アルカリ性固化材を用いたVOCの土壌浄化施工方法(例えば、特許文献3参照)、原位置で汚染土壌にフェントン試薬(過酸化水素+鉄塩、鉄粉)を混合し、浄化する工法(例えば、特許文献4参照)などが知られている。
特開2004−154744号公報 特許第3192078号公報 特開2000−210683号公報 特開2003−251327号公報 『酸化鉄と中性系固化材を用いたVOC汚染土壌の原位置処理方法』(地下水・土壌汚染とその防止対策に関する研究集会 第10回講演集、第505頁〜第508頁、2004年7月14日〜16日大阪国際交流センター)
Examples of methods for purifying soil and groundwater contaminated with VOC include, for example, a VOC soil purification method using hydrogen peroxide (see, for example, Patent Document 2), iron powder / iron powder slurry, and a low alkaline solidification material. VOC soil remediation method (for example, see Patent Document 3), Fenton reagent (hydrogen peroxide + iron salt, iron powder) mixed in the contaminated soil in-situ and purified (for example, Patent Document 4) For example).
JP 2004-154744 A Japanese Patent No. 3192020 JP 2000-210683 A JP 2003-251327 A “In-situ treatment method of VOC-contaminated soil using iron oxide and neutral solidifying material” (Study on groundwater / soil contamination and its prevention measures 10th lecture, pp. 505-508, 2004) (May 14-16, Osaka International Exchange Center)

しかし、特許文献1に開示される技術は、金属系還元剤にpH11以下のセメント系の固化材(低アルカリ性)を加え、原位置混合により浄化並びに強度回復を図る、または掘削・混合して当該敷地内へ埋戻しあるいは場外搬出して浄化並びに強度回復を図る工法であるが、pH11以上の固化材を用いると、汚染土濃度を環境基準値以下まで低減させるのは困難であるため、地盤強度確保のための安定材はpH11以下の低アルカリ性固化材に限定している。   However, the technique disclosed in Patent Document 1 adds a cement-type solidifying material (low alkalinity) having a pH of 11 or less to a metal-based reducing agent, and purifies and recovers strength by in-situ mixing, or excavating and mixing the Although it is a method of purifying and recovering strength by backfilling or carrying out of the site, it is difficult to reduce the concentration of contaminated soil to an environmental standard value or less when using a solidified material having a pH of 11 or higher. The stabilizing material for securing is limited to a low alkaline solidified material having a pH of 11 or less.

一方、非1特許文献1に開示される技術は、深層混合地盤改良機により石膏系固化材と金属系還元剤とを原位置混合・攪拌することで、浄化並びに強度回復を図る工法であるが、金属系還元剤は酸化鉄、固化材は石膏系固化材に限定している。
以上のように、既往の特許および技術は、金属系還元剤にpH11以下のセメント系の固化材(低アルカリ性)または石膏系の固化材を加えた浄化材により、汚染物質の浄化と汚染地盤の強度回復とを両立する工法であるが、何れも地盤強度回復のために適用可能な安定材が限定されている。
On the other hand, the technology disclosed in Non-Patent Document 1 is a method for purifying and restoring strength by mixing and stirring a gypsum-based solidifying material and a metal-based reducing agent in-situ with a deep mixing ground improvement machine. The metal reducing agent is limited to iron oxide, and the solidifying material is limited to gypsum solidifying material.
As described above, the past patents and techniques are based on the purification of contaminants and the contamination of the soil by using a purification agent in which a cement-based solidifying material (low alkalinity) or a gypsum-based solidifying material having a pH of 11 or less is added to a metal reducing agent. Although it is a construction method that achieves both strength recovery, there are limited stabilizers applicable for ground strength recovery.

一般に、金属系還元剤によるVOCの浄化原理は、以下の反応式によるものと考えられている(出展:地下水学会誌第42巻第1号pp27〜pp45,2000)。
CHCl2・CHCl2+4Fe+4H2O→CH3・CH3+4Fe2++4Cl-+4OH-
2HCl3+3Fe+3H2O→C24+3Fe2++3Cl-+3OH-
しかし、金属系還元剤の反応の結果生じる第一鉄イオン(Fe2+)は、水酸化鉄となる。高アルカリ性条件では、水酸化鉄の溶解度が極めて小さいため、鉄粒子の表面に不溶性被膜が形成されることにより、浄化対象物との接触が阻害され、その結果浄化効果は著しく低減する。したがって、金属系還元剤の注入・混合に伴う地盤強度低下防止のためには、高アルカリ性の固化材は使用できず、低アルカリ性の固化材や中性の固化材を用いざるを得ないとされている。
In general, it is considered that the VOC purification principle using a metal-based reducing agent is based on the following reaction formula (exhibition: Journal of Groundwater Society Vol. 42, No. 1, pp27-pp45, 2000).
CHCl 2 · CHCl 2 + 4Fe + 4H 2 O → CH 3 · CH 3 + 4Fe 2+ + 4Cl + 4OH
C 2 HCl 3 + 3Fe + 3H 2 O → C 2 H 4 + 3Fe 2+ + 3Cl + 3OH
However, ferrous ions (Fe 2+ ) generated as a result of the reaction of the metal reducing agent become iron hydroxide. Under high alkaline conditions, the solubility of iron hydroxide is extremely small, so that an insoluble film is formed on the surface of the iron particles, thereby preventing contact with the object to be purified, and as a result, the purification effect is significantly reduced. Therefore, in order to prevent the ground strength from being lowered due to the injection / mixing of the metal-based reducing agent, a highly alkaline solidifying material cannot be used, and a low alkaline solidifying material or a neutral solidifying material must be used. ing.

図1および図2は、沖積粘土をセメント系の固化材(高アルカリ性、低アルカリ性)および石膏系(中性)の固化材で固化処理した場合の固化材添加量と一軸圧縮強さ、および含水比と一軸圧縮強さを示している。なお、高アルカリ性セメント系の固化材としてB種高炉セメント、低アルカリ性セメント系の固化材として酸化マグネシウムを主体としたマグネシア系セメント、石膏系の固化材として無水石膏を主体とした固化材を用いている。   Fig. 1 and Fig. 2 show the amount of solidification material added, uniaxial compressive strength, and water content when alluvial clay is solidified with cement-type solidification materials (high alkalinity and low-alkaliness) and gypsum-type (neutral) solidification materials The ratio and uniaxial compressive strength are shown. In addition, B-type blast furnace cement is used as the highly alkaline cement-based solidification material, magnesia-based cement mainly composed of magnesium oxide as the low-alkaline cement-based solidified material, and solidified material mainly composed of anhydrous gypsum as the plaster-based solidified material. Yes.

これより、低アルカリ性セメント系の固化材や石膏系の固化材では、強度回復のためには、高アルカリ性セメント系の固化材に比べ添加量が著しく多くなること、および対象土の含水比が高くなると、添加量が著しく多くなることが判る。また、低アルカリ性セメント系の固化材や石膏系の固化材の単価は、高アルカリ性セメント系の固化材の数倍以上であるため、これらを用いて浄化対象地盤を一定の強度に確保するためには、コストの高い材料を大量に使用することとなる。   As a result, in the case of low alkaline cement-based solidified material and gypsum-based solidified material, the amount added is significantly higher than that of high alkaline cement-based solidified material, and the moisture content of the target soil is high. Then, it can be seen that the amount added is remarkably increased. In addition, the unit price of the low alkaline cement-based solidified material and gypsum-based solidified material is more than several times that of the high alkaline cement-based solidified material. Will use a large amount of expensive materials.

なお、特許文献2では、フェントン試薬の注入または、噴射撹拌による原位置酸化処理であり、高濃度汚染を短期間で環境基準値以下まで低減させることは困難であり、また、噴射撹拌を実施した場所は泥濘化し、地盤強度が極端に低下する問題点がある。
また、特許文献3では、直接土壌に過酸化水素および過マンガン酸塩を散布するなどして添加するため、過酸化水素および過マンガン酸塩が均一にならないといった問題や、所定の深さの土壌において充分に浄化を行うことができないといった問題があった。
In Patent Document 2, it is an in-situ oxidation process by injection of Fenton reagent or jet stirring, and it is difficult to reduce high concentration contamination to an environmental standard value or less in a short period of time, and jet stirring was performed. There is a problem that the place becomes muddy and the ground strength is extremely lowered.
Further, in Patent Document 3, since hydrogen peroxide and permanganate are added directly to the soil, for example, there is a problem that hydrogen peroxide and permanganate are not uniform, or soil of a predetermined depth. In this case, there was a problem that sufficient purification could not be performed.

また、特許文献4では、原位置でフェントン試薬をスラリー混合し浄化するものであるが、特許文献2と同様に高濃度汚染を短期間で環境基準値以下まで低減させることは困難である。また、特許文献4の明細書には、「鉄粉を混合撹拌し、その後過酸化水素を添加混合」との記載があるが、この際の鉄粉はフェントン試薬の反応剤として使用されるものであり、VOCの還元分解は狙いとはされていない。また、鉄粉⇒過酸化水素の順番では、鉄粉の還元能力が過酸化水素により消費され、長期的なかつ確実なVOCの分解は生じ得ない。   Further, in Patent Document 4, the Fenton reagent is mixed and purified in situ, but as in Patent Document 2, it is difficult to reduce high-concentration contamination to an environmental reference value or less in a short period of time. In addition, in the specification of Patent Document 4, there is a description that “iron powder is mixed and stirred, and then hydrogen peroxide is added and mixed”. In this case, the iron powder is used as a reagent for the Fenton reagent. Therefore, reductive decomposition of VOC is not aimed. In the order of iron powder → hydrogen peroxide, the reducing ability of iron powder is consumed by hydrogen peroxide, and long-term and reliable decomposition of VOC cannot occur.

本発明は斯かる従来の問題点を解決するために為されたもので、その目的は、金属系還元剤に添加する固化材の種類を問わず、VOC汚染地盤の浄化と地盤強度の回復を両立することができる浄化材および浄化方法を提供することにある。   The present invention has been made to solve such conventional problems, and its purpose is to purify VOC-contaminated ground and restore ground strength regardless of the type of solidifying material added to the metal-based reducing agent. An object of the present invention is to provide a purification material and a purification method capable of achieving both.

請求項1に係る発明は、平均粒径が0.05〜0.50μmであってα−Fe含有量が30重量%〜90重量%である鉄微粒子粉末に、pHが11以上のセメント系または石灰系またはこれらを組み合わせた固化材を加えて成ることを特徴とする。
請求項2に係る発明は、有機塩素系化合物汚染地盤を掘削し、その掘削土に請求項1記載の有機塩素系化合物汚染用浄化材を加えて混合し、これを再び敷地内に埋め戻すまたは場外に搬出することを特徴とする。
The invention according to claim 1 is an iron fine particle powder having an average particle diameter of 0.05 to 0.50 μm and an α-Fe content of 30 wt% to 90 wt%. It is characterized by adding a lime-based material or a combination of these materials.
The invention according to claim 2 excavates the chlorinated compound-contaminated ground, adds the chlorinated compound-contaminated purification material according to claim 1 to the excavated soil, mixes it, and refills it in the site or It is characterized by being taken out of the field.

請求項3に係る発明は、有機塩素系化合物汚染地盤を掘削せず、請求項1記載の有機塩素系化合物汚染用浄化材を、粉体としてまたは水を添加したスラリーとして有機塩素系化合物汚染地盤中に吐出し混合することを特徴とする。   The invention according to claim 3 does not excavate the organic chlorine-based compound-contaminated ground, and the organic chlorine-based compound-contaminated purification material according to claim 1 as a powder or as a slurry to which water is added. It is characterized by being discharged and mixed in.

本発明によれば、高アルカリ条件でも汚染土壌を環境基準値以下まで分解できる。金属還元剤として鉄微粒子粉末を用いることで、セメント系の固化材(高アルカリ性)と併用しても環境基準値の100倍程度の汚染土壌を環境基準値以下まで分解することができる。
本発明によれば、土壌への直接混合に伴う地盤強度低下を回復できる。混合処理機を用いて原位置処理する場合、浄化の施工を行なった全ての領域が著しく強度の低下した地盤になってしまい、施工重機の転倒や隣接する建物や土構造物が傾いたりすべり破壊を生じたりするおそれがあるが、固化材を併用することで施工直後から地盤強度を回復させ、将来の土地利用においても影響のない状態を実現できる。
According to the present invention, contaminated soil can be decomposed to an environmental standard value or less even under high alkaline conditions. By using iron fine particle powder as a metal reducing agent, contaminated soil about 100 times the environmental standard value can be decomposed to below the environmental standard value even when used in combination with a cement-based solidifying material (high alkalinity).
According to the present invention, it is possible to recover a decrease in ground strength due to direct mixing with soil. When in-situ processing is performed using a mixed processing machine, the entire area where purification work has been performed becomes ground with significantly reduced strength, and construction heavy machinery falls, adjacent buildings and earth structures tilt or slip. However, it is possible to recover the ground strength immediately after construction by using a solidifying material, and to realize a state that does not affect future land use.

本発明によれば、混合部位周辺の浄化を行うことができる。鉄微粒子粉末は長期にわたり分解効果を維持するため、混合部位のみならずその周囲に残留している汚染物質の分解が促進される。   According to the present invention, it is possible to purify the vicinity of the mixing site. Since the iron fine particle powder maintains the decomposition effect for a long time, the decomposition of the contaminants remaining not only at the mixing site but also around the mixing site is promoted.

以下、本発明を実施形態により説明する。
(1)鉄微粒子粉末を使用したVOC汚染用浄化材
本実施形態では、高アルカリ環境下での金属系還元剤の反応阻害を少なくするために、金属系還元剤の活性を高めるために、平均粒径が0.05〜0.50μmであってα−Fe含有量が30重量%〜90重量%である鉄微粒子粉末に、固化材(セメント系または石灰系またはこれらを組み合わせたもの)を加えた。平均粒径が0.05〜0.50μmであってα−Fe含有量が30重量%〜90重量%である鉄微粒子粉末は、還元反応主体である純鉄(α−Fe)の含有量が多く、粒径の小さいため、混合初期には還元反応に必要な活性点の数が多く、水酸化鉄の被膜形成による反応阻害の影響を無視することができ、VOCの浄化が可能となる。
Hereinafter, the present invention will be described with reference to embodiments.
(1) Purifier for VOC contamination using iron fine particle powder In this embodiment, in order to increase the activity of the metal reducing agent in order to reduce the reaction inhibition of the metal reducing agent in a highly alkaline environment, Solidified material (cement or lime or a combination thereof) is added to the iron fine particle powder having a particle size of 0.05 to 0.50 μm and an α-Fe content of 30 to 90% by weight. It was. The iron fine particle powder having an average particle diameter of 0.05 to 0.50 μm and an α-Fe content of 30 wt% to 90 wt% has a content of pure iron (α-Fe) as a main component of the reduction reaction. Since the particle size is small and the number of active sites required for the reduction reaction is large at the initial stage of mixing, the influence of reaction inhibition due to the formation of iron hydroxide film can be ignored, and the VOC can be purified.

この鉄微粒子粉末に固化材を加えたVOC汚染用浄化材は、α−Fe含有量が30重量%〜90重量%で平均粒径が0.05〜0.50μmである鉄微粒子粉末に、pHが11以上のセメント系または石灰系またはこれらを組み合わせた固化材(高アルカリ性)を加えることによって構成される。
ここで、平均粒径が0.05〜0.50μmであってα−Fe含有量が30重量%〜90重量%である鉄微粒子粉末について説明する。
The VOC contamination purification material obtained by adding a solidifying material to this iron fine particle powder has a pH value of the iron fine particle powder having an α-Fe content of 30 wt% to 90 wt% and an average particle size of 0.05 to 0.50 μm. Is formed by adding 11 or more cement-based or lime-based or a solidified material (high alkalinity) in combination thereof.
Here, an iron fine particle powder having an average particle diameter of 0.05 to 0.50 μm and an α-Fe content of 30 to 90% by weight will be described.

通常の鉄粉の粒径は、平均50〜100μm(10〜150μm)、微粒鉄粉の粒径は、平均0.6μm、α−Fe含有量25重量%であり、これらを用いた場合は高アルカリ性の普通セメントと併用すると、反応の阻害が確認された。
しかし、本実施形態で使用した超微粒子鉄粉は、粒径が平均0.07μm(0.05〜0.5μm)でα−Fe含有量30%〜90重量%であるから、これを用いると、高アルカリ環境下でも反応阻害は確認されなかった。
The average particle size of iron powder is 50-100 μm (10-150 μm) on average, the particle size of fine iron powder is 0.6 μm on average, and the α-Fe content is 25% by weight. When combined with alkaline ordinary cement, inhibition of the reaction was confirmed.
However, the ultrafine iron powder used in the present embodiment has an average particle size of 0.07 μm (0.05 to 0.5 μm) and an α-Fe content of 30% to 90% by weight. No reaction inhibition was confirmed even in a highly alkaline environment.

鉄の還元分解反応は、反応速度(α−Fe含有量)と比表面積(粒径)に依存するため、高アルカリ環境下での反応阻害を防止するには、大きな反応速度が必要である。超微粒子鉄粉は、この条件に合致する。
次に、平均粒径が0.05〜0.50μmであってα−Fe含有量が30重量%〜90重量%である鉄微粒子粉末とした根拠を説明する。
Since the reductive decomposition reaction of iron depends on the reaction rate (α-Fe content) and the specific surface area (particle diameter), a large reaction rate is required to prevent reaction inhibition in a highly alkaline environment. The ultrafine iron powder meets this condition.
Next, the basis for the fine iron powder having an average particle size of 0.05 to 0.50 μm and an α-Fe content of 30 to 90% by weight will be described.

従来の微粒鉄粉の平均粒径0.6μmより微粒子にすることによって比表面積を大きくし、鉄の還元分解反応において、大きな反応速度を得るために、鉄粉の平均粒径を0.05〜0.50μmとした。
また、純鉄の割合が30重量%〜90重量%としたのは、純度が高ければ反応点が多くなるため望ましい。従って、上限値は100重量%であるが、下記の理由から、90重量%とした。100重量%にすると、製法上コストがかかる。また、極端に活性が上がりすぎて保管時に反応が進行し活性が低下するため、表面を酸化鉄として安定化させることが望ましい。
In order to increase the specific surface area by making fine particles smaller than the average particle diameter of 0.6 μm of the conventional fine iron powder and to obtain a large reaction rate in the reductive decomposition reaction of iron, the average particle diameter of the iron powder is 0.05 to It was 0.50 μm.
Moreover, it is desirable that the ratio of pure iron is 30% by weight to 90% by weight because the reaction point increases as the purity increases. Therefore, the upper limit is 100% by weight, but is 90% by weight for the following reason. If it is 100% by weight, the production process costs high. Moreover, since the activity is excessively increased and the reaction proceeds during storage and the activity decreases, it is desirable to stabilize the surface as iron oxide.

また、スラリーとしての鉄の含有量は、5〜20重量%である。標準的には、純鉄12.5重量%+酸化鉄12.5重量%+水75重量%のような配合とされる。
次に、固化材について説明する。なお、図3に固化材の分類を示す。
固化材はセメント系、石灰系、石膏系に大別され、そのうちセメント系の固化材は、高アルカリ性セメントと低アルカリ性セメントとに分けられる。高アルカリ性セメントには、ポルトランドセメント(普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、低熱ポルトランドセメントなど)、混合セメント(高炉セメント、シリカセメント、フライアッシュセメントなど)、特殊セメント(アルミナセメント、セメント系固化材、耐海水セメント、高炉スラグ−石膏系セメント、高炉スラグ−石灰系セメント、高硫酸塩スラグセメント、エコセメントなど)、およびこれらを組み合わせたものがある。
Moreover, content of iron as a slurry is 5 to 20 weight%. The standard composition is 12.5% pure iron + 12.5% iron oxide + 75% water by weight.
Next, the solidifying material will be described. FIG. 3 shows the classification of the solidified material.
Solidifying materials are roughly classified into cement-based, lime-based, and gypsum-based, and cement-based solidifying materials are classified into high-alkaline cement and low-alkaline cement. High alkaline cements include Portland cement (ordinary Portland cement, early-strength Portland cement, ultra-high-strength Portland cement, moderately hot Portland cement, sulfate-resistant Portland cement, low heat Portland cement, etc.), mixed cement (blast furnace cement, silica cement, Fly ash cement, etc.), special cement (alumina cement, cement solidified material, seawater resistant cement, blast furnace slag-gypsum cement, blast furnace slag-lime cement, high sulfate slag cement, eco cement, etc.) and combinations thereof There is something.

一方、低アルカリ性セメントには、マグネシアセメントや酸化マグネシウムを主体とするマグネシア系セメントなどがある。また、石灰系の固化材には、消石灰、生石灰、ドロマイトなどが挙げられ、石膏系の固化材としては、無水石膏、半水石膏、二水石膏などがある。さらに、その他の固化材として、セメント系、石灰系、石膏系を組み合わせたものがある。   On the other hand, the low alkaline cement includes magnesia cement and magnesia cement mainly composed of magnesium oxide. Examples of the lime-based solidifying material include slaked lime, quick lime, and dolomite. Examples of the gypsum-based solidifying material include anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum. Further, as other solidifying materials, there are combinations of cement, lime and gypsum.

本発明においては、pH11以上の高アルカリ性を固化材と称する。これは、一般のセメント(ポルトランドセメント、高炉セメント)や石灰などは酸化カルシウム(CaO)が主体であるため、スラリー状にするとpH=12〜13を呈することに起因する。
また、pH11以下を低アルカリ性と称する。これは、低アルカリセメントと呼ばれるマグネシア系セメントは、酸化マグネシウム(MgO)が主体であるため、スラリー状にするとpH=10〜11となることに起因する。
(2)VOC汚染用浄化材を用いた浄化方法
上記のVOC汚染用浄化材を用いた浄化方法として、以下の2つがある。
In the present invention, high alkalinity having a pH of 11 or higher is referred to as a solidifying material. This is because general cement (Portland cement, blast furnace cement), lime, and the like are mainly composed of calcium oxide (CaO), and thus have a pH of 12 to 13 when formed into a slurry.
Moreover, pH 11 or less is called low alkalinity. This is because magnesia-based cement called low alkali cement is mainly composed of magnesium oxide (MgO), and thus becomes pH = 10 to 11 in a slurry state.
(2) Purification method using purification material for VOC contamination There are the following two purification methods using the purification material for VOC contamination.

1.汚染地盤を掘削し、その掘削土に上記のVOC汚染用浄化材を加えて混合し、これを再び敷地内に埋め戻すまたは場外に搬出する施工方法。
2.汚染地盤を掘削せず、上記のVOC汚染土用浄化材を粉体として、または水を添加したスラリーとして汚染地盤に吐出して原位置で混合する施工方法。なお、原位置混合処理工法として、以下の公知の工法が挙げられる。
1. A construction method in which contaminated ground is excavated, the above-mentioned VOC-contaminating purification material is added to the excavated soil, mixed, and then backfilled within the site or carried out of the site.
2. A construction method in which the VOC-contaminated soil purification material is discharged into the contaminated ground as a powder or water-added slurry without being excavated from the contaminated ground and mixed in situ. In addition, as an in-situ mixing treatment method, the following known methods can be cited.

・機械攪拌式深層混合処理工法(例えばCDM工法、TRD工法など)
スラリー状または粉体の改良材を現地盤中に吐出または圧送し、回転軸先端の掘削攪拌翼(単軸・多軸)やチェーン式切削攪拌機、カッター式(水平多軸・垂直多軸)切削攪拌機などにより強制的に攪拌混合して改良体を形成する工法。なお、改良材の吐出は貫入時に行なうものや引抜き時に行なうもの、貫入・引抜き時の両工程で行なう場合がある。
・ Mechanical stirring type deep mixing method (eg CDM method, TRD method, etc.)
Slurry or powder improvement material is discharged or pumped into the local board, excavation stirring blade (single axis / multi axis) at the tip of rotating shaft, chain type cutting stirrer, cutter type (horizontal multi axis / vertical multi axis) cutting A method of forming an improved product by forcibly stirring and mixing with a stirrer. In some cases, the improved material is discharged at the time of penetration, at the time of withdrawal, or at both the penetration and withdrawal steps.

・高圧噴射式深層混合処理工法(例えばJSG工法など)
スラリー状の改良材を高圧墳流体(ジェット噴流)として水平または交差させて噴射し、高圧噴流体の持つエネルギーを利用して現地盤を切削しながら土と改良材を攪拌混合して改良体を形成したり、切削形成された人為的空間に改良材を注入、あるいは地盤内の土と改良材を機械撹拌を併用して攪拌混合して改良体を形成する工法。なお、噴射形態や使用圧力などにより、水−空気−材料噴射系、空気−材料噴射系、材料噴射系などに分けられる。
・ High pressure injection type deep mixing method (eg JSG method)
A slurry-like improvement material is jetted horizontally or crossed as a high-pressure soot fluid (jet jet), and the improvement body is obtained by stirring and mixing the soil and the improvement material while cutting the local board using the energy of the high-pressure jet fluid. A method of forming an improved body by injecting an improved material into an artificial space that has been formed or cut, or by stirring and mixing the soil and the improved material in the ground together with mechanical stirring. It should be noted that the water-air-material injection system, the air-material injection system, the material injection system, and the like are classified according to the injection form and the working pressure.

・表層処理工法
粉体またはスラリー状の改良材を現地盤に散布、または地盤内に吐出し、バックホウやスタビライザー(表層改良機)などにより土と混合して改良体を形成する工法。
本実施形態においては、何れの浄化方法においても、高アルカリ条件でも汚染土壌を環境基準値以下まで分解できる。金属還元剤として鉄微粒子粉末を用いることで、セメント系の固化材(高アルカリ性)と併用しても、環境基準値の100倍程度の汚染土壌を環境基準値以下まで分解することができる。また、土壌への直接混合に伴う地盤強度低下を回復できる。混合処理機を用いて原位置処理する場合、浄化の施工を行なった全ての領域が著しく強度の低下した地盤になってしまい、施工重機の転倒や隣接する建物や土構造物が傾いたりすべり破壊を生じたりするおそれがあるが、固化材を併用することで、施工直後から地盤強度を回復させ、将来の土地利用においても影響のない状態を実現できる。また、混合部位周辺の浄化を行うことができる。鉄微粒子粉末は長期にわたり分解効果を維持するため、混合部位のみならずその周囲に残留している汚染物質の分解が促進される。
・ Surface treatment method A powder or slurry-like improved material is sprayed on the local board or discharged into the ground, and mixed with soil by a backhoe or stabilizer (surface improvement machine) to form an improved body.
In this embodiment, in any purification method, the contaminated soil can be decomposed to an environmental standard value or less even under high alkaline conditions. By using iron fine particle powder as a metal reducing agent, even when used in combination with a cement-based solidifying material (high alkalinity), contaminated soil about 100 times the environmental standard value can be decomposed to the environmental standard value or less. Moreover, the ground strength fall accompanying direct mixing with soil can be recovered. When in-situ processing is performed using a mixed processing machine, the entire area where purification work has been performed becomes ground with significantly reduced strength, and construction heavy machinery falls, adjacent buildings and earth structures tilt or slip. However, by using a solidifying material in combination, the ground strength can be recovered immediately after construction, and a state that does not affect future land use can be realized. Moreover, purification around the mixing site can be performed. Since the iron fine particle powder maintains the decomposition effect for a long time, the decomposition of the contaminants remaining not only at the mixing site but also around the mixing site is promoted.

なお、土壌環境基準値は、有機塩素系化合物の土壌溶出量として下記のように規定されている。
トリクロロエチレン(PCE)0.03mg/L
テトラクロロエチレン(TCE)0.01mg/L
cis−1,2−ジクロロエチレン(cis−1,2−DCE)0.04mg/L
In addition, the soil environment standard value is prescribed | regulated as follows as soil elution amount of an organic chlorine type compound.
Trichlorethylene (PCE) 0.03mg / L
Tetrachloroethylene (TCE) 0.01mg / L
cis-1,2-dichloroethylene (cis-1,2-DCE) 0.04 mg / L

(模擬汚染水による室内実験)
固化材の併用による還元分解阻害影響の確認
1.実験方法
イオン交換水:83.5mL
固 化 材:低アルカリ性セメント(マグネシア系セメント)
高アルカリ性セメント(B種高炉セメント)
各5g(水100mLに対して5%)
金属還元剤:スラリー状鉄微粒子粉末(平均粒径が0.05〜0.50μmであっ てα−Fe含有量が30重量%である鉄微粒子粉末スラリー、以下、 高活性鉄粉スラリーと称する。)
従来型鉄粉スラリー(平均0.6μm、α−Fe含有量25重量%で ある鉄粉末スラリー)
各20g(水100mLに対して鉄粒子が5%)
汚染物質:トリクロロエチレン(TCE)10mg/L(環境基準値の100 倍)
混合方法:固化材→水→鉄粉スラリー→TCEの順に100mLネジ口ガラス瓶 に入れ、密閉した後、振とう攪拌する。
(Indoor experiment with simulated contaminated water)
Confirmation of reductive decomposition inhibition effect by combined use of solidification material Experimental method Ion exchange water: 83.5mL
Solidification material: Low alkaline cement (magnesia cement)
High alkaline cement (Type B blast furnace cement)
5g each (5% for 100mL water)
Metal reducing agent: Slurry iron fine particle powder (an iron fine particle powder slurry having an average particle diameter of 0.05 to 0.50 μm and an α-Fe content of 30% by weight, hereinafter referred to as a highly active iron powder slurry. )
Conventional iron powder slurry (iron powder slurry with an average of 0.6 μm and α-Fe content of 25% by weight)
20g each (5% iron particles for 100mL water)
Pollutant: Trichlorethylene (TCE) 10mg / L (100 times the environmental standard value)
Mixing method: Solidified material → water → iron powder slurry → TCE in the order of 100 mL screw mouth glass bottle, sealed, and then shaken and stirred.

濃度測定:所定期間後、1mLを採取し、残留TCEを測定する。
2.実験結果
経過日数とTCE溶出濃度との関係を、高活性鉄粉スラリーを用いた場合と従来型の鉄粉スラリーを用いた場合とに分けて図4,図5に示す。
金属還元剤に高活性鉄粉スラリーを使用した場合、図4に示すように、固化材添加の有無に拘わらず、全てのケースにおいて3日後には環境基準値以下までの濃度低減が見られ、B種高炉セメントの添加による還元分解への阻害は確認されなかった。
Concentration measurement: 1 mL is collected after a predetermined period, and residual TCE is measured.
2. Experimental Results The relationship between the elapsed days and the TCE elution concentration is shown in FIGS. 4 and 5 separately for the case where the highly active iron powder slurry is used and the case where the conventional iron powder slurry is used.
When a highly active iron powder slurry is used as the metal reducing agent, as shown in FIG. 4, regardless of the presence or absence of the addition of a solidifying material, in all cases, a decrease in concentration to an environmental standard value or less is observed after 3 days, No inhibition of reductive decomposition by addition of Type B blast furnace cement was confirmed.

一方、金属還元剤に従来の鉄粉スラリーを使用した場合、図5に示すように、マグネシア系セメントを添加したケースは、6日後には環境基準値以下まで濃度の低減が見られたが、B種高炉セメントを添加したケースは、濃度の低減が全く見られなかった。
以上のことから、金属還元剤に鉄微粒子粉末を採用すれば、高アルカリ性セメントが適用できる可能性を確認した。
On the other hand, when a conventional iron powder slurry is used as the metal reducing agent, as shown in FIG. 5, the case where the magnesia-based cement was added showed a decrease in concentration to an environmental standard value or less after 6 days. In the case where the B-type blast furnace cement was added, no concentration reduction was observed.
From the above, it was confirmed that a highly alkaline cement could be applied if iron fine particle powder was adopted as the metal reducing agent.

(模擬汚染土による室内実験)
(1)固化材の併用による還元分解阻害影響の確認
1.実験方法
試 料 土:沖積粘性土(ρs=2.519g/cm3、w=87.0%、
wL=63.5%、wp=28.9%、Ip=34.6)
火山灰質粘性土(ρs=2.509g/cm3、w=110.0%、
wL=142.2%、wp=61.4%、Ip=80.8)
固 化 材:普通ポルトランドセメント(Nセメント)
B種高炉セメント(BBセメント)
火山灰質粘性土用セメント系固化材(Cセメント)
各30kg/m3
金属還元剤:スラリー状鉄微粒子粉末(高活性鉄粉スラリー)10kg/m3
汚染物質:トリクロロエチレン(TCE)10g/kg
テトラクロロエチレン(PCE)2g/kg
混合方法:1)高濃度汚染土を作成(TCE10g/kg、PCE2g/kg)
し、汚染土+清浄土をミキサーで2分混合した後、事前に配合したス
ラリー(高活性鉄粉スラリー+固化材+水)を2分混合する。
(Indoor experiment with simulated contaminated soil)
(1) Confirmation of reductive decomposition inhibition effect by combined use of solidifying material Experimental method Sample soil: Alluvial clay soil (ρs = 2.519 g / cm 3 , w = 87.0%,
wL = 63.5%, wp = 28.9%, Ip = 34.6)
Volcanic ash clay (ρs = 2.509g / cm 3 , w = 110.0%,
wL = 142.2%, wp = 61.4%, Ip = 80.8)
Solidified material: Ordinary Portland cement (N cement)
Class B blast furnace cement (BB cement)
Cement-based solidifier for volcanic ash clay (C cement)
30kg / m 3 each
Metal reducing agent: Slurry iron fine particle powder (highly active iron powder slurry) 10 kg / m 3
Pollutant: Trichlorethylene (TCE) 10g / kg
Tetrachloroethylene (PCE) 2g / kg
Mixing method: 1) Create high-concentration contaminated soil (TCE 10 g / kg, PCE 2 g / kg)
After mixing the contaminated soil + clean soil with a mixer for 2 minutes,
Rally (highly active iron powder slurry + solidifying material + water) is mixed for 2 minutes.

2)混合直後の土壌を採取してPCE、TCE溶出試験を実施し、これ を初期値とする。
3)残りの混合土を500mLガラス瓶に充填し、密封する。
濃度測定:所定期間後、土壌を採取してPCE、TCE溶出試験を実施する。
2.実験結果
1)沖積粘性土
経過日数とPCE溶出濃度および経過日数とTCE溶出濃度の関係を図6、図7に示す。
2) Collect the soil immediately after mixing and conduct the PCE and TCE dissolution test, and use this as the initial value.
3) Fill the remaining mixed soil into a 500 mL glass bottle and seal.
Concentration measurement: After a predetermined period, the soil is collected and a PCE and TCE dissolution test is performed.
2. Experimental results 1) Alluvial clay soil The relationship between elapsed days and PCE elution concentration, and elapsed days and TCE elution concentration is shown in FIGS.

金属還元剤に高活性鉄粉スラリーを使用した場合、NセメントやBBセメントなどの高アルカリ性セメントの添加の有無に拘わらず、7日後にはTCEが環境基準値以下まで、21日後にはPCEが環境基準値以下までの濃度低減が見られた。最終的にはTCEで初期濃度の1/1000程度、PCEで初期濃度の1/100程度の濃度低減が認められ、高アルカリ性セメントの添加による還元分解への阻害は確認されなかった。
2)火山灰質粘性土
経過日数とPCE溶出濃度および経過日数とTCE溶出濃度の関係を図8、図9に示す。
When a highly active iron powder slurry is used as the metal reducing agent, TCE will be less than the environmental standard value after 7 days and PCE will be 21 days later, regardless of the presence of highly alkaline cements such as N cement and BB cement. The concentration was reduced to below the environmental standard value. Eventually, a reduction in concentration of about 1/1000 of the initial concentration was observed with TCE and about 1/100 of the initial concentration with PCE, and inhibition to reductive decomposition due to the addition of highly alkaline cement was not confirmed.
2) Volcanic ash clay The relationship between elapsed days and PCE elution concentration, and elapsed days and TCE elution concentration is shown in FIGS.

金属還元剤に高活性鉄粉スラリーを使用した場合、Cセメントなどの高アルカリ性セメントの添加の有無に拘わらず、TCEは3日後には環境基準値以下まで、PCEは14日後には環境基準値以下(初期濃度の1/100〜1/500程度)までの濃度低減が見られた。最終的にはTCEで初期濃度の1/400程度、PCEで初期濃度の1/1000程度の濃度低減が認められ、高アルカリ性セメントの添加による還元分解への阻害は確認されなかった。
(2)固化材による強度回復の確認
1.実験方法
試 料 土:粘性土(ρs=2.768g/cm3、w=96.0%、
wL=72.6%、wp=32.4%、Ip=40.2)
砂質土(ρs=2.724g/cm3、w=11.0%、
細粒分含有率9.7%)
ローム(ρs=2.509g/cm3、w=110.0%、
wL=142.2%、wp=61.4%、Ip=80.8)
固 化 材:B種高炉セメント
マグネシア系セメント
水セメント比:80%
混合方法:1)試料土に、事前に配合した固化材スラリー(固化材+水)を加えて 5分混合する。
When high-activity iron powder slurry is used as the metal reducing agent, TCE is less than the environmental standard value after 3 days, and PCE is the environmental standard value after 14 days, regardless of the presence of highly alkaline cement such as C cement. The density reduction to the following (about 1/100 to 1/500 of the initial density) was observed. Eventually, a decrease in concentration of about 1/400 of the initial concentration was observed with TCE and about 1/1000 of the initial concentration with PCE, and inhibition to reductive decomposition due to the addition of highly alkaline cement was not confirmed.
(2) Confirmation of strength recovery by solidified material Experimental Method Sample Soil: Cohesive soil (ρs = 2.768 g / cm 3 , w = 96.0%,
wL = 72.6%, wp = 32.4%, Ip = 40.2)
Sandy soil (ρs = 2.724 g / cm 3 , w = 11.0%,
Fine grain content 9.7%)
ROHM (ρs = 2.509 g / cm 3 , w = 110.0%,
wL = 142.2%, wp = 61.4%, Ip = 80.8)
Solidified material: Class B blast furnace cement
Magnesia cement Water cement ratio: 80%
Mixing method: 1) Add pre-mixed solidifying material slurry (solidifying material + water) to sample soil and mix for 5 minutes.

2)混合後の土壌をφ3.5cm×h7.0cmのプラスチックモール ドに3層に分けて詰め、20℃の恒温・恒湿室にて所定の期間封緘養生 する。
強度測定:所定期間後、土壌を採取して一軸圧縮試験を実施する。
2.実験結果
固化材の添加量と材齢28日における一軸圧縮強度との関係を図10、図11に示す。なお、目標強度としては人が歩ける程度(20kN/m2)〜中位の強度を有する土の強度(100kN/m2)を目安に、概ね50kN/m2に設定した。
2) The mixed soil is packed in 3 layers in a plastic mold of φ3.5cm x h7.0cm and sealed and cured in a constant temperature / humidity chamber at 20 ° C for a specified period.
Strength measurement: After a predetermined period, soil is collected and a uniaxial compression test is performed.
2. Experimental Results FIG. 10 and FIG. 11 show the relationship between the amount of solidified material added and the uniaxial compressive strength at the age of 28 days. Incidentally, the degree to which people walk as the target strength (20kN / m 2) strength of the soil with an intensity of ~ medium with (100kN / m 2) as a guide, taken generally set at 50 kN / m 2.

固化材にB種高炉セメントを用いた場合、図10に示すように、粘性土については60kg/m3、砂質土については30kg/m3で目標強度50kN/m2が得られることが判る。
一方、固化材にマグネシア系セメントを用いた場合、図11に示すように、粘性土については60kg/m3、砂質土については50kg/m3、関東ロームについては10kg/m3で目標強度50kN/m2が得られることが判る。
When using a B type blast furnace cement solidifying material, as shown in FIG. 10, for cohesive soil 60 kg / m 3, for sandy soils it can be seen that the target strength 50 kN / m 2 obtained by 30kg / m 3 .
On the other hand, when using a magnesia-based cement solidifying material, as shown in FIG. 11, for cohesive soil 60 kg / m 3, for the sandy soil 50 kg / m 3, for Kanto loam goals strength 10 kg / m 3 It can be seen that 50 kN / m 2 is obtained.

以上のことから、固化材を併用することで28日後には50kN/m2程度の地盤強度まで回復できることを確認した。 From the above, it was confirmed that the ground strength of about 50 kN / m 2 could be recovered after 28 days by using the solidified material together.

沖積粘土をセメント系の固化材(高アルカリ性、低アルカリ性)および石膏系(中性)の固化材で固化処理した場合の固化材添加量と一軸圧縮強さを示すグラフである。It is a graph which shows the solidification material addition amount and uniaxial compressive strength at the time of solidifying the alluvial clay with the cement type solidification material (high alkalinity, low alkalinity) and the gypsum type (neutral) solidification material. 沖積粘土をセメント系の固化材(高アルカリ性、低アルカリ性)および石膏系(中性)の固化材で固化処理した場合の含水比と一軸圧縮強さを示すグラフである。It is a graph which shows the water content ratio and uniaxial compressive strength at the time of solidifying the alluvial clay with the cement-type solidification material (high alkalinity, low alkalinity) and the gypsum-type (neutral) solidification material. 固化材の分類を示す図である。It is a figure which shows the classification | category of a solidification material. 高活性鉄粉スラリーを用いた場合の経過日数とTCE溶出濃度との関係を示すグラフである。It is a graph which shows the relationship between the elapsed days at the time of using a highly active iron powder slurry, and a TCE elution density | concentration. 従来型の鉄粉スラリーを用いた場合の経過日数とTCE溶出濃度との関係を示すグラフである。It is a graph which shows the relationship between the elapsed days at the time of using a conventional type iron powder slurry, and TCE elution density | concentration. 沖積粘性土について、経過日数とPCE溶出濃度との関係を示すグラフである。It is a graph which shows the relationship between elapsed days and PCE elution concentration about alluvial clay. 沖積粘性土について、経過日数とTCE溶出濃度との関係を示すグラフである。It is a graph which shows the relationship between elapsed days and a TCE elution density | concentration about alluvial clay. 火山灰質粘性土について、経過日数とPCE溶出濃度との関係を示すグラフである。It is a graph which shows the relationship between elapsed days and PCE elution density | concentration about volcanic ash clay. 火山灰質粘性土について、経過日数とTCE溶出濃度との関係を示すグラフである。It is a graph which shows the relationship between elapsed days and TCE elution density | concentration about volcanic ash clay. 固化材にB種高炉セメントを用いた場合の固化材の添加量と材齢28日における一軸圧縮強度との関係を示すグラフである。It is a graph which shows the relationship between the addition amount of the solidification material at the time of using B class blast furnace cement for a solidification material, and the uniaxial compressive strength in the age of 28 days. 固化材にマグネシア系セメントを用いた場合の固化材の添加量と材齢28日における一軸圧縮強度との関係を示すグラフである。It is a graph which shows the relationship between the addition amount of the solidification material at the time of using a magnesia-type cement for a solidification material, and the uniaxial compressive strength in material age 28 days.

Claims (3)

平均粒径が0.05〜0.50μmであってα−Fe含有量が30重量%〜90重量%である鉄微粒子粉末に、pHが11以上のセメント系または石灰系またはこれらを組み合わせた固化材を加えて成ることを特徴とする有機塩素系化合物汚染用浄化材。   Solidification of an iron fine particle powder having an average particle size of 0.05 to 0.50 μm and an α-Fe content of 30% to 90% by weight to a cement or lime system having a pH of 11 or more or a combination thereof. A purification material for organic chlorine-based compound contamination characterized by adding a material. 有機塩素系化合物汚染地盤を掘削し、その掘削土に請求項1記載の有機塩素系化合物汚染用浄化材を加えて混合し、これを再び敷地内に埋め戻すまたは場外に搬出することを特徴とする有機塩素系化合物汚染地盤の浄化方法。   Excavation of organochlorine compound-contaminated ground, mixing the excavated soil with the purification material for organochlorine compound contamination according to claim 1, and then refilling it in the site or carrying it out of the site To clean up soil contaminated with organic chlorinated compounds. 有機塩素系化合物汚染地盤を掘削せず、請求項1記載の有機塩素系化合物汚染用浄化材を、粉体としてまたは水を添加したスラリーとして有機塩素系化合物汚染地盤中に吐出し混合することを特徴とする有機塩素系化合物汚染地盤の原位置浄化方法。   The organic chlorine-based compound contaminated purification material according to claim 1 is discharged into the organic chlorine-based compound contaminated ground as a powder or as a slurry to which water is added without excavating the organic chlorine-based compound contaminated ground. In-situ purification method for soil contaminated with organic chlorinated compounds.
JP2004280077A 2004-09-27 2004-09-27 Purification material for organic chlorine compound contamination and purification method Active JP4620419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004280077A JP4620419B2 (en) 2004-09-27 2004-09-27 Purification material for organic chlorine compound contamination and purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004280077A JP4620419B2 (en) 2004-09-27 2004-09-27 Purification material for organic chlorine compound contamination and purification method

Publications (2)

Publication Number Publication Date
JP2006088110A true JP2006088110A (en) 2006-04-06
JP4620419B2 JP4620419B2 (en) 2011-01-26

Family

ID=36229585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004280077A Active JP4620419B2 (en) 2004-09-27 2004-09-27 Purification material for organic chlorine compound contamination and purification method

Country Status (1)

Country Link
JP (1) JP4620419B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301418A (en) * 2006-01-26 2007-11-22 Jfe Mineral Co Ltd Soil cleaning material
KR100888051B1 (en) 2007-12-06 2009-03-10 새한미디어주식회사 Composition for decomposing chlorinated volatile organic compounds and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236871A (en) * 1975-09-18 1977-03-22 Konoike Constr Ltd Method for rendering hexavalent chromium pollued soil harmless
JPH0731955A (en) * 1993-06-28 1995-02-03 Shimizu Corp Method for hardening contaminated coil
JP2002317202A (en) * 2000-11-30 2002-10-31 Kawasaki Steel Corp Magnetite-iron composite powder, mixture of magnetite- iron composite powder, production method therefor, cleaning method for contaminated soil, water and gas and wave absorber
JP2004051410A (en) * 2002-07-19 2004-02-19 Denki Kagaku Kogyo Kk Solidifier and process for cleaning contaminated soil using this
JP2004058051A (en) * 2002-06-07 2004-02-26 Toda Kogyo Corp Iron composite particle powder for cleaning soil and underground water containing aromatic halogen compound, its manufacturing method, cleaning agent containing the iron composite particle powder, its manufacturing method, and method of cleaning soil and underground water containing aromatic halogen compound
JP2004082102A (en) * 2002-07-03 2004-03-18 Toda Kogyo Corp Purification agent and its production method for soil and groundwater polluted with organic halide, and purification method of soil and groundwater polluted with organic halide
JP2004154744A (en) * 2002-11-08 2004-06-03 Takenaka Komuten Co Ltd Decontaminating material for soil contaminated with organochlorine compound, and contaminated soil decontamination method using the same
JP3564574B1 (en) * 2003-09-24 2004-09-15 エコサイクル株式会社 Hexavalent chromium-contaminated soil, groundwater, and sediment purification agent and purification method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236871A (en) * 1975-09-18 1977-03-22 Konoike Constr Ltd Method for rendering hexavalent chromium pollued soil harmless
JPH0731955A (en) * 1993-06-28 1995-02-03 Shimizu Corp Method for hardening contaminated coil
JP2002317202A (en) * 2000-11-30 2002-10-31 Kawasaki Steel Corp Magnetite-iron composite powder, mixture of magnetite- iron composite powder, production method therefor, cleaning method for contaminated soil, water and gas and wave absorber
JP2004058051A (en) * 2002-06-07 2004-02-26 Toda Kogyo Corp Iron composite particle powder for cleaning soil and underground water containing aromatic halogen compound, its manufacturing method, cleaning agent containing the iron composite particle powder, its manufacturing method, and method of cleaning soil and underground water containing aromatic halogen compound
JP2004082102A (en) * 2002-07-03 2004-03-18 Toda Kogyo Corp Purification agent and its production method for soil and groundwater polluted with organic halide, and purification method of soil and groundwater polluted with organic halide
JP2004051410A (en) * 2002-07-19 2004-02-19 Denki Kagaku Kogyo Kk Solidifier and process for cleaning contaminated soil using this
JP2004154744A (en) * 2002-11-08 2004-06-03 Takenaka Komuten Co Ltd Decontaminating material for soil contaminated with organochlorine compound, and contaminated soil decontamination method using the same
JP3564574B1 (en) * 2003-09-24 2004-09-15 エコサイクル株式会社 Hexavalent chromium-contaminated soil, groundwater, and sediment purification agent and purification method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301418A (en) * 2006-01-26 2007-11-22 Jfe Mineral Co Ltd Soil cleaning material
KR100888051B1 (en) 2007-12-06 2009-03-10 새한미디어주식회사 Composition for decomposing chlorinated volatile organic compounds and preparation method thereof

Also Published As

Publication number Publication date
JP4620419B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
WO2021248741A1 (en) Agent for in-situ remediation of contaminated site and construction method for same
JP6693770B2 (en) Ground improvement material and ground improvement method using the same
JP7073088B2 (en) Soil reforming method
WO2019244856A1 (en) Heavy metal-insolubilized solidification material and technique for improving contaminated soil
JP2006167524A (en) Treatment method for arsenic-containing soil
JP4620419B2 (en) Purification material for organic chlorine compound contamination and purification method
JP2004323599A (en) Soil-solidifying agent and method for solidifying soil
JP2007014881A (en) Recycling method of concrete mass
JP3965542B2 (en) Method for treating chromium oxide-containing soil
JP3688263B2 (en) Organic chlorine compound contaminated soil purification material and contaminated soil purification construction method using the same
JP2007204941A (en) Carbonated ground improvement construction method
JP4084681B2 (en) Sand-capping structure and sand-capping method
JP4005995B2 (en) Soil purification method
JP2019143030A (en) Modifier of soft weak soil or the like, and solidification treatment method of remaining soil
JPWO2008152855A1 (en) Soil improvement method and land shielding method
JP7265498B2 (en) Ground improvement method
JP2006150341A (en) Method for improving/solidifying soil
JP4112666B2 (en) Solidified material
JP4859458B2 (en) On-site treatment system for improved residual soil
JP7190137B2 (en) Simultaneous construction method for improving contaminated soil and laying foundations for superimposed structures
JP5002806B2 (en) Soil purification material
JP2006055724A (en) Method for soil restoration
JP2006143976A (en) Method and apparatus for reduction of leaching out of heavy metals in improved matter
JP2005179428A (en) Fluidization treatment method of construction emission
JP2002029812A (en) Method of reducing eluting quantity of heavy metal in cement-based solidified soil using artificial zeolite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4620419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250