JP2006088020A - Stabilizing treatment method for carbonized product - Google Patents

Stabilizing treatment method for carbonized product Download PDF

Info

Publication number
JP2006088020A
JP2006088020A JP2004275549A JP2004275549A JP2006088020A JP 2006088020 A JP2006088020 A JP 2006088020A JP 2004275549 A JP2004275549 A JP 2004275549A JP 2004275549 A JP2004275549 A JP 2004275549A JP 2006088020 A JP2006088020 A JP 2006088020A
Authority
JP
Japan
Prior art keywords
sludge
carbonized product
carbonized
dried
dehydrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004275549A
Other languages
Japanese (ja)
Inventor
Takashi Mori
孝志 森
Hirohide Yamamoto
博英 山本
Koichiro Kanefuji
▲紘▼一郎 金藤
Tadatoshi Kabuto
忠敏 甲
Takashi Yokoi
孝史 横井
Masashi Kato
正士 加藤
Makoto Kitabayashi
誠 北林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Japan Sewage Works Agency
Original Assignee
Daido Steel Co Ltd
Japan Sewage Works Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Japan Sewage Works Agency filed Critical Daido Steel Co Ltd
Priority to JP2004275549A priority Critical patent/JP2006088020A/en
Publication of JP2006088020A publication Critical patent/JP2006088020A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stabilizing treatment method for a carbonized product obtained from sewage sludge where a low-cost inorganic chemical is added in an ultramicro addition amount, and a carbonized product can be securely stabilized. <P>SOLUTION: At the time when dewatered sludge in concentrated sludge generated after sewerage waste water treatment is subjected to hot air drying by a dryer 206, and the dried sludge is subjected to dry distillation treatment by a carbonizing furnace 222, so as to produce a carbonized product, the dewatered sludge before the charge to the dryer 206 or the dried sludge before the charge to the carbonizing furnace 222 is mixed with an inorganic chemical for stabilizing harmful substance, thus the elution of harmful substance from the carbonized product is suppressed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、下水道排水処理後に生成する濃縮汚泥を脱水し、更に乾燥処理及び炭化処理して得られる炭化製品の安定化処理方法に関する。   The present invention relates to a method for stabilizing a carbonized product obtained by dewatering concentrated sludge generated after sewer drainage treatment, and further drying and carbonizing.

下水汚泥は脱水後、従来は産業廃棄物として埋め立てられて来たが、併せて有効利用も進められており、コンポストとして堆肥代替に、また焼却して灰としてセメント原料代替に、或いは溶融して発生する溶融スラグを天然骨材代替に利用することが行われて来た。
しかしながらこれらへの利用には限界があり、今後更にその利用を拡大することが求められている。
Sewage sludge, after being dewatered, has been landfilled as industrial waste, but it is also being used effectively. It is also used as compost as compost, as a substitute for cement as ash, or as molten ash. It has been practiced to use the generated molten slag as a substitute for natural aggregate.
However, there are limits to their use, and further expansion of their use is required in the future.

その一環として、近年、下水汚泥を内熱式或いは外熱式加熱装置で無酸素若しくは低酸素雰囲気中で加熱し、水分揮発と炭化水素の一部を熱分解或いは燃焼により揮発させて炭素リッチな成分に変える炭化操作により炭化製品を製造し、これを土壌改良剤や園芸材料として利用する実用化が始まっている。   As part of this, in recent years, sewage sludge has been heated in an oxygen-free or low-oxygen atmosphere with an internal or external heating device, and a portion of the water and hydrocarbons are volatilized by pyrolysis or combustion, resulting in a carbon-rich. Carbonized products are produced by carbonization operations that change them into ingredients, and commercialization is starting to be used as soil conditioners and horticultural materials.

この炭化処理は、汚泥が基質中に炭素分を45重量%程度含んでいることから、焼却,溶融処理のように汚泥中の炭素分を消費してしまうのではなく、汚泥を無酸素或いは低酸素状態で熱分解(炭化)することにより炭素分を残留させ、新しい組成を持つ炭化物(炭化製品)として生成させるものである。
この炭化操作によりコンポストで問題になる臭気は消え、焼却に比べてCO発生量は大幅に削減でき、また汚泥を焼却或いは溶融処理する場合のように多量のエネルギーを消費し処理コストが高くなるといった問題も解消できる。
In this carbonization treatment, the sludge contains about 45% by weight of carbon in the substrate. Therefore, the carbon content in the sludge is not consumed as in the incineration and melting treatment, but the sludge is oxygen-free or low. By pyrolysis (carbonization) in an oxygen state, the carbon content remains, and is produced as a carbide (carbonized product) having a new composition.
This carbonization operation eliminates the odor that becomes a problem in composting, greatly reduces the amount of CO 2 generated compared to incineration, and consumes a large amount of energy as in the case of incineration or melting treatment of sludge, increasing the processing cost. Such a problem can be solved.

図3はそのための装置の一例を示したものである。
図中200は受入ホッパ(脱水汚泥貯溜槽)であり、水分75〜85%程度まで脱水された脱水汚泥がこの受入ホッパ200に先ず受け入れられる。
ここに受け入れられた脱水汚泥は、中間貯溜槽202を経て定量供給装置204,搬送装置205により乾燥機206へと送られ、そこで所定の水分量、具体的には25〜45%程度の水分量まで乾燥処理される。
FIG. 3 shows an example of an apparatus for that purpose.
In the figure, reference numeral 200 denotes a receiving hopper (dehydrated sludge storage tank), and the dehydrated sludge dehydrated to a moisture content of about 75 to 85% is first received by the receiving hopper 200.
The dewatered sludge received here is sent to the dryer 206 through the intermediate storage tank 202 by the quantitative supply device 204 and the transfer device 205, where a predetermined moisture amount, specifically, a moisture amount of about 25 to 45%. Until dry.

乾燥機206は、図4に示しているように回転ドラム208の内部に撹拌軸210を有している。
ここで撹拌軸210は回転ドラム208の中心から偏心した位置に設けられている。
この撹拌軸210からは複数の撹拌羽根212が放射状に延び出している。
The dryer 206 has a stirring shaft 210 inside a rotary drum 208 as shown in FIG.
Here, the stirring shaft 210 is provided at a position eccentric from the center of the rotary drum 208.
A plurality of stirring blades 212 extend radially from the stirring shaft 210.

一方回転ドラム208の内周面には周方向に所定間隔で複数の板状のリフター214が、回転ドラム208と一体回転する状態で設けられている。
その結果として、回転ドラム208内部の汚泥(脱水汚泥)は回転ドラム208の回転に伴ってリフター214により底部から上方に持ち上げられ、そしてその頂部近くで自重により落下する。
落下した汚泥は、その下側に位置する撹拌羽根212の高速回転により細かく粉砕され、回転ドラム208の底部側へと落下する。
On the other hand, a plurality of plate-like lifters 214 are provided on the inner peripheral surface of the rotating drum 208 at a predetermined interval in the circumferential direction so as to rotate integrally with the rotating drum 208.
As a result, the sludge (dehydrated sludge) inside the rotary drum 208 is lifted upward from the bottom by the lifter 214 as the rotary drum 208 rotates, and falls by its own weight near the top.
The sludge that has fallen is finely pulverized by the high-speed rotation of the stirring blades 212 positioned below the sludge and falls to the bottom side of the rotary drum 208.

回転ドラム208内部の汚泥はこのような撹拌作用を受けながら、その内部に導かれた乾燥用熱風にさらされて乾燥処理され、次第に水分が減少していく。
尚この乾燥機206においては、回転ドラム208の傾斜勾配により、更には撹拌羽根212による粉砕及びその際の飛散作用によって、汚泥が回転ドラム208内部を軸方向に漸次送られて行く。
The sludge inside the rotary drum 208 is subjected to such a stirring action and is subjected to a drying process by being exposed to the hot air for drying introduced into the rotary drum 208, so that moisture gradually decreases.
In this dryer 206, sludge is gradually sent in the axial direction inside the rotary drum 208 by the gradient of the rotary drum 208, and further by pulverization by the stirring blade 212 and the scattering action at that time.

このようにして乾燥機206で乾燥処理された後の乾燥汚泥は、続いて搬送装置216,220により乾燥汚泥貯溜槽218を経て炭化炉222へと搬送され、そこで乾留処理により汚泥の炭化が行われる。   The dried sludge after being dried in the dryer 206 in this way is then conveyed to the carbonization furnace 222 through the dried sludge storage tank 218 by the conveying devices 216 and 220, where the sludge is carbonized by the dry distillation treatment. Is called.

この炭化炉222には、図5に示しているように炉体224の内部に乾留容器としての円筒形状のレトルト226が設けられており、前段の乾燥機206で乾燥処理された乾燥汚泥が図示を省略するスクリューフィーダにてレトルト226内部に投入される。   As shown in FIG. 5, the carbonization furnace 222 is provided with a cylindrical retort 226 as a dry distillation vessel inside the furnace body 224, and the dried sludge that has been dried by the preceding dryer 206 is illustrated. Is inserted into the retort 226 by a screw feeder that omits.

投入された乾燥汚泥は、先ず炉体224内部に配設された助燃バーナ(外熱室用バーナ)228による外熱室230内部の雰囲気加熱によって加熱される。
すると乾燥汚泥中に含まれていた可燃ガスがレトルト226に設けられた噴出しパイプ232を通じて外熱室230の雰囲気中に抜け出し、そしてこの可燃ガスが着火して、以後はその可燃ガスの燃焼によりレトルト226内部の汚泥の加熱が行われる。
この段階では助燃バーナ228は燃焼停止される。
The supplied dried sludge is first heated by the atmospheric heating inside the external heat chamber 230 by the auxiliary combustion burner (external heat chamber burner) 228 disposed inside the furnace body 224.
Then, the combustible gas contained in the dried sludge escapes into the atmosphere of the external heat chamber 230 through the ejection pipe 232 provided in the retort 226, and the combustible gas is ignited. Thereafter, the combustible gas is burned. The sludge inside the retort 226 is heated.
At this stage, combustion of the auxiliary burner 228 is stopped.

図5に示しているように、炉体224の内部には外熱室230と仕切られた排ガス処理室234が設けられており、外熱室230からの排ガスはここに導かれる。
この排ガス処理室234には排ガス処理室用バーナ236が設けられており、排ガス処理室234内に導かれた排ガス中の未燃ガスが、この排ガス処理室用バーナ236にて2次燃焼される。
レトルト226内部の汚泥は、図中左端からレトルト226の回転とともに漸次図中右方向に移って行き(レトルト226には若干の勾配が設けてある)、そして最終的に乾留残渣(炭化製品)がレトルト226の図中右端の出口238、つまり炭化炉222から排出される。
As shown in FIG. 5, an exhaust gas treatment chamber 234 separated from the external heat chamber 230 is provided inside the furnace body 224, and the exhaust gas from the external heat chamber 230 is guided here.
The exhaust gas treatment chamber 234 is provided with an exhaust gas treatment chamber burner 236, and the unburned gas in the exhaust gas introduced into the exhaust gas treatment chamber 234 is secondarily burned in the exhaust gas treatment chamber burner 236. .
The sludge in the retort 226 gradually moves from the left end in the figure to the right in the figure as the retort 226 rotates (the retort 226 has a slight gradient), and finally the carbonization residue (carbonized product) is removed. The retort 226 is discharged from the right end outlet 238 in the drawing, that is, from the carbonization furnace 222.

図3において、240は熱風発生炉で、ここで発生した熱風が乾燥機206へと供給される。
乾燥機206に供給された熱風は、これを通過して集塵機242を通り、更に循環ファン244にて炭化炉排ガス熱交換器246,熱風炉排ガス熱交換器248を経て熱風発生炉240へと循環させられる。
In FIG. 3, reference numeral 240 denotes a hot air generating furnace, and the hot air generated here is supplied to the dryer 206.
The hot air supplied to the dryer 206 passes through this, passes through the dust collector 242, and further circulates in the circulation fan 244 to the hot air generator 240 through the carbonization furnace exhaust gas heat exchanger 246 and the hot air furnace exhaust gas heat exchanger 248. Be made.

この循環系では乾燥機206においてリークエアが循環する熱風中に入り込む。
一方で熱風発生炉240には燃焼空気が定量供給されており、そのためここでは熱風発生炉240から延び出した分岐路250を通じて熱風の一部が抜き取られ、熱風炉排ガス熱交換器248を経て熱風炉排ガスファン252により煙突254から外部に放出される。
他方炭化炉222からは排気路256が延び出しており、炭化炉222からの排ガスが、排気路256を通じて炭化炉排ガスファン258により炭化炉排ガス熱交換器246を経て煙突254から外部に放出される。
この種の炭化処理装置は例えば下記特許文献1,特許文献2に開示されている。
In this circulation system, leak air enters the hot air circulating in the dryer 206.
On the other hand, a constant amount of combustion air is supplied to the hot air generating furnace 240, and therefore, a part of the hot air is extracted here through the branch passage 250 extending from the hot air generating furnace 240 and passes through the hot air furnace exhaust gas heat exchanger 248. It is discharged from the chimney 254 to the outside by the furnace exhaust gas fan 252.
On the other hand, an exhaust path 256 extends from the carbonization furnace 222, and exhaust gas from the carbonization furnace 222 is discharged from the chimney 254 to the outside through the carbonization furnace exhaust gas heat exchanger 246 by the carbonization furnace exhaust gas fan 258 through the exhaust path 256. .
This type of carbonization apparatus is disclosed in, for example, Patent Document 1 and Patent Document 2 below.

ところでこのようにして製造した炭化製品を利用するに際しては、当然環境中に汚染物質が流出しないよう安全性を担保する必要がある。
安全性担保面では、下水汚泥由来ではAs,Se,Fの溶出が特に問題になる。
By the way, when using the carbonized product thus manufactured, it is naturally necessary to ensure safety so that the pollutant does not flow out into the environment.
In terms of safety assurance, elution of As, Se, and F is particularly problematic from sewage sludge.

炭化製品の安全性評価方法と基準は現在まだ明確には決まっていない。
先ず溶出については、炭化製品を土壌改良剤として使うときはその溶出値は平成3年環境庁告示46号による試験方法で土壌環境基準を採用することが安全と思われる。
尚下水汚泥を熱分解せずに肥料として使う場合には、肥料取締法により溶出値が環境庁告示13号による試験法で埋立基準値を満足することとなっているが、炭化製品の溶出基準値としては緩いものと思われる。
The safety assessment methods and standards for carbonized products are not yet clearly defined.
First, regarding the dissolution, when carbonized products are used as a soil conditioner, it is considered safe to adopt the soil environment standard by the test method according to Notification No. 46 of the Environment Agency in 1991 for the dissolution value.
When sewage sludge is used as fertilizer without thermal decomposition, the elution value by the Fertilizer Control Law satisfies the landfill standard value according to the test method by the Environmental Agency Notification No.13. The value seems to be loose.

また有害物質の含有量については、炭化製品が園芸用に使われる場合を考えると、肥料に当るかどうか疑問もあるが、肥料取締法の方が土壌汚染対策法よりも厳しいので、含有量については肥料取締法基準を採用することが安全である。   In addition, regarding the content of harmful substances, there are doubts about whether or not carbonized products are used for horticulture, but the fertilizer control law is stricter than the soil pollution control law, so It is safe to adopt fertilizer control law standards.

前述の土壌環境基準ではCd,Pb,6価Cr,As,総Hg,Seの6項目が基準値を満たすことを要求している。
この基準値は厳しい基準なので、溶融スラグのように高温で溶融してガラス組織に封じ込める操作を行っていない炭化操作では、下水汚泥の質や運転状態の変動により、現状では生産されている炭化製品の全てが必ずしもAs,Se,Fの溶出基準値を満たしているとは言えないのが実情である。
In the above-mentioned soil environment standard, 6 items of Cd, Pb, hexavalent Cr, As, total Hg, and Se are required to satisfy the standard value.
Because this standard value is a strict standard, carbonization products that are currently produced due to fluctuations in the quality and operating conditions of sewage sludge, such as molten slag, that is not melted at high temperatures and contained in the glass structure In fact, it cannot be said that all of these satisfy the elution standard values for As, Se, and F.

本発明は、下水汚泥に無機薬剤を加えた後、熱処理することによりAs等の溶出を基準値未満に抑制し、炭化製品の安全性を高める安定化技術に関するものである。   The present invention relates to a stabilization technique that suppresses elution of As or the like below a reference value by adding an inorganic chemical to sewage sludge and then heat-treats it to less than a reference value, thereby increasing the safety of carbonized products.

尚、炭化製品の有害物質の含有量は肥料取締法の基準値を大幅に下回っているので、薬剤処理により有害物質を炭化製品に固定しても問題は無い。   In addition, since the content of the harmful substance in the carbonized product is significantly lower than the standard value of the Fertilizer Control Law, there is no problem even if the harmful substance is fixed to the carbonized product by chemical treatment.

炭化製品の安定化に関する公知技術について公開されているものは見当たらないが、考えられるものとして次の方法がある。
その一つは、焼却飛灰や溶融飛灰の安定化に用いられるピペラジン基やジチオカルバミン酸基或いはピペラジンビスジチオカルバミン酸基等を有するキレート剤、即ち有機薬剤を炭化製品に添加して安定化する方法である。
しかしキレート剤は有機薬剤なので、日光や酸性雨にさらされる環境で有効利用する上では、使用環境中で分解する可能性があるなど安定性に不安があり、また分解による有害ガスが発生する恐れや、臭気があるので炭化製品の利用に支障が出るという問題がある。
またAsやSeは陽イオンでは存在せず、陰イオンの形態で存在するので一般のキレート剤では安定化できない問題がある。
Although there is no published publicly known technique for stabilizing carbonized products, the following methods are possible.
One of them is a method of stabilizing by adding a chelating agent having a piperazine group, a dithiocarbamic acid group or a piperazine bisdithiocarbamic acid group used for stabilization of incineration fly ash or molten fly ash, that is, an organic agent to a carbonized product. It is.
However, since chelating agents are organic agents, there are concerns about stability, such as the possibility of decomposition in the environment in which they are used in an environment exposed to sunlight or acid rain, and there is a risk of generating harmful gases due to decomposition. There is also a problem that the use of carbonized products is hindered due to odor.
In addition, As and Se do not exist in the cation but exist in the form of an anion, so there is a problem that it cannot be stabilized by a general chelating agent.

考えられる他の方法としては、無機薬剤を炭化製品に添加する方法がある。
この方法では、炭化炉出口付近或いは炭化炉から排出された炭化製品を水槽で冷却する際や冷却した後、無機薬剤を添加する。
しかし炭化炉出口付近で添加する方法では、炭化製品と薬剤の接触時間が短過ぎて反応効率が悪いために薬剤添加量が多くなったり、炭化製品冷却水槽からの排水に未反応薬剤が流出するので新たに排水処理装置を設置する必要があり、薬剤費及び設備費が高くついたり、設置スペース確保が問題になる。
また水槽内添加では炭化製品そのものに対してではなく、水洗槽内や配管内の水全体に薬剤を添加する必要もあり、更に薬剤使用量が多くなり費用がかさむ。
Another possible method is to add an inorganic agent to the carbonized product.
In this method, the inorganic chemical is added when the carbonized product discharged from the vicinity of the carbonization furnace or discharged from the carbonization furnace is cooled or cooled.
However, in the method of adding in the vicinity of the outlet of the carbonization furnace, the contact time between the carbonized product and the chemical is too short and the reaction efficiency is poor, so the amount of chemical added increases or unreacted chemical flows out to the waste water from the carbonized product cooling water tank. Therefore, it is necessary to newly install a wastewater treatment device, which increases the cost of medicine and equipment, and securing installation space becomes a problem.
Further, in the addition in the water tank, it is necessary to add the chemical to the entire water in the washing tank and the pipe, not to the carbonized product itself, and the amount of the chemical used is increased and the cost is increased.

また上記の2つの方法では炭化工程を経た後に薬剤を添加するのでAsやSeの一部が炭化工程で揮発してしまい、排ガスに有害物質が同伴する問題がある。
有害物質を大気に放出することは環境汚染になるので、排ガスを冷却後集塵機を通して捕集する必要が出て来るし、捕集した煤塵の安定化処理も必要になり、炭化装置の構成が複雑になる。
In the above two methods, since the chemical is added after the carbonization step, part of As and Se is volatilized in the carbonization step, and there is a problem that harmful substances are accompanied in the exhaust gas.
Release of harmful substances into the atmosphere will cause environmental pollution, so it will be necessary to collect exhaust gas through a dust collector after cooling, and it will also be necessary to stabilize the collected soot, making the structure of the carbonizer complex. become.

特開平11−37644号公報JP-A-11-37644 特開平11−33599号公報Japanese Patent Laid-Open No. 11-33599

本発明が解決しようとする課題は、先ず、薬剤処理によっても、使用環境下で有機薬剤のように不安定化せず、その後の炭化製品の利用に支障が出ないようにすることである。
次には、汚泥と薬剤の反応時間を十分取り、加熱操作を加えて反応物の安定化度を増すことにより、薬剤添加量即ち処理費を安くして、炭化処理費用や炭化製品の価格上昇を抑え、その利用を促進することである。
The problem to be solved by the present invention is to prevent destabilization as in the case of an organic drug even in the use environment even after the chemical treatment, and to prevent subsequent use of the carbonized product.
Next, by taking sufficient reaction time between sludge and chemicals and adding heat to increase the degree of stabilization of the reactants, the amount of chemicals added, i.e., processing costs, is reduced, and carbonization costs and carbonized product prices increase. Is to suppress and promote its use.

また炭化操作の前に薬剤を添加して有害物質を汚泥に固定して揮発を防止し、追加設備や薬剤費用を節約することである。
更に無機薬剤を用いての課題は、乾燥機及び炭化炉に腐食が生じないこと、大掛りな追加設備を不要とすることである。
In addition, chemicals are added before carbonization to fix harmful substances in sludge to prevent volatilization and save additional equipment and chemical costs.
Furthermore, the problem with the use of inorganic chemicals is that corrosion does not occur in the dryer and carbonization furnace, and that no large additional equipment is required.

このような課題を解決するために案出された本願の請求項1の方法は、下水道排水処理後に生成する濃縮汚泥を脱水して水分75〜85%の脱水汚泥とし、該脱水汚泥を乾燥機で熱風乾燥して乾燥汚泥とした上、該乾燥汚泥を炭化炉で無酸素若しくは低酸素条件で加熱して乾留処理し炭化製品を製造するに際し、前記乾燥機への投入前において前記脱水汚泥に対し有害物質を安定化する無機薬剤を混合することによって、前記炭化製品からの該有害物質の溶出を抑制することを特徴とする。   The method according to claim 1 of the present application, which has been devised to solve such a problem, dehydrates the concentrated sludge generated after sewage drainage treatment to form dehydrated sludge having a moisture content of 75 to 85%, and the dehydrated sludge is dried. The dried sludge is dried into hot sludge in a carbonization furnace and heated in an oxygen-free or low-oxygen condition in a carbonization furnace to produce a carbonized product by dry distillation treatment. On the other hand, it is characterized in that elution of the harmful substance from the carbonized product is suppressed by mixing an inorganic agent that stabilizes the harmful substance.

請求項2の方法は、下水道排水処理後に生成する濃縮汚泥を脱水して脱水汚泥とし、該脱水汚泥を乾燥機で熱風乾燥して水分25〜45%の乾燥汚泥とした上、該乾燥汚泥を炭化炉で無酸素若しくは低酸素条件で加熱して乾留処理し炭化製品を製造するに際し、前記炭化炉への投入前において前記乾燥汚泥に対し有害物質を安定化する無機薬剤を混合することによって、前記炭化製品からの該有害物質の溶出を抑制することを特徴とする。   According to the method of claim 2, the concentrated sludge generated after sewer drainage treatment is dehydrated to dehydrated sludge. The dehydrated sludge is dried with hot air in a dryer to obtain a dried sludge having a moisture content of 25 to 45%. When producing a carbonized product by heating in oxygen-free or low-oxygen conditions in a carbonization furnace, by mixing an inorganic chemical that stabilizes harmful substances with respect to the dried sludge before being charged into the carbonization furnace, It is characterized by suppressing elution of the harmful substance from the carbonized product.

請求項3の方法は、請求項2において、前記乾燥汚泥を10mm以下に解砕した後に前記無機薬剤を添加することを特徴とする。   The method of claim 3 is characterized in that, in claim 2, the inorganic agent is added after pulverizing the dried sludge to 10 mm or less.

請求項4の方法は、請求項1〜3の何れかにおいて、前記無機薬剤の単味若しくは組合せ合計の添加率が、前記汚泥の固形分質量100部に対し該無機薬剤の純分換算で0.2部以上であることを特徴とする。   The method of claim 4 is the method according to any one of claims 1 to 3, wherein the addition rate of the simple or combined total of the inorganic chemicals is 0 in terms of the pure content of the inorganic chemicals with respect to 100 parts of the solid content mass of the sludge. .2 copies or more.

請求項5の方法は、請求項1〜4の何れかにおいて、前記無機薬剤として塩化第一鉄,塩化第二鉄,硫酸第一鉄の何れか1種以上及び/又はカルシウム剤を固体状若しくは液体状で添加することを特徴とする。   The method according to claim 5 is the method according to any one of claims 1 to 4, wherein at least one of ferrous chloride, ferric chloride, and ferrous sulfate and / or a calcium agent is used as the inorganic agent in a solid state or It is added in liquid form.

以上のように本発明では、次のようにして炭化製品を安定化処理する。
即ち薬剤として性能の安定した無機薬剤を使用して、更に加熱操作を加えることにより、使用環境下での安定化効果の劣化の危惧を解消している。
As described above, in the present invention, the carbonized product is stabilized as follows.
That is, by using an inorganic chemical having a stable performance as a chemical and further applying a heating operation, the fear of deterioration of the stabilizing effect in the use environment is eliminated.

炭化製品は例えば図1のような工程を経て製造される。
本発明の無機薬剤の添加箇所は、脱水汚泥になった後で乾燥機或いは炭化炉に汚泥が入る前の各装置で、且つ装置内部圧力が大気圧程度である箇所で、汚泥温度は概ね常温である。
また薬剤と反応させる汚泥温度は、常温から始まり炭化炉内での最高1050℃くらいまでの範囲である。
The carbonized product is manufactured through a process as shown in FIG.
The addition place of the inorganic chemicals of the present invention is the place where the sludge enters the dryer or carbonization furnace after becoming dehydrated sludge, and the place where the internal pressure of the apparatus is about atmospheric pressure. It is.
The sludge temperature to be reacted with the chemical is in the range from normal temperature to a maximum of about 1050 ° C. in the carbonization furnace.

図1における脱水汚泥は、通常水分が未だ80%程度あり、搬送はスクリューコンベヤやモーノポンプ等で行われるので機内圧は高い。
従って薬剤添加は、搬送装置から貯溜槽に移る段階の大気圧になったところで行うのが良い。
この段階では脱水汚泥がケーキ状でやや大きい塊状となっているので、添加時点では薬剤との混合は良くないが、搬送時間が長く取れるので混合,反応時間を十分取ることができる。
The dewatered sludge in FIG. 1 usually has about 80% of moisture, and the internal pressure is high because the conveyance is performed by a screw conveyor, a Mono pump or the like.
Therefore, it is preferable that the chemical addition is performed when the atmospheric pressure at the stage of moving from the transfer device to the storage tank is reached.
At this stage, the dehydrated sludge is cake-like and has a slightly large lump, so mixing with the drug is not good at the time of addition. However, since the conveyance time is long, sufficient mixing and reaction time can be taken.

図1における乾燥機は、通常内部に撹拌軸と撹拌羽根を持ち、脱水汚泥を解砕しながら熱風で水分約40%に乾燥する方式が用いられ、乾燥汚泥は通常数10mm以下の粒状になっているので脱水汚泥よりは薬剤との混合が良い。   The dryer in FIG. 1 usually has a stirring shaft and stirring blades inside, and uses a system in which dehydrated sludge is crushed and dried with hot air to a moisture of about 40%, and the dried sludge usually has a granularity of several tens of mm or less. Therefore, mixing with chemicals is better than dewatered sludge.

更に図1には示していないパドル式等の解砕装置を、炭化炉に投入する前に設けて更に乾燥汚泥を細かくすると、薬剤の反応効率が上がり、炭化反応も促進され処理能力が上がる。
乾燥汚泥の搬送装置としてはスクリューコンベヤやフライトコンベヤ或いはパドルコンベヤ等が用いられるが、ここでは汚泥の充填度は低いので、機内圧はほぼ大気圧なので薬剤は任意の箇所で添加できる。
Further, if a pulverizer such as a paddle type not shown in FIG. 1 is provided before being put into the carbonization furnace and the dried sludge is made finer, the reaction efficiency of the chemical increases, the carbonization reaction is promoted, and the processing capacity increases.
A screw conveyor, a flight conveyor, a paddle conveyor, or the like is used as a dry sludge conveying device. Here, since the sludge filling level is low, the internal pressure is almost atmospheric pressure, so that the chemical can be added at any point.

図1における炭化炉は、乾燥汚泥を無酸素若しくは低酸素雰囲気下で脱水及び熱分解する炉で、熱分解により発生する可燃ガスを燃焼して熱源としている。
燃焼場所がレトルト内の場合は内熱式、レトルト外の場合は外熱式と呼ばれており、外熱式の方が低酸素雰囲気にし易い。
乾燥汚泥はこの炭化操作によって炭素が約50%、無機物が残りを占める成分の細孔を持つ炭化製品に変わり、有効に利用できる形態になる。
The carbonization furnace in FIG. 1 is a furnace that dehydrates and pyrolyzes dry sludge in an oxygen-free or low-oxygen atmosphere, and burns combustible gas generated by pyrolysis as a heat source.
When the combustion place is in the retort, it is called an internal heat type, and when it is outside the retort, it is called an external heat type.
By this carbonization operation, the dried sludge is converted into a carbonized product having pores of about 50% of carbon and the remaining components of which are inorganic, and can be used effectively.

図1における直接水冷兼排出装置は、一般には水を張った水槽と炭化製品を排出するコンベヤとから成り、炭化炉と大気のシールをも兼用するが、ここに薬剤を添加しても添加量が多くなり費用がかさむ。   The direct water cooling and discharging apparatus in FIG. 1 is generally composed of a water tank filled with water and a conveyor for discharging carbonized products, and also serves as a carbonization furnace and an atmospheric seal. Increases and costs increase.

本発明例では、無機薬剤として硫酸鉄や塩化鉄や石灰等、市場に流通し且つ安価なものを使用して薬剤費用を低減している。
硫酸鉄は固体の硫酸第一鉄や硫酸第一鉄を水に溶かした液体として添加するのが使い易いが、粉体状でも使用可能である。
塩化鉄は塩化第一鉄及び塩化第二鉄の水溶液が市場に出ており、これで添加するのが使い易いが、粉体状でも使用可能である。
カルシウム剤は消石灰,生石灰,炭酸カルシウム,炭酸水素カルシウムの粉体或いはスラリーでの添加が適している。
In the example of the present invention, the cost of the drug is reduced by using an inorganic drug such as iron sulfate, iron chloride, or lime that is distributed in the market and inexpensive.
Iron sulfate is easy to use as a solid ferrous sulfate or a liquid obtained by dissolving ferrous sulfate in water, but it can also be used in powder form.
As for iron chloride, aqueous solutions of ferrous chloride and ferric chloride are on the market, and it is easy to add them, but they can also be used in powder form.
The calcium agent is suitably added in the form of powder or slurry of slaked lime, quick lime, calcium carbonate, calcium bicarbonate.

本発明では、マイナスイオンの形態で存在するAsやSe錯イオンを、硫酸鉄や塩化鉄が水酸化鉄として沈殿する際に共沈する現象を利用している。
またFはCaと溶解度の小さいCaFとなって沈殿することを利用している。
またこれらの生成物が加熱によってより安定した物質に変わることをも利用している。
In the present invention, a phenomenon is used in which As and Se complex ions existing in the form of negative ions are co-precipitated when iron sulfate or iron chloride is precipitated as iron hydroxide.
Moreover, F utilizes Ca and precipitates as CaF 2 having a low solubility.
It also takes advantage of the fact that these products turn into more stable materials upon heating.

本発明はこのように安定化性能に優れる方法なので、無機酸単味でも添加率が低くできるし、安全を見てカルシウム剤を併用したりしているので既存装置を腐食させることはない。   Since the present invention is thus a method with excellent stabilization performance, the addition rate can be lowered even with a simple inorganic acid, and since a calcium agent is used together for safety reasons, existing equipment is not corroded.

また本発明では薬剤添加を常温で行い、従来の炭化装置の既存ラインを利用でき、新たな装置としては薬剤の貯溜槽や薬剤の定量供給装置及び配管或いは乾燥汚泥の解砕装置兼搬送装置等の簡単な装置で済む利点がある。   Further, in the present invention, the chemical addition is performed at room temperature, and the existing line of the conventional carbonization device can be used. New devices include a chemical reservoir, a chemical quantitative supply device, a pipe, a dry sludge crushing device and a conveying device, etc. There is an advantage that a simple device can be used.

更に乾燥機や炭化炉内で汚泥と薬剤が強く撹拌されることを利用して、反応が効率良く進み薬剤消費量を低減でき、更に新たな撹拌装置は不要であり、設備費やスペースが節約できる。   Furthermore, by utilizing the fact that sludge and chemicals are vigorously stirred in a dryer or carbonization furnace, the reaction can proceed efficiently and the chemical consumption can be reduced. In addition, no new stirring device is required, saving equipment costs and space. it can.

尚、薬剤添加はほぼ大気圧下(−50Pa〜+50Pa)で行うのが良く、この場合薬剤の添加状況監視や保守を運転中にもやり易くなる。   It should be noted that the addition of the drug is preferably performed under almost atmospheric pressure (-50 Pa to +50 Pa), and in this case, the monitoring of the addition status of the drug and the maintenance can be easily performed during the operation.

発明の作用・効果Effects and effects of the invention

炭化製品の安全性の評価は、現状では平成3年環境庁告示46号の試験方法によっている。
この方法では、炭化製品:蒸留水を1:10で容器中で振とうし、上澄み液を0.45μmメンブレンで濾過した液を溶媒抽出或いは強酸で溶解してAs濃度等を測定している。
従って炭化製品のAs等の溶出値は、振とうにより溶解したAs等化合物イオンや、振とうにより炭化製品から剥離した微粒のAs等を含むコロイド状物質が0.45μmメンブレンをどのくらい通過するかどうかで決まるといえる。
前述したように下水道由来の炭化製品では殆どの場合でAs,Se,Fの溶出値が問題になる。
従ってイオン形態及び微粒子(コロイド)状態の両方で存在するAs等を安定化すれば、炭化製品の安全性が担保されることになる。
The safety evaluation of carbonized products currently uses the test method of Notification No. 46 of the Environment Agency of 1991.
In this method, the concentration of carbonized product: distilled water is shaken in a container at 1:10, the supernatant is filtered through a 0.45 μm membrane, and a solution extracted by solvent extraction or strong acid is used to measure the As concentration and the like.
Therefore, the elution value of As, etc. of carbonized products shows how much colloidal substances including compound ions, such as As dissolved by shaking, and fine As particles separated from carbonized products by shaking, pass through the 0.45 μm membrane. It can be said that it is decided by.
As described above, the elution values of As, Se, and F become a problem in most cases of carbonized products derived from sewers.
Therefore, the stability of carbonized products can be ensured by stabilizing As and the like present in both ionic form and fine particle (colloid) state.

本発明の一例として用いた硫酸鉄や塩化鉄添加では、pHを中性〜アルカリ性にすれば水酸化鉄を生成し沈殿するが、その際にAs,Seの錯イオンも共沈させるのでAsやSeの安定化効果がある。
また硫酸鉄や塩化鉄添加ではFの安定化はできないが、石灰等のカルシウム剤を添加するとCaFとして沈殿するのでFを安定化できる。
In the case of adding iron sulfate or iron chloride used as an example of the present invention, if the pH is neutral to alkaline, iron hydroxide is generated and precipitated. At that time, complex ions of As and Se are also co-precipitated. Se stabilization effect.
In addition, F cannot be stabilized by adding iron sulfate or iron chloride, but when calcium agent such as lime is added, it precipitates as CaF 2 and can stabilize F.

また本発明の別の例としてのカルシウム剤と塩化鉄等との共用法では、イオン形態とコロイド形態の両方のAs,Seを凝集沈殿させるので更に効果が増す。
この際、硫酸鉄や塩化鉄は水酸化鉄として沈殿するときにAs,Seを共沈し、カルシウム剤はその補助を行い且つpH調整機能を果たし、硫酸鉄や塩化鉄を添加し過ぎた場合も中和できて装置の腐食を防げる効果があるので、硫酸鉄や塩化鉄よりも上流で汚泥に添加するのが望ましい。
塩化鉄は塩化第一鉄と塩化第二鉄の何れでも良いが、pHが塩化第二鉄よりもやや高い塩化第一鉄の方が使い易い。
硫酸鉄も同様である。
Further, in another example of the present invention, the method of sharing calcium agent and iron chloride or the like further increases the effect because both ionic and colloidal forms of As and Se are coagulated and precipitated.
In this case, when iron sulfate or iron chloride is precipitated as iron hydroxide, As and Se are co-precipitated, the calcium agent assists it and performs pH adjustment function, and iron sulfate or iron chloride is added excessively It is desirable to add to the sludge upstream of the iron sulfate and iron chloride.
The ferrous chloride may be either ferrous chloride or ferric chloride, but ferrous chloride having a slightly higher pH than ferric chloride is easier to use.
The same applies to iron sulfate.

かかる本発明は、単価の安い無機薬剤を極微量の添加率で用いて炭化製品を確実に安定化できるので、安価で且つ安定化効果に優れた炭化製品の安定化手段として有用である。
また薬剤を使うことで製品品質への影響が心配されたが、微量の添加率なので有効利用上問題にはならなかった。
従って炭化製品の利用を促進し、埋立地の延命やCO発生抑制によって環境保全に役立つ。
This invention is useful as a means for stabilizing a carbonized product that is inexpensive and has an excellent stabilizing effect because the carbonized product can be reliably stabilized by using an inorganic agent with a low unit price at a very small addition rate.
In addition, the use of chemicals worried about the effect on product quality, but since it was added in a small amount, it did not pose a problem for effective use.
Therefore, it promotes the use of carbonized products, and helps to preserve the environment by extending the life of landfills and reducing CO 2 emissions.

次に本発明の実施形態を以下に詳しく説明する。
表1と表2に、薬剤の種類と添加率及び添加時の条件と溶出試験結果について、発明例と比較例を示した。
Next, embodiments of the present invention will be described in detail below.
Tables 1 and 2 show invention examples and comparative examples for the types and addition rates of the drugs, the conditions at the time of addition, and the dissolution test results.

Figure 2006088020
Figure 2006088020

Figure 2006088020
Figure 2006088020

脱水汚泥は流域下水道処理施設のものを使用し、炭化製品製造実機設備で薬剤種類と添加率及び添加箇所を変えて、その他は同一運転下で運転し、得られた炭化製品を用いて評価した。   The dewatered sludge used was from the basin sewerage treatment facility, the chemical type, the addition rate and the addition location were changed in the actual equipment for carbonized product production, and the others were operated under the same operation, and evaluated using the obtained carbonized product. .

炭化製品の安定化評価方法は、前述の環境庁告示46号法に拠った。
効果を鮮明にするため、振とうは炭化製品が激しく撹拌されて最も溶出し易い条件である横振り振とうで行った。
分析項目はpH,As,Se,Fを主体に行った。
検液の分析はAs及びSeは水素化物発生原子吸光法とし、Fは直接蒸留−吸光光度法に拠った。
The stabilization evaluation method for carbonized products was based on the aforementioned Environmental Agency Notification No. 46.
In order to clarify the effect, the shaking was carried out by side shaking where the carbonized product was vigorously stirred and was most easily eluted.
The analysis items were mainly pH, As, Se, and F.
In the analysis of the test solution, As and Se were based on hydride generation atomic absorption method, and F was based on direct distillation-absorptiometry.

尚表1,表2において、無機薬剤1,2は薬剤を2種使う場合の何れかの区分を指す。
添加率は、乾きベースの汚泥量に対する薬剤純分の外掛け質量%を指す。
汚泥水分は、汚泥が元々持っている水分で、添加した水は含まず、水分=(水分量/(水分量+乾きベース汚泥量))×100%である。
解砕有無とは、炭化処理前の薬剤添加前に、乾燥汚泥を解砕するかしないかを指す。
検液pHとは、環境庁告示46号法で振とう操作後、静置してから後、濾過した液の25℃でのpHのことをいう。
In Tables 1 and 2, inorganic chemicals 1 and 2 indicate any category when two types of chemicals are used.
The addition rate refers to the outer mass% of the pure chemical with respect to the amount of sludge on the dry basis.
Sludge moisture is inherently contained in the sludge, does not include added water, and moisture = (water content / (water content + dry base sludge content)) × 100%.
The presence or absence of pulverization refers to whether or not the dried sludge is crushed before adding the chemical before carbonization.
The test solution pH refers to the pH at 25 ° C. of the filtered solution after shaking after the shaking operation by the Environmental Agency Notification No. 46, and after standing.

これら表1,表2の結果から明らかなように、本発明に従って無機薬剤を添加することで炭化製品を良好に安定化できることが分る。   As is apparent from the results of Tables 1 and 2, it can be seen that the carbonized product can be satisfactorily stabilized by adding the inorganic chemical according to the present invention.

尚図2に無機薬剤の好適な添加時期ないし添加箇所の例を矢印で示した。
ここで無機薬剤の添加は図2中の何れか1つだけでなく、複数の時期ないし箇所で行うようにしても良い。
In FIG. 2, an example of a suitable addition timing or addition location of the inorganic drug is indicated by an arrow.
Here, the addition of the inorganic agent may be performed not only in any one of FIG. 2 but also in a plurality of periods or locations.

炭化製品の製造工程を示す図である。It is a figure which shows the manufacturing process of carbonization products. 無機薬剤の好適な添加時期,添加箇所の例を示す図である。It is a figure which shows the example of the suitable addition time of an inorganic chemical | medical agent, and an addition location. 炭化処理装置を示す図である。It is a figure which shows a carbonization processing apparatus. 図3の乾燥機を詳しく示す図である。It is a figure which shows the dryer of FIG. 3 in detail. 図3の炭化炉を詳しく示す図である。It is a figure which shows the carbonization furnace of FIG. 3 in detail.

符号の説明Explanation of symbols

206 乾燥機
222 炭化炉
206 Dryer 222 Carbonization furnace

Claims (5)

下水道排水処理後に生成する濃縮汚泥を脱水して水分75〜85%の脱水汚泥とし、該脱水汚泥を乾燥機で熱風乾燥して乾燥汚泥とした上、該乾燥汚泥を炭化炉で無酸素若しくは低酸素条件で加熱して乾留処理し炭化製品を製造するに際し、
前記乾燥機への投入前において前記脱水汚泥に対し有害物質を安定化する無機薬剤を混合することによって、前記炭化製品からの該有害物質の溶出を抑制することを特徴とする炭化製品の安定化処理方法。
Concentrated sludge generated after sewage wastewater treatment is dehydrated to a dehydrated sludge with a moisture content of 75 to 85%, the dehydrated sludge is dried with hot air in a drier, and the dried sludge is oxygenated or low in a carbonization furnace. When producing carbonized products by heating in oxygen conditions and dry distillation,
Stabilization of carbonized product characterized by suppressing elution of the harmful substance from the carbonized product by mixing an inorganic agent that stabilizes the harmful substance with respect to the dewatered sludge before being put into the dryer. Processing method.
下水道排水処理後に生成する濃縮汚泥を脱水して脱水汚泥とし、該脱水汚泥を乾燥機で熱風乾燥して水分25〜45%の乾燥汚泥とした上、該乾燥汚泥を炭化炉で無酸素若しくは低酸素条件で加熱して乾留処理し炭化製品を製造するに際し、
前記炭化炉への投入前において前記乾燥汚泥に対し有害物質を安定化する無機薬剤を混合することによって、前記炭化製品からの該有害物質の溶出を抑制することを特徴とする炭化製品の安定化処理方法。
Concentrated sludge generated after sewage drainage treatment is dehydrated to dehydrated sludge. The dehydrated sludge is dried with hot air in a dryer to obtain a dried sludge with a moisture content of 25 to 45%. When producing carbonized products by heating in oxygen conditions and dry distillation,
Stabilization of carbonized product characterized in that elution of the harmful substance from the carbonized product is suppressed by mixing an inorganic chemical that stabilizes the harmful substance with respect to the dried sludge before charging into the carbonization furnace. Processing method.
請求項2において、前記乾燥汚泥を10mm以下に解砕した後に前記無機薬剤を添加することを特徴とする炭化製品の安定化処理方法。   The method for stabilizing a carbonized product according to claim 2, wherein the inorganic chemical is added after the dried sludge is crushed to 10 mm or less. 請求項1〜3の何れかにおいて、前記無機薬剤の単味若しくは組合せ合計の添加率が、前記汚泥の固形分質量100部に対し該無機薬剤の純分換算で0.2部以上であることを特徴とする炭化製品の安定化処理方法。   In any one of Claims 1-3, the addition rate of the said simple or combination total of the said inorganic chemical | medical agent is 0.2 parts or more in conversion of the pure part of this inorganic chemical | medical agent with respect to 100 mass of solid content mass of the said sludge. A method for stabilizing carbonized products characterized by the above. 請求項1〜4の何れかにおいて、前記無機薬剤として塩化第一鉄,塩化第二鉄,硫酸第一鉄の何れか1種以上及び/又はカルシウム剤を固体状若しくは液体状で添加することを特徴とする炭化製品の安定化処理方法。   In any one of Claims 1-4, 1 or more types and / or a calcium agent in any one of ferrous chloride, ferric chloride, and ferrous sulfate are added as said inorganic chemical | medical agent in solid form or liquid form. A method for stabilizing carbonized products.
JP2004275549A 2004-09-22 2004-09-22 Stabilizing treatment method for carbonized product Pending JP2006088020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004275549A JP2006088020A (en) 2004-09-22 2004-09-22 Stabilizing treatment method for carbonized product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004275549A JP2006088020A (en) 2004-09-22 2004-09-22 Stabilizing treatment method for carbonized product

Publications (1)

Publication Number Publication Date
JP2006088020A true JP2006088020A (en) 2006-04-06

Family

ID=36229498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004275549A Pending JP2006088020A (en) 2004-09-22 2004-09-22 Stabilizing treatment method for carbonized product

Country Status (1)

Country Link
JP (1) JP2006088020A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031262A (en) * 2006-07-27 2008-02-14 Japan Sewage Works Agency Method for stabilization-treating carbonized product
JP2008080252A (en) * 2006-09-27 2008-04-10 Nikkan Tokushu Kk Apparatus and method for volume-reducing and carbonizing sludge and system for treating organic waste water
CN107311416A (en) * 2017-08-17 2017-11-03 安徽益佳园环境工程有限公司 A kind of integrated ecological sludge treatment device
JP6363810B1 (en) * 2018-02-07 2018-07-25 株式会社神鋼環境ソリューション Biomass carbide production system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133599A (en) * 1997-07-17 1999-02-09 Nippon Gesuido Jigyodan Carbonized sludge producing apparatus
JPH1137644A (en) * 1997-07-17 1999-02-12 Nippon Gesuido Jigyodan Method and apparatus for carbonization of sludge
JP2000073058A (en) * 1998-08-27 2000-03-07 Hitachi Zosen Corp Zeolite-containing carbonized soil, its production and use thereof
JP2001001273A (en) * 1999-06-22 2001-01-09 Victor Co Of Japan Ltd Chucking device
JP2001145863A (en) * 1999-11-22 2001-05-29 Chuo Kakoki Kk Method for detoxifying chlorine compound
JP2001259601A (en) * 2000-03-16 2001-09-25 Chuo Kakoki Kk Non-pollution treatment of hazardous chlorine compound
JP2002219497A (en) * 2001-01-26 2002-08-06 Shuichi Takamura A method for treating excrement and sludge, carbonized material produced thereby and common fertilizer using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133599A (en) * 1997-07-17 1999-02-09 Nippon Gesuido Jigyodan Carbonized sludge producing apparatus
JPH1137644A (en) * 1997-07-17 1999-02-12 Nippon Gesuido Jigyodan Method and apparatus for carbonization of sludge
JP2000073058A (en) * 1998-08-27 2000-03-07 Hitachi Zosen Corp Zeolite-containing carbonized soil, its production and use thereof
JP2001001273A (en) * 1999-06-22 2001-01-09 Victor Co Of Japan Ltd Chucking device
JP2001145863A (en) * 1999-11-22 2001-05-29 Chuo Kakoki Kk Method for detoxifying chlorine compound
JP2001259601A (en) * 2000-03-16 2001-09-25 Chuo Kakoki Kk Non-pollution treatment of hazardous chlorine compound
JP2002219497A (en) * 2001-01-26 2002-08-06 Shuichi Takamura A method for treating excrement and sludge, carbonized material produced thereby and common fertilizer using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031262A (en) * 2006-07-27 2008-02-14 Japan Sewage Works Agency Method for stabilization-treating carbonized product
JP2008080252A (en) * 2006-09-27 2008-04-10 Nikkan Tokushu Kk Apparatus and method for volume-reducing and carbonizing sludge and system for treating organic waste water
CN107311416A (en) * 2017-08-17 2017-11-03 安徽益佳园环境工程有限公司 A kind of integrated ecological sludge treatment device
JP6363810B1 (en) * 2018-02-07 2018-07-25 株式会社神鋼環境ソリューション Biomass carbide production system
JP2019137739A (en) * 2018-02-07 2019-08-22 株式会社神鋼環境ソリューション Carbonized biomass production system

Similar Documents

Publication Publication Date Title
ES2706007T3 (en) Removal of water from slurry and conversion of biosolids to a renewable fuel
CN102476907B (en) Method of high-efficiency high-speed environmentally-friendly energy-saving sludge treatment system
CN101139158B (en) Sewage sludge harmlessness disposing technique
TWI452018B (en) Dechlorination process for organic waste, production process for biomass, and biomass fuel
CN104211274A (en) Sludge reduction and recycling treatment device and sludge treatment method
JP2007260538A (en) Organic waste treatment system
KR101838982B1 (en) Organic waste treatment system using drying carbonization method
JP2007167782A (en) Waste treatment method
CN108443889A (en) A kind of discarded metal catalyst and organic sludge coprocessing device and method
JP4731190B2 (en) Method for recovering zinc from incinerator fly ash
JP2006035189A (en) Method for treating organic sludge utilizing cement production process
CN107143864A (en) A kind of technique of full combustion slime circulating fluidized bed boiler burning sludge
JP5040641B2 (en) Organic waste slurry storage method and fuel conversion method, biomass fuel, and organic waste slurry storage device
CN103964668B (en) Sludge treatment process equipment and treatment method
JP2008031262A (en) Method for stabilization-treating carbonized product
JP2006088020A (en) Stabilizing treatment method for carbonized product
CN208108108U (en) Discarded metal catalyst and organic sludge coprocessing device
JP3771887B2 (en) How to use activated sludge
JP2009242636A (en) Method for converting high water content organic waste into fuel and biomass fuel
CN204097297U (en) Sludge reduction processing equipment for recycling
CN106830588A (en) A kind of convenient innoxious thermoelectricity method of disposal and process system for city sludge
JP3530001B2 (en) Method and apparatus for producing char from combustible waste
JPH1177095A (en) Livestock excretion treatment system
JP4231739B2 (en) Sludge recycling method
KR102307107B1 (en) Dry-Processing Apparatus of Livestock Manure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928