JP3771887B2 - How to use activated sludge - Google Patents

How to use activated sludge Download PDF

Info

Publication number
JP3771887B2
JP3771887B2 JP2002270453A JP2002270453A JP3771887B2 JP 3771887 B2 JP3771887 B2 JP 3771887B2 JP 2002270453 A JP2002270453 A JP 2002270453A JP 2002270453 A JP2002270453 A JP 2002270453A JP 3771887 B2 JP3771887 B2 JP 3771887B2
Authority
JP
Japan
Prior art keywords
sludge
activated sludge
blast furnace
less
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002270453A
Other languages
Japanese (ja)
Other versions
JP2004105835A (en
Inventor
英昭 矢部
晴是 汐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002270453A priority Critical patent/JP3771887B2/en
Publication of JP2004105835A publication Critical patent/JP2004105835A/en
Application granted granted Critical
Publication of JP3771887B2 publication Critical patent/JP3771887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02W30/54

Landscapes

  • Treatment Of Sludge (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排水の生物学的処理施設から発生する余剰の活性汚泥を、製鉄所内の高炉において有効利用するための方法に関するものである。
【0002】
【従来の技術】
排水を生物学的処理によって浄化する際に発生する余剰の活性汚泥(以下余剰汚泥と略す)は、下水道の普及、また排水処理場における窒素、リンの除去等を行う高度処理プロセスの導入等に伴って益々増加する傾向にある。これら余剰汚泥は、現状ではその多くが減容化処理の後、単純に埋め立て処分されている。その際の汚泥の形態としては、脱水処理後、水分含有量80質量%程度のいわゆる脱水ケーキ、あるいは焼却後の焼却灰として埋め立てられる場合が大半を占めている。
【0003】
その一方で、埋め立て地の逼迫等の理由によって、余剰汚泥、特に下水処理場から発生する下水汚泥を資源として利用するための検討も近年盛んに行われている。下水汚泥の利用技術としては、脱水、乾燥、あるいはコンポスト化した汚泥を緑農地還元し、肥料として利用する方法、また、汚泥を焼却した後の焼却灰あるいは溶融した後の溶融スラグを建設資材として利用する方法が一般的である。
【0004】
図4に一般的な下水の生物学的処理フローを示す。余剰汚泥として最終沈殿池13から抜き出された活性汚泥は、汚泥濃縮機14によって汚泥濃度を高められた後、凝集剤と共に汚泥脱水機15へ導入され、水分濃度80質量%程度の脱水汚泥、すなわち脱水ケーキとして排出される。脱水ケーキは、そのままの状態で埋め立て処分あるいは肥料として緑農地還元などにより有効利用される場合もあるが、その多くは更に補助燃料と共に汚泥乾燥機16によって乾燥され、汚泥焼却炉17あるいは汚泥溶融炉18において石油等の補助燃料と共に燃焼処理され、焼却灰あるいは溶融スラグとして埋め立て処分または有効利用されている。
【0005】
また、一部のセメント工場においては、水分濃度80質量%程度の脱水ケーキを直接セメント焼成炉へ投入し、汚泥中の無機成分をセメント原料として利用する方法が報告されている(例えば、非特許文献1参照。)。更に、特開平5−117728号公報では、高炉内の溶銑温度の制御等のため水吹込みを行う高炉操業方法において、水吹き込みに伴うコークス使用量を低減することを目的として、製鉄所副産物である活性汚泥スラッジを含有する燃料水を高炉吹き込み水の代替として高炉内に吹き込む方法も提案されている(例えば、特許文献1参照。)。
【0006】
【非特許文献1】
廣田洋二、山崎正康、橋本光一著「セメント・コンクリート」(社)セメント協会、1998年、No.621,P.24
【特許文献1】
特開平5−117728号公報
【0007】
【発明が解決しようとする課題】
しかし、図4に示す下水の生物学的処理フローや脱水ケーキを直接セメント焼成炉へ投入するような従来の方法は、いずれも多くの処理設備を伴った工程を必要とするため、設備コスト等のイニシャルコストが莫大なものとなるのは無論のこと、運転の際にも、凝集性が悪い、水分含有量が非常に多い等の汚泥特有の性質をカバーするため、凝集剤および場合によっては凝集助剤などの薬品、補助燃料、電力の使用等に伴う多くのランニングコストが必要不可欠となるという欠点がある。また、補助燃料や電力を消費するということは、省エネルギーの観点からも大いに問題があった。
【0008】
また、特開平5−117728号公報に開示された発明は、活性汚泥と水との混合物からなる燃料水を高炉内に吹き込むことが目的であるため、活性汚泥等の燃料比を高くするためには界面活性剤が必要であり、活性汚泥の有効利用という点では実用的ではなかった。
【0009】
本発明の目的は、余剰活性汚泥を燃料および高炉原料として有効利用する方法を提供することである。
【0010】
【課題を解決するための手段】
本発明は活性汚泥の有効利用方法であって、本発明の要旨とするところは、以下のとおりである。
【0011】
(1)排水の生物学的処理において発生する活性汚泥を、乾燥または熱分解した後、粒径3mm以下に破砕し、該破砕物を粒径2mm以下の石炭と共に高炉内へ気流搬送により吹き込むことを特徴とする活性汚泥の利用方法。
【0012】
(2)高炉内へ吹き込む活性汚泥中の水分含有量を50質量%未満とすることを特徴とする前記(1)の活性汚泥の利用方法。
【0013】
(3)活性汚泥を、製鉄所から発生する排熱を利用して乾燥することを特徴とする前記(1)または(2)記載の活性汚泥の利用方法。
【0014】
(4)活性汚泥を、酸素含有率10体積%以下の雰囲気で300〜1000℃で熱分解することことを特徴とする前記(1)または(2)記載の活性汚泥の利用方法。
【0015】
(5)排水の生物学的処理において発生する活性汚泥を、高炉吹き込み用石炭乾燥粉砕設備へ投入、乾燥し、粒径3mm以下に粉砕し、石炭との混合を行い、高炉内へ気流搬送によって吹き込むことを特徴とする活性汚泥の利用方法。
【0016】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0017】
製鉄所内の高炉においては、炉頂から焼結鉱およびコークスを投入し、羽口から吹き込まれた高温の酸素富化空気によってコークスが燃焼して発生した還元性ガスを用い、銑鉄を製造している。現在、高価な主燃料であるコークスの使用量を削減するため、羽口から安価な石炭、いわゆる一般炭を微粉状態で補助燃料として吹き込む運転が行われている。一般的な微粉炭の粒径は平均で40μm程度であり、発熱量は6000〜8000kcal/kg程度である。羽口から炉内へ吹き込まれた微粉炭は、まず最初に熱分解反応によって揮発分が放出され、ガス、タール、チャーが生成する。生成したガス、タール、チャーはその後燃焼し、還元性ガスとなり、焼結鉱の還元反応に寄与する。
【0018】
一方、余剰汚泥は主として微細な微生物や細菌類の集合体であり、乾燥状態においては2000〜5000kcal/kg程度の発熱量を有するため、燃料として利用可能である。しかし、通常の余剰汚泥は脱水後の脱水ケーキの状態であっても、依然として80質量%程度もの水分を含有しているため、この状態ではたとえ汚泥を高炉内へ吹き込んでも、水分の蒸発潜熱に汚泥自身の持つ発熱量をほとんど消費されるだけであり、実質的に汚泥を補助燃料として用いることは不可能である。従って、汚泥を補助燃料として用いるためには、事前に汚泥を乾燥させることが必要不可欠である。
【0019】
一般的に汚泥中の水分は、汚泥を形成する微生物や細菌類の細胞中に含有される内部水と、その外部に存在する外部水あるいは自由水に大別されるが、汚泥脱水機によって水分含有量80質量%程度にまで脱水された脱水ケーキは、既に外部水をほとんど取り去られた状態である。この汚泥中の内部水は、強固な細胞壁で囲まれた状態で存在しているため、外部水と比較して蒸発潜熱を多く必要とするので蒸発しにくいことが知られている。特に内部水を大量に含む汚泥を羽口に吹き込んだ場合、吹き込まれた汚泥の周辺で局所的かつ顕著に温度が低下し、高炉の操業に悪影響を及ぼす羽口付近の炉温の低下が発生する恐れがあるため、高炉内に吹き込む補助燃料として使用する活性汚泥中の水分は、50質量%未満、より好ましくは10〜0質量%とすることが望ましい。
【0020】
現状の高炉吹き込みの補助燃料として用いられている石炭の消費量と余剰汚泥の発生量とを比較した場合、石炭消費量の方が圧倒的に大量であるため、また、低発熱量の汚泥を吹き込むことによる炉内温度の低下を回避し、余剰汚泥と石炭との間の発熱量の差を補う観点からも、余剰汚泥を補助燃料として用いる際には、石炭の一部を余剰汚泥で代替して使用するのが適当である。
【0021】
先に述べたように汚泥は元来が微細な微生物の集合体であるため、乾燥後の汚泥は粗粉砕を行うだけで容易に微粉化することが可能である。特に、水分含有量を15質量%以下にまで乾燥させた汚泥は、例えばロールミルのような比較的動力消費量の少ない破砕機を用いただけでも容易に3mm以下、平均粒径が200μm〜700μm程度の微粉汚泥とすることが可能である。このような微粉汚泥は、現状の微粉炭と同様の搬送設備によって気流搬送により高炉内へ吹き込むことが可能である。
【0022】
微粉状態となった汚泥が羽口から高炉内へ吹き込まれた場合、同時に吹き込まれた微粉炭と同様に、まず最初に吸熱反応である熱分解反応によってガス、タール、チャーへと分解した後に、それらの燃焼反応が起きる。しかし、微粉炭の熱分解開始温度は、500〜600℃、微粉汚泥の場合は、300〜400℃であるため、微粉汚泥の熱分解反応は微粉炭よりも低温においても進行し、また熱分解反応が完了するまでに要する時間、微粉炭の場合は2〜5秒、微粉汚泥の場合は2秒以下と短い。従って、微粉汚泥は羽口へ吹き込まれた瞬間に、炉温低下の原因となる吸熱反応である熱分解反応が、同時に吹き込まれた微粉炭とは異なる場所、すなわち羽口直近付近で進行してしまう。それに加え、ある程度含有される微粉汚泥中の水分の蒸発も同じ場所で起きてしまうため、特に大量の微粉汚泥の吹き込みは、通常でも比較的炉温の低い羽口直近付近の更なる温度低下を招く結果となり、高炉の安定操業のためには望ましくない。
【0023】
この羽口直近付近の炉温低下を防ぐ手段として、本発明者らは微粉汚泥の粒径を制御する方法を見出した。すなわち、高炉内へ吹き込まれる石炭は一般的に粒径200μm以下、平均粒径40μm程度であるため、高炉内へ吹き込まれる微粉汚泥の粒径をこれよりも大きくし、微粉汚泥の熱分解反応速度が遅くなるように制御を行い、微粉炭とほぼ同様の場所において熱分解挙動を起こすように工夫すれば、大量の微粉汚泥吹き込みに付随する羽口直近付近における温度低下を防止することが可能である。本発明においては、乾燥または熱分解した後の活性汚泥の粒径は3mm以下であることが好ましく、より好ましくは、1.5〜0.1mmである。
【0024】
このように粒径制御を行った場合であっても、石炭に混入する汚泥の割合としては、乾燥質量ベースで30質量%以下とすることが、高炉の操業安定、たとえば生産性の維持、燃料比の維持等の面からは望ましい。
【0025】
汚泥を乾燥させるための乾燥機としては、熱風乾燥機、気流乾燥機、伝導伝熱乾燥機等様々な形式なものが使用できる。この際、乾燥のための熱源として、石油、重油、灯油等、LNG、LPG、コークス炉ガス、高炉ガス、転炉ガス等の燃料を使用しても良いが、製鉄所から発生する排熱、すなわち排ガスの顕熱あるいは未利用の低圧スチーム等、現在、有効に利用されていない熱源を利用すれば、エネルギー有効利用の観点から効果的である。なお、排ガスの種類としては、焼結機排ガス、熱風炉排ガス、加熱炉排ガス等が挙げられる。これらの未利用排熱は温度レベルが100〜400℃程度のいわゆる中低温排熱である場合が多いため、特に温度レベルが100〜200℃程度の低温排熱の場合には、真空乾燥機を汚泥乾燥機として用いるのが望ましい。
【0026】
以上述べてきたように、汚泥を高炉の補助燃料として用いるためには、出来る限り汚泥中の水分含有量が少なくなるまで乾燥を行うことが望ましい。しかし、汚泥の乾燥過程において、汚泥含水量が約70質量%以下になった場合、乾燥の進行につれて乾燥速度が低下し、次第に乾燥させにくくなることが知られている。特に、前述したような製鉄所から発生する中低温排熱の乾燥機熱源としての有効利用を想定した場合、汚泥含水量を5質量%未満とするためには、極めて伝熱面積の大きな乾燥機が必要となるため、一般的ではない。
【0027】
そこで、汚泥を乾燥する代わりに、汚泥を300〜1000℃の間の温度で空気を制限した状態で熱分解して生成した汚泥チャーを、乾燥汚泥の代わりに使用しても良い。この場合の汚泥チャーは、水分がほとんど含有されていないのは無論のこと、高炉内へ吹き込まれた場合、羽口付近における炉温低下の原因の一つとなる、熱分解反応に伴う吸熱反応を伴わない。従って、前述した乾燥微粉汚泥の粒径制御を行う必要もなく、大量の汚泥を高炉へ吹き込んだ場合においても操業へ悪影響を及ぼしにくい。この場合の汚泥チャーの製造方法としては、脱水ケーキを、例えば外熱キルンのような緩速昇温タイプの間接熱分解装置において、空気をほぼ遮断した状態で、例えば酸素含有率10体積%以下、より好ましくは5体積%以下、温度300〜1000℃、より好ましくは400〜800℃、熱分解時間5〜60分の条件下で、乾燥と同時に熱分解することによって製造することが望ましい。また、気流層型の熱分解設備を用いて、乾燥粉砕した後の乾燥微粉汚泥を、空気をほぼ遮断した状態、例えば酸素含有率10体積%以下、より好ましくは1体積%以下で、温度300〜1000℃、より好ましくは600〜900℃、熱分解時間10秒以下の条件下で、急速熱分解することによって製造しても良い。いずれの場合であっても、汚泥チャーを製造する際に副生する可燃性の熱分解ガスは、系内において燃料として有効に活用できる。
【0028】
また、特に、石炭に対して混合する乾燥汚泥の割合が相対的に少なく、より具体的には乾燥質量ベースで10質量%以下であり、厳密な乾燥汚泥の粒径制御を行う必要がない場合には、既存の高炉吹込み用石炭乾燥粉砕設備中へ直接、活性汚泥やその脱水ケーキを投入する方法が好適である。
【0029】
この方法を採用すれば、活性汚泥の脱水ケーキを、既存の石炭乾燥粉砕設備へ単に投入するだけで、容易に、乾燥、粉砕、石炭との混合が行われ、新たな汚泥専用の乾燥破砕機等を設置することなく、余剰汚泥を高炉吹き込み用の補助燃料として使用することが可能となる。なお破砕機の活性汚泥は粒径が3mm以下であり、より好ましくは1.5〜0.1mmである。
【0030】
本発明で使用する汚泥としては、下水汚泥、産業排水の生物学的処理施設から発生する余剰の活性汚泥、例えばコークス炉排水(安水)処理設備、ステンレス酸洗排水の処理設備、各種食品工場の排水処理設備から排出される余剰汚泥等を用いるものとする。
【0031】
一般的にこれらの汚泥は極めて不快な臭気を有し、しかも腐敗し易いため、汚泥を脱水ケーキの状態で製鉄所内において長期間保管することは困難である。しかし、乾燥または熱分解した後の乾燥汚泥または汚泥チャーにおいては臭気が低減され、かつ腐敗もしにくい状態となるため、製鉄所内において汚泥を長期間保管することが容易となる効果もある。
【0032】
なお、高炉内へ吹き込まれる汚泥中には、主として排水処理工程において添加される凝集剤等の無機系添加剤に由来する灰分が乾燥重量ベースで10〜40質量%程度含まれる。この灰分中のFe23およびCaOは、高炉原料たる焼結鉱中の主要成分であるため、これらの成分を高炉原料として使用することも可能となる。
【0033】
【実施例】
実施例1
図1に示したフローに従って、本発明を実施した。今回使用した下水汚泥の分析値を表1に示す。なお、この汚泥は下水処理場の脱水機から排出されたものである。
【0034】
【表1】

Figure 0003771887
【0035】
下水汚泥623t/dayを、焼結機排ガスを熱源とする伝導伝熱式の汚泥乾燥機1において乾燥後、汚泥破砕機2によって粉砕し、145t/day、水分含有量5.2質量%、平均粒径350μmの微粉汚泥を得た。
【0036】
この微粉汚泥はエアヒーター3で加熱された石炭乾燥破砕機4で粒径3mm以下に破砕された756t-dry/dayの微粉炭と共にフィードタンク5へ送られ、供給装置6によって一定量ずつ切り出し、羽口8より出銑量7000t/dayの高炉7内へ導入した。その結果、高炉7の操業に何の悪影響を及ぼすことなく、コークス比500kg/tで、汚泥を補助燃料として使用可能であった。
【0037】
実施例2
図2に示したフローに従って、本発明を実施した。今回使用した下水汚泥の分析値を表2に示す。なお、この汚泥は下水処理場の脱水機から排出された脱水ケーキである。
【0038】
【表2】
Figure 0003771887
【0039】
下水汚泥2654t/dayを、汚泥熱分解設備9内で、空気を遮断した酸素:1体積%における還元性雰囲気下、700℃、30分間熱分解し、181t/dayの汚泥チャーを得た。汚泥チャーの分析値を表3に示す。
【0040】
【表3】
Figure 0003771887
【0041】
既存の石炭乾燥破砕機4へ石炭821t/day、乾燥重量ベースで739t-dry/day、および上記の汚泥チャーを181t/day投入し、乾燥および粉砕を行った。乾燥、粉砕後の平均粒径45μmの汚泥チャーはエアヒーター3で加熱された石炭乾燥破砕機4で粒径3mm以下に破砕された微粉炭と共にフィードタンク5へ送られ、供給装置6によって一定量ずつ切り出し、羽口8より出銑量7000t/dayの高炉7内へ導入した。その結果、コークス比500kg/tで高炉7の操業に何の悪影響を及ぼすことなく、余剰汚泥を補助燃料として使用可能であった。
【0042】
実施例3
図3に示したフローに従って、本発明を実施した。今回使用した下水汚泥の分析値を表4に示す。なお、この汚泥は下水処理場の脱水機から排出された脱水ケーキである。
【0043】
【表4】
Figure 0003771887
【0044】
エアヒーター3で加熱された既存の石炭乾燥破砕機4へ896t/day、乾燥重量ベース806t/dayの石炭、および250t/day、乾燥重量ベース55t/dayの下水汚泥を直接投入し、乾燥および粉砕を行い、粒径3mm以下に破砕した。乾燥、粉砕後、水分含有量6.5質量%の汚泥は微粉炭と共にフィードタンク5へ送られ、供給装置6によって一定量ずつ切り出し、羽口8より出銑量7000t/dayの高炉7内へ導入した。その結果、コークス比500kg/tで高炉7の操業に何の悪影響を及ぼすことなく、余剰汚泥を補助燃料として使用可能であった。
【0045】
【発明の効果】
本発明により、排水の生物学的処理施設から発生する余剰の活性汚泥を燃料および高炉原料として有効に利用することが可能となる。
【図面の簡単な説明】
【図1】は、本発明の活性汚泥の利用方法の一例を示す。
【図2】は、本発明の活性汚泥の利用方法の一例を示す。
【図3】は、本発明の活性汚泥の利用方法の一例を示す。
【図4】は、一般的な下水の生物学的処理に関するフローシートである。
【符号の説明】
1…汚泥乾燥機
2…汚泥破砕機
3…エアヒーター
4…石炭乾燥破砕機
5…フィードタンク
6…供給装置
7…高炉
8…羽口
9…汚泥熱分解設備
10…沈砂池
11…最初沈澱地
12…曝気槽(活性汚泥処理槽)
13…最終沈澱地
14…汚泥濃縮機
15…汚泥脱水機
16…汚泥乾燥機
17…汚泥焼却炉
18…汚泥溶融炉[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for effectively utilizing surplus activated sludge generated from a biological wastewater treatment facility in a blast furnace in a steelworks.
[0002]
[Prior art]
Excess activated sludge (hereinafter abbreviated as excess sludge) generated when purifying wastewater by biological treatment is used for the spread of sewage systems and the introduction of advanced treatment processes that remove nitrogen and phosphorus at wastewater treatment plants. Along with this, it tends to increase. Most of these surplus sludges are simply landfilled after volume reduction treatment. As the form of the sludge at that time, the majority of the sludge is buried as so-called dehydrated cake having a water content of about 80% by mass or incinerated ash after incineration after dehydration.
[0003]
On the other hand, due to reasons such as tightness in landfills, studies for using surplus sludge, particularly sewage sludge generated from sewage treatment plants, as resources have been actively conducted in recent years. Sewage sludge utilization technology includes dewatered, dried or composted sludge that is reduced to green farmland and used as fertilizer. Incineration ash after incineration of sludge or molten slag after melting is used as construction material. The method to use is common.
[0004]
FIG. 4 shows a general biological treatment flow of sewage. The activated sludge extracted from the final sedimentation basin 13 as surplus sludge is increased in sludge concentration by the sludge concentrator 14 and then introduced into the sludge dehydrator 15 together with the flocculant, and the dehydrated sludge having a water concentration of about 80% by mass, That is, it is discharged as a dehydrated cake. In some cases, the dehydrated cake is used as it is by landfill disposal or as a fertilizer by green farmland reduction or the like. Most of the dehydrated cake is further dried by the sludge dryer 16 together with auxiliary fuel, and the sludge incinerator 17 or sludge melting furnace. 18 is combusted together with auxiliary fuel such as petroleum, and is disposed of in landfill or effectively used as incinerated ash or molten slag.
[0005]
In some cement factories, a method has been reported in which a dehydrated cake having a water concentration of about 80% by mass is directly put into a cement firing furnace and inorganic components in sludge are used as a cement raw material (for example, non-patented). Reference 1). Furthermore, in Japanese Patent Application Laid-Open No. 5-117728, in a blast furnace operating method in which water is blown for the control of the hot metal temperature in the blast furnace and the like, the ironworks by-product is used for the purpose of reducing the amount of coke used for water blowing. There has also been proposed a method in which fuel water containing a certain activated sludge sludge is blown into the blast furnace as an alternative to blast furnace blow-in water (for example, see Patent Document 1).
[0006]
[Non-Patent Document 1]
Yoji Hamada, Masayasu Yamazaki, Koichi Hashimoto, “Cement and Concrete”, Japan Cement Association, 1998. 621, P.I. 24
[Patent Document 1]
JP-A-5-117728 [0007]
[Problems to be solved by the invention]
However, the biological treatment flow of sewage shown in FIG. 4 and the conventional method in which the dehydrated cake is directly fed into the cement baking furnace all require processes involving many treatment facilities, so that the equipment costs, etc. Of course, the initial cost of the system is huge, and even during operation, the flocculant and, in some cases, the flocculant and, in some cases, cover the inherent properties of sludge, such as poor cohesiveness and very high water content. There is a drawback in that many running costs associated with the use of chemicals such as agglomeration aids, auxiliary fuel, and electric power are indispensable. In addition, consuming auxiliary fuel and electric power has a great problem from the viewpoint of energy saving.
[0008]
In addition, the invention disclosed in Japanese Patent Laid-Open No. 5-117728 is intended to blow fuel water composed of a mixture of activated sludge and water into the blast furnace, so that the fuel ratio of activated sludge and the like is increased. Requires a surfactant and is not practical in terms of effective utilization of activated sludge.
[0009]
An object of the present invention is to provide a method for effectively utilizing surplus activated sludge as fuel and blast furnace raw material.
[0010]
[Means for Solving the Problems]
The present invention is an effective utilization method of activated sludge, and the gist of the present invention is as follows.
[0011]
(1) Activated sludge generated in biological treatment of wastewater is dried or pyrolyzed, then crushed to a particle size of 3 mm or less, and the crushed material is blown into the blast furnace together with coal having a particle size of 2 mm or less by airflow conveyance. How to use activated sludge characterized by
[0012]
(2) The method of using activated sludge according to (1) above, wherein the moisture content in the activated sludge blown into the blast furnace is less than 50% by mass.
[0013]
(3) The method for using activated sludge as described in (1) or (2) above, wherein the activated sludge is dried using exhaust heat generated from a steel mill.
[0014]
(4) The method of using activated sludge as described in (1) or (2) above, wherein the activated sludge is thermally decomposed at 300 to 1000 ° C. in an atmosphere having an oxygen content of 10% by volume or less.
[0015]
(5) Activated sludge generated in the biological treatment of wastewater is put into a coal drying and pulverizing facility for blowing blast furnace, dried, pulverized to a particle size of 3 mm or less, mixed with coal, and transported into the blast furnace by air flow. A method of using activated sludge characterized by blowing.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0017]
In the blast furnace in the ironworks, sintered ore and coke are introduced from the top of the furnace, and pig iron is produced using reducing gas generated by burning the coke by the high-temperature oxygen-enriched air blown from the tuyere. Yes. Currently, in order to reduce the amount of coke, which is an expensive main fuel, an operation is performed in which inexpensive coal, so-called steam coal, is blown from the tuyere as auxiliary fuel in a fine powder state. The particle size of general pulverized coal is about 40 μm on average, and the calorific value is about 6000 to 8000 kcal / kg. The pulverized coal blown from the tuyere into the furnace is first released of volatiles by a pyrolysis reaction, producing gas, tar and char. The generated gas, tar, and char are then burned to become a reducing gas and contribute to the reduction reaction of the sintered ore.
[0018]
On the other hand, surplus sludge is mainly an aggregate of fine microorganisms and bacteria, and has a calorific value of about 2000 to 5000 kcal / kg in a dry state, so that it can be used as fuel. However, even if the normal excess sludge is still in the dehydrated cake state after dehydration, it still contains about 80% by mass of moisture. In this state, even if the sludge is blown into the blast furnace, the latent heat of evaporation of water is reduced. Only the calorific value of the sludge itself is consumed, and it is practically impossible to use the sludge as an auxiliary fuel. Therefore, in order to use sludge as an auxiliary fuel, it is essential to dry the sludge in advance.
[0019]
In general, the water in sludge is roughly divided into internal water contained in the cells of microorganisms and bacteria that form sludge, and external water or free water existing outside the sludge. The dehydrated cake that has been dehydrated to a content of about 80% by mass is in a state in which most of the external water has already been removed. It is known that the internal water in the sludge is present in a state surrounded by a strong cell wall, and therefore requires a large amount of latent heat of vaporization as compared with the external water, so that it is difficult to evaporate. In particular, when sludge containing a large amount of internal water is blown into the tuyere, the temperature drops locally and remarkably in the vicinity of the blown sludge, causing a decrease in the furnace temperature near the tuyere that adversely affects the operation of the blast furnace. Therefore, the water content in the activated sludge used as auxiliary fuel blown into the blast furnace is preferably less than 50% by mass, more preferably 10 to 0% by mass.
[0020]
When comparing the consumption of coal currently used as auxiliary fuel for blast furnace injection with the amount of surplus sludge generated, the consumption of coal is overwhelmingly large. From the viewpoint of avoiding a decrease in furnace temperature due to blowing and compensating for the difference in calorific value between surplus sludge and coal, when surplus sludge is used as auxiliary fuel, a part of coal is replaced with surplus sludge. It is appropriate to use.
[0021]
As described above, since sludge is originally an aggregate of fine microorganisms, the sludge after drying can be easily pulverized simply by coarse pulverization. In particular, sludge dried to a moisture content of 15% by mass or less can easily be 3 mm or less and have an average particle size of about 200 μm to 700 μm even if a crusher with relatively little power consumption such as a roll mill is used. It is possible to make fine powder sludge. Such pulverized sludge can be blown into the blast furnace by airflow transportation using the same transportation equipment as the current pulverized coal.
[0022]
When sludge in a fine powder state is blown into the blast furnace from the tuyere, it is first decomposed into gas, tar, and char by a pyrolysis reaction that is an endothermic reaction, Their combustion reaction occurs. However, the thermal decomposition start temperature of pulverized coal is 500 to 600 ° C., and in the case of pulverized sludge, it is 300 to 400 ° C. Therefore, the thermal decomposition reaction of pulverized sludge proceeds even at a lower temperature than pulverized coal, and thermal decomposition The time required for completing the reaction is as short as 2 to 5 seconds for pulverized coal and 2 seconds or less for pulverized sludge. Therefore, at the moment when the pulverized sludge is blown into the tuyere, the thermal decomposition reaction, which is an endothermic reaction that causes the furnace temperature to decrease, proceeds in a place different from the pulverized coal blown at the same time, that is, near the tuyere. End up. In addition, the evaporation of water in the fine sludge contained to some extent also occurs at the same location, so in particular, blowing a large amount of fine sludge will cause a further decrease in temperature near the tuyere, which is usually relatively low in furnace temperature. Resulting in undesirable results for stable operation of the blast furnace.
[0023]
The present inventors have found a method for controlling the particle size of fine sludge as a means for preventing the furnace temperature from decreasing near the tuyere. That is, since the coal blown into the blast furnace generally has a particle size of 200 μm or less and an average particle size of about 40 μm, the particle size of the fine sludge blown into the blast furnace is made larger than this, and the thermal decomposition reaction rate of the fine sludge It is possible to prevent a decrease in temperature near the tuyere associated with a large amount of pulverized sludge blowing by controlling so that it becomes slow and devising thermal decomposition behavior in the same place as pulverized coal. is there. In the present invention, the particle size of the activated sludge after being dried or pyrolyzed is preferably 3 mm or less, more preferably 1.5 to 0.1 mm.
[0024]
Even when particle size control is performed in this way, the proportion of sludge mixed in the coal is 30% by mass or less on a dry mass basis, so that the operation stability of the blast furnace, for example, maintenance of productivity, fuel It is desirable from the aspect of maintaining the ratio.
[0025]
As a dryer for drying sludge, various types such as a hot air dryer, an air flow dryer, and a conduction heat transfer dryer can be used. At this time, fuel such as petroleum, heavy oil, kerosene, LNG, LPG, coke oven gas, blast furnace gas, converter gas, etc. may be used as a heat source for drying, but exhaust heat generated from steelworks, That is, if a heat source that is not currently used effectively, such as sensible heat of exhaust gas or unused low-pressure steam, is used, it is effective from the viewpoint of effective use of energy. Examples of the exhaust gas include sintering machine exhaust gas, hot stove exhaust gas, and heating furnace exhaust gas. These unused waste heats are often so-called medium to low temperature waste heats having a temperature level of about 100 to 400 ° C. Therefore, especially in the case of low temperature waste heats having a temperature level of about 100 to 200 ° C., a vacuum dryer is used. It is desirable to use it as a sludge dryer.
[0026]
As described above, in order to use sludge as an auxiliary fuel for the blast furnace, it is desirable to perform drying until the water content in the sludge is as low as possible. However, it is known that when the sludge moisture content is about 70% by mass or less in the drying process of the sludge, the drying speed decreases as the drying progresses, and it becomes difficult to dry. In particular, assuming effective use as a dryer heat source of the medium and low temperature exhaust heat generated from the steelworks as described above, a dryer having a very large heat transfer area in order to reduce the water content of sludge to less than 5% by mass. Is not common because it is necessary.
[0027]
Therefore, instead of drying the sludge, a sludge char generated by pyrolyzing the sludge in a state where the air is restricted at a temperature between 300 and 1000 ° C. may be used instead of the dried sludge. Of course, the sludge char in this case does not contain much water, and when it is blown into the blast furnace, it is one of the causes of the furnace temperature drop near the tuyere, and it has an endothermic reaction accompanying the pyrolysis reaction. Not accompanied. Therefore, it is not necessary to control the particle size of the dry fine sludge described above, and even when a large amount of sludge is blown into the blast furnace, it is difficult to adversely affect the operation. As a method for producing the sludge char in this case, the oxygen content is, for example, 10% by volume or less in a state in which the dehydrated cake is almost shut off in an indirect pyrolysis apparatus of a slow heating type such as an external heat kiln. More preferably, it is produced by thermal decomposition simultaneously with drying under conditions of 5% by volume or less, a temperature of 300 to 1000 ° C., more preferably 400 to 800 ° C., and a thermal decomposition time of 5 to 60 minutes. Further, the dry fine powder sludge after dry pulverization using an airflow layer type thermal decomposition facility is in a state where the air is substantially blocked, for example, the oxygen content is 10% by volume or less, more preferably 1% by volume or less, and a temperature of 300 It may be produced by rapid pyrolysis under a condition of ˜1000 ° C., more preferably 600 to 900 ° C. and a pyrolysis time of 10 seconds or less. In any case, the combustible pyrolysis gas by-produced when producing the sludge char can be effectively used as fuel in the system.
[0028]
In particular, the proportion of dry sludge mixed with coal is relatively small, more specifically 10% by mass or less on a dry mass basis, and there is no need to strictly control the particle size of dry sludge. For this, a method in which activated sludge and its dehydrated cake are directly fed into an existing coal drying and pulverizing equipment for blowing blast furnace is suitable.
[0029]
By adopting this method, the activated sludge dewatering cake can be easily dried, ground, and mixed with coal simply by putting it into the existing coal drying and grinding equipment. It is possible to use surplus sludge as an auxiliary fuel for blast furnace injection without installing etc. The activated sludge of the crusher has a particle size of 3 mm or less, more preferably 1.5 to 0.1 mm.
[0030]
The sludge used in the present invention includes sewage sludge, surplus activated sludge generated from biological wastewater treatment facilities, such as coke oven wastewater (safe water) treatment equipment, stainless pickling wastewater treatment equipment, and various food factories. The surplus sludge discharged from the wastewater treatment facility is used.
[0031]
In general, these sludges have a very unpleasant odor and are prone to spoilage. Therefore, it is difficult to store sludge in a dewatered cake state in a steel mill for a long period of time. However, the dried sludge or sludge char after being dried or pyrolyzed has a reduced odor and is less susceptible to spoilage, and thus has an effect of facilitating long-term storage of sludge in an ironworks.
[0032]
The sludge blown into the blast furnace contains about 10 to 40% by mass of ash derived from inorganic additives such as a flocculant added mainly in the wastewater treatment process on a dry weight basis. Since Fe 2 O 3 and CaO in the ash are main components in the sintered ore as a blast furnace raw material, these components can be used as a blast furnace raw material.
[0033]
【Example】
Example 1
The present invention was implemented according to the flow shown in FIG. Table 1 shows the analytical values of the sewage sludge used this time. This sludge is discharged from the dewatering machine at the sewage treatment plant.
[0034]
[Table 1]
Figure 0003771887
[0035]
Sewage sludge 623t / day is dried in a conductive heat transfer sludge dryer 1 using the exhaust gas from the sintering machine as a heat source, and then pulverized by sludge crusher 2, 145t / day, moisture content 5.2% by mass, average particle size A 350 μm fine powder sludge was obtained.
[0036]
This pulverized sludge is sent to the feed tank 5 together with 756 t-dry / day pulverized coal crushed to a particle size of 3 mm or less by a coal drying crusher 4 heated by an air heater 3, and cut out by a certain amount by a supply device 6. It was introduced from the tuyere 8 into the blast furnace 7 with an output of 7000 t / day. As a result, sludge could be used as auxiliary fuel at a coke ratio of 500 kg / t without any adverse effect on the operation of blast furnace 7.
[0037]
Example 2
The present invention was implemented according to the flow shown in FIG. Table 2 shows the analysis values of the sewage sludge used this time. This sludge is a dewatered cake discharged from a dewatering machine at a sewage treatment plant.
[0038]
[Table 2]
Figure 0003771887
[0039]
Sewage sludge 2654t / day was pyrolyzed at 700 ° C for 30 minutes in a reducing atmosphere with oxygen: 1% by volume of oxygen blocked in the sludge pyrolysis equipment 9 to obtain a 181t / day sludge char. The analysis value of the sludge char is shown in Table 3.
[0040]
[Table 3]
Figure 0003771887
[0041]
The existing coal drying crusher 4 was charged with 821 t / day of coal, 739 t-dry / day on a dry weight basis, and 181 t / day of the above sludge char, and dried and ground. The dried and crushed sludge char with an average particle size of 45 μm is sent to the feed tank 5 together with pulverized coal crushed to a particle size of 3 mm or less by a coal drying crusher 4 heated by an air heater 3, and a certain amount by a supply device 6 They were cut out one by one and introduced from the tuyere 8 into the blast furnace 7 with an output of 7000 t / day. As a result, surplus sludge could be used as auxiliary fuel without any adverse effect on the operation of the blast furnace 7 at a coke ratio of 500 kg / t.
[0042]
Example 3
The present invention was implemented according to the flow shown in FIG. Table 4 shows the analysis values of the sewage sludge used this time. This sludge is a dewatered cake discharged from a dewatering machine at a sewage treatment plant.
[0043]
[Table 4]
Figure 0003771887
[0044]
896 t / day, dry weight base 806 t / day coal, and 250 t / day, dry weight base 55 t / day sewage sludge are directly charged into the existing coal dry crusher 4 heated by the air heater 3 for drying and grinding And crushed to a particle size of 3 mm or less. After drying and crushing, the sludge with a water content of 6.5% by mass is sent to the feed tank 5 together with the pulverized coal, cut out by a certain amount by the supply device 6, and introduced from the tuyere 8 into the blast furnace 7 with an output amount of 7000 t / day. . As a result, surplus sludge could be used as auxiliary fuel without any adverse effect on the operation of the blast furnace 7 at a coke ratio of 500 kg / t.
[0045]
【The invention's effect】
According to the present invention, surplus activated sludge generated from a biological wastewater treatment facility can be effectively used as fuel and blast furnace raw material.
[Brief description of the drawings]
FIG. 1 shows an example of a method for using activated sludge according to the present invention.
FIG. 2 shows an example of a method for using activated sludge according to the present invention.
FIG. 3 shows an example of a method for using activated sludge according to the present invention.
FIG. 4 is a flow sheet for general sewage biological treatment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sludge dryer 2 ... Sludge crusher 3 ... Air heater 4 ... Coal drying crusher 5 ... Feed tank 6 ... Feeding device 7 ... Blast furnace 8 ... Tuyere 9 ... Sludge pyrolysis equipment 10 ... Sedimentation basin 11 ... First sedimentation place 12 ... Aeration tank (activated sludge treatment tank)
13 ... Final sedimentation place 14 ... Sludge concentrator 15 ... Sludge dehydrator 16 ... Sludge dryer 17 ... Sludge incinerator 18 ... Sludge melting furnace

Claims (5)

排水の生物学的処理において発生する活性汚泥を、乾燥または熱分解した後、粒径3mm以下に破砕し、該破砕物を粒径2mm以下の石炭と共に高炉内へ気流搬送により吹き込むことを特徴とする活性汚泥の利用方法。Activated sludge generated in biological treatment of waste water is dried or pyrolyzed, then crushed to a particle size of 3 mm or less, and the crushed material is blown into a blast furnace together with coal having a particle size of 2 mm or less by airflow conveyance. How to use activated sludge. 高炉内へ吹き込む活性汚泥中の水分含有量を50質量%未満とすることを特徴とする請求項1記載の活性汚泥の利用方法。The method for using activated sludge according to claim 1, wherein the moisture content in the activated sludge blown into the blast furnace is less than 50% by mass. 活性汚泥を、製鉄所から発生する排熱を利用して乾燥することを特徴とする請求項1または2記載の活性汚泥の利用方法。The method of using activated sludge according to claim 1 or 2, wherein the activated sludge is dried using exhaust heat generated from a steelworks. 活性汚泥を、酸素含有率10体積%以下の雰囲気で300〜1000℃で熱分解することことを特徴とする請求項1または2記載の活性汚泥の利用方法。The method of using activated sludge according to claim 1 or 2, wherein the activated sludge is thermally decomposed at 300 to 1000 ° C in an atmosphere having an oxygen content of 10% by volume or less. 排水の生物学的処理において発生する活性汚泥を、高炉吹き込み用石炭乾燥粉砕設備へ投入、乾燥し、粒径3mm以下に粉砕し、石炭との混合を行い、高炉内へ気流搬送によって吹き込むことを特徴とする活性汚泥の利用方法。Activated sludge generated in biological treatment of wastewater is put into a coal drying and pulverizing facility for blowing blast furnace, dried, pulverized to a particle size of 3 mm or less, mixed with coal, and blown into the blast furnace by air flow. How to use activated sludge.
JP2002270453A 2002-09-17 2002-09-17 How to use activated sludge Expired - Fee Related JP3771887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002270453A JP3771887B2 (en) 2002-09-17 2002-09-17 How to use activated sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002270453A JP3771887B2 (en) 2002-09-17 2002-09-17 How to use activated sludge

Publications (2)

Publication Number Publication Date
JP2004105835A JP2004105835A (en) 2004-04-08
JP3771887B2 true JP3771887B2 (en) 2006-04-26

Family

ID=32268084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270453A Expired - Fee Related JP3771887B2 (en) 2002-09-17 2002-09-17 How to use activated sludge

Country Status (1)

Country Link
JP (1) JP3771887B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157052B2 (en) * 2005-08-19 2013-03-06 住友大阪セメント株式会社 Low moisture content sludge transportation method and equipment, and cement manufacturing facility
JP5156599B2 (en) * 2008-11-27 2013-03-06 株式会社Ihi Sludge heat treatment method and sludge heat treatment apparatus
CN101691273B (en) * 2009-09-28 2012-07-04 广州普得环保设备有限公司 Method for integration of thickening, dehydration and aerobic air drying of sewage sludge
JP5610950B2 (en) * 2010-09-22 2014-10-22 株式会社日本製鋼所 Waste heat energy recovery system
WO2018229520A1 (en) 2017-06-16 2018-12-20 Arcelormittal Operating method of an iron making installation and associated operating installation
CN108947168A (en) * 2018-08-06 2018-12-07 重庆大学 A kind of method of blast furnace processing municipal sludge
JP7255198B2 (en) * 2019-01-24 2023-04-11 栗田工業株式会社 ecosystem
CN113881822A (en) * 2021-08-23 2022-01-04 浙江省工业设计研究院有限公司 Novel process method for blast furnace co-processing hazardous waste hw17

Also Published As

Publication number Publication date
JP2004105835A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
US8109218B2 (en) Waste treatment process and apparatus
AU2006263623B2 (en) Waste treatment process and apparatus
CN101468789B (en) Domestic garbage transformation technique, system and apparatus without conventional fuel for supporting combustion
CN102476907B (en) Method of high-efficiency high-speed environmentally-friendly energy-saving sludge treatment system
KR100903571B1 (en) Apparatus for carbonizing organic waste massively
JP4958855B2 (en) Organic waste disposal methods
CN108443889A (en) A kind of discarded metal catalyst and organic sludge coprocessing device and method
JP3771887B2 (en) How to use activated sludge
CN107143864A (en) A kind of technique of full combustion slime circulating fluidized bed boiler burning sludge
WO2008120109A1 (en) Method and plant for manufacturing cement clinker
JP4855644B2 (en) Organic waste disposal methods
CN102746902A (en) Gasification method of organic wastes and special gasification furnace
KR101661494B1 (en) Bio-char generating system of organic waste
CN108793665B (en) Treatment method and application of biological sludge of cold rolling oily wastewater
CN208869480U (en) A kind of process system of industrial sludge cracking
JP2006193622A (en) Carbonized product and method for producing the same
CN108675613A (en) A kind of process system and method for industrial sludge cracking
CN208108108U (en) Discarded metal catalyst and organic sludge coprocessing device
JP2005249279A (en) Waste melting and treating method utilizing biomass
CN102140003A (en) Sludge drying method, incineration method, sludge incineration device, thermal power plant and system
JP2007254863A (en) Sintered material with the use of organic waste, method for producing the sintered material, and refining method
JP2008255748A (en) Energy saving method by installment of industrial waste incineration facility in asphalt concrete production plant
CN209940807U (en) Sludge phase separation heat treatment equipment with heat energy recycling function
JP2000109911A (en) Method for blowing fuel in shaft furnace
JP2005221195A (en) Method for treating organic waste and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060210

R151 Written notification of patent or utility model registration

Ref document number: 3771887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees