JP2006085980A - Manufacturing method of superconductive wire rod - Google Patents

Manufacturing method of superconductive wire rod Download PDF

Info

Publication number
JP2006085980A
JP2006085980A JP2004268320A JP2004268320A JP2006085980A JP 2006085980 A JP2006085980 A JP 2006085980A JP 2004268320 A JP2004268320 A JP 2004268320A JP 2004268320 A JP2004268320 A JP 2004268320A JP 2006085980 A JP2006085980 A JP 2006085980A
Authority
JP
Japan
Prior art keywords
heat treatment
phase
superconducting wire
temperature
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004268320A
Other languages
Japanese (ja)
Other versions
JP4496902B2 (en
Inventor
Kohei Yamazaki
浩平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004268320A priority Critical patent/JP4496902B2/en
Publication of JP2006085980A publication Critical patent/JP2006085980A/en
Application granted granted Critical
Publication of JP4496902B2 publication Critical patent/JP4496902B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method simpler than a conventional one of a superconductive wire rod containing a bismuth based oxide superconductor having a high critical current. <P>SOLUTION: This manufacturing method of a superconductive wire rod is configured such that a process of applying plastic working and a process of applying heat treatment on a metal sheath, in which powder of a material capable of generating as a main component 2223 phase of a bismuth system oxide superconductor by sintering is filled, are applied respectively once or more, and at least one heat treatment process in the heat treatment process is performed at an atmosphere of oxygen partial pressure of 5.05×10<SP>3</SP>Pa or more and 1.01×10<SP>4</SP>Pa or less, with a heat treatment temperature T decreasing with the passage of a heat treatment time, and with a maximum heat treatment temperature T<SB>1</SB>of 835°C or higher and 855°C or lower, with a minimum heat treatment temperature T<SB>2</SB>of 805°C or higher and 825°C or lower, and a temperature difference T<SB>1</SB>-T<SB>2</SB>is 25°C or more and 40°C or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ビスマス系酸化物超電導体からなるフィラメントを有する超電導線材の製造方法に関し、特に、高い臨界電流(Ic、以下同じ)を有する超電導線材を製造することができる方法に関する。   The present invention relates to a method for producing a superconducting wire having a filament made of a bismuth-based oxide superconductor, and more particularly to a method capable of producing a superconducting wire having a high critical current (Ic, hereinafter the same).

Bi系酸化物超電導材料を用いた線材を製造する方法の1つとして、実用化に最も適した方法として考えられているパウダー・イン・チューブ法がある。この方法では、まず、超電導体またはその原料の粉末を金属(銀)シースに充填し、圧延加工を含む塑性加工を施してテープ形状の線材を得る。得られたテープ形状の線材は、酸化物超電導体の焼結のため熱処理される。熱処理の後、線材は再び圧延加工され、次いで再度熱処理される。このように圧延加工および熱処理を繰り返すことによって、比較的高いIcを有する線材を得ることができる。このプロセスにおいて、熱処理はそれぞれ数十時間行なわれる。   As one of the methods for producing a wire using a Bi-based oxide superconducting material, there is a powder-in-tube method that is considered as the most suitable method for practical use. In this method, first, a superconductor or its raw material powder is filled in a metal (silver) sheath, and plastic processing including rolling is performed to obtain a tape-shaped wire. The obtained tape-shaped wire is heat-treated for sintering the oxide superconductor. After the heat treatment, the wire is rolled again and then heat treated again. Thus, by repeating the rolling process and the heat treatment, a wire having a relatively high Ic can be obtained. In this process, the heat treatment is performed for several tens of hours.

かかるパウダー・イン・チューブ法において、従来は一定温度で熱処理を行なうことにより焼結を行なっており、高いIcを得るために熱処理を繰り返す必要があり、超電導線材の製造に長時間および高コストを要した。   In such a powder-in-tube method, conventionally, sintering is performed by performing heat treatment at a constant temperature, and it is necessary to repeat the heat treatment in order to obtain high Ic, which requires a long time and high cost for the production of a superconducting wire. It cost.

そのため、超電導線材の製造時間を短縮し製造コストを低減するため、ビスマス系酸化物超電導体の2223相(以下、Bi2223相という)を生成するための材料粉末の焼結工程において、850℃〜870℃の温度で1分間〜30分間加熱した後、引続きそれより低い温度でアニールしながら冷却することにより、それ以上の熱処理を行なうことなく高いIcを有する超電導線材が得られることを提案している(たとえば、特許文献1を参照)。   Therefore, in order to shorten the manufacturing time of the superconducting wire and reduce the manufacturing cost, in the sintering process of the material powder for generating the 2223 phase of the bismuth-based oxide superconductor (hereinafter referred to as Bi2223 phase), 850 ° C. to 870 ° C. It is proposed that a superconducting wire having a high Ic can be obtained without further heat treatment by heating at a temperature of 1 ° C. for 30 minutes, followed by cooling while annealing at a lower temperature. (For example, see Patent Document 1).

しかし、上記熱処理においては、Bi2223相の体積分率が95体積%以上であるフィラメントを調製すること、850℃〜870℃の温度で1分間〜30分間加熱することなど製造工程における精密な制御が必要であり、製造コストが高くなる問題があった。
特開平08−64044号公報
However, in the above heat treatment, precise control in the manufacturing process such as preparing a filament having a volume fraction of Bi2223 phase of 95% by volume or more and heating at a temperature of 850 ° C. to 870 ° C. for 1 minute to 30 minutes is possible. There is a problem that it is necessary and the manufacturing cost becomes high.
Japanese Patent Application Laid-Open No. 08-64044

本発明は、高い臨界電流を有するビスマス系酸化物超電導体を含む超電導線材の従来よりも簡便な製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method simpler than before of the superconducting wire containing the bismuth-type oxide superconductor which has a high critical current.

本発明は、Bi2223相を主成分とするフィラメントを含む超電導線材の製造方法であって、焼結によりBi2223相を主成分として生成し得る材料の粉末(以下、前駆体粉末という)が充填された金属シースに、塑性加工を施す工程および熱処理工程をそれぞれ1回以上行ない、熱処理を施す工程における少なくとも1回の熱処理工程は、酸素分圧が5.05×103Pa以上1.01×104Pa以下の雰囲気下、熱処理温度Tが熱処理時間の経過とともに低下し、最高熱処理温度T1が835℃より高く855℃より低く、最低熱処理温度T2が805℃より高く825℃より低く、その温度差T1−T2が25℃以上40℃以下であることを特徴とする超電導線材の製造方法である。 The present invention is a method of manufacturing a superconducting wire including a filament mainly composed of a Bi2223 phase, and is filled with a powder of a material that can be generated based on a Bi2223 phase by sintering (hereinafter referred to as a precursor powder). The metal sheath is subjected to a plastic working step and a heat treatment step one or more times, and at least one heat treatment step in the heat treatment step has an oxygen partial pressure of 5.05 × 10 3 Pa or more and 1.01 × 10 4. Under an atmosphere of Pa or lower, the heat treatment temperature T decreases as the heat treatment time elapses, the maximum heat treatment temperature T 1 is higher than 835 ° C. and lower than 855 ° C., and the minimum heat treatment temperature T 2 is higher than 805 ° C. and lower than 825 ° C. a method of manufacturing a superconducting wire, characterized in that the difference T 1 -T 2 is less than 40 ° C. 25 ° C. or higher.

本発明にかかる超電導線材の製造方法において、最高熱処理温度T1を840℃以上850℃以下とし、最低熱処理温度T2を810℃以上820℃以下とすることができる。また、上記少なくとも1回の熱処理工程における熱処理時間tを30時間以上100時間以下とすることができる。さらに、上記金属シースは銀を含有することができる。 In the method for producing a superconducting wire according to the present invention, the maximum heat treatment temperature T 1 can be set to 840 ° C. or more and 850 ° C. or less, and the minimum heat treatment temperature T 2 can be set to 810 ° C. or more and 820 ° C. or less. Moreover, the heat treatment time t in the at least one heat treatment step can be set to 30 hours or more and 100 hours or less. Furthermore, the metal sheath can contain silver.

上記のように、本発明によれば、高い臨界電流を有するビスマス系酸化物超電導体を含む超電導線材の従来よりも簡便な製造方法を提供することができる。   As described above, according to the present invention, it is possible to provide a simpler method for producing a superconducting wire including a bismuth-based oxide superconductor having a high critical current.

本発明にかかる一の超電導線材の製造方法は、図1を参照して、Bi2223相を主成分とするフィラメントを有する超電導線材の製造方法であって、前駆体粉末が充填された金属シースに、塑性加工を施す工程および熱処理を施す工程をそれぞれ1回以上行ない、かかる熱処理工程における少なくとも1回の熱処理工程は、酸素分圧が5.05×103Pa以上1.01×104Pa以下(0.05atm以上0.1atm以下)の雰囲気下、熱処理温度Tが熱処理時間の経過とともに低下し、最高熱処理温度T1が835℃より高く855℃より低く、最低熱処理温度T2が805℃より高く825℃より低く、その温度差T1−T2が25℃以下40℃以上であることを特徴とすることを特徴とする。 One superconducting wire manufacturing method according to the present invention is a superconducting wire manufacturing method having a filament mainly composed of a Bi2223 phase with reference to FIG. 1, and a metal sheath filled with a precursor powder, Each of the plastic working step and the heat treatment step is performed at least once, and at least one heat treatment step in the heat treatment step has an oxygen partial pressure of 5.05 × 10 3 Pa or more and 1.01 × 10 4 Pa or less ( In an atmosphere of 0.05 atm or more and 0.1 atm or less), the heat treatment temperature T decreases as the heat treatment time elapses, the maximum heat treatment temperature T 1 is higher than 835 ° C. and lower than 855 ° C., and the minimum heat treatment temperature T 2 is higher than 805 ° C. The temperature difference is lower than 825 ° C., and the temperature difference T 1 -T 2 is 25 ° C. or lower and 40 ° C. or higher.

本発明にかかる一の超電導線材の製造方法は、Bi2223相を主成分とするフィラメントを有する超電導線材の製造方法である。ここで、Bi2223相とは、化学式(Bi,Pb)2Sr2Ca2Cu310+xで表わされる相をいい、この相の形成により、臨界電流の高い超電導体が得られる。また、Bi2223相を主成分とするフィラメントとは、超電導体中にBi2223相を50体積%以上、好ましくは85体積%以上含有するフィラメントをいう。Bi2223相を主成分とするフィラメントを含むことにより、臨界電流の高い超電導線材が得られる。また、フィラメントとは、塑性加工により伸長された線状の超電導体(多芯の場合は個々の芯を形成する線状の超電導体)をいう。 One method for producing a superconducting wire according to the present invention is a method for producing a superconducting wire having a filament mainly composed of a Bi2223 phase. Here, the Bi2223 phase refers to a phase represented by the chemical formula (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O 10 + x , and a superconductor having a high critical current can be obtained by forming this phase. Moreover, the filament which has Bi2223 phase as a main component means the filament which contains Bi2223 phase in a superconductor 50 volume% or more, Preferably it is 85 volume% or more. By including a filament mainly composed of Bi2223 phase, a superconducting wire having a high critical current can be obtained. The filament refers to a linear superconductor elongated by plastic working (in the case of a multi-core, a linear superconductor forming individual cores).

また、本発明にかかる一の超電導線材の製造方法では、前駆体粉末が充填された金属シースに、塑性加工を施す工程(以下、塑性加工工程という)および熱処理を施す工程(以下、熱処理工程という)をそれぞれ1回以上行なう。すなわち、本製造方法においては、まず、前駆体粉末を金属シースに充填し、この前駆体粉末が充填された金属シースに、圧延加工、プレス加工などを含む塑性加工を施し、さらに上記前駆体粉末を焼結して超電導体を生成するために熱処理を施す。上記塑性加工および熱処理は1回以上行なうことができる。かかる製造方法により、Bi2223相を主成分とするフィラメントを有する超電導線材を形成することができる。   Also, in one method of manufacturing a superconducting wire according to the present invention, a metal sheath filled with a precursor powder is subjected to plastic processing (hereinafter referred to as plastic processing step) and heat treatment (hereinafter referred to as heat treatment step). ) At least once. That is, in this production method, first, a precursor powder is filled into a metal sheath, and the metal sheath filled with the precursor powder is subjected to plastic working including rolling, pressing, and the like, and further the precursor powder. A heat treatment is performed to produce a superconductor by sintering. The plastic working and heat treatment can be performed once or more. With this manufacturing method, a superconducting wire having a filament mainly composed of Bi2223 phase can be formed.

ここで、前駆体粉末は、熱処理により主成分としてBi2223相を含有する超電導体を形成するものであれば特に制限はないが、上記前駆体粉末におけるBi、Pb、Sr、CaおよびCuの原子比は、たとえば、Bi:Pb:Sr:Ca:Cu=(1.7〜2.1):(0〜0.4):(1.7〜2.1):(1.7〜2.3):(2.9〜3.1)とすることができる。   Here, the precursor powder is not particularly limited as long as it forms a superconductor containing a Bi2223 phase as a main component by heat treatment, but the atomic ratio of Bi, Pb, Sr, Ca and Cu in the precursor powder is not limited. Is, for example, Bi: Pb: Sr: Ca: Cu = (1.7 to 2.1) :( 0 to 0.4) :( 1.7 to 2.1) :( 1.7 to 2.3). ): (2.9 to 3.1).

また、金属シースとしては、導電性の高い金属であれば特に制限はないが、前駆体粉末との反応性が乏しく、加工しやすく、かつ、融点が高い観点から、銀を含有するシースであることが好ましい。たとえば、銀シース、銀合金シースなどが好ましく用いられる。   The metal sheath is not particularly limited as long as it is a highly conductive metal, but is a silver-containing sheath from the viewpoint of poor reactivity with the precursor powder, easy processing, and a high melting point. It is preferable. For example, a silver sheath or a silver alloy sheath is preferably used.

また、本発明にかかる一の超電導線材の製造方法では、少なくとも1回の熱処理工程は、酸素分圧が5.05×103Pa以上1.01×104Pa以下の雰囲気下、熱処理温度Tが熱処理時間の経過とともに低下し、最高熱処理温度T1が835℃より高く855℃より低く、最低熱処理温度T2が805℃より高く825℃より低く、その温度差T1−T2が25℃以上40℃以下であることを特徴とする。 In the method for producing a superconducting wire according to the present invention, at least one heat treatment step is performed under a heat treatment temperature T in an atmosphere having an oxygen partial pressure of 5.05 × 10 3 Pa to 1.01 × 10 4 Pa. Decreases with the passage of heat treatment time, the maximum heat treatment temperature T 1 is higher than 835 ° C. and lower than 855 ° C., the minimum heat treatment temperature T 2 is higher than 805 ° C. and lower than 825 ° C., and the temperature difference T 1 -T 2 is 25 ° C. The temperature is 40 ° C. or lower.

前駆体粉末を焼結させるための少なくとも1回の熱処理工程は、大気圧における酸素分圧2.01×104Paよりも低い5.05×103Pa以上1.01×104Pa以下の酸素分圧の雰囲気下で、熱処理温度Tを熱処理工程の開始時から終了時にかけてその熱処理時間の経過とともに低下することにより行なわれる。焼結をさせるための部分溶融を起こさせる最高熱処理温度T1ではBi2223相の成長が不十分であり、上記部分溶融した部分が凝固する最低熱処理温度T2まで、熱処理時間の経過とともに熱処理温度を低下させることによりBi2223相を大きく成長させることができ、Bi2223相の単相化が促進され、臨界電流の高い超電導線材が得られる。ここで、Bi2223相の単相化とは、超電導体のフィラメントを構成する種々の相全体(たとえば、Bi2223相、Bi2212相、非超電導相など)に対してBi2223相の割合が増加し、超電導体のフィラメントがBi2223相で単相化されることをいう。このとき、5.05×103Pa以上1.01×104Pa以下の低酸素分圧雰囲気下で熱処理を行なうことにより、Bi2223相の単相化が促進される。ここで、熱処理温度Tが熱処理時間の経過とともに低下するとは、熱処理温度Tの低下割合の大小および増減を問わない意味であり、熱処理温度が熱処理時間内の一定時間維持される場合をも含む。なお、Bi2223相をより大きく成長させる観点から、熱処理温度は単調にかつ一定の割合で低下させることが好ましい。 At least one heat treatment step for sintering the precursor powder is 5.05 × 10 3 Pa or more and 1.01 × 10 4 Pa or less lower than oxygen partial pressure 2.01 × 10 4 Pa at atmospheric pressure. Under an oxygen partial pressure atmosphere, the heat treatment temperature T is decreased from the start to the end of the heat treatment step as the heat treatment time elapses. At the highest heat treatment temperature T 1 for causing partial melting for sintering, the growth of the Bi2223 phase is insufficient, and the heat treatment temperature is increased as the heat treatment time elapses until the minimum heat treatment temperature T 2 at which the partially melted portion solidifies. By lowering, the Bi2223 phase can be grown greatly, the Bi2223 phase can be made into a single phase, and a superconducting wire with a high critical current can be obtained. Here, the Bi2223 phase is a single phase means that the ratio of the Bi2223 phase is increased with respect to the entire various phases (for example, Bi2223 phase, Bi2212 phase, non-superconducting phase, etc.) constituting the filament of the superconductor. The filament is made into a single phase in the Bi2223 phase. At this time, by performing heat treatment in a low oxygen partial pressure atmosphere of 5.05 × 10 3 Pa or more and 1.01 × 10 4 Pa or less, the Bi2223 phase is promoted to a single phase. Here, the fact that the heat treatment temperature T decreases as the heat treatment time elapses means that the reduction rate of the heat treatment temperature T does not matter, and includes the case where the heat treatment temperature is maintained for a certain time within the heat treatment time. From the viewpoint of growing the Bi2223 phase larger, it is preferable to decrease the heat treatment temperature monotonously and at a constant rate.

ここで、最高熱処理温度T1は835℃より高く855℃より低い。5.05×103Pa以上1.01×104Pa以下の酸素分圧雰囲気下では、835℃<T1<855℃の温度領域において焼結が適切に進む部分溶融が起こる。かかる観点から、T1は840℃以上850℃以下であることが好ましい。 Here, the maximum heat treatment temperature T 1 is higher than 835 ° C. and lower than 855 ° C. In an oxygen partial pressure atmosphere of 5.05 × 10 3 Pa or more and 1.01 × 10 4 Pa or less, partial melting occurs where the sintering proceeds appropriately in a temperature range of 835 ° C. <T 1 <855 ° C. From this viewpoint, T 1 is preferably 840 ° C. or higher and 850 ° C. or lower.

また、最低熱処理温度T2は805℃より高く825℃より低い。5.05×103Pa以上1.01×104Pa以下の酸素分圧雰囲気下では、805℃<T2<825℃の温度領域において上記部分溶融が凝固し、Bi2223相の結晶同士の強固な結合が達成され、また、Bi2223相の成長が他の相の成長に比べて大きくなる。かかる観点から、T2は810℃以上820℃以下であることが好ましい。 The minimum heat treatment temperature T 2 is higher than 805 ° C. and lower than 825 ° C. In an oxygen partial pressure atmosphere of 5.05 × 10 3 Pa or more and 1.01 × 10 4 Pa or less, the partial melting is solidified in a temperature range of 805 ° C. <T 2 <825 ° C., and the Bi2223 phase crystals are strengthened. Bonding is achieved, and the growth of the Bi2223 phase is larger than the growth of the other phases. From this viewpoint, T 2 is preferably 810 ° C. or higher and 820 ° C. or lower.

ここで、本発明にかかる超電導線材の製造方法における最高熱処理温度T1、最低熱処理温度T2およびそれらの温度差T1−T2は、図2を参照して、835℃<T1<855℃、805℃<T2<825℃、25℃≦T1−T2≦40℃を満たす領域P(図2において、IBMNDLで囲まれた領域、ただし、IB、BM、NDおよびDLの線分上の点を除く)内に存在する。好ましくは、T1、T2およびT1−T2は、840℃≦T1≦850℃、810℃≦T2≦820℃、25℃≦T1−T2≦40℃を満たす領域Q(図2において、JFGHKで囲まれた領域)内に存在する。ここで、領域Qは、T1において30℃≦T1−T2≦40℃、T2において25℃≦T1−T2≦30℃を満たしている。なお、図2の上記領域P,Qにおいて、黒丸点はその点を含むことを、白丸点はその点を含まないことを、実線はその線を含むことを、破線はその線を含まないことを示す。 Here, the maximum heat treatment temperature T 1 , the minimum heat treatment temperature T 2 and the temperature difference T 1 -T 2 in the method of manufacturing a superconducting wire according to the present invention are 835 ° C. <T 1 <855, referring to FIG. , 805 ° C. <T 2 <825 ° C., 25 ° C ≦ T 1 −T 2 ≦ 40 ° C. Region P (region surrounded by IBMNDL in FIG. 2, except for IB, BM, ND and DL line segments Except for the above points). Preferably, T 1 , T 2, and T 1 -T 2 are in a region Q (840 ° ≦ T 1 ≦ 850 ° C., 810 ° C. ≦ T 2 ≦ 820 ° C., 25 ° C. ≦ T 1 −T 2 ≦ 40 ° C. In FIG. 2, it exists in the area surrounded by JFGHK. Here, region Q, in T 1 30 ℃ ≦ T 1 -T 2 ≦ 40 ℃, satisfies 25 ℃ ≦ T 1 -T 2 ≦ 30 ℃ in T 2. In the above-described regions P and Q of FIG. 2, the black circle point includes the point, the white circle point does not include the point, the solid line includes the line, and the broken line does not include the line. Indicates.

本発明にかかる一の超電導線材の製造方法において、上記少なくとも1回の熱処理工程における熱処理時間tには特に制限はないが、30時間以上100時間以下であることが好ましい。熱処理時間tが、30時間未満であるとBi2223の成長時間が短くなるためBi2223相の成長が進まず単相化も進まず、100時間を超えると成長したBi2223相が分解するためBi2223相の単相化が抑制される。ここで、図1を参照して、tとは熱処理開始時刻t1から熱処理終了時刻t2までの時間t2−t1をいう。 In the method for producing a superconducting wire according to the present invention, the heat treatment time t in the at least one heat treatment step is not particularly limited, but is preferably 30 hours or more and 100 hours or less. When the heat treatment time t is less than 30 hours, the growth time of Bi2223 is shortened, so the growth of the Bi2223 phase does not progress and the single phase is not promoted. When the heat treatment time t exceeds 100 hours, the grown Bi2223 phase is decomposed, and Phaseing is suppressed. Here, with reference to FIG. 1, t means time t 2 -t 1 from heat treatment start time t 1 to heat treatment end time t 2 .

(実施例1)
前駆体粉末を得るために、まず、Bi2 3 、PbO、CaCO3 、SrCO3 、CuOを用いてBi:Pb:Sr:Ca:Cu=1.81:0.40:1.97:2.00:3.00(原子比)の組成比の粉末を調製した。この粉末に熱処理を施し、粉砕を行なった後、主にBi2212相と非超電導相からなる前駆体粉末を得た。得られた前駆体粉末を銀パイプに充填した。この前駆体粉末を充填した銀パイプに伸線加工を施して単芯線材を得た。この単芯線材55本を束ねて再び銀シースに嵌合して多芯線材を得た。この多芯線材に伸線加工および圧延加工を施して、厚さ0.23mm、幅4.1mmの多芯(55芯)テープ線材を作製した。なお、Bi2212相とは、化学式(Bi,Pb)2Sr2CaCu28+yで表わされる相をいう。
Example 1
In order to obtain the precursor powder, Bi: Pb: Sr: Ca: Cu = 1.80: 0.40: 1.97: 2 using Bi 2 O 3 , PbO, CaCO 3 , SrCO 3 , and CuO. A powder having a composition ratio of 0.000: 3.00 (atomic ratio) was prepared. After heat-treating and pulverizing this powder, a precursor powder mainly composed of a Bi2212 phase and a non-superconducting phase was obtained. The obtained precursor powder was filled in a silver pipe. The silver pipe filled with this precursor powder was drawn to obtain a single core wire. The single core wires 55 were bundled and fitted again into the silver sheath to obtain a multicore wire. The multicore wire was drawn and rolled to produce a multicore (55 core) tape wire having a thickness of 0.23 mm and a width of 4.1 mm. The Bi2212 phase refers to a phase represented by the chemical formula (Bi, Pb) 2 Sr 2 CaCu 2 O 8 + y .

次に、得られた多芯テープ線材を100mmごとに複数に分割した。得られたセグメントを、図1を参照して、酸素分圧8.08×103Pa(0.08atm)の低酸素分圧雰囲気下において、最高熱処理温度T1が840℃、最低熱処理温度T2が815℃となるように熱処理温度を単調かつ一定の割合で低下させて、50時間の熱処理を行ない、超電導線材を得た。 Next, the obtained multi-core tape wire was divided into a plurality of every 100 mm. Referring to FIG. 1, the obtained segment was subjected to a maximum heat treatment temperature T 1 of 840 ° C. and a minimum heat treatment temperature T in a low oxygen partial pressure atmosphere with an oxygen partial pressure of 8.08 × 10 3 Pa (0.08 atm). The heat treatment temperature was decreased monotonously and at a constant rate so that 2 was 815 ° C., and heat treatment was performed for 50 hours to obtain a superconducting wire.

得られた超電導線材の銀比(銀の断面積比率/超電導体の断面積比率をいう、以下同じ)は1.5であり、X線回折法によりフィラメントにおけるBi系2223相の体積分率は93体積%であり、77.3KにおけるIcは39Aと大きくなった。結果を表1にまとめた。   The obtained superconducting wire has a silver ratio (cross section ratio of silver / cross section ratio of superconductor, hereinafter the same) of 1.5, and the volume fraction of Bi-based 2223 phase in the filament by the X-ray diffraction method is It was 93% by volume, and Ic at 77.3K was as large as 39A. The results are summarized in Table 1.

(実施例2,3、比較例1〜5)
表1に示す熱処理条件とした他は、実施例1と同様にして超電導線材を得た。得られた超電導線材のIcを表1にまとめた。ここで、比較例1〜比較例3においては、熱処理温度を変化させることなく、それぞれ815℃、825℃、845℃で一定とした。比較例4においては、T1を835℃とした。比較例5においては、T1を855℃とした。
(Examples 2 and 3, Comparative Examples 1 to 5)
A superconducting wire was obtained in the same manner as in Example 1 except that the heat treatment conditions shown in Table 1 were used. Table 1 summarizes Ic of the obtained superconducting wires. Here, in Comparative Examples 1 to 3, the heat treatment temperature was kept constant at 815 ° C., 825 ° C., and 845 ° C. without changing the heat treatment temperature. In Comparative Example 4, T 1 was set to 835 ° C. In Comparative Example 5, T 1 was set to 855 ° C.

Figure 2006085980
Figure 2006085980

表1より明らかなように、T2を815℃としたとき、835℃<T1<855℃において、従来よりもIcの高い超電導線材が一度の熱処理により簡便に得られた。 As can be seen from Table 1, when T 2 was set to 815 ° C., a superconducting wire having a higher Ic than the conventional one was easily obtained by a single heat treatment at 835 ° C. <T 1 <855 ° C.

(比較例6,7)
表2に示す熱処理条件とした他は、実施例1と同様にして超電導線材を得た。得られた超電導線材のIcを実施例2および比較例2の結果とともに表2にまとめた。なお、比較例6においては、T2を805℃とした。比較例7においては、T2を825℃とした。
(Comparative Examples 6 and 7)
A superconducting wire was obtained in the same manner as in Example 1 except that the heat treatment conditions shown in Table 2 were used. Ic of the obtained superconducting wire is summarized in Table 2 together with the results of Example 2 and Comparative Example 2. In Comparative Example 6, T 2 was set to 805 ° C. In Comparative Example 7, T 2 was set to 825 ° C.

Figure 2006085980
Figure 2006085980

表2より明らかなように、T1を845℃としたとき、805℃<T2<825℃において、従来よりもIcの高い超電導線材が一度の熱処理により簡便に得られた。 As is apparent from Table 2, when T 1 was 845 ° C., a superconducting wire having a higher Ic than the conventional one was easily obtained by a single heat treatment at 805 ° C. <T 2 <825 ° C.

(実施例5〜7)
表3に示す熱処理条件とした他は、実施例1と同様にして超電導線材を得た。得られた超電導線材のIcを実施例2および比較例2の結果とともに表3にまとめた。
(Examples 5-7)
A superconducting wire was obtained in the same manner as in Example 1 except that the heat treatment conditions shown in Table 3 were used. Table 3 summarizes Ic of the obtained superconducting wire together with the results of Example 2 and Comparative Example 2.

Figure 2006085980
Figure 2006085980

表3より明らかなように、T1を845℃、T2を815℃としたとき、熱処理時間が30時間以上100時間以下において、従来よりもIcの高い超電導線材が一度の熱処理により簡便に得られた。 As is apparent from Table 3, when T 1 is 845 ° C. and T 2 is 815 ° C., a superconducting wire having a higher Ic than that of the prior art can be easily obtained by a single heat treatment when the heat treatment time is 30 hours to 100 hours. It was.

したがって、表1〜表3から明らかなように、835℃<T1<855℃、805℃<T2<825℃、25℃≦T1−T2≦40℃において、Icの高い超電導線材が従来よりも簡便に得られることがわかった。 Therefore, as is clear from Tables 1 to 3, a superconducting wire having a high Ic is obtained at 835 ° C. <T 1 <855 ° C., 805 ° C. <T 2 <825 ° C., 25 ° C. ≦ T 1 −T 2 ≦ 40 ° C. It was found that it can be obtained more easily than before.

なお、今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed this time are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明にかかる一の超電導線材の熱処理条件を示す模式図である。It is a schematic diagram which shows the heat processing conditions of the one superconducting wire concerning this invention. 本発明にかかる一の超電導線材の熱処理条件におけるT1、T2およびT1−T2の関係を示す模式図である。It is a schematic diagram showing the relationship of T 1, T 2 and T 1 -T 2 in the heat treatment condition of one superconducting wire according to the present invention.

Claims (4)

ビスマス系酸化物超電導体の2223相を主成分とするフィラメントを含む超電導線材の製造方法であって、
焼結によりビスマス系酸化物超電導体の2223相を主成分として生成し得る材料の粉末が充填された金属シースに、塑性加工を施す工程および熱処理を施す工程をそれぞれ1回以上行ない、
前記熱処理工程における少なくとも1回の熱処理工程は、酸素分圧が5.05×103Pa以上1.01×104Pa以下の雰囲気下、熱処理温度Tが熱処理時間の経過とともに低下し、最高熱処理温度T1が835℃より高く855℃より低く、最低熱処理温度T2が805℃より高く825℃より低く、その温度差T1−T2が25℃以上40℃以下であることを特徴とする超電導線材の製造方法。
A method for producing a superconducting wire containing a filament mainly composed of 2223 phase of a bismuth-based oxide superconductor,
The metal sheath filled with the powder of the material that can be generated mainly by the 2223 phase of the bismuth-based oxide superconductor by sintering is subjected to plastic processing and heat treatment at least once each,
At least one heat treatment step in the heat treatment step is performed under an atmosphere having an oxygen partial pressure of 5.05 × 10 3 Pa or more and 1.01 × 10 4 Pa or less. The temperature T 1 is higher than 835 ° C. and lower than 855 ° C., the minimum heat treatment temperature T 2 is higher than 805 ° C. and lower than 825 ° C., and the temperature difference T 1 −T 2 is 25 ° C. or higher and 40 ° C. or lower. Manufacturing method of superconducting wire.
前記最高熱処理温度T1が840℃以上850℃以下、前記最低熱処理温度T2が810℃以上820℃以下であることを特徴とする請求項1に記載の超電導線材の製造方法。 2. The method of manufacturing a superconducting wire according to claim 1, wherein the maximum heat treatment temperature T 1 is 840 ° C. or more and 850 ° C. or less, and the minimum heat treatment temperature T 2 is 810 ° C. or more and 820 ° C. or less. 前記少なくとも1回の熱処理工程における熱処理時間tが、30時間以上100時間以下であることを特徴とする請求項1または請求項2に記載の超電導線材の製造方法。   The method of manufacturing a superconducting wire according to claim 1 or 2, wherein a heat treatment time t in the at least one heat treatment step is 30 hours or more and 100 hours or less. 前記金属シースが銀を含有する請求項1から請求項3のいずれかに記載の超電導線材の製造方法。   The method for producing a superconducting wire according to any one of claims 1 to 3, wherein the metal sheath contains silver.
JP2004268320A 2004-09-15 2004-09-15 Superconducting wire manufacturing method Expired - Fee Related JP4496902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004268320A JP4496902B2 (en) 2004-09-15 2004-09-15 Superconducting wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004268320A JP4496902B2 (en) 2004-09-15 2004-09-15 Superconducting wire manufacturing method

Publications (2)

Publication Number Publication Date
JP2006085980A true JP2006085980A (en) 2006-03-30
JP4496902B2 JP4496902B2 (en) 2010-07-07

Family

ID=36164297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004268320A Expired - Fee Related JP4496902B2 (en) 2004-09-15 2004-09-15 Superconducting wire manufacturing method

Country Status (1)

Country Link
JP (1) JP4496902B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107331470A (en) * 2017-05-09 2017-11-07 中国科学院合肥物质科学研究院 A kind of high temperature Bi2212 superconducting conductor heat treatment methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061616A (en) * 1992-06-23 1994-01-11 Toshiba Corp Production of bi based oxide superconductor
JPH0864044A (en) * 1994-08-25 1996-03-08 Sumitomo Electric Ind Ltd Manufacture of high temperature superconductive wire material
JPH09505265A (en) * 1993-04-01 1997-05-27 アメリカン・スーパーコンダクター・コーポレーション Improved processing of oxide superconductors
JP2003203532A (en) * 2001-12-28 2003-07-18 Sumitomo Electric Ind Ltd Manufacturing method of superconducting wire
JP2004241254A (en) * 2003-02-06 2004-08-26 Sumitomo Electric Ind Ltd Method of manufacturing superconducting oxide wire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061616A (en) * 1992-06-23 1994-01-11 Toshiba Corp Production of bi based oxide superconductor
JPH09505265A (en) * 1993-04-01 1997-05-27 アメリカン・スーパーコンダクター・コーポレーション Improved processing of oxide superconductors
JPH0864044A (en) * 1994-08-25 1996-03-08 Sumitomo Electric Ind Ltd Manufacture of high temperature superconductive wire material
JP2003203532A (en) * 2001-12-28 2003-07-18 Sumitomo Electric Ind Ltd Manufacturing method of superconducting wire
JP2004241254A (en) * 2003-02-06 2004-08-26 Sumitomo Electric Ind Ltd Method of manufacturing superconducting oxide wire

Also Published As

Publication number Publication date
JP4496902B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
JP2567505B2 (en) Method for producing bismuth oxide superconductor
JP4496902B2 (en) Superconducting wire manufacturing method
JP4605156B2 (en) Superconducting wire manufacturing method
JP2006260854A (en) Manufacturing method of superconductive wire rod
KR20060023947A (en) Bismuth oxide superconducting wire rod and process for producing the same
JP2003203532A (en) Manufacturing method of superconducting wire
JP3721392B2 (en) Manufacturing method of high-temperature superconducting wire
JP3735092B2 (en) Method for producing bismuth oxide superconducting wire
JP4720211B2 (en) Method for producing bismuth oxide superconducting wire
JP4696811B2 (en) Manufacturing method of Bi-based superconductor
JP3858830B2 (en) Manufacturing method of oxide superconducting wire
JP4375134B2 (en) Superconducting wire manufacturing method
JP2569413B2 (en) Method for producing Bi-based oxide superconducting wire
JP4039260B2 (en) Manufacturing method of oxide superconducting wire and raw material powder of oxide superconducting wire
JP4002975B2 (en) Manufacturing method of bismuth 2212 superconducting composite multi-core wire
JPH07282659A (en) Manufacture of high temperature superconducting wire rod
JP2007026773A (en) Superconducting wire material and manufacturing method thereof
JP2009181817A (en) Manufacturing method of oxide superconductive wire rod, and oxide superconductive wire rod
JP4893117B2 (en) Oxide superconducting wire manufacturing method and superconducting equipment
JP2549669B2 (en) Oxide superconducting wire
JP4507899B2 (en) Bismuth oxide superconducting wire and method for producing the same, superconducting equipment using the bismuth oxide superconducting wire
JP2667972B2 (en) Bi-based oxide composite superconducting wire
JP2006216380A (en) Bismuth based oxide superconducting wire rod and its manufacturing method
JPH06302235A (en) Manufacture of oxide superconductive wire rod
JP2599138B2 (en) Method for producing oxide-based superconducting wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4496902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees