JP2006084297A - 面形状計測方法、プログラム、記録媒体および面形状計測装置 - Google Patents

面形状計測方法、プログラム、記録媒体および面形状計測装置 Download PDF

Info

Publication number
JP2006084297A
JP2006084297A JP2004268544A JP2004268544A JP2006084297A JP 2006084297 A JP2006084297 A JP 2006084297A JP 2004268544 A JP2004268544 A JP 2004268544A JP 2004268544 A JP2004268544 A JP 2004268544A JP 2006084297 A JP2006084297 A JP 2006084297A
Authority
JP
Japan
Prior art keywords
observation
substrate
positional relationship
substrate surface
surface shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004268544A
Other languages
English (en)
Inventor
Yutaka Iwata
裕 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004268544A priority Critical patent/JP2006084297A/ja
Publication of JP2006084297A publication Critical patent/JP2006084297A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】 フラットパネルディスプレイといった表示装置の製造に好適な、基板面上の凹凸形状の欠陥を、高速に凹形状または凸形状を選択的に検出できる面形状計測方法および面形状計測装置を提供する。
【解決手段】 白色二光束干渉法の対物レンズ2と基板1面ととの相対位置関係が基板1面上に干渉の発生しない位置関係で取得した基準データと、基板1面と対物レンズ2との相対位置関係が観察対象部位で干渉が発生する位置関係で取得した計測データとを比較することにより観察したい観察対象部位を、従来のZ軸方向に沿った対物レンズ2の走査を省いて検出する。
【選択図】 図1

Description

本発明は、液晶パネル基板等のフラットパネルディスプレイにおける平面基板などの表面上に、欠陥として存在する凹みや突起等の凹凸を高速に検出できて、上記フラットパネルディスプレイの製造に好適な面形状計測方法、プログラム、記録媒体および面形状計測装置に関する。
液晶ディスプレイ(Liquid Crystal Display;略称LCD)およびプラズマディスプレイパネル(Plasma Display Panel;略称PDP)などによって代表されるフラットパネルディスプレイ(Flat Panel Display;略称FPD)は、近年高精細化が進み、画素数が増加している。そのため、製造工程での欠陥発生率が高くなっている。さらに、大型化によりFPD単価も上昇している。この2つの理由により、FPD製造工程で発生した欠陥を迅速に検出することが望まれている。
FPDの製造工程で発生する欠陥の一つとして、異物の付着や表面に生成した膜の欠損による凹凸形状を有する欠陥が挙げられる。例えばTFT(Thin Film Transistor;略称TFT)方式のLCDパネルにおける製造工程の場合、TFTを形成したTFT基板と、カラーフィルタを形成したカラーフィルタ基板を一定のギャップを有する状態で互いに貼り合わせて、貼り合わせた面のギャップ部に液晶を注入することでLCDパネルが製造されている。
この製造工程では、TFT基板またはカラーフィルタ基板面に異物等に起因する突起である凸形状の欠陥があると、ギャップ不均一による表示品位の低下や、透明電極のショート等の不良が発生することがある。また、TFT基板を製造する場合、トランジスタやゲート・ソース等のバスラインを形成した上に絶縁膜を成膜する場合、絶縁膜が欠損する凹形状の欠陥が発生することがあり、これにより、電極のショート等による不良が発生することもある。上記不良の発生を防止するためには、上述した凹凸形状の各欠陥を正確に検出する必要がある。
そのような凹凸形状の各欠陥を検出する方法としては、従来、顕微鏡で用いられてきた暗視野光学系により、凹凸形状物体を明るく観察しかつ平坦な基板面が暗く観察されることにより弁別する方法や、レーザー共焦点顕微鏡や白色二光束干渉顕微鏡を用いて物体面の3次元形状を測定して、基板面の高さを基準として高さ変位部分を検出することで凹凸物体を検出する方法等が用いられてきた。
特に白色二光束干渉顕微鏡は、レーザー共焦点顕微鏡と違い、レーザー光をスキャンする必要性が無く、顕微鏡寸法を小さくできるメリットがあり、FPDの製造工程へ導入する装置への組み込み性が良いことから、利用される事例が増加している。白色二光束干渉を用いた3次元測定方法または装置には、特許文献1に示す形状測定装置や、非特許文献1に示す表面形状測定装置が知られている。
特開平10−62139号公報(公開日:1998年3月6日) 精密工学会主催 第13回外観検査の自動化ワークショップ 講演論文集 2001年12月6日、7日 北川克一 他 「信号処理に一般標本化定理を応用した光干渉式高速表面形状測定装置」
しかしながら、従来の暗視野顕微鏡では凹凸形状は基板面との明度差により検出できるが、凹形状または凸形状の区別は困難であり、凹形状または凸形状の何れかを選択的に検出することができない。したがって、異物による突起欠陥を検出したい場合にも、コンタクトホール等の凹形状を形成した正常な部分も同時に検出する等の問題点がある。
この問題点を回避するためには、前記したような3次元形状を測定する手段を用いて、凹形状か凸形状かを選択して検出する必要があるが、これらの手段は高さ情報を得るために計測部と被測定物との間を高さ方向に走査することが必要となり、データ取得および走査により得られた多数毎の画像データを用いた測定計算処理に時間を要するという問題がある。
特に近年のFPDは大型化が進展しており1800[mm]×1500[mm]という大型基板の製造も実用化されている状況にある。このため、測定処理の高速性が特に重要視されている。
その上、観察に用いる撮像画像の分解能も増加の一途をたどっており、これにより、100万画素を超える高精細カメラを用いた3次元形状測定装置の導入が必要となっていることから、画素数の増大化に伴って測定処理時間のさらなる増加につながることにより、測定処理に時間を要する方式の採用が難しくなってきている。
本発明は、上記のような問題点や問題に鑑み、凹形状または凸形状の有無を選択的に、かつ高速に検出できる面形状計測方法、プログラム、記録媒体および面形状計測装置を提供するものである。
本発明の面形状計測方法は、上記課題を解決するために、基板面上を二光束干渉光学系により観察する観察手段と基板面との間の相対位置関係を観察対象部位の高さまたは深さで干渉が発生する位置関係に移動させ、上記観察手段により上記基板上を観察して第一観察データを取得し、観察手段と基板面との相対位置関係が基板面上にて干渉の発生しない位置関係で観察して第二観察データを取得し、第一観察データと第二観察データとを比較して基板上の対象部位の表面状態を検出することを特徴としている。
上記方法によれば、一度、基板面上にて干渉の発生しない位置関係で観察した第二観察データを取得しておき、計測したい観察対象部位の高さまたは深さで干渉が発生する相対位置関係に移動させ、上記観察手段により上記基板上を観察して第一観察データを取得し、第二観察データと第一観察データとを比較することで、第一観察データを取得した位置に計測したい観察対象部位があれば、上記両者間の比較により上記両者間に明度差を生じさせることができて、観察対象部位の有無を検出できる。
また、上記方法においては、計測したい観察対象部位の高さまたは深さで干渉が発生する相対位置関係に移動させて、上記観察手段により上記基板面上を観察して第一観察データを取得し、観察手段と基板面との相対位置関係が基板面上にて干渉の発生しない位置関係で観察して第二観察データを取得する際の相対位置関係は、上記基板の表面方向に対し鉛直方向での相対位置関係での移動による方法のほか、上記基板の表面方向に沿った方向での相対位置関係での移動による方法を用いてもよい。
したがって、上記方法は、第一観察データの取得位置と第二観察データの取得位置の2位置の移動のみで、基板上での異物や欠陥凹部といった観察対象部位を検出して計測できるから、従来のような高さ方向の走査を行い多数枚の画像を処理する必要のある高さ3次元計測をする必要性が無く、よって、凹形状または凸形状の観察対象部位を高速に検出することができる。
上記面形状計測方法では、さらに、基板面と観察手段との相対位置関係が観察対象部位で干渉が発生する位置関係で取得した第一観察データを複数回取得して、取得した複数の第一観察データ毎に観察したい対象部位を検出し、検出した複数の結果の総和を検出結果としてもよい。
上記面形状計測方法においては、基板面と観察手段との相対位置関係が観察対象部位で干渉が発生する位置関係で取得した第一観察データを複数回取得する際、変位現象が基板面と観察手段の相対位置関係に対する外部または内部制御系の振動によるものであって、前記相対位置関係の能動的な制御によらない変位現象であることを利用して、取得した複数の第一観察データが互いに変位状態の相違のある状態であってもよい。
上記方法によれば、干渉縞による変調を受けた明度が、干渉による明度コントラスト変動の周期性により基板面の明度(つまり、干渉を生じていない明度)と同等である場合にも、第一観察データを複数回取得することで、外部または内部制御系の振動によって基板表面の鉛直方向に変位することを利用することにより、明度差を生じさせて観察対象部位を検出できるから、3次元計測に伴う走査をすること無く、高速に凹形状または凸形状の観察対象部位を検出することができる。
上記面形状計測方法では、第二観察データを、基板面を基準として、基板面から観察対象部位で干渉が発生する高さの位置関係と逆方向での同一高さに相対位置関係を設定して取得してもよい。
上記方法によれば、干渉縞が発生しない基準となる基板面画像である第二観察データを、確実に取得することが可能となる。
上記面形状計測方法においては、第一観察データを、基板面にて干渉が発生せず、かつ観察対象部位で干渉が発生する位置に、相対位置関係の高さを設定して取得してもよい。
上記方法によれば、基板面では、干渉縞が発生しないので、基板上の異物といった欠陥突起や、はがれ等の欠陥凹部などの観察対象部位の検出を確実化できる。
上記面形状計測方法では、二光束干渉光学系における照明には、可視光帯域内で選択的な波長帯域のみの光を用いてもよい。
上記面形状計測方法においては、上記の何れかに記載の面形状計測方法を用いて観察したい対象部位を検出した後に、対象部位の候補が存在した場合にのみ、基板面の3次元形状を測定してもよい。
上記方法によれば、高精度にて取得する価値のある観察対象部位のみを限定した後に、例えば、観察手段を基板に対して基板表面の鉛直方向に沿って移動させて基板上を計測することで、上記観察対象部位の3次元形状を測定することができ、上記基板上の面形状を高精度に取得することができるので、計測処理能力をさらに向上することができる。
本発明のプログラムは、前記課題を解決するために、上記の何れかに記載の面形状計測方法をコンピュータにて実行可能に記載したことを特徴としている。
本発明の記録媒体は、前記課題を解決するために、上記プログラムをコンピュータにて読み取り可能に記録したことを特徴としている。
本発明の面形状計測装置は、前記課題を解決するために、基板面上について二光束干渉光学系を用いて観察して画像データを出力するための観察手段と、基板面と観察手段との間の相対位置関係を移動させるための駆動手段と、上記観測対象部位の高さまたは深さに応じた測定相対位置に上記移動手段を制御する制御手段と、上記測定相対位置で観察した画像データより基板上の表面状態を算出する計算処理手段とを有することを特徴としている。
上記構成によれば、計測したい観察対象部位の高さまたは深さで干渉が発生する相対位置関係に観察手段を上記制御手段および移動手段によって移動させ、上記観察手段により上記基板上を観察して画像データを取得し、観察手段と基板面との間における、相対位置関係を、上記移動手段により移動させて観察し、順次、画像データを複数取得することで、計測したい観察対象部位が存在する干渉縞を生じる位置と、観察対象部位が存在しない干渉縞が生じない位置との間の計算処理手段による比較により上記両者間に明度差を生じさせることができて、基板上での種々な位置での観察対象部位の有無を検出できる。
したがって、上記構成は、第一観察データの取得位置と第二観察データの取得位置の2位置の移動のみで、基板上での異物や欠陥凹部といった観察対象部位を検出して計測できるから、従来のような3次元計測をする必要性が無く、よって、凹形状または凸形状の観察対象部位を高速に検出することができる。
本発明の面形状計測方法は、以上のように、基板面上を二光束干渉光学系により観察する観察手段と基板面との間の相対位置関係を観察対象部位の高さまたは深さで干渉が発生する位置関係に移動させ、上記観察手段により上記基板上を観察して第一観察データを取得し、観察手段と基板面との相対位置関係が基板面上にて干渉の発生しない位置関係で観察して第二観察データを取得し、第一観察データと第二観察データとを比較して基板上の対象部位の表面状態を検出する方法である。
それゆえ、上記方法は、第一観察データの取得位置と第二観察データの取得位置の2位置の移動のみで、基板上での異物や欠陥凹部といった観察対象部位を検出して計測できるから、従来のような3次元計測をする必要性が無く、高速に凹または凸形状の対象部位を検出することができるという効果を奏する。
本発明に係る面形状計測装置としての突起欠陥検査装置における実施の形態について図1ないし図9に基づいて説明すると以下の通りである。上記突起欠陥検査装置は、図2の概念構成図に示すように、液晶パネル基板などの基板1の表面上における、突起状態である凸形状の欠陥の有無を検出するためのものである。
上記突起欠陥検査装置は、被検査対象の基板1の表面を鉛直な方向(上記基板1の表面方向に対し垂直な方向)より観察するための、二光束干渉用の対物レンズ2と、ピエゾアクチュエータ(移動手段)3と、ピエゾアクチュエータコントローラ4と、鏡筒5と、撮像カメラ6と、制御用パーソナルコンピュータ(略称:制御PC、制御手段、計算処理手段)7と、表示機器8と、基板ステージ(移動手段)9と、基板ステージ9のコントローラ10とを有している。本発明の観測手段は、対物レンズ2と、鏡筒5と、撮像カメラ6とを少なくとも有している。
上記鏡筒5は、円筒状で内周面が黒色といった光吸収仕上げとなっており、上記鏡筒5の中心軸が上記対物レンズ2の光軸と同軸上となるように設けられている。上記対物レンズ2は、鏡筒5における基板1側の一端部に取り付けられている。また、上記撮像カメラ6は、撮像カメラ6の受光の光軸を上記鏡筒5の中心軸と同軸上となるように鏡筒5における基板1側とは反対側の他端部に取り付けられている。
本実施の形態では、上記表示機器8は、LCDモニターで構成されて制御PC7に設けられており、データを画像として表示するためのものである。上記基板ステージ9は、制御PC7により制御され、基板1を固定して保持し水平方向(上記基板1の表面方向に沿った二次元方向つまり後述するXY軸方向)へ移動することが可能な支持台である。上記コントローラ10は、制御PC7からの、基板ステージ9の座標位置を示す信号により、基板ステージ9の移動を制御するためのものである。
本実施の形態においては、対物レンズ2の倍率は例えば10倍を用いている。基板1の凹凸形状の計測方法としては、白色二光束干渉方式を用いており、ピエゾアクチュエータ3により基板1を観察するための対物レンズ2の光軸方向に沿って対物レンズ2が往復移動するように構成され、ピエゾアクチュエータ3内のピエゾ素子の駆動により対物レンズ2と基板1の相対位置関係を前記鉛直な方向に沿った往復方向に変位させて走査できる構成となっている。
また、本実施の形態では、基板1の表面方向と並行な(沿った方向の)軸方向をXY軸、基板1の表面に鉛直な軸方向をZ軸と定義する。ピエゾアクチュエータ3の先端部には対物レンズ2が取り付けられ、鏡筒5の一端部(基板1に対面する端部)においては、ピエゾアクチュエータ3が取り付けられ、鏡筒5の他端部には、撮像カメラ6も取り付けられている。
その上、鏡筒5内には図示しないハロゲンランプによる白色光源が設けられている。上記白色光源は、鏡筒5内の図示しないハーフミラーを介して鏡筒5内の撮像カメラ6による観察光軸と同軸方向で観察面を落射する照明を構成している。
対物レンズ2は、2光束干渉用対物レンズを用いており、例えば株式会社ニコンインステック社のCF IC EPI Plan DI 10X を用いており、対物レンズ2内に、観察側からの光源光をハーフミラーにより観察対象と参照ミラーへの光へと分岐し、観察対象と参照ミラーからの反射光を再び重ね合わせて干渉像光を発生し、その干渉像光を撮像カメラ6により撮影することで、基板1の表面に対する、Z軸方向の走査が可能な白色二光束干渉方式の顕微鏡観察系が構成されている。
撮像カメラ6により撮像された顕微鏡観察画像(以下画像と称する)は、制御PC7で画像データとしてキャプチャーされ、表示機器8に制御PC7のディスプレイ表示内容と共に、表示される。
制御PC7には、撮像カメラ6のキャプチャーの制御とピエゾアクチュエータコントローラ4による対物レンズ2をZ軸方向に制御することに基づく干渉像光及び非干渉光による画像および3次元形状を測定し出力する機能と、測定した3次元形状より欠陥を検出し良否を判定し結果を出力する機能と、対物レンズ2をZ軸方向の所定値に固定してコントローラ10により制御される基板ステージ9によって任意の位置に基板1をXY軸方向に移動して観察する機能と、これらの機能を実現する為に必要なデータおよびプログラムを記憶し必要に応じて読み出し実行することのできる機能と、オペレータ(操作員)の操作に必要な操作入力機能とが、それぞれ互いに独立して機能するように設けられている。
この構成により、基板1に対し観察機能のみでなく3次元形状の測定が可能な構成となっている。撮像カメラ6によって顕微鏡観察する基板1の位置は、基板ステージ9により移動することが可能である。移動する位置は、予め制御PC7内の座標位置を記憶する媒体に格納されており、制御PC7でのオペレータ操作もしくは自動制御によって順次移動し、基板1の各所で検査をそれぞれ行うことが可能である。
図3はZ軸方向に沿って走査したときの白色二光束干渉方式の観察で得られた基板面の画像の中で、任意の1画素を対象部位としたときの明度の変化を示したインターフェログラムである。図3では、横軸にZ軸の走査位置であるZ座標11を、縦軸に明度12を示している。本実施の形態では、白色二光束干渉方式の観察画像(干渉像光)は、対物レンズ2の合焦点位置とその付近において干渉が発生する様な構成となっている。干渉は合焦点位置から離れるに従い1次、2次と干渉縞のコントラストが低下しながら変化し、3次以降の干渉縞はコントラストが低く観察することが困難になる。
白色光源にハロゲンランプを用いた場合、およその中心波長帯としては約600[nm]付近となるので、干渉縞の発生周期であるλ/2は約300[nm]となる。干渉縞が0次から2次まで観察した場合の可干渉長は合焦点位置を基準として前後に約0.9[μm]となる。可干渉長は、ハロゲンランプの発光分光分布や、撮像カメラ6の分光感度分布、カメラ撮像電子回路のS/N等の性能の組み合わせにより微小な変化があり実際の測定ではやや広域となり約1[μm]前後となる。このため、これ以降、本実施の形態での可干渉長は1[μm]として記述する。
図3にはこの様子が示されており、Z座標11の合焦点位置13とその前後で干渉による明度変化が最大となるコントラストが観察され、順次Z軸が上下(Z軸方向)にオフセットされるにつれコントラストが低下し、可干渉長の範囲である下限位置14と上限位置15の範囲内を越えると、もはや干渉による明度コントラストはノイズにうずもれて観察できなくなる。下限位置14または上限位置15は合焦点位置13からの距離は約1[μm]である。
このため白色二光束干渉方式を用いた3次元測定では、Z軸を走査して得られたインターフェログラムを用いて、干渉による明度コントラストが最大になるときに、測定点の合焦点位置があると判断して被測定物体面である基板1上の種々な高さを計測し、これを撮像画像の画素単位で行い、画像内の画素毎の高さ情報を画像として統合して3次元の表面形状を測定する方法を用いている。
図4は液晶パネル基板の表面に形成した膜内に異物が混入して発生した凸形状の突起欠陥を示しており、図5は図4の状態を白色二光束干渉方式で観察したときのインターフェログラムを示している。
図4は基板16の表面上に膜17を生成した場合、異物18が混入しこれにより突起が発生している状態の断面形状を図示している。白色二光束干渉方式で観察する場所として説明の為に2箇所を設定しており、観察点19と観察点20とは、突起発生による不良箇所と正常箇所としてそれぞれ設けられている。
図5は観察点19と観察点20との各インターフェログラムであり、観察点19の合焦点位置19−1は、観察点20の合焦点位置20−1に対し、突起高さだけZ軸方向にオフセットした位置になる。
なお、図5においては、観察点19の平均明度19−2と観察点20の平均明度20−2とは、違う値で図示しているが、これは観察点19と観察点20のインターフェログラムの内、干渉が発生するZ軸方向位置の違いを説明するために図の縦軸方向にずらして図示しているものであり、明度の違いを示したものではない、図5における縦軸の明度12は、1観察点での明度変化を示す為に図示しているものである。
ここで液晶パネル基板における突起欠陥について説明する。TFT方式のLCDパネルにおける製造工程の場合、TFTを形成したTFT基板と、カラーフィルタを形成したカラーフィルタ基板を一定のギャップを有する状態で貼り合わせ、貼り合わせた面のギャップ部に液晶を注入することでLCDパネルを製造する。この貼り合わせのギャップ幅は、基板にもよるが、およそ1.5[μm]〜5[μm]となっており、突起欠陥が存在すると貼り合わせる反対側の基板へのダメージにつながる。このためマージンも考慮して、例えば基板面より2[μm]を超える突起がある場合には、突起を欠陥として検出して管理する必要がある。
図4および図5では、この高さ管理基準値21とその高さ管理基準値21−1の位置をそれぞれ図示しており、図4、図5から明らかなように、観察点19の突起は、高さ管理基準値21を超えているため、欠陥と判定される。
ここで着目すべき点として、顕微鏡の合焦点位置を高さ管理基準値21−1に配置した場合に、合焦点位置を基準に±1[μm]の範囲では可干渉長の範囲内であるため、この範囲の高さの突起については、XY軸方向の走査のみにより干渉による明度コントラスト変化が観察されるが、正常な基板面であれば、可干渉長の範囲を超えているため干渉は観察されずに明度の変化は発生しない。本実施の形態の場合、突起の高さが1[μm]から3[μm]までのものは、XY軸方向の走査のみで、干渉による明度変化により、正常な場所との明度差が発生し、インターフェログラムを得るためのZ軸方向の走査なしに(走査を省いて)、基板面上の予め設定しておいたZ軸高さにおける撮像画像より、突起の有無を観察することができる。
図5では、基板面の高さである観察点20の合焦点位置20−1に対し、突起18の高さ位置に対し、基板1の表面の反対(逆方向)側に高さ管理基準値21−1だけオフセットした位置に、干渉が発生しない条件で撮像した画像としての基板面画像を得る高さである基板面画像位置(基準位置)22を設けて画像を撮像して基準画像データ(第画像データ)を取得し、高さ管理基準値(計測位置)21−1で撮像した計測用画像データ(第画像データ)を取得し、基準画像データと計測用画像データとを比較して、上記両者間の明度差分を計算することにより、基板面からの高さ変位がある突起18の有無および場所を求めることができる。
このとき、基板面より所定の高さのオフセットする量は2[μm]前後の値であることから、対物レンズ2の倍率やN.Aおよび撮像カメラの分解能により観察系の焦点深度は異なるが、10倍程度の倍率の場合には、基板面の像への影響は無い。
また、このようなオフセットは、移動手段としてのピエゾアクチュエータ3をピエゾアクチュエータコントローラ4を介して制御する制御手段としての制御PC7により、基板面上に観測対象が存在しても干渉が発生しない基準位置と、上記観測対象の高さに応じた高さの測定位置とに制御することにより実行される。
なお、本実施の形態では、基板面画像位置22を、高さ管理基準値21−1だけオフセットした位置に設定した例を挙げたが、そのオフセット量としては特に上限を設定する必要はないが、オフセットさせるピエゾアクチュエータ3の変位量幅を考慮すると、干渉を絶対に生じない位置としては、高さ管理基準値21−1の高さ量程度を焦点深度の範囲内でさらにオフセットさせることが望ましい。
しかしながら、干渉による明度コントラストの変動は、周期性を有しており、二光束の位相ずれ量によっては、明度変化が発生しないケースがある。
図6は、ある突起欠陥を観察したときのインターフェログラムであり、高さ管理基準値21−1が、干渉縞の最大振幅に対し約Π/2だけ位相がずれた高さ位置に欠陥面が存在する場合を図示している。このとき、干渉による明度変化は、干渉が発生していない領域の明度25とほぼ同じであり、したがって、明度差を検出しても明度差がゼロとなるため突起を判別することはできない。
しかし、実際の突起欠陥は表面や角がR形状となっており、R形状の局所的な1点では明度差が得られなくても、その周囲では高さが違うため、XY軸方向に走査することで明度差を観察することができる。特に干渉縞の発生周期は約300[nm]であるため、Π/2である75[nm]のZ軸高さの変化により明度コントラストは最大で干渉縞コントラストの50%変動することから、R形状の大半は基板面との明度の差が得られる結果となり、突起の有無についての検出については問題が無い。
図6より、明度が基板面と同じ明度であっても、欠陥限界を示す高さ管理基準値21−1の位置に対しΠ/2位相分づつ高い方と低い方とにそれぞれ変動した位置である高さ位置23−1と高さ位置24−1とでは、共に各々の領域で発生する干渉縞の明度コントラストにおける50%程度の明度変化が得られることがわかる。
ただし、LCDの製造工程は多岐にわたっているが、工程により発生する欠陥の中には、膜はがれの欠陥により発生した、はがれた膜が、基板面に付着して発生する突起欠陥も発生することがある。
図7は膜はがれにより発生した膜状の突起欠陥の断面形状を図示している。このような膜状突起欠陥26は、その頂上部分27が平坦になっており、膜状突起欠陥26の周囲部分にR形状となった斜めのスロープ部分28が存在する形状となっている。この場合、膜面の高さによっては膜状突起欠陥26の平坦な膜面で明度コントラスト差を得ることができず、膜状突起欠陥26の膜状の端部でわずかに明度差が得られることになる。この場合、膜状突起欠陥26が、面積の大きな欠陥であるにもかかわらず微小な面積しか明度差を得ることができず、欠陥の検出対象から洩れる可能性がある。
ここで着目する点として、可干渉長の範囲内では、75[nm]といった微小な高さ変位により明度が大きく変動することがある。通常は、図2に示した装置構成を構築する場合には、顕微鏡と基板の位置関係を精度良く配置するために、防振や除振対策を施す。
しかし、実際には、完全に振動を排除することはできず、発明者が構築した実際の装置においても微振動が発生しており、これにより、可干渉長の範囲内で得られたインターフェログラム内の明度情報は、振動による時系列の変動誤差を含んだ値となっている。
図5で説明した、正常な基板面で観察される明度の変化は、高さ管理基準値21−1の高さに設定した対物レンズ2の合焦点位置においては、可干渉長の領域を外れているため、振動による高さ変位が生じても明度の変化は殆ど発生しない。一方で可干渉長の領域内にある突起による高さについては、振動による高さ変位により干渉縞の位相が変動し、これにより明度が観察の都度変化する。
したがって、高さ管理基準値21−1の高さに、対物レンズ2の合焦点を合わせて測定する場合において、複数回の撮像を行い複数毎の画像データを得ると、膜状突起欠陥26による明度の相違が見られる画像が一部の画像データで得られることがわかる。したがって、正常な基板面を観察した画像と、高さ管理基準値21−1の高さにおいて撮像した複数の画像データ毎との各々差分をそれぞれ計算すると、ある1枚の撮像された画像データの差分では膜状突起欠陥26を検出できなくても、他の撮像された画像データでの差分処理では膜状突起欠陥26を検出することができる。
これまでに述べた方法では、高さ管理基準値21−1に対し、前後の可干渉長の範囲内にある突起による高さ変位部分を検出するため、高さ管理の基準値が可干渉長の範囲で幅を持つことになり、管理基準としてはより高精度な基準での管理が要求される。
本実施の形態にて説明した検査装置としての面形状計測装置の場合、正常な基板を製造する中で発生する、一部の異常な基板を検出することが目的である。したがって、本来の目的である高速に突起欠陥を検出する目的において、これまでに述べた本発明の方法により、観察対象部位毎のZ軸方向の走査を省くことができるから、高速に突起欠陥の有無を検出することが可能となっている。
しかし、より高精度な基準での管理を求める場合には、突起を検出した場合のみ、Z軸方向にも対物レンズ2を走査して撮像を行い画素毎のインターフェログラムを取得し、これにより前述した方法で基板1の表面の3次元形状を計測することで、より高精度に突起高さを測定し、欠陥の有無をより正確に検査することが可能となる。
以上述べた本実施の形態における面形状計測方法の一例を図1に示すフローチャートに基づき説明する。図1は基板1のある任意の1箇所を検査するときの検査フローチャートである。STEP1では、予め制御PC7に記憶した検査位置(測定点)となるように基板1を移動する。
STEP2においては、予め制御PC7に記憶した高さである観察基準高さであるZ軸座標のZbへZ軸を移動し、基板面上で干渉の発生しない焦点位置である基板面画像位置22へ対物レンズ2を移動する。基板面画像位置22は、図5では、合焦点位置20−1に対し、高さ管理基準値21−1だけ、基板面上の合焦点位置より反対側へオフセットした高さとする。この領域では基板面でも膜面でも突起部分でも干渉が発生しない。
さらに、STEP3においては、基板面を撮像し、観察基準高さでの基板面画像Ibを得る。STEP4では、予め制御PC7に記憶した基板面からの高さ管理基準値のZ軸座標であるZtへZ軸を移動し、突起欠陥を管理する基準高さを合焦点位置とする焦点位置へ対物レンズ2を移動する。
STEP5においては、基板を撮像し、管理基準高さ値の位置に合焦点した管理高さ画像I(n)を撮像する、画像の(n)とは後述のSTEP8でN回の繰り返し撮像を行う場合にはnが1〜Nまで増加する複数枚の画像である。STEP6では、管理高さ画像I(n)から基板面画像Ibの明度差分の絶対値を計算して、明度変調量を抽出した画像Im(n)を求める。
STEP7においては、画像Im(n)を予め制御PC7に記憶した欠陥検出用の明度しきい値で2値化して、検出した突起が表現された欠陥画像Id(n)を求める。STEP8では、STEP5からSTEP7までの処理を繰り返すための動作を行い、予め制御PC7に記憶された繰り返し検出回数Nの回数だけ処理を繰り返す判断をし、繰り返す場合には、繰り返す度にnを1だけインクリメントしてSTEP5へ移行する。
STEP9においては、繰り返して検出した欠陥画像Id(n)の内容を画素単位でデータに対し論理OR処理を行い、検出した全ての欠陥を統合した画像IDを得る。STEP10では、画像IDに対し欠陥箇所を特定し領域分けするためにラベリング処理を行い、各ラベル毎の面積を計算し、予め制御PC7に記憶された面積しきい値を超える面積の欠陥があった場合には、本測定位置には欠陥候補があったものと判定し、面積しきい値を超える面積の欠陥が無い場合には、欠陥が無いものと判定する。
STEP11においては、STEP10で欠陥候補が合った場合には、欠陥の高さを精査するために対物レンズ2をZ軸方向に沿って移動させ走査して3次元形状を測定し、予め制御PC7に記録された高さおよび面積の判定しきい値を超える突起が観察された場合には、本測定位置には真の欠陥があったものと判定し、高さおよび面積の判定しきい値を超える突起が観察され無い場合には、本測定位置には管理基準高さ付近に高さを有する部位が存在するが、欠陥とはいえないため欠陥がないものと判定する。
本フローチャートにおいてSTEP8における繰り返しのための動作は、例えばSTEP7において、欠陥画像Id(n)には何も検出されなかった場合のみ繰り返しを実行してもよい。この場合、STEP9では、最新の欠陥画像Id(n)のみを画像IDへ代入する。
また、STEP10における欠陥候補の判定は、例えば欠陥候補を欠陥と断定し、欠陥の有無のみを検出する方法に変更し、STEP11とSTEP11の判定結果によるSTEP12の実行を廃止してもよい。
また、基板ステージ9による基板1の位置決めを行った場合の、物理的な基板面の高さ精度が低い場合には、STEP2において例えば一般的な顕微鏡装置に搭載されるオートフォーカス制御を行い。顕微鏡と基板面1の高さ関係を調整してもよい。
本フローチャートでは基板面画像を、高さ管理基準値21−1だけ、高さ管理基準値21−1の反対側へオフセットした高さとしたが、基板面画像を得る方法には液晶パネルが周期性のあるパターンを有していることを利用する方法がある。
図8は、TFT基板31の繰り返しパターンの説明である。TFT基板31はTFT33やゲートパターン35やソースパターン37と言ったパターンが規則正しく同じピッチで周期性を持って構成されている。取得した画像内に2箇所以上の繰り返しパターンが存在する場合、取得した画像をTFT画素ピッチ29だけ例えば図8では横方向にシフトした画像を作成し、取得した画像と明度差分の絶対値を得ることで明度変調量を抽出した画像IBを得ることができる。この場合、図1のフローチャートのSTEP2、STEP3、STEP4を、図9に示すように、STEP13、STEP14、STEP15の各処理にそれぞれ置き換えればよい。
STEP13では、予め制御PC7に記憶した基板面からの管理基準高さZtへZ軸を移動し、突起欠陥を管理する基準高さを合焦点位置とする焦点位置へ移動する。STEP14においては、基板を撮像し、管理基準高さに合焦した管理高さ画像を基板面画像Ibとして撮像する、ここで基板面画像Ibは突起欠陥が存在しない部位には、干渉が発生しない画像が観察されるため基板面の観察画像が得られる。
STEP15では、基板面画像IbをTFT画素ピッチ29だけ横にシフトした画像を作成する。シフトした画像の反対側はシフト画像を作成できない領域が発生するので、この領域にはシフト方向を逆にした結果得られる画像を配置する。STEP15より以降は、図7に示すSTEP5以降の処理を行うことで、Z軸を移動することなく突起の有無を検出することが可能となる。
また、本発明では、可干渉長が管理基準高さと基板面とを互いに分離できる長さより短いこと、すなわち管理基準高さでは干渉縞を生じるが基板面では干渉縞を生じないことを利用して高速な検出手段つまり面形状計測方法および面形状計測装置を実現している。
しかし、可干渉長は例えば高さ管理基準よりも高い領域に幅広い領域で突起検出を行いたい場合も発生する。例えば高さ管理基準を3[μm]としたが突起欠陥の高さが1[μm]から5[μm]の高さが一般的である場合である。このような場合、可干渉長を長く設定した場合もある。このような場合には、白色光源の照明光路内に、可視光波長領域内でのバンドパスフィルタを挿入して可干渉長を長くした構成にすることも可能である。
本実施の形態では、基板面上に凸形状の突起欠陥がある場合を説明したが、基板面上の凹形状の例えば膜のはがれなどの欠損欠陥を検査する場合には、高さ管理基準値21−1の高さを基板面よりも低い位置に配置することにより、突起欠陥と同様に欠損欠陥を検査することができる。
また、撮像画像による検出を同一条件で複数回実施しているが、この際、振動を利用して高さ変位を得る事例を説明したが、Z軸を干渉縞の位相のΠ/4からΠの範囲で高さを能動的に移動制御することにより高さ変位を得る方法を用いてもよい。この場合確実に高さが変位するため、より信頼性の高い検出が可能となる。
しかし、欠陥箇所の干渉縞の位相によっては、高さを変位させても、同一の明度となるケースも発生する。例えば、図5において高さ管理基準値21−1に対しΠだけ位相をオフセットする高さに移動しても明度は変化しない。したがって、振動による変位を利用した方法と、Z軸を駆動した変位を得る方法を組み合わせてもよい。
なお、上記実施の形態では、信号処理部を構成する各部材のうち、制御PC7が「CPUなどの演算手段がROMやRAMなどの記録媒体に格納されたプログラムコードを実行することで実現される機能ブロック」であり、残余の部材が、ハードウェアによって実現されている場合を例にして説明したが、制御PC7に対応する制御部を同様の処理を行うハードウェアで実現してもよい。
本発明に係る面形状計測方法を、コンピュータにて直接実行可能なプログラムコード自体、または、後述する解凍などの処理によってプログラムコードを生成可能なデータとしてのプログラムは、当該プログラム(プログラムコードまたは上記データ)を記録媒体に格納し、当該記録媒体を配付したり、あるいは、上記プログラムを、有線または無線の通信路を介して伝送するための通信手段で送信したりして配付されるようにしてもよい。
なお、通信路を介して伝送する場合、通信路を構成する各伝送媒体が、プログラムを示す信号列を伝搬し合うことによって、当該通信路を介して、上記プログラムが伝送される。また、信号列を伝送する際、送信装置が、プログラムを示す信号列により搬送波を変調することによって、上記信号列を搬送波に重畳してもよい。この場合、受信装置が搬送波を復調することによって信号列が復元される。
一方、上記信号列を伝送する際、送信装置が、デジタルデータ列としての信号列をパケット分割して伝送してもよい。この場合、受信装置は、受信したパケット群を連結して、上記信号列を復元する。また、送信装置が、信号列を送信する際、時分割/周波数分割/符号分割などの方法で、信号列を他の信号列と多重化して伝送してもよい。この場合、受信装置は、多重化された信号列から、個々の信号列を抽出して復元する。何れの場合であっても、通信路を介してプログラムを伝送できれば、同様の効果が得られる。
ここで、プログラムを配付する際の記録媒体は、取外し可能である方が好ましいが、プログラムを配付した後の記録媒体は、取外し可能か否かを問わない。また、上記記録媒体は、プログラムがコンピュータにて読み取り可能に記憶されていれば、書換え(書き込み)可能か否か、揮発性か否か、記録方法および形状を問わない。記録媒体の一例として、磁気テープやカセットテープなどのテープ、あるいは、フロッピー(登録商標)ディスクやハードディスクなどの磁気ディスク、または、CD−ROMや光磁気ディスク(MO)、ミニディスク(MD)やデジタルビデオディスク(DVD)などのディスクが挙げられる。また、記録媒体は、ICカードや光カードのようなカード、あるいは、マスクROMやEPROM、EEPROMまたはフラッシュROMなどのような半導体メモリであってもよい。あるいは、CPUなどの演算手段内に形成されたメモリであってもよい。
なお、上記プログラムコードは、上記各処理の全手順を上記演算手段へ指示するコードであってもよいし、所定の手順で呼び出すことで、上記各処理の一部または全部を実行可能な基本プログラム(例えば、オペレーティングシステムやライブラリなど)が既に存在していれば、当該基本プログラムの呼び出しを上記演算手段へ指示するコードやポインタなどで、上記全手順の一部または全部を置き換えてもよい。
また、上記記録媒体にプログラムを格納する際の形式は、例えば、実メモリに配置した状態のように、制御PC7がアクセスして実行可能な格納形式であってもよいし、実メモリに配置する前で、制御PC7が常時アクセス可能なローカルな記録媒体(例えば、実メモリやハードディスクなど)にインストールした後の格納形式、あるいは、ネットワークや搬送可能な記録媒体などから上記ローカルな記録媒体にインストールする前の格納形式などであってもよい。
また、プログラムは、コンパイル後のオブジェクトコードに限るものではなく、ソースコードや、インタプリトまたはコンパイルの途中で生成される中間コードとして格納されていてもよい。何れの場合であっても、圧縮された情報の解凍、符号化された情報の復号、インタプリト、コンパイル、リンク、または、実メモリへの配置などの処理、あるいは、各処理の組み合わせによって、上記演算手段が実行可能な形式に変換可能であれば、プログラムを記録媒体に格納する際の形式に拘わらず、同様の効果を得ることができる。
本発明は、(1.)基板面上について二光束干渉光学系を用いて観察する観察手段と、基板面上と観察手段の相対位置関係を移動する駆動手段と、観察した画像から取得したデータより基板上の表面状態を計測する計算処理手段を有する面形状計測手段であって、基板面と観察手段の相対位置関係が基板面上に干渉の発生しない位置関係で取得した基準データと、基板面と観察手段の相対位置関係が観察対象部位で干渉が発生する位置関係で取得したデータとを比較することにより、観察したい対象部位を検出することを特徴としている。
本発明(2.)は、(1.)の面形状計測手段であって、基板面と観察手段の相対位置関係が観察対象部位で干渉が発生する位置関係で取得したデータを複数回取得して、取得した複数のデータ毎に観察したい対象部位を検出することを特徴としている。
本発明(3.)は、(2.)の面形状計測手段であって、基板面と観察手段の相対位置関係が観察対象部位で干渉が発生する位置関係で取得したデータを複数回取得する際、基板面と観察手段の相対位置関係に対する外部または内部制御系の振動によるものであって、前記相対位置関係の能動的な制御によらない変位現象を利用して、取得した複数のデータが変位状態の相違のある状態となることを特徴としている。
本発明(4.)は、(1.)の面形状計測手段であって、基板面に干渉が発生しない高さは、基板面を基準として、基板面から観察対象部位で干渉が発生する位置関係の逆方向の同一高さであることを特徴としている。
本発明(5.)は、(1.)の面形状計測手段であって、基板面に干渉が発生しない高さは、観察対象部位で干渉が発生する位置であることを特徴としている。
本発明(6.)は、(1.)の面形状計測手段であって、二光束干渉光学系における照明手段には、可視光帯域内で選択的な波長帯域のみを通過するバンドパスフィルタを挿入することを特徴とする。
本発明(7.)は、(1.)ないし(6.)の何れかの計測手段を用いて観察したい対象部位を検出した後に、対象部位の候補が存在した場合には、基板面の3次元形状を測定することを特徴としている。
本発明(8.)は、(1.)ないし(7.)までの計測方法を何れか1つ以上有することを特徴とした面形状計測装置および記録媒体を有していることを特徴としている。
本発明の面形状計測方法、プログラム、記録媒体および面形状計測装置は、基板上の、10μm以下、より好ましくは5μm以下の高さの突起や深さの凹部といった微小な凹凸形状の異物を簡便に精度良く検出できるので、液晶パネル等のフラットパネルディスプレイといった半導体装置の製造の用途に適用できる。
本発明の実施の形態に係る面形状計測方法を示す、基板上の任意の1箇所に対する各計測ステップを示すフローチャートである。 本発明の実施の形態に係る突起欠陥検査装置の概念構成図である。 上記突起欠陥検査装置による、任意の1画素におけるZ軸方向に沿った対物レンズの合焦点位置を変化させたときの明度変化を示したインターフェログラムである。 上記突起欠陥検査装置による計測に用いる基板上の膜内に異物が混入して発生した突起欠陥を示す断面図である。 上記図3で示した欠陥点と正常点とに対する計測結果をそれぞれ示すインターフェログラムである。 上記突起欠陥を含むインターフェログラムであり、高さ管理基準での干渉縞による明度変化が無い例を示したものである。 上記突起欠陥検査装置による計測に用いる基板上に生じた膜状の突起欠陥を示す断面図である。 上記基板としてのTFT基板の繰り返しパターンを示す平面図である。 上記繰り返しパターンを有する基板に対する、各計測ステップの要部を示すフローチャートである。
符号の説明
1 基板
2 二光束干渉用の対物レンズ
3 ピエゾアクチュエータ
4 ピエゾアクチュエータコントローラ
5 鏡筒
6 撮像カメラ
7 制御用パーソナルコンピュータ
8 表示機器
9 基板ステージ
10 基板ステージのコントローラ
11 基板面に対し鉛直方向のZ軸
12 明度軸
13 Z軸の合焦点位置
14 干渉範囲の下限位置
15 干渉範囲の上限位置
16 基板面
17 基板面に生成した膜
18 異物
19 突起がある観察点
19−1 突起がある観察点における合焦点位置
19−2 突起がある観察点におけるインターフェログラム
20 正常な観察点
20−1 正常な観察点における合焦点位置
20−2 正常な観察点におけるインターフェログラム
21 高さ管理基準値
21−1 高さ管理基準値
22 基板面画像位置
23−1 欠陥高さ位置に対し干渉縞ピークの方向へΠ/2位相が変動した高さ位置
24−1 欠陥高さ位置に対し干渉縞ピークの逆方向へΠ/2位相が変動した高さ位置
25 干渉が発生していない高さ位置の明度
26 膜状突起欠陥
27 膜状突起欠陥の頂上部分
28 膜状突起欠陥の周囲の斜めスロープ部分
29 TFT画素ピッチ
31 TFT基板
33 TFT
35 ゲートパターン
37 ソースパターン

Claims (11)

  1. 基板面上を二光束干渉光学系により観察する観察手段と基板面との間の相対位置関係を観察対象部位の高さまたは深さで干渉が発生する位置関係に移動させ、
    上記観察手段により上記基板上を観察して第一観察データを取得し、
    観察手段と基板面との相対位置関係が基板面上にて干渉の発生しない位置関係で観察して第二観察データを取得し、
    第一観察データと第二観察データとを比較して基板上の対象部位の表面状態を検出することを特徴とする面形状計測方法。
  2. 請求項1に記載の面形状計測方法であって、観察手段と基板面との相対位置関係が基板面上にて干渉の発生しない位置関係で観察して第二観察データを取得する際の位置関係は、上記基板の表面方向に沿った方向での相対位置関係であることを特徴とする面形状計測方法。
  3. 請求項1または2に記載の面形状計測方法であって、
    基板面と観察手段との相対位置関係を観察対象部位で干渉が発生する位置関係に設定して取得した第一観察データを複数回取得し、
    取得した複数の第一観察データ毎に観察したい観察対象部位を検出し、検出した複数の結果の総和を検出結果とすることを特徴とした面形状計測方法。
  4. 請求項3に記載の面形状計測方法であって、
    基板面と観察手段との相対位置関係が観察対象部位で干渉が発生する位置関係で取得した第一観察データを複数回取得する際、変位現象が基板面と観察手段の相対位置関係に対する外部または内部制御系の振動によるものであって、前記相対位置関係の能動的な制御によらない変位現象であることを利用して、取得した複数の第一観察データが互いに変位状態の相違のある状態であることを特徴とする面形状計測方法。
  5. 請求項1に記載の面形状計測方法であって、
    第二観察データを、基板面を基準として、基板面から観察対象部位で干渉が発生する高さの位置関係と逆方向に相対位置関係を設定して取得することを特徴とする面形状計測方法。
  6. 請求項1ないし5の何れか1項に記載の面形状計測方法であって、
    第一観察データを、基板面にて干渉が発生せず、かつ観察対象部位で干渉が発生する位置に、相対位置関係の高さを設定して取得することを特徴とする面形状計測方法。
  7. 請求項1ないし6の何れか1項に記載の面形状計測方法であって、
    二光束干渉光学系における照明には、可視光帯域内で選択的な波長帯域のみの光を用いることを特徴とする面形状計測方法。
  8. 請求項1ないし7の何れか1項に記載の面形状計測方法を用いて観察したい対象部位を検出した後に、対象部位の候補が存在した場合にのみ、基板面の3次元形状を測定することを特徴とする面形状計測方法。
  9. 請求項1ないし8の何れか1項に記載の面形状計測方法をコンピュータにて実行可能に記載したプログラム。
  10. 請求項9記載のプログラムをコンピュータにて読み取り可能に記録した記録媒体。
  11. 基板面上について二光束干渉光学系を用いて観察して画像データを出力するための観察手段と、
    基板面と観察手段との間の相対位置関係を移動させるための駆動手段と、
    上記観測対象部位の高さまたは深さに応じた測定相対位置に上記移動手段を制御する制御手段と、
    上記測定相対位置で観察した画像データより基板上の表面状態を算出する計算処理手段とを有することを特徴とした面形状計測装置。

JP2004268544A 2004-09-15 2004-09-15 面形状計測方法、プログラム、記録媒体および面形状計測装置 Withdrawn JP2006084297A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004268544A JP2006084297A (ja) 2004-09-15 2004-09-15 面形状計測方法、プログラム、記録媒体および面形状計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004268544A JP2006084297A (ja) 2004-09-15 2004-09-15 面形状計測方法、プログラム、記録媒体および面形状計測装置

Publications (1)

Publication Number Publication Date
JP2006084297A true JP2006084297A (ja) 2006-03-30

Family

ID=36162927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004268544A Withdrawn JP2006084297A (ja) 2004-09-15 2004-09-15 面形状計測方法、プログラム、記録媒体および面形状計測装置

Country Status (1)

Country Link
JP (1) JP2006084297A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280833A (ja) * 2006-04-10 2007-10-25 Matsushita Electric Ind Co Ltd Pdp用基板の欠陥検査方法
WO2014208362A1 (ja) * 2013-06-25 2014-12-31 Ntn株式会社 塗布装置および高さ検出方法
WO2015129531A1 (ja) * 2014-02-25 2015-09-03 オムロン株式会社 検査装置、検査方法、プログラムおよび記録媒体

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280833A (ja) * 2006-04-10 2007-10-25 Matsushita Electric Ind Co Ltd Pdp用基板の欠陥検査方法
WO2014208362A1 (ja) * 2013-06-25 2014-12-31 Ntn株式会社 塗布装置および高さ検出方法
JP2015007564A (ja) * 2013-06-25 2015-01-15 Ntn株式会社 塗布装置および高さ検出方法
CN105247318A (zh) * 2013-06-25 2016-01-13 Ntn株式会社 涂布装置以及高度检测方法
WO2015129531A1 (ja) * 2014-02-25 2015-09-03 オムロン株式会社 検査装置、検査方法、プログラムおよび記録媒体
JP2015158440A (ja) * 2014-02-25 2015-09-03 オムロン株式会社 検査装置、検査方法、プログラムおよび記録媒体
CN105934665A (zh) * 2014-02-25 2016-09-07 欧姆龙株式会社 检查装置、检查方法、程序以及记录介质
CN105934665B (zh) * 2014-02-25 2019-04-12 欧姆龙株式会社 检查装置、检查方法以及记录介质

Similar Documents

Publication Publication Date Title
JP6189102B2 (ja) 塗布装置および高さ検出方法
US8514389B2 (en) Inspecting apparatus, three-dimensional profile measuring apparatus, and manufacturing method of structure
US20100321773A1 (en) Method and system for three-dimensional polarization-based confocal microscopy
JP6522344B2 (ja) 高さ検出装置、塗布装置および高さ検出方法
WO2013136620A1 (ja) 高次元輝度情報を用いた縞画像の位相分布解析方法、装置およびそのプログラム
KR20100014555A (ko) 기판상의 결점검출 방법 및 그 방법을 사용한 장치
JP2006329751A (ja) 表面形状測定方法及び表面形状測定装置
JP2008014768A (ja) 欠陥検査装置及び欠陥検査方法
JP2013050379A (ja) 硬さ試験機
JP2005189069A (ja) 表面形状測定方法及び表面形状測定装置
JP2019158351A (ja) 物体認識方法、高さ計測方法、及び、三次元計測方法
JP5292846B2 (ja) 観察装置と、観察方法
JP2020088400A (ja) レーザ加工装置及び撮像装置
JP4427632B2 (ja) 高精度三次元形状測定装置
JP5514641B2 (ja) レーザー干渉バンプ測定器
JP2006084297A (ja) 面形状計測方法、プログラム、記録媒体および面形状計測装置
KR20070091236A (ko) 결함 입자 측정 장치 및 결함 입자 측정 방법
JP4578674B2 (ja) 分離された領域を持つ縞画像の解析方法
Osten et al. New light sources and sensors for active optical 3D inspection
JP2006242853A (ja) 干渉装置及び平面形状の測定方法
JP2006153509A (ja) 表面形状測定装置、表面形状測定方法、表面形状測定プログラム及び記録媒体
JP2016008837A (ja) 形状測定方法、形状測定装置、構造物製造システム、構造物製造方法、及び形状測定プログラム
JP3372224B2 (ja) 表面検査装置、表面検査方法及び表面検査プログラムを記録した記録媒体
JP4496149B2 (ja) 寸法測定装置
WO2024057962A1 (ja) 検査方法、検査装置及びプログラム

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204