JP2006084064A - Ash melting device - Google Patents

Ash melting device Download PDF

Info

Publication number
JP2006084064A
JP2006084064A JP2004267219A JP2004267219A JP2006084064A JP 2006084064 A JP2006084064 A JP 2006084064A JP 2004267219 A JP2004267219 A JP 2004267219A JP 2004267219 A JP2004267219 A JP 2004267219A JP 2006084064 A JP2006084064 A JP 2006084064A
Authority
JP
Japan
Prior art keywords
slag
combustion gas
ash melting
water
dropping cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004267219A
Other languages
Japanese (ja)
Inventor
Naoki Fujiwara
直機 藤原
Tetsuya Iwase
徹哉 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2004267219A priority Critical patent/JP2006084064A/en
Publication of JP2006084064A publication Critical patent/JP2006084064A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chimneys And Flues (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent attachment of slag from a slag tap to a slag drop cylinder, and coagulative fixing of chloride in an combustion gas for heating slag, to piping. <P>SOLUTION: In this ash melting device comprising the slag tap 38 for dropping the slag from an ash melting furnace, the slag drop cylinder 39 connected with the slag tap, and a water tank mounted at a lower part of the slag drop cylinder, a combustion gas extracting part 60 is formed in a state of surrounding a lower outer periphery of the slag drop cylinder, a lower end of the combustion gas extracting part is mounted at a lower part with respect to a water level of the water tank, a clearance 65 is formed between a lower end of the slag drop cylinder and the water level of the water tank, and the combustion gas of the ash melting furnace is successively passed through the slag tap 38, the slag drop cylinder 39, the clearance 65 and the combustion gas extracting part 60. Further a nozzle 64 is mounted for jetting the water to the inclined piping 61, and the jetted water from the nozzle flows toward the combustion gas extracting part 60. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ごみガス化溶融システムに係り、特に、溶融炉におけるスラグ排出に際する信頼性向上、メインテナンスコスト低減に好適な灰溶融装置に関する。   The present invention relates to a refuse gasification melting system, and more particularly, to an ash melting apparatus suitable for improving reliability and reducing maintenance costs when discharging slag in a melting furnace.

近年、ごみ自身の燃焼熱を利用して灰を溶融、無害化するガス化溶融炉システムが実用化されつつある。図3は従来技術に関するごみガス化溶融システムの全体系統を示す構成図である。図3に示す全体構成における各構成要素の名称は後述する符号の説明欄を参照のこと。   In recent years, gasification and melting furnace systems that melt and detoxify ash using the combustion heat of garbage itself are being put into practical use. FIG. 3 is a block diagram showing the entire system of a waste gasification and melting system related to the prior art. For the names of the components in the overall configuration shown in FIG.

図3において、ごみは給じんホッパ1から定量供給機2、供給シュート5を通じてガス化炉6に供給される。配管21を通じて流動層8内に吹き込まれた空気は、ごみと反応し熱分解ガスが発生する。この熱分解反応熱(部分燃焼熱)により流動層8の温度は約600℃に維持されている。流動層式ガス化炉6は空気比が1以下、通常のごみであれば空気比0.3〜0.6といった空気比で運転されている。   In FIG. 3, the waste is supplied from the feed hopper 1 to the gasification furnace 6 through the fixed amount feeder 2 and the supply chute 5. The air blown into the fluidized bed 8 through the pipe 21 reacts with dust to generate pyrolysis gas. The temperature of the fluidized bed 8 is maintained at about 600 ° C. by this thermal decomposition reaction heat (partial combustion heat). The fluidized bed type gasification furnace 6 is operated at an air ratio of 1 or less and an air ratio of 0.3 to 0.6 for ordinary waste.

ガス化炉6内での灰の溶融粘着トラブルを避けるため、流動層も含めたガス化炉6の温度が約900℃以下になる様に空気比を制御している。すなわち、流動層並びに炉内温度が高くなり過ぎる様であれば、ガス化炉6の空気比を下げ、逆に温度が下がり過ぎる様であれば空気比を増す操作を行って炉内温度を制御している。流動層8は通常、粒径が1ミリ程度の砂を層内媒体として使用している場合が多い。すなわち、流動層内には細かい砂が充填されている。   The air ratio is controlled so that the temperature of the gasification furnace 6 including the fluidized bed is about 900 ° C. or less in order to avoid the ash melting and sticking trouble in the gasification furnace 6. That is, if the fluidized bed and the furnace temperature are too high, the air ratio of the gasification furnace 6 is lowered. If the temperature is too low, the furnace temperature is controlled by increasing the air ratio. is doing. In many cases, the fluidized bed 8 usually uses sand having a particle diameter of about 1 mm as an in-layer medium. That is, the fluidized bed is filled with fine sand.

一方、ごみ中には粗大な不燃異物が混入しているのが通例であり、これらの不燃異物は流動層8の底部に沈積する。不燃異物が大量に流動層内に沈積すると流動化が阻害されるため、排出装置22を用いて定期的あるいは連続的に不燃異物を抜き出している。その際、細かい層内媒体も不燃異物と混じて排出される。   On the other hand, coarse incombustible foreign matter is usually mixed in the waste, and these incombustible foreign matter is deposited at the bottom of the fluidized bed 8. Since fluidization is hindered when a large amount of incombustible foreign matter is deposited in the fluidized bed, the incombustible foreign matter is extracted regularly or continuously using the discharge device 22. At that time, the fine in-layer medium is also mixed with incombustible foreign matter and discharged.

排出装置22を用いて排出された粗大な不燃異物と細かい層内媒体の混合物は、フルイ43により細かい層内媒体を分離し、配管30を通じて再び流動層8に戻し、層内媒体として再利用する。一方、流動化を阻害する粗大な不燃異物は配管44を通じて排出され、金属分離機45などを用いて不燃異物中の鉄、アルミなどの有価物を分離し、配管47を通じて回収する。一方、瓦礫類が主体の残りの粗大不燃異物は配管46から排出され埋立処分されている。   The mixture of the coarse incombustible foreign matter and the fine in-layer medium discharged by using the discharge device 22 separates the fine in-layer medium by the fluid 43 and returns to the fluidized bed 8 through the pipe 30 to be reused as the in-layer medium. . On the other hand, coarse incombustible foreign matter that hinders fluidization is discharged through a pipe 44, and valuables such as iron and aluminum in the non-combustible foreign matter are separated using a metal separator 45 or the like and collected through a pipe 47. On the other hand, the remaining coarse incombustible foreign matter mainly composed of rubble is discharged from the pipe 46 and disposed of in landfill.

ガス化炉6でごみから発生した熱分解ガス及びチャーは、煙道12を通じて溶融炉9に入り配管20を通じて溶融炉9に吹き込まれた空気と反応し、完全燃焼する。チャーに含まれる灰の大部分は、溶融炉9の高熱により溶融し、スラグとなってスラグタップ38、スラグ落下筒39、スラグ排出装置11を経由し系外に排出される。   The pyrolysis gas and char generated from the garbage in the gasification furnace 6 enter the melting furnace 9 through the flue 12 and react with the air blown into the melting furnace 9 through the pipe 20 to be completely burned. Most of the ash contained in the char is melted by the high heat of the melting furnace 9 and becomes slag and is discharged out of the system via the slag tap 38, the slag dropping cylinder 39, and the slag discharge device 11.

溶融炉9は1,300℃以上の高温燃焼炉であるため過剰空気燃焼を行うと大量のサーマルNOxが生成する。かといって、逆に空気比を下げ過ぎると未燃分であるCOが多量に発生する。ある程度のCOであれば後段の二次燃焼炉24で吹き込んだ空気で完全に燃焼できるが、あまり多量のCOであれば二次燃焼炉24で燃焼し切れず、ボイラ3、ガス急冷塔13、集じん器15を経由し煙突17から大気中に放出されてしまう。   Since the melting furnace 9 is a high-temperature combustion furnace at 1,300 ° C. or higher, a large amount of thermal NOx is generated when excess air combustion is performed. On the other hand, if the air ratio is lowered too much, a large amount of unburned CO is generated. If it is a certain amount of CO, it can be burned completely with the air blown in the secondary combustion furnace 24 in the subsequent stage, but if it is too much CO, it cannot be burned completely in the secondary combustion furnace 24, and the boiler 3, the gas quenching tower 13, It will be discharged into the atmosphere from the chimney 17 via the dust collector 15.

NOxとCOのバランスを考慮し、0.9〜1.05近辺の空気比になる様に溶融炉9を制御している。若干のCOとNOxを含んだ溶融炉9の排ガスは、二次燃焼炉24に入り空気ノズル42から吹き込んだ空気によりCOを完全燃焼させる。この二次燃焼炉24での空気比は完全燃焼をさせるため、通常1.2〜1.3程度になる様に制御されている。空気比がこの値より高すぎると排ガス量が不必要に多くなるため、排ガスの顕熱損失が大きくボイラ効率が低下する、又、燃焼に関与しない余剰の空気によるテンパリング効果により炉内温度が低下しCOの燃焼が妨げられる。そのため、この二次燃焼炉24の空気比の制御も重要である。集じん器15出口のCO計58は二次燃焼炉24で燃焼し切れなかったCOを監視する為に設置してある.
完全燃焼した排ガスはボイラ3、エアヒータ14、ガス急冷塔13、集じん器15を経て浄化され煙突から大気に放出される。集じん器15での捕集灰は、溶融炉9をすり抜けた微細な灰及び集じん器15に至る煙道中で凝縮したフュームとなった低沸点物質並びに酸性ガスと消石灰が反応して生成したCa化合物から成っている。この集じん灰は配管48を通じて灰安定化設備に送られ薬剤などで安定化処理をされた後に埋立処分されている。
Considering the balance of NOx and CO, the melting furnace 9 is controlled so that the air ratio is in the vicinity of 0.9 to 1.05. The exhaust gas from the melting furnace 9 containing some CO and NOx enters the secondary combustion furnace 24 and completely burns CO with the air blown from the air nozzle 42. The air ratio in the secondary combustion furnace 24 is normally controlled to be about 1.2 to 1.3 in order to cause complete combustion. If the air ratio is too high, the amount of exhaust gas will increase unnecessarily, resulting in a large sensible heat loss of the exhaust gas and a decrease in boiler efficiency, and a decrease in the furnace temperature due to the tempering effect caused by excess air not involved in combustion. CO combustion is hindered. Therefore, control of the air ratio of the secondary combustion furnace 24 is also important. A CO meter 58 at the outlet of the dust collector 15 is installed to monitor the CO that has not been burned out in the secondary combustion furnace 24.
The completely burned exhaust gas is purified through the boiler 3, the air heater 14, the gas quenching tower 13, and the dust collector 15, and discharged from the chimney to the atmosphere. The collected ash in the dust collector 15 is generated by the reaction between the fine ash that has passed through the melting furnace 9 and the low-boiling substances that have become fumes condensed in the flue leading to the dust collector 15, as well as acid gas and slaked lime. It consists of a Ca compound. The dust ash is sent to an ash stabilization facility through a pipe 48 and stabilized by chemicals, and then disposed of in landfill.

ごみは発熱量が低いため、溶融炉9の温度は灰の流動温度よりもやや高い程度の温度しか維持できない。溶融したスラグは溶融炉からスラグタップ38より滴り落ちスラグ落下筒39内を滴下しスラグ排出装置11に溜められた水により冷却され水砕スラグとなる。   Since the amount of heat generated from garbage is low, the temperature of the melting furnace 9 can only be maintained at a temperature slightly higher than the flow temperature of ash. The molten slag drops from the slag tap 38 from the melting furnace, drops in the slag dropping cylinder 39, is cooled by the water stored in the slag discharge device 11, and becomes granulated slag.

ガス化溶融システムでは、溶融炉9が最も高温の部位である。すなわち、溶融炉9から排出された後のスラグは冷却される一方である。そのため溶融し難いスラグの場合には、溶融炉9内では溶融流動状態であるが、溶融炉9を出たスラグタップ38付近で固化閉塞する、といったトラブルが往々にして発生する。それを防止するため、溶融炉9からの高温燃焼ガスの一部をスラグタップ38を経由して抜き出す事によりスラグタップ38付近を加熱し、スラグ固化トラブルを防止する方法が提案されている。   In the gasification melting system, the melting furnace 9 is the hottest part. That is, the slag after being discharged from the melting furnace 9 is being cooled. For this reason, in the case of slag that is difficult to melt, there is often a problem that the slag is in a molten and flowing state in the melting furnace 9 but solidified and clogged in the vicinity of the slag tap 38 exiting the melting furnace 9. In order to prevent this, a method has been proposed in which a portion of the high-temperature combustion gas from the melting furnace 9 is extracted through the slag tap 38 to heat the vicinity of the slag tap 38 to prevent slag solidification trouble.

すなわち、図3に示す配管40からの高圧空気を作動流体とするエジェクター41を用いて、配管51を経由してスラグ落下筒39からガスを吸引しスラグタップ38部に溶融炉9からの高温燃焼ガスを通す方法である。配管51を通じて吸引したガスと配管40からの高圧空気の混合物は、配管52を通じて二次燃焼炉24に吹き込まれる。図4には従来技術に関する溶融炉のスラグ落下筒部分における概略構造と機能を示す。   That is, using the ejector 41 that uses high-pressure air from the pipe 40 shown in FIG. 3 as the working fluid, the gas is sucked from the slag dropping cylinder 39 via the pipe 51, and the high-temperature combustion from the melting furnace 9 into the slag tap 38 part. This is a method of passing gas. A mixture of the gas sucked through the pipe 51 and the high-pressure air from the pipe 40 is blown into the secondary combustion furnace 24 through the pipe 52. FIG. 4 shows a schematic structure and function in a slag dropping cylinder portion of a melting furnace related to the prior art.

また、溶融炉を構成する煙道部への塩素、ナトリウム又はカリウムなどの低沸点化合物の凝縮付着による閉塞トラブル防止のための従来技術として、例えば、特許文献1に示すような技術が提案、開示されている。これによると、灰層の表面から揮散したガスが循環域に滞留し、これを抜き出し管より抜き出すことで、煙道を通じて排出される排ガス中には極く少量の揮散ガスが含まれるのみであり閉塞が防止される。
特開平11−99818号公報
In addition, as a conventional technique for preventing clogging trouble due to condensation of low boiling point compounds such as chlorine, sodium or potassium on the flue portion constituting the melting furnace, for example, a technique as shown in Patent Document 1 is proposed and disclosed. Has been. According to this, the gas volatilized from the surface of the ash layer stays in the circulation area, and by extracting it from the extraction pipe, the exhaust gas discharged through the flue contains only a very small amount of volatilized gas. Blockage is prevented.
Japanese Patent Laid-Open No. 11-99818

しかしながら、図4に示す従来技術には、次のような解決課題が存在する。すなわち、(1)配管51を通じて吸引されるガス流れにより、スラグ滴が振れスラグ落下筒内壁に衝突、付着固化したりあるいはスラグ滴がガス流に乗って配管51内に吸い込まれたりする場合がある。(2)配管51の吸い込み口に近い部分のスラグタップは高温燃焼ガスが偏流するため加熱されるが、吸い込み口から遠い部分のスラグタップは加熱され難い。(3)吸引した燃焼ガスが配管51内で冷却されるに伴い、溶融炉で気化したNaCl,CaClなどの塩化物、鉛、スズなどの低沸点物質が凝縮固化し、配管51入口部に付着成長し配管を閉塞させる虞がある。 However, the conventional technique shown in FIG. 4 has the following problem to be solved. That is, (1) the gas flow sucked through the pipe 51 may cause the slag droplets to shake and collide with the inner wall of the slag dropping cylinder, solidify, or the slag droplets may be sucked into the pipe 51 along the gas flow. . (2) The portion of the slag tap near the suction port of the pipe 51 is heated because the high-temperature combustion gas drifts, but the portion of the slag tap far from the suction port is hardly heated. (3) As the suctioned combustion gas is cooled in the pipe 51, low boiling point substances such as NaCl, CaCl 2 , chloride, lead, tin, etc. vaporized in the melting furnace condense and solidify, and enter the pipe 51 inlet. There is a risk that it will adhere and grow and block the piping.

前記課題を解決するために、本発明は主として次のような構成を採用する。
灰溶融炉と二次燃焼室とを結ぶ煙道の下部に設けられて前記灰溶融炉からのスラグを流下させるスラグタップと、前記スラグタップに連結したスラグ落下筒と、前記スラグ落下筒の下方に設置した水槽と、を備えた灰溶融装置において、
前記スラグ落下筒の下部外周を取り囲む燃焼ガス抜出部を設け、前記燃焼ガス抜出部の下端を前記水槽の水面より下方に配置し、
前記スラグ落下筒の下端と前記水槽水面との間に隙間を形成し、
前記灰溶融炉の燃焼ガスが、前記スラグタック、前記スラグ落下筒、前記隙間、前記燃焼ガス抜出部を順に通る構成とする。
In order to solve the above problems, the present invention mainly adopts the following configuration.
A slag tap provided at a lower part of a flue connecting the ash melting furnace and the secondary combustion chamber to flow down the slag from the ash melting furnace, a slag dropping cylinder connected to the slag tap, and below the slag dropping cylinder In an ash melting apparatus equipped with a water tank installed in
Providing a combustion gas extraction part surrounding a lower outer periphery of the slag dropping cylinder, and arranging a lower end of the combustion gas extraction part below the water surface of the water tank;
Forming a gap between the lower end of the slag dropping cylinder and the water surface of the tank,
The combustion gas of the ash melting furnace passes through the slag tack, the slag dropping cylinder, the gap, and the combustion gas extraction unit in this order.

また、灰溶融炉と二次燃焼室とを結ぶ煙道の下部に設けられて前記灰溶融炉からのスラグを流下させるスラグタップと、前記スラグタップに連結したスラグ落下筒と、前記スラグ落下筒の下方に設置した水槽と、を備えた灰溶融装置において、
前記スラグ落下筒の下部外周を取り囲む燃焼ガス抜出部を設け、前記燃焼ガス抜出部の下端を前記水槽の水面より下方に配置し、
前記スラグ落下筒の下端を前記水槽の水面より下方に配置し、
前記スラグ落下筒の前記水面近傍部に複数の燃焼ガス抜き孔を設け、
前記灰溶融炉の燃焼ガスが、前記スラグタック、前記スラグ落下筒、前記燃焼ガス抜き孔、前記燃焼ガス抜出部を順に通る構成とする。
A slag tap provided at a lower part of a flue connecting the ash melting furnace and the secondary combustion chamber to allow the slag from the ash melting furnace to flow down; a slag dropping cylinder connected to the slag tap; and the slag dropping cylinder In an ash melting device provided with a water tank installed below,
Providing a combustion gas extraction part surrounding a lower outer periphery of the slag dropping cylinder, and arranging a lower end of the combustion gas extraction part below the water surface of the water tank;
The lower end of the slag dropping cylinder is disposed below the water surface of the water tank,
A plurality of combustion gas vent holes are provided in the vicinity of the water surface of the slag dropping cylinder,
The combustion gas of the ash melting furnace passes through the slag tack, the slag dropping cylinder, the combustion gas vent hole, and the combustion gas extraction portion in this order.

本発明によれば、スラグタップから最も遠い箇所で円周部から均一に燃焼ガスを吸引することによって、スラグタップ開口部における周縁部で燃焼ガス抜出量の偏りがなくなり、さらに、スラグタップからのスラグ滴の水平方向の振れを少なくすることができる。   According to the present invention, by uniformly sucking the combustion gas from the circumferential portion at the position farthest from the slag tap, there is no bias in the amount of extraction of the combustion gas at the peripheral portion in the slag tap opening, and further from the slag tap. The horizontal shake of the slag droplets can be reduced.

また、燃焼ガスの通路の壁部分に水を流下させることで塩化物などの低沸点物質を除去することができる。   Further, low boiling point substances such as chlorides can be removed by flowing water down the wall portion of the combustion gas passage.

また、塩化物などの除去によって、ガス化溶融システム全体の信頼性が向上し、プラント運転コストの低減につながる。   Moreover, the removal of chloride and the like improves the reliability of the entire gasification and melting system, leading to a reduction in plant operating costs.

本発明の実施形態に係る灰溶融装置について、図1と図2を参照しながら以下詳細に説明する。図1は本発明の実施形態に係る灰溶融装置におけるスラグ排出の構成例を示す図である。図2は本実施形態に係る灰溶融装置におけるスラグ排出の他の構成例を示す図である。なお、本発明の実施形態において、ガス化溶融装置の全体構成は図3に示す系統構成例を援用する。   An ash melting apparatus according to an embodiment of the present invention will be described in detail below with reference to FIGS. 1 and 2. FIG. 1 is a diagram showing a configuration example of slag discharge in an ash melting apparatus according to an embodiment of the present invention. FIG. 2 is a diagram showing another configuration example of slag discharge in the ash melting apparatus according to the present embodiment. In addition, in embodiment of this invention, the system configuration example shown in FIG. 3 is used for the whole structure of a gasification melting apparatus.

図1、図2において、11はスラグ排出装置、31はスラグ、38はスラグタップ(灰溶融炉9からのスラグを流下させるための開口部)、39はスラグ落下筒、60は均等抜出区画部(スラグ落下筒の下部外周を取り囲んだ燃焼ガス抜き出し部)、61は配管、62は注水ヘッダ、63は注水孔、64は水噴射ノズル、65は隙間、66はガス抜き孔、67は水配管、をそれぞれ表す。   1 and 2, 11 is a slag discharge device, 31 is a slag, 38 is a slag tap (opening for flowing down the slag from the ash melting furnace 9), 39 is a slag dropping cylinder, and 60 is an even extraction section Part (combustion gas extraction part surrounding the lower outer periphery of the slag dropping cylinder), 61 piping, 62 water injection header, 63 water injection hole, 64 water injection nozzle, 65 gap, 66 gas exhaust hole, 67 water Each represents piping.

図1に示す構成は、スラグ排出装置11の水面近傍から円周方向に均等にガスを吸引する例である。スラグ落下筒39の下部外周に均等抜出区画部60(ガスを周上で均等に抜き出す部材)を設け、この均等抜出区画部60に配管61を接続する。ここで、スラグ落下筒38の最下端と水槽水面との間には隙間65を設け、スラグ落下筒の下方部外周に均等抜出区画部60を設けるとともにこの均等抜出区画部60の下端を水面下に配して水封構造を形成する。更に、均等抜出区画部60の上部に注水ヘッダ62を設け、注水ヘッダ62から多数の注水孔63を通じてスラグ落下筒39の内壁、外壁及び均等抜出区画部60の内壁に注水できる構造となっている。注水ヘッダ62への水配管67の水は、系統外から供給しても良く、また、水槽の水を循環させても良い。   The configuration shown in FIG. 1 is an example in which gas is sucked evenly in the circumferential direction from the vicinity of the water surface of the slag discharge device 11. A uniform extraction section 60 (a member for extracting gas uniformly on the circumference) is provided on the outer periphery of the lower portion of the slag dropping cylinder 39, and a pipe 61 is connected to the uniform extraction section 60. Here, a gap 65 is provided between the lowermost end of the slag dropping cylinder 38 and the water surface of the aquarium, and an equal extraction section 60 is provided on the outer periphery of the lower portion of the slag dropping cylinder, and the lower end of the equal extraction section 60 is provided. A water seal structure is formed under the water surface. Further, a water injection header 62 is provided on the upper part of the uniform extraction section 60, and water can be injected from the water injection header 62 to the inner wall and outer wall of the slag dropping cylinder 39 and the inner wall of the uniform extraction section 60 through a large number of water injection holes 63. ing. The water in the water pipe 67 to the water injection header 62 may be supplied from outside the system, or the water in the water tank may be circulated.

また、水噴射ノズル64を配置した配管61は、均等抜出区画部60に向かって傾斜して接続されており、噴射水がスラグ排出装置11の水槽に流入する構造になっている。   Further, the pipe 61 in which the water injection nozzle 64 is arranged is connected to be inclined toward the uniform extraction section 60, so that the injection water flows into the water tank of the slag discharge device 11.

図1に示す構成例の動作を説明すると、配管61を通じて図1に図示していないエジェクタ(図3のエジェクタ41を参照)などを用いて、ガスを吸引すると、スラグ落下筒39の最下端円周部に設けた隙間65から、円周方向に均等にガスが吸引され、スラグタップ38に存するガスはほぼ垂直に下向きに流れる。その結果、スラグ滴をスラグ落下筒39の水平方向に振らせる速度成分を無くすることが出来るとともに(図4に示すスラグ滴の流れと対比して)、スラグタップ38開口部においても均一な流れを形成できるため、均一なスラグタップ38の加熱を実現できる。   The operation of the configuration example shown in FIG. 1 will be described. When gas is sucked through a pipe 61 using an ejector not shown in FIG. 1 (see the ejector 41 in FIG. 3) or the like, the lowermost circle of the slag dropping cylinder 39 is drawn. From the gap 65 provided in the peripheral portion, the gas is evenly sucked in the circumferential direction, and the gas existing in the slag tap 38 flows downward substantially vertically. As a result, it is possible to eliminate the velocity component that causes the slag droplet to shake in the horizontal direction of the slag dropping cylinder 39 (in contrast to the flow of the slag droplet shown in FIG. 4), and a uniform flow even at the opening of the slag tap 38. Therefore, uniform heating of the slag tap 38 can be realized.

スラグタップ38から吸引した高温燃焼ガスは、スラグ落下筒39の下部内壁、均等抜出区画部60の部分で冷却され、その際、溶融炉9で気化し燃焼ガス中に蒸気として含まれている塩化物、低沸点金属などが凝縮して壁に付着成長する。この壁付着をそのままにしておくと、ガス通路の閉塞に至るため注水ヘッダ62からスラグ落下筒39の下部内壁及び外壁、均等抜出区画部60の内壁に注水して除去する。燃焼ガス中に蒸気として含まれている塩化物、低沸点金属などはほとんど全てがNaCl,KCl,CaClなどの水に易溶性の物質であるため、注水により容易に除去できる。 The high-temperature combustion gas sucked from the slag tap 38 is cooled by the lower inner wall of the slag dropping cylinder 39 and the portion of the uniform extraction section 60, and is vaporized in the melting furnace 9 and included in the combustion gas as steam. Chloride, low boiling point metal, etc. condense and grow on the wall. If this wall adhesion is left as it is, the gas passage is blocked, so that water is poured from the water injection header 62 to the lower inner wall and outer wall of the slag dropping cylinder 39 and the inner wall of the uniform extraction section 60 to be removed. Almost all of chlorides, low boiling point metals, etc. contained in the combustion gas as steam are easily soluble in water such as NaCl, KCl, CaCl 2 and can be easily removed by water injection.

燃焼ガス中の塩化物、低沸点金属などの一部は均等抜出区画60をすり抜けて配管61の入口部分に凝縮付着するが、これに対しては水噴射ノズル64からの水により溶解除去することができる。   Some of chlorides, low boiling point metals, etc. in the combustion gas pass through the uniform extraction section 60 and condense and adhere to the inlet portion of the pipe 61, but this is dissolved and removed by water from the water jet nozzle 64. be able to.

配管61を通じて抜き出したガスは、図3に示した従来技術と同様にエジェクタ41などを用いて二次燃焼炉24に送り、未燃ガスなどを完全燃焼させる。エジェクタ41の代わりに送風機などを用いることもできる。   The gas extracted through the pipe 61 is sent to the secondary combustion furnace 24 using the ejector 41 and the like as in the prior art shown in FIG. A blower or the like can be used instead of the ejector 41.

次に、図2に示す本実施形態の他の構成例においては、スラグ落下筒39の下部からのガス抜出をスラグ落下筒39の下方部に設けた多数のガス抜き孔66を通じて行う例を示している。ここで、図2の構成例では、スラグ落下筒39の最下端は、図1とは異なり、水面に没している。この構成例においても抜き出したガスの処理は図3に示した従来技術と同様に処理して良い。図2に示す構成例はスラグ落下筒39の下方部からのガス抜出部の形状が異っているが、その機能は図1に示す構成例と同様である。   Next, in another configuration example of the present embodiment shown in FIG. 2, an example in which gas extraction from the lower portion of the slag dropping cylinder 39 is performed through a number of gas vent holes 66 provided in a lower portion of the slag dropping cylinder 39. Show. Here, in the configuration example of FIG. 2, the lowermost end of the slag dropping cylinder 39 is submerged in the water surface, unlike FIG. 1. Also in this configuration example, the extracted gas may be processed in the same manner as in the prior art shown in FIG. The configuration example shown in FIG. 2 differs in the shape of the gas extraction part from the lower part of the slag dropping cylinder 39, but the function is the same as that of the configuration example shown in FIG.

以上説明したように、一般に、流動床式ごみガス化溶融システムではごみの発熱量が低いため灰溶融炉の温度に余裕が少なく、スラグタップでのスラグ固化トラブルが生じ易く、その対策として、従来、スラグタップから高温の燃焼ガスを吸引し、スラグタップ並びにスラグの温度維持を図っているが、従来技術では吸引した燃焼ガスの偏流、ガス流れによるスラグ滴の振れ、抜出配管内での塩化物の付着閉塞、といった信頼性の面で改善すべき課題が存在していたので、この課題を解決するために、本発明の実施形態に係る灰溶融装置の特徴は、次のような構成と、機能ないし作用を奏するものである。   As described above, in general, fluidized bed waste gasification and melting systems have low heat generation of waste, so there is little room in the temperature of the ash melting furnace, and slag solidification problems with slag taps are likely to occur. In the conventional technology, high temperature combustion gas is sucked from the slag tap and the temperature of the slag tap and slag is maintained. However, in the prior art, the drift of the sucked combustion gas, slag droplet fluctuation due to the gas flow, and chlorination in the extraction pipe Since there was a problem to be improved in terms of reliability, such as adhesion and blockage of objects, in order to solve this problem, the features of the ash melting apparatus according to the embodiment of the present invention are as follows: , Function or action.

すなわち、スラグ落下筒の最下部円周部分に隙間、あるいはスラグ落下筒の下部に多数のガス抜き孔を配置して、スラグタップから最も遠い部分からガスを吸引する。また、スラグ落下筒の最下部円周部分に隙間、あるいはスラグ落下筒の下部に多数のガス抜き孔を配置して、スラグタップから最も遠い部分で且つ円周部から均等にガスを吸引する。さらに、スラグ落下筒の内壁、外壁部分に水を流下あるいは噴射する設備を設ける。   That is, a gap is provided in the lowermost circumferential portion of the slag dropping cylinder, or a number of gas vent holes are provided in the lower portion of the slag dropping cylinder, and gas is sucked from the portion farthest from the slag tap. Further, a gap is provided in the lowermost circumferential portion of the slag dropping cylinder or a large number of gas vent holes are provided in the lower portion of the slag dropping cylinder so that the gas is evenly sucked from the circumferential portion at the portion farthest from the slag tap. Furthermore, a facility for flowing or jetting water is provided on the inner wall and the outer wall of the slag dropping cylinder.

このような本実施形態の構成によって、スラグ落下筒下部に設けたガス抜出孔が、スラグタップから離れれば離れる程、幾何学的にみて、ガス流れの鉛直方向のガス速度成分が増し、水平方向のガス速度成分が小さくなるため、スラグ滴の水平方向の振れが少なくなる。また、スラグタップ周縁部から等距離の位置からガス抜きを行うため、スラグタップ38の孔周方向におけるガスの抜出量の偏よりが少なくなる。さらに、スラグ落下筒の壁に付着する付着物の大部分は容易に水に溶解する塩化物であるため水で容易に除去できる。   With such a configuration of the present embodiment, as the gas extraction hole provided in the lower portion of the slag dropping cylinder is further away from the slag tap, the gas velocity component in the vertical direction of the gas flow increases geometrically as the distance increases. Since the gas velocity component in the direction becomes small, the horizontal shake of the slag droplet is reduced. Further, since the gas is extracted from a position equidistant from the peripheral edge of the slag tap, the deviation of the gas extraction amount in the circumferential direction of the slag tap 38 is reduced. Furthermore, since most of the deposits adhering to the wall of the slag dropping cylinder are chlorides that are easily dissolved in water, they can be easily removed with water.

本発明の実施形態に係る灰溶融装置におけるスラグ排出の構成例を示す図である。It is a figure which shows the structural example of the slag discharge | emission in the ash melting apparatus which concerns on embodiment of this invention. 本実施形態に係る灰溶融装置におけるスラグ排出の他の構成例を示す図である。It is a figure which shows the other structural example of the slag discharge | emission in the ash melting apparatus which concerns on this embodiment. 従来技術に関するごみガス化溶融システムの全体系統を示す構成図である。It is a block diagram which shows the whole system | strain of the refuse gasification melting system regarding a prior art. 従来技術に関する溶融炉のスラグ落下筒部分における概略構造と機能を示す図である。It is a figure which shows the general | schematic structure and function in the slag dropping cylinder part of the melting furnace regarding a prior art.

符号の説明Explanation of symbols

1…給塵ホッパ
2…定量供給機
3…ボイラ
5…供給シュート
6…ガス化炉
7…油噴射ノズル
8…流動層
9…溶融炉
10…起動バーナ
11…スラグ排出装置
13…ガス急冷塔
14…エアーヒータ
15…集塵器
16…誘引送風機
17…煙突
18…ダンパ
19…送風機
4,20,21,23,25,30,32,37,40,44,46,47, 48,51,52…配管
22…排出装置
24…二次燃焼炉
26〜29…制御弁
31…スラグ
12,33,35…煙道
34,36,49,50…流量計
38…スラグタップ
39…スラグ落下筒
41…エジェクタ
42…空気ノズル
43…フルイ
45…金属分離機
57…O
58…CO計
DESCRIPTION OF SYMBOLS 1 ... Dust supply hopper 2 ... Fixed quantity feeder 3 ... Boiler 5 ... Supply chute 6 ... Gasification furnace 7 ... Oil injection nozzle 8 ... Fluidized bed 9 ... Melting furnace 10 ... Start-up burner 11 ... Slag discharge device 13 ... Gas quench tower 14 ... Air heater 15 ... Dust collector 16 ... Attracting fan 17 ... Chimney 18 ... Damper 19 ... Blower 4,20,21,23,25,30,32,37,40,44,46,47, 48,51,52 ... Piping 22 ... Exhaust device 24 ... Secondary combustion furnace 26-29 ... Control valve 31 ... Slag 12, 33, 35 ... Flue 34, 36, 49, 50 ... Flow meter 38 ... Slag tap 39 ... Slag dropping cylinder 41 ... Ejector 42 ... Air nozzle 43 ... Fluy 45 ... Metal separator 57 ... O 2 meter 58 ... CO meter

Claims (6)

灰溶融炉と二次燃焼室とを結ぶ煙道の下部に設けられて前記灰溶融炉からのスラグを流下させるスラグタップと、前記スラグタップに連結したスラグ落下筒と、前記スラグ落下筒の下方に設置した水槽と、を備えた灰溶融装置において、
前記スラグ落下筒の下部外周を取り囲む燃焼ガス抜出部を設け、前記燃焼ガス抜出部の下端を前記水槽の水面より下方に配置し、
前記スラグ落下筒の下端と前記水槽水面との間に隙間を形成し、
前記灰溶融炉の燃焼ガスが、前記スラグタック、前記スラグ落下筒、前記隙間、前記燃焼ガス抜出部を順に通る
ことを特徴とする灰溶融装置。
A slag tap provided at a lower part of a flue connecting the ash melting furnace and the secondary combustion chamber to flow down the slag from the ash melting furnace, a slag dropping cylinder connected to the slag tap, and below the slag dropping cylinder In an ash melting apparatus equipped with a water tank installed in
Providing a combustion gas extraction part surrounding a lower outer periphery of the slag dropping cylinder, and arranging a lower end of the combustion gas extraction part below the water surface of the water tank;
Forming a gap between the lower end of the slag dropping cylinder and the water surface of the tank,
The combustion gas of the ash melting furnace passes through the slag tack, the slag dropping cylinder, the gap, and the combustion gas extraction unit in this order.
請求項1に記載の灰溶融装置において、
前記燃焼ガスを外部に排出する配管を前記燃焼ガス抜出部に傾斜して接続し、前記傾斜した配管に水を噴出するノズルを設け、
前記ノズルからの噴出水を前記燃焼ガス抜出部に向けて流す
ことを特徴とする灰溶融装置。
In the ash melting apparatus according to claim 1,
A pipe that discharges the combustion gas to the outside is connected to the combustion gas extraction portion at an angle, and a nozzle that ejects water to the inclined pipe is provided.
The ash melting apparatus, wherein the water ejected from the nozzle is caused to flow toward the combustion gas extraction unit.
請求項1又は2に記載の灰溶融装置において、
前記燃焼ガス抜出部の内壁、前記スラグ落下筒の下部の内壁及び外壁に水を流下させる注水ヘッダを設ける
ことを特徴とする灰溶融装置。
In the ash melting apparatus according to claim 1 or 2,
An ash melting device is provided, wherein a water injection header for allowing water to flow down is provided on the inner wall of the combustion gas extraction portion, the lower inner wall and outer wall of the slag dropping cylinder.
灰溶融炉と二次燃焼室とを結ぶ煙道の下部に設けられて前記灰溶融炉からのスラグを流下させるスラグタップと、前記スラグタップに連結したスラグ落下筒と、前記スラグ落下筒の下方に設置した水槽と、を備えた灰溶融装置において、
前記スラグ落下筒の下部外周を取り囲む燃焼ガス抜出部を設け、前記燃焼ガス抜出部の下端を前記水槽の水面より下方に配置し、
前記スラグ落下筒の下端を前記水槽の水面より下方に配置し、
前記スラグ落下筒の前記水面近傍部に複数の燃焼ガス抜き孔を設け、
前記灰溶融炉の燃焼ガスが、前記スラグタック、前記スラグ落下筒、前記燃焼ガス抜き孔、前記燃焼ガス抜出部を順に通る
ことを特徴とする灰溶融装置。
A slag tap provided at a lower part of a flue connecting the ash melting furnace and the secondary combustion chamber to flow down the slag from the ash melting furnace, a slag dropping cylinder connected to the slag tap, and below the slag dropping cylinder In an ash melting apparatus equipped with a water tank installed in
Providing a combustion gas extraction part surrounding a lower outer periphery of the slag dropping cylinder, and arranging a lower end of the combustion gas extraction part below the water surface of the water tank;
The lower end of the slag dropping cylinder is disposed below the water surface of the water tank,
A plurality of combustion gas vent holes are provided in the vicinity of the water surface of the slag dropping cylinder,
The combustion gas of the ash melting furnace passes through the slag tack, the slag dropping cylinder, the combustion gas vent hole, and the combustion gas extraction portion in this order.
請求項4に記載の灰溶融装置において、
前記燃焼ガスを外部に排出する配管を前記燃焼ガス抜出部に傾斜して接続し、前記傾斜した配管に水を噴出するノズルを設け、
前記ノズルからの噴出水を前記燃焼ガス抜出部に向けて流す
ことを特徴とする灰溶融装置。
In the ash melting apparatus according to claim 4,
A pipe that discharges the combustion gas to the outside is connected to the combustion gas extraction portion at an angle, and a nozzle that ejects water to the inclined pipe is provided.
The ash melting apparatus, wherein the water ejected from the nozzle is caused to flow toward the combustion gas extraction unit.
請求項4又は5に記載の灰溶融装置において、
前記燃焼ガス抜出部の内壁、前記スラグ落下筒の下部の内壁及び外壁に水を流下させる注水ヘッダを設ける
ことを特徴とする灰溶融装置。
In the ash melting apparatus according to claim 4 or 5,
An ash melting device is provided, wherein a water injection header for allowing water to flow down is provided on the inner wall of the combustion gas extraction portion, the lower inner wall and the outer wall of the slag dropping cylinder.
JP2004267219A 2004-09-14 2004-09-14 Ash melting device Pending JP2006084064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004267219A JP2006084064A (en) 2004-09-14 2004-09-14 Ash melting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004267219A JP2006084064A (en) 2004-09-14 2004-09-14 Ash melting device

Publications (1)

Publication Number Publication Date
JP2006084064A true JP2006084064A (en) 2006-03-30

Family

ID=36162710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004267219A Pending JP2006084064A (en) 2004-09-14 2004-09-14 Ash melting device

Country Status (1)

Country Link
JP (1) JP2006084064A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070036A (en) * 2006-09-14 2008-03-27 Hitachi Zosen Corp Melting furnace for incineration residue and maintenance method for melting furnace
JP2019124420A (en) * 2018-01-18 2019-07-25 株式会社環健スーパーテクノ chimney
JP6906122B1 (en) * 2021-04-22 2021-07-21 三菱重工環境・化学エンジニアリング株式会社 How to modify the ash extruder and ash extruder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070036A (en) * 2006-09-14 2008-03-27 Hitachi Zosen Corp Melting furnace for incineration residue and maintenance method for melting furnace
JP2019124420A (en) * 2018-01-18 2019-07-25 株式会社環健スーパーテクノ chimney
JP6906122B1 (en) * 2021-04-22 2021-07-21 三菱重工環境・化学エンジニアリング株式会社 How to modify the ash extruder and ash extruder
WO2022224593A1 (en) * 2021-04-22 2022-10-27 三菱重工環境・化学エンジニアリング株式会社 Ash extrusion device and method for modifying ash extrusion device
JP2022166953A (en) * 2021-04-22 2022-11-04 三菱重工環境・化学エンジニアリング株式会社 Ash extrusion device, and method of modifying ash extrusion device

Similar Documents

Publication Publication Date Title
KR100995900B1 (en) Gasification fusing system for waste
EP1816396A1 (en) Treatment method and treatment apparatus for combustible gas in waste melting furnace
JP2007078239A (en) Melting furnace of waste gasifying melting device, and control method and device for the same
JPH0363407A (en) Combustion chamber of at least partially combustible matter and method of combustion
CA2017626C (en) Method and apparatus for burning combustible solid residue from chemical plant
JP2006084064A (en) Ash melting device
JP5802061B2 (en) Slag melting apparatus and fluidized bed gasification melting equipment provided with the same
EP1496310A1 (en) Fusion furnace, gasification fusion furnace, and method of processing waste
JP2007255844A (en) Fusing equipment and fusing method of gasification fusing system
JP3848619B2 (en) Molten slag cooling device, molten slag cooling method, and gasification melting system using molten slag cooling device
JP4886293B2 (en) Humidification incineration ash melting furnace
JP3913229B2 (en) Circulating fluid furnace
JP2005195229A (en) Ash melting device
KR20060131954A (en) Grid nozzle of a fluidized bed reactor
JP4111107B2 (en) Method and apparatus for preventing corrosion of melting furnace secondary combustion chamber dust discharger
JP4791157B2 (en) Waste gasification melting equipment melting furnace
JP2008082660A (en) Incinerator and clinker preventing/eliminating method by the incinerator
WO2002086388A1 (en) Slagging combustion furnace
JP4288186B2 (en) Fluid separation method and apparatus for pyrolysis residue
JP2007147214A (en) Waste melting equipment granulation water pollution prevention method and its device
JP3862574B2 (en) Melting furnace
JP6413157B1 (en) Device for preventing clogging of gasification melting system and method for preventing clogging of gasification melting system
JPH06228897A (en) Combustion control of recovery boiler
JP2004183963A (en) Ash melting furnace
JP2024055047A (en) Fluid bed furnace and fluid medium recovery method