JP2006080153A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2006080153A
JP2006080153A JP2004259956A JP2004259956A JP2006080153A JP 2006080153 A JP2006080153 A JP 2006080153A JP 2004259956 A JP2004259956 A JP 2004259956A JP 2004259956 A JP2004259956 A JP 2004259956A JP 2006080153 A JP2006080153 A JP 2006080153A
Authority
JP
Japan
Prior art keywords
semiconductor device
conductor
conductive resin
resin
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004259956A
Other languages
Japanese (ja)
Inventor
Hironori Sekiya
洋紀 関谷
Toshiharu Obe
利春 大部
Nobumitsu Tada
伸光 田多
Takeshi Ninomiya
豪 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004259956A priority Critical patent/JP2006080153A/en
Publication of JP2006080153A publication Critical patent/JP2006080153A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/3701Shape
    • H01L2224/37011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/37124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/3716Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/8412Aligning
    • H01L2224/84136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/84138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/8485Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device for electric power capable of improving electric reliability, preventing short circuit generated by electromigration and mitigating stress accompanied by a heat cycle in consideration of environmental pollution in connections between the main electrode of a semiconductor device and a conductor. <P>SOLUTION: A semiconductor device 1 for electric power is provided with a conductive resin 70 in the connection between the main electrode 11 of a semiconductor device 10 and an electrode lead-out conductor 50, and a sealing object 71 with moisture resistance in the circumference wherein the conductive resin 70 is exposed. The conductive resin 70 contains conductive substances of silver or the like, in insulating substrates of epoxy system resin or the like. The sealing object 71 prevents generation of the electromigration of the conductive substance contained in the conductive resin 70. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体装置に関し、特にパワートランジスタ、サイリスタ、パワーモジュール、パワーIC等により構築されたインバータ等を搭載する電力用半導体装置に関する。   The present invention relates to a semiconductor device, and more particularly to a power semiconductor device on which an inverter constructed by a power transistor, a thyristor, a power module, a power IC, or the like is mounted.

家電機器、省エネルギ型ダイレクトドライブ、インテリジェントアクチュエータ、車両モータ駆動デバイス等のインバータ制御電力機器には、パワートランジスタ、サイリスタ、パワーモジュール、パワーIC等により構築された電力用半導体装置が使用されている。   Inverter-controlled power devices such as home appliances, energy-saving direct drives, intelligent actuators, and vehicle motor drive devices, power semiconductor devices constructed of power transistors, thyristors, power modules, power ICs, and the like are used.

中容量分野から大容量分野にかけて使用される電力用半導体装置100は、図11に示すように、側面を覆う外装ケース101及び底面に配設された金属板102により囲まれた容器内部に各電子部品を納めている。外装ケース101には、通常、ポリフェニレンサンファイド、ポリブチレンテレフタレート等の絶縁樹脂が使用されている。金属板102の裏面には熱伝導性グリース112を介して冷却器103が取り付けられている。   As shown in FIG. 11, the power semiconductor device 100 used in the medium-capacity field to the large-capacity field has each electron inside a container surrounded by an exterior case 101 covering the side surface and a metal plate 102 disposed on the bottom surface. Contains parts. The exterior case 101 is usually made of an insulating resin such as polyphenylene sunfide or polybutylene terephthalate. A cooler 103 is attached to the back surface of the metal plate 102 via a heat conductive grease 112.

金属板102の表面上には表面及び裏面に導電箔105が設けられた絶縁基板104が搭載されている。金属板102の表面と絶縁基板104の裏面側の導電箔105との間は半田により電気的かつ機械的に接続されている。絶縁基板104の表面側の導電箔105上には回路部品である半導体素子106が複数搭載されている。半導体素子106はパワートランジスタ、サイリスタ等のトランジスタを備え、トランジスタの電極にはボンディングワイヤ107が接続されている。ボンディングワイヤ107は更に外装ケース101の内壁に配設された外部接続端子108の一端に接続されている。   On the surface of the metal plate 102, an insulating substrate 104 having a conductive foil 105 provided on the front and back surfaces is mounted. The surface of the metal plate 102 and the conductive foil 105 on the back side of the insulating substrate 104 are electrically and mechanically connected by solder. A plurality of semiconductor elements 106 as circuit components are mounted on the conductive foil 105 on the surface side of the insulating substrate 104. The semiconductor element 106 includes a transistor such as a power transistor or a thyristor, and a bonding wire 107 is connected to the electrode of the transistor. The bonding wire 107 is further connected to one end of an external connection terminal 108 disposed on the inner wall of the outer case 101.

外装ケース101及び金属板102により囲まれた容器内部には封止樹脂109が充填され、この封止樹脂109はその上に形成される固形樹脂110により更に封止されている。封止樹脂109にはシリコーンゲルやエポキシ樹脂が使用されている。固形樹脂110にはエポキシ樹脂が使用されている。そして、固形樹脂110上には更に端子ホルダ111が配設されている。端子ホルダ111は外装ケース101と同種類か又は異種類の材料により形成されている。   The inside of the container surrounded by the outer case 101 and the metal plate 102 is filled with a sealing resin 109, and this sealing resin 109 is further sealed with a solid resin 110 formed thereon. Silicone gel or epoxy resin is used for the sealing resin 109. An epoxy resin is used for the solid resin 110. A terminal holder 111 is further disposed on the solid resin 110. The terminal holder 111 is made of the same kind or different kind of material as the outer case 101.

このように構成される電力用半導体装置100においては、半導体素子106の動作で発生する熱を金属板102、熱伝導グリース112、冷却器103のそれぞれを通して外部に放出することができる。更に、電力用半導体装置100は半導体素子106を封止樹脂109により気密封止することができる。従って、電力用半導体装置100においては、比較的優れた電気的特性を得ることができ、更に高い電気的信頼性を得ることができる。   In the power semiconductor device 100 configured as described above, the heat generated by the operation of the semiconductor element 106 can be released to the outside through each of the metal plate 102, the thermal conductive grease 112, and the cooler 103. Furthermore, the power semiconductor device 100 can hermetically seal the semiconductor element 106 with the sealing resin 109. Therefore, in the power semiconductor device 100, relatively excellent electrical characteristics can be obtained, and higher electrical reliability can be obtained.

ところで、電力用半導体装置100において、半導体素子106の動作温度が100℃を越えるような高温度になり、かつkVクラスの高電圧が印加される場合、半導体素子106と冷却器103との間の絶縁基板104の材料には、半導体素子106から発生する熱を速やかに冷却器103に逃がしつつ、高い絶縁特性を備えることが要求される。そこで、通常、絶縁基板104には熱伝導性並びに絶縁特性に優れた窒化アルミニウムが使用されている。更に金属板102と冷却器103との間には熱伝導性グリース112が設けられており、金属板102から冷却器103に効率良く熱を逃がすようになっている。なお、金属板102と冷却器103との間は機械的にネジにより締結されている。   By the way, in the power semiconductor device 100, when the operating temperature of the semiconductor element 106 is a high temperature exceeding 100 ° C. and a high voltage of kV class is applied, it is between the semiconductor element 106 and the cooler 103. The material of the insulating substrate 104 is required to have high insulating characteristics while quickly releasing the heat generated from the semiconductor element 106 to the cooler 103. Therefore, aluminum nitride having excellent thermal conductivity and insulating properties is usually used for the insulating substrate 104. Further, a heat conductive grease 112 is provided between the metal plate 102 and the cooler 103 so that heat is efficiently released from the metal plate 102 to the cooler 103. The metal plate 102 and the cooler 103 are mechanically fastened with screws.

また、図12に示すように、下記特許文献1に開示された電力用半導体装置200においては、マウント用導体202上に半田接合により複数の半導体素子106が実装され、マウント用導体202はセラミックスを含有した樹脂シート状放熱絶縁体205介在して冷却器103に接着されている。マウント用導体202には入出力用導体203が接続されており、更にこの入出力用導体203には入出力端子204が接続されている。半導体素子106のトランジスタの電極には幅広導体201の一端が半田接合により電気的に接続され、幅広導体201の他端はマウント用導電体202に接続されている。なお、図12に示す電力用半導体装置200において、図11に示す電力用半導体装置100の構成要素に付した符号と同一の符号を付した構成要素は同等の機能を有し、ここでの説明は重複するので省略する。   As shown in FIG. 12, in the power semiconductor device 200 disclosed in Patent Document 1 below, a plurality of semiconductor elements 106 are mounted on the mounting conductor 202 by solder bonding, and the mounting conductor 202 is made of ceramic. It is bonded to the cooler 103 through the resin sheet-like heat dissipating insulator 205 contained. An input / output conductor 203 is connected to the mounting conductor 202, and an input / output terminal 204 is further connected to the input / output conductor 203. One end of the wide conductor 201 is electrically connected to the transistor electrode of the semiconductor element 106 by solder bonding, and the other end of the wide conductor 201 is connected to the mounting conductor 202. In addition, in the power semiconductor device 200 shown in FIG. 12, the constituent elements having the same reference numerals as those of the constituent elements of the power semiconductor device 100 shown in FIG. Are omitted because they overlap.

特許文献1に開示された電力用半導体装置200においては、図11に示す電力用半導体装置100のボンディングワイヤ107に代えて、幅広導体201により半導体素子106のトランジスタの電極と幅広導体201との間を接続しているので、半導体素子106の動作で発生する熱を幅広導体201を通して効率良くマウント用導体202に逃がすことができ、放熱効果を向上することができる。更に、電力用半導体装置200においては、ワイヤボンディング工程を省略することができるので、製造時間を短縮することができ、製造プロセスの簡略化を図ることができる。
特願2003−321462号公報
In the power semiconductor device 200 disclosed in Patent Document 1, instead of the bonding wire 107 of the power semiconductor device 100 shown in FIG. 11, the wide conductor 201 is used to connect the electrode of the transistor of the semiconductor element 106 and the wide conductor 201. Therefore, the heat generated by the operation of the semiconductor element 106 can be efficiently released to the mounting conductor 202 through the wide conductor 201, and the heat dissipation effect can be improved. Furthermore, in the power semiconductor device 200, since the wire bonding step can be omitted, the manufacturing time can be shortened and the manufacturing process can be simplified.
Japanese Patent Application No. 2003-321462

しかしながら、前述の特許文献1に開示された電力用半導体装置200においては、以下の点について配慮がなされていなかった。   However, in the power semiconductor device 200 disclosed in Patent Document 1, the following points have not been considered.

電力用半導体装置200の半導体素子106に搭載されたトランジスタの電極と幅広導体201との間の接合部分には半導体素子106の動作、停止の繰り返しにより発生する熱サイクルに伴う熱応力が集中するので、半田クラックが発生する要因になる。また、マウント用導体202に半田接合により半導体素子106を実装した後、トランジスタの電極と幅広導体201との間を半田により接合するので、マウント用導体202に半導体素子106を実装する際に使用される半田が再度溶融し、この半田接合層の厚みに不均一が生じ、例えばトランジスタの電極と幅広導体201との間の接続位置のずれが生じやすい。更に、環境汚染への配慮のため、半田の主要成分である鉛(Pb)の使用を避ける傾向にある。   Thermal stress accompanying thermal cycles generated by repeated operation and stop of the semiconductor element 106 is concentrated at the junction between the electrode of the transistor mounted on the semiconductor element 106 of the power semiconductor device 200 and the wide conductor 201. This is a cause of solder cracks. In addition, since the semiconductor element 106 is mounted on the mounting conductor 202 by solder bonding, and then the electrode of the transistor and the wide conductor 201 are bonded by solder, it is used when mounting the semiconductor element 106 on the mounting conductor 202. The solder to be melted again causes nonuniformity in the thickness of the solder joint layer, and for example, the connection position between the transistor electrode and the wide conductor 201 is likely to shift. Furthermore, in consideration of environmental pollution, there is a tendency to avoid the use of lead (Pb) which is a main component of solder.

そこで、半導体素子106のトランジスタの電極と幅広導体201との間の接合に導電性ペーストを使用することが有効である。導電性ペーストは絶縁性樹脂基材に銀(Ag)粒子を含有させたものが一般的である。この導電性ペーストを使用することによって、絶縁性樹脂そのものが持つ弾力性により電極と幅広導体201との間の熱サイクルに伴う応力を緩和することができる。更に、半田の使用を避けることで、鉛を使用することがなくなるので、環境汚染に配慮することができる。   Therefore, it is effective to use a conductive paste for the junction between the transistor electrode of the semiconductor element 106 and the wide conductor 201. The conductive paste is generally an insulating resin base material containing silver (Ag) particles. By using this conductive paste, the stress associated with the thermal cycle between the electrode and the wide conductor 201 can be relieved by the elasticity of the insulating resin itself. Furthermore, by avoiding the use of solder, lead is not used, so that environmental pollution can be considered.

ところが、導電性ペーストは銀粒子を含んでいるので、トランジスタの電極と幅広導体201との間に高電圧が印加され、しかも耐湿性が十分に確保されていない場合には、銀粒子が成長しエレクトロマイグレーションが発生する。このエレクトロマイグレーションの発生によって、電極と幅広導体201との間の接続部と、この接続部に隣接し他の電圧若しくは信号が印加される端子や導体との間において短絡が発生し、電力用半導体装置200の電気的信頼性を低下してしまう。   However, since the conductive paste contains silver particles, silver particles grow when a high voltage is applied between the electrode of the transistor and the wide conductor 201 and moisture resistance is not sufficiently ensured. Electromigration occurs. Due to the occurrence of this electromigration, a short circuit occurs between the connection portion between the electrode and the wide conductor 201 and a terminal or conductor to which another voltage or signal is applied adjacent to this connection portion. The electrical reliability of the apparatus 200 will be reduced.

本発明はこのような技術的課題を解決するためになされたものであり、本発明の目的は、半導体素子の主電極と導体との接続部分において、環境汚染を配慮しつつ、熱サイクルに伴う応力を緩和することができ、かつエレクトロマイグレーションの発生による起因する短絡を防止することができ、電気的信頼性を向上することができる半導体装置を提供することである。   The present invention has been made to solve such technical problems, and an object of the present invention is to accompany the thermal cycle in consideration of environmental pollution at the connection portion between the main electrode and the conductor of the semiconductor element. It is an object of the present invention to provide a semiconductor device that can relieve stress, prevent a short circuit caused by the occurrence of electromigration, and improve electrical reliability.

本発明の実施の形態に係る第1の特徴は、半導体装置において、トランジスタの主電極を表面上に配設した半導体素子と、主電極上に形成され、絶縁性樹脂基材に導電性物質を含有する導電性樹脂と、主電極に導電性樹脂を介して一端を接続する電極引出導体と、導電性樹脂の周囲を耐湿封止する封止体とを備えたことである。   A first feature according to an embodiment of the present invention is that, in a semiconductor device, a semiconductor element in which a main electrode of a transistor is disposed on a surface and a conductive material formed on the main electrode, and an insulating resin base material The conductive resin contained, an electrode lead conductor connecting one end to the main electrode through the conductive resin, and a sealing body for moisture-proof sealing around the conductive resin.

第1の特徴に係る半導体装置においては、導電性樹脂の周囲を封止体により耐湿封止することにより、外部から導電性樹脂の導電性物質に達する水分の浸入を防ぐことができるので、導電性樹脂に含まれる導電性物質のエレクトロマイグレーションの発生を防止することができる。   In the semiconductor device according to the first feature, moisture penetration that reaches the conductive material of the conductive resin from the outside can be prevented by moisture-sealing the periphery of the conductive resin with a sealing body. The electromigration of the conductive substance contained in the conductive resin can be prevented.

本発明の実施の形態に係る第2の特徴は、第1の特徴に係る半導体装置の封止体が、主電極と導電性樹脂との接続部及び電極引出導体と導電性樹脂との接続部を除き、導電性樹脂の露出する表面を局部的に覆うことである。   According to a second feature of the embodiment of the present invention, the sealing body of the semiconductor device according to the first feature includes a connection portion between the main electrode and the conductive resin and a connection portion between the electrode lead conductor and the conductive resin. Except that the exposed surface of the conductive resin is locally covered.

第2の特徴に係る半導体装置においては、導電性樹脂の露出する表面を局部的に封止体で耐湿封止するようにしたので、封止体の占有面積を減少することができ、半導体装置の小型化を実現することができる。   In the semiconductor device according to the second feature, the exposed surface of the conductive resin is moisture-resistant sealed locally by the sealing body, so that the area occupied by the sealing body can be reduced. Downsizing can be realized.

本発明の実施の形態に係る第3の特徴は、第1の特徴に係る半導体装置の封止体が、導電性樹脂、半導体素子等の大半を覆うことである。   A third characteristic according to the embodiment of the present invention is that the sealing body of the semiconductor device according to the first characteristic covers most of the conductive resin, the semiconductor element, and the like.

第3の特徴に係る半導体装置においては、導電性樹脂、半導体素子等の大半を封止体により耐湿封止し、水分の浸入経路を長くすることができるので、より一層の水分の浸入を防止することができ、導電性樹脂に含まれる導電性物質のエレクトロマイグレーションの発生を防止することができる。   In the semiconductor device according to the third feature, most of the conductive resin, semiconductor element, and the like can be moisture-resistant sealed with a sealing body, and the moisture intrusion path can be lengthened, thereby preventing further infiltration of moisture. It is possible to prevent electromigration of the conductive substance contained in the conductive resin.

本発明によれば、半導体素子の主電極と電極引出導体との間の接続部分において、環境汚染に配慮しつつ、熱サイクルに伴う応力を緩和することができ、かつエレクトロマイグレーションの発生に起因する短絡を防止することができ、電気的信頼性を向上することができる半導体装置を提供することができる。   According to the present invention, in the connection portion between the main electrode of the semiconductor element and the electrode lead conductor, it is possible to relieve the stress associated with the thermal cycle while considering environmental pollution, and due to the occurrence of electromigration. A semiconductor device which can prevent a short circuit and can improve electrical reliability can be provided.

以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、以下の図面の記載において、同一機能を有する構成要素には同一符号を付している。また、図面は模式的なものであり、厚みと平面寸法との関係、比率等は現実のものと異なる。更に、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description of the drawings, components having the same function are denoted by the same reference numerals. Further, the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio, and the like are different from the actual ones. Further, there are included portions having different dimensional relationships and ratios between the drawings.

(第1の実施の形態)
図1及び図2に示すように、本発明の第1の実施の形態に係る電力用半導体装置1は、トランジスタの主電極11を表面上に配設した半導体素子10と、主電極11上に形成され、絶縁性樹脂基材に導電性物質を含有する導電性樹脂70と、主電極11に導電性樹脂70を介して一端を接続する電極引出導体50と、導電性樹脂70の周囲を耐湿封止する封止体71とを備えている。更に、電力用半導体装置1は、半導体素子10を搭載する第1のマウント用導体20Aと、電極引出導体50の他端を接続する第2のマウント用導体20Bと、第1のマウント用導体20A及び第2のマウント用導体20Bを表面上に搭載する放熱体40と、第1のマウント用導体20A及び第2のマウント用導体20Bと放熱体40との間に配設されたシート状放熱絶縁体30とを備えている。
(First embodiment)
As shown in FIGS. 1 and 2, the power semiconductor device 1 according to the first embodiment of the present invention includes a semiconductor element 10 in which a main electrode 11 of a transistor is disposed on a surface, and a main element 11. A conductive resin 70 that is formed and contains a conductive substance in the insulating resin base material, an electrode lead conductor 50 having one end connected to the main electrode 11 via the conductive resin 70, and the periphery of the conductive resin 70 are moisture resistant. And a sealing body 71 for sealing. Furthermore, the power semiconductor device 1 includes a first mounting conductor 20A on which the semiconductor element 10 is mounted, a second mounting conductor 20B that connects the other end of the electrode lead conductor 50, and a first mounting conductor 20A. And a heat dissipating body 40 for mounting the second mounting conductor 20B on the surface, and a sheet-like heat dissipating insulation disposed between the first mounting conductor 20A and the second mounting conductor 20B and the heat dissipating body 40. And a body 30.

第1の実施の形態に係る電力用半導体装置1は第1のマウント用導体20A上に同一種類の(又は2種類以上の)半導体素子10を複数搭載し、この複数の半導体素子10のそれぞれの主電極11と第2のマウント用導体20Bとの間は、各々、電極引出導体50により電気的に並列に接続されている。つまり、電力用半導体装置1はマルチチップモジュール構造を採用する。   The power semiconductor device 1 according to the first embodiment includes a plurality of semiconductor elements 10 of the same type (or two or more types) mounted on the first mounting conductor 20A, and each of the plurality of semiconductor elements 10 is mounted. The main electrode 11 and the second mounting conductor 20B are electrically connected in parallel by the electrode lead conductor 50, respectively. That is, the power semiconductor device 1 adopts a multichip module structure.

電力用半導体装置1を構築する放熱体40は例えばアルミニウム等の熱伝導性に優れた金属体により形成されている。放熱体40は、第1の実施の形態において空冷方式を採用するヒートシンクとして構成されている。また、放熱体40は、水冷方式を採用するヒートシンクとして構成してもよい。   The heat radiating body 40 constituting the power semiconductor device 1 is formed of a metal body having excellent thermal conductivity such as aluminum. The radiator 40 is configured as a heat sink that employs an air cooling system in the first embodiment. Moreover, you may comprise the heat radiator 40 as a heat sink which employ | adopts a water cooling system.

シート状放熱絶縁体30は、絶縁性基材に、少なくとも硬化剤並びに硬化促進剤を添加することにより形成されている。絶縁性基材には絶縁性並びに接着性に優れたエポキシ系樹脂を実用的に使用することができる。具体的には、クレゾールノボラック形、フェノールノボラック形、ビフェニル形、ジシクロペンタジエン形、ナフタレン形等のグループから選択された少なくとも1種類のエポキシ樹脂を主剤として使用することができる。硬化剤には、例えば酸及び酸無水物類、フェノール類、アミン類、ポリアミノアミド類、ジシアンジアミド、イミダゾール類のいずれか1つを実用的に使用することができる。硬化促進剤には、イミダゾール化合物、3級アミン、リン化合物等を実用的に使用することができる。   The sheet-like heat dissipation insulator 30 is formed by adding at least a curing agent and a curing accelerator to an insulating base material. An epoxy resin excellent in insulation and adhesiveness can be used practically for the insulating substrate. Specifically, at least one epoxy resin selected from a group such as a cresol novolak type, a phenol novolak type, a biphenyl type, a dicyclopentadiene type, a naphthalene type can be used as a main agent. As the curing agent, for example, any one of acids and acid anhydrides, phenols, amines, polyaminoamides, dicyandiamide, and imidazoles can be used practically. As the curing accelerator, imidazole compounds, tertiary amines, phosphorus compounds and the like can be used practically.

更に、シート状放熱絶縁体30の絶縁性基材には熱伝導性を持たせる充填剤が含まれている。充填剤には、例えば窒化アルミニウム、窒化ホウ素、窒化ケイ素、アルミナ等の少なくともいずれか1つを実用的に使用することができる。また、充填剤には、これらの窒化アルミニウム等に加えて、溶融シリカ粉末、石英粉末、ガラス粉末、ガラス短繊維等を組み合わせて添加することができる。更に、シート状放熱絶縁体30には、低応力化剤、難燃剤、カップリング剤、離型材、顔料のうちの少なくとも1つ以上を加えることができる。低応力化剤には、シリコーン、ゴム、ポリオレフィン等の粒子又はオイルを実用的に使用することができる。難燃剤には、臭素系、塩素系等のハロゲン系難燃剤、無機系難燃剤等を実用的に使用することができる。カップリング剤にはシラン等、離型材には各種ワックス類、顔料にはカーボンブラック等を実用的に使用することができる。   Furthermore, the insulating base material of the sheet-like heat radiating insulator 30 contains a filler for imparting thermal conductivity. As the filler, for example, at least one of aluminum nitride, boron nitride, silicon nitride, alumina and the like can be used practically. In addition to these aluminum nitrides and the like, the filler can be added in combination with fused silica powder, quartz powder, glass powder, short glass fiber, and the like. Furthermore, at least one or more of a stress reducing agent, a flame retardant, a coupling agent, a release material, and a pigment can be added to the sheet-like heat dissipation insulator 30. As the stress reducing agent, particles such as silicone, rubber, polyolefin, or oil can be used practically. As the flame retardant, brominated or chlorinated halogen flame retardants, inorganic flame retardants and the like can be used practically. Silane or the like can be used as a coupling agent, various waxes can be used as a release material, and carbon black or the like can be used as a pigment.

第1のマウント用導体20A、第2のマウント用導体20Bのそれぞれは、基本的には同一層の導体(同一種類の金属板)において構成されている。第1のマウント用導体20A、第2のマウント用導体20Bには、例えば電気伝導性並びに熱伝導性に優れた金属板、更に詳細には銅板を実用的に使用することができる。この銅板表面には、ボンダビリティを向上するために、ニッケル等のメッキ処理を施すことができる。   Each of the first mounting conductor 20A and the second mounting conductor 20B is basically composed of the same layer of conductor (the same type of metal plate). For the first mounting conductor 20A and the second mounting conductor 20B, for example, a metal plate excellent in electrical conductivity and thermal conductivity, more specifically, a copper plate can be practically used. The copper plate surface can be plated with nickel or the like in order to improve bondability.

第1の実施の形態においては1つのマウント用導体20A上に複数の半導体素子10を実装しているが、本発明はこのような構造に限定されるものではない。本発明は、例えば、複数のマウント用導体20Aを配設し、この複数のマウント用導体20A上のそれぞれに個々に半導体素子10を実装してもよい。   In the first embodiment, a plurality of semiconductor elements 10 are mounted on one mounting conductor 20A, but the present invention is not limited to such a structure. In the present invention, for example, a plurality of mounting conductors 20A may be provided, and the semiconductor element 10 may be individually mounted on each of the plurality of mounting conductors 20A.

半導体素子10には、電力用半導体素子として使用することができる、例えばIGBT、パワーMOSFET、パワーBJT、サイリスタ、GTOサイリスタ、SIサイリスタ、ダイオード等のパワーデバイスが搭載されている。更に、半導体素子10には、電力用半導体素子の動作制御を行う制御用半導体素子として使用することができる、制御回路を搭載することができる。制御回路は、例えばnチャネルMOS制御回路、pチャネルMOS制御回路、CMOS制御回路、バイポーラ制御回路、BiCMOS制御回路、SIT制御回路等である。これらの制御回路には過電圧保護回路、過電流保護回路、過熱保護回路の少なくともいずれか1つを含むことが望ましい。更に、電力用半導体装置1においては、半導体素子10の他に、例えば抵抗、コンデンサ、コイル等の各種電子部品、又は電源回路を、別途、搭載することができる。なお、第1の実施の形態に係る電力用半導体装置1は、電力用半導体素子である半導体素子10のみを実装したモジュール構造において構成されている。   The semiconductor element 10 is mounted with a power device that can be used as a power semiconductor element, such as an IGBT, a power MOSFET, a power BJT, a thyristor, a GTO thyristor, an SI thyristor, and a diode. Furthermore, the semiconductor element 10 can be equipped with a control circuit that can be used as a control semiconductor element for controlling the operation of the power semiconductor element. The control circuit is, for example, an n-channel MOS control circuit, a p-channel MOS control circuit, a CMOS control circuit, a bipolar control circuit, a BiCMOS control circuit, an SIT control circuit, or the like. These control circuits preferably include at least one of an overvoltage protection circuit, an overcurrent protection circuit, and an overheat protection circuit. Furthermore, in the power semiconductor device 1, in addition to the semiconductor element 10, various electronic components such as a resistor, a capacitor, and a coil, or a power supply circuit can be separately mounted. The power semiconductor device 1 according to the first embodiment is configured in a module structure in which only the semiconductor element 10 that is a power semiconductor element is mounted.

電極引出導体50は、第1の実施の形態において半導体素子10の表面上の大半を覆う主電極11の幅寸法と同等の幅寸法を有する、いわゆる幅広導体により構成されている。幅広導体の断面面積はボンディングワイヤの断面面積に比べて大きく、幅広導体の熱抵抗を小さくすることができるので、幅広導体は半導体素子10の動作で発生する熱を効率良く第2のマウント用導体20Bに放出することができる。電極引出導体50には、電気伝導性並びに熱伝導性に優れた例えば金(Au)、銅(Cu)、アルミニウム、鉄ニッケル(Fe−Ni)合金等の金属体を実用的に使用することができ、例えば1mm以上の厚みを持って構成することができる。   The electrode lead conductor 50 is formed of a so-called wide conductor having a width dimension equivalent to the width dimension of the main electrode 11 covering most of the surface of the semiconductor element 10 in the first embodiment. Since the cross-sectional area of the wide conductor is larger than the cross-sectional area of the bonding wire and the thermal resistance of the wide conductor can be reduced, the wide conductor efficiently generates the heat generated by the operation of the semiconductor element 10 as the second mounting conductor. 20B can be released. For the electrode lead conductor 50, a metal body such as gold (Au), copper (Cu), aluminum, or iron nickel (Fe—Ni) alloy having excellent electrical conductivity and thermal conductivity may be practically used. For example, it can be configured with a thickness of 1 mm or more.

導電性樹脂70には導電性ペーストを実用的に使用することができる。この導電性ペーストは、例えばエポキシ系樹脂、シリコーン系樹脂等の絶縁性樹脂を基材とし、この絶縁性基材に銀(Ag)からなる導電性物質を含有したものである。導電性樹脂70の導電性物質には、銀だけに限定されるものではなく、金、錫(Sn)合金、カーボンブラック、炭素繊維、銅、ニッケル、金属メッキしたポリマーのいずれか1つ又は複数の組み合わせを実用的に使用することができる。半導体素子10の動作により発生する熱を効率良く電極引出導体50を通して排出するために、導電性樹脂70の熱伝導率を10W/m・K以上に設定することが望ましい。導電性樹脂70は、例えばスクリーン印刷法、インクジェット法、ディスペンサ法等の塗布方法を用いて、半導体素子10の主電極11上に塗布される。   A conductive paste can be practically used for the conductive resin 70. This conductive paste uses, for example, an insulating resin such as an epoxy resin or a silicone resin as a base material, and the insulating base material contains a conductive substance made of silver (Ag). The conductive material of the conductive resin 70 is not limited to silver, but one or more of gold, tin (Sn) alloy, carbon black, carbon fiber, copper, nickel, and metal-plated polymer. Can be used practically. In order to efficiently exhaust the heat generated by the operation of the semiconductor element 10 through the electrode lead conductor 50, it is desirable to set the thermal conductivity of the conductive resin 70 to 10 W / m · K or more. The conductive resin 70 is applied on the main electrode 11 of the semiconductor element 10 by using an application method such as a screen printing method, an ink jet method, or a dispenser method.

封止体71は、第1の実施の形態において、主電極11と導電性樹脂70との接続部及び電極引出導体50と導電性樹脂70との接続部を除き、導電性樹脂70の露出する表面、具体的には図1に示すように導電性樹脂70の露出する側表面を局部的に覆って配設されている。ここで、「局部的に覆う」とは、半導体素子10、電極引出導体50、放熱体40等のすべてを覆うことではなく、半導体素子10の表面上若しくは第1のマウント用導体20A上の範囲内の狭い範囲において部分的に覆うという意味で使用されている。   In the first embodiment, the sealing body 71 exposes the conductive resin 70 except for the connection portion between the main electrode 11 and the conductive resin 70 and the connection portion between the electrode lead conductor 50 and the conductive resin 70. As shown in FIG. 1, the surface, specifically, the exposed side surface of the conductive resin 70 is locally covered and disposed. Here, “locally covering” does not cover all of the semiconductor element 10, the electrode lead conductor 50, the radiator 40, etc., but the range on the surface of the semiconductor element 10 or the first mounting conductor 20 </ b> A. It is used in the sense of partially covering within a narrow area.

封止体71においては、導電性樹脂70の外部に存在する水分(湿気)の、この導電性樹脂70の導電性物質である銀への到達を阻止することができ、導電性樹脂70に半導体素子10の動作電圧が印加された場合に発生するエレクトロマイグレーションを防止することができる。封止体71には、硬化剤を配合したエポキシ樹脂に、硬化促進剤、低応力化剤、充填剤、難燃剤、カップリング剤、難型剤、顔料の1つ又は複数を加えた一液性樹脂を実用的に使用することができる。封止体71は例えばトランスファモールド法により成型することができる。また、この封止体71は滴下塗布法により形成することができる。この場合、エポキシ樹脂等の絶縁性樹脂基材に溶融シリカ粉末、石英粉末、ガラス粉末、ガラス短繊維等の充填剤を添加した樹脂をディスペンサ等の滴下装置を使って塗布し、この塗布された樹脂を硬化することにより、封止体71を形成することができる。なお、シリコーンゲルは、エポキシ系樹脂に対して耐湿性が低いので、封止体71には採用しない。   In the sealing body 71, moisture (humidity) existing outside the conductive resin 70 can be prevented from reaching silver, which is the conductive material of the conductive resin 70, and the conductive resin 70 has a semiconductor. Electromigration that occurs when the operating voltage of the element 10 is applied can be prevented. The encapsulant 71 is a one-component solution obtained by adding one or more of a curing accelerator, a stress reducing agent, a filler, a flame retardant, a coupling agent, a hardener, and a pigment to an epoxy resin containing a curing agent. Can be used practically. The sealing body 71 can be molded by, for example, a transfer mold method. Moreover, this sealing body 71 can be formed by the dropping application method. In this case, a resin in which a filler such as fused silica powder, quartz powder, glass powder, or short glass fiber was added to an insulating resin base material such as an epoxy resin was applied using a dropping device such as a dispenser, and this coating was applied. By sealing the resin, the sealing body 71 can be formed. Silicone gel is not used for the sealing body 71 because it has low moisture resistance with respect to the epoxy resin.

図2に示すように、放熱体40の表面上の周縁部分には外装ケース60が配設されている。この外装ケース60は半導体素子10、第1のマウント用導体20A、第2のマウント用導体20B、電極引出導体50、導電性樹脂70、封止体71の外周囲を取り囲む。外装ケース60の高さは電極引出導体50の高さよりも高く設定されている。外装ケース60には例えば熱可塑性プラスチックを実用的に使用することができる。   As shown in FIG. 2, an outer case 60 is disposed on the peripheral portion on the surface of the heat radiating body 40. The exterior case 60 surrounds the outer periphery of the semiconductor element 10, the first mounting conductor 20 </ b> A, the second mounting conductor 20 </ b> B, the electrode lead conductor 50, the conductive resin 70, and the sealing body 71. The height of the outer case 60 is set to be higher than the height of the electrode lead conductor 50. For example, a thermoplastic plastic can be practically used for the outer case 60.

外装ケース60の内壁には、放熱体40側から外装ケース60よりも上方に突出した外部接続端子61が配設されている。外部接続端子61には例えばニッケルメッキが施された銅リードを実用的に使用することができる。   On the inner wall of the exterior case 60, an external connection terminal 61 that protrudes upward from the exterior case 60 from the radiator 40 side is disposed. For the external connection terminal 61, for example, a copper lead plated with nickel can be practically used.

外部接続端子61の放熱体40側の一端と第1のマウント用導体20A又は第2のマウント用導体20Bとの間はボンディングワイヤ62を通して電気的に接続されている。ボンディングワイヤ62には、アルミニウムワイヤ、銅ワイヤ、金ワイヤのいずれかを実用的に使用することができる。   One end of the external connection terminal 61 on the radiator 40 side and the first mounting conductor 20A or the second mounting conductor 20B are electrically connected through a bonding wire 62. As the bonding wire 62, any one of an aluminum wire, a copper wire, and a gold wire can be used practically.

この外装ケース60の内壁と放熱体40の表面とにより構築される容器内部には半導体素子10等を外部環境に対して気密に封止する樹脂封止体65が充填されている。樹脂封止体65には例えばシリコーンゲルを実用的に使用することができる。   The container constructed by the inner wall of the outer case 60 and the surface of the heat radiating body 40 is filled with a resin sealing body 65 that hermetically seals the semiconductor element 10 and the like with respect to the external environment. For example, silicone gel can be used practically for the resin sealing body 65.

そして、樹脂封止体65上には端子ホルダ66が配設され、この端子ホルダ66の外周囲には外装ケース60内部において固形樹脂体67が配設されている。端子ホルダ66は例えば熱可塑性プラスチックにより形成され、固形樹脂体67は例えばエポキシ系樹脂により形成されている。   A terminal holder 66 is disposed on the resin sealing body 65, and a solid resin body 67 is disposed outside the terminal holder 66 inside the exterior case 60. The terminal holder 66 is made of, for example, a thermoplastic plastic, and the solid resin body 67 is made of, for example, an epoxy resin.

このように構成される第1の実施の形態に係る電力用半導体装置1においては、導電性樹脂70の周囲を封止体71により耐湿封止することにより、外部から導電性樹脂70の導電性物質に達する水分の浸入を防ぐことができるので、導電性樹脂70に含まれる導電性物質のエレクトロマイグレーションの発生を防止することができる。この結果、半導体素子10の主電極11と電極引出導体50との間の接続部分において、環境汚染を生じることなく、熱サイクルに伴う応力を緩和することができ、かつエレクトロマイグレーションの発生による接続部分とそれに隣接する端子との間の短絡を防止することができ、電気的信頼性を向上することができる電力用半導体装置1を提供することができる。   In the power semiconductor device 1 according to the first embodiment configured as described above, the periphery of the conductive resin 70 is moisture-sealed by the sealing body 71, so that the conductivity of the conductive resin 70 is externally applied. Since the intrusion of moisture reaching the substance can be prevented, the electromigration of the conductive substance contained in the conductive resin 70 can be prevented. As a result, the connection portion between the main electrode 11 and the electrode lead conductor 50 of the semiconductor element 10 can relieve stress associated with the thermal cycle without causing environmental pollution, and the connection portion due to the occurrence of electromigration. Therefore, it is possible to provide the power semiconductor device 1 capable of preventing a short circuit between the terminal and the adjacent terminal and improving the electrical reliability.

第1の実施の形態に係る電力用半導体装置1においては、半導体素子10の主電極11と電極引出導体50との間の導電性樹脂70の周囲に封止体71を備えたので、図3に符号「A」を付して示すように、プレッシャークッカー試験における漏れ電流特性を向上することができる。図3において、縦軸は漏れ電流(μA)であり、横軸は時間(H)である。また、符号「B」を付して示す漏れ電流特性は、第1の実施の形態に係る封止体71を備えていない半導体装置の漏れ電流特性である。すなわち、電力用半導体装置1は、高温高湿環境の厳しい使用条件下において使用することができる。   In the power semiconductor device 1 according to the first embodiment, the sealing body 71 is provided around the conductive resin 70 between the main electrode 11 and the electrode lead conductor 50 of the semiconductor element 10. As indicated by the symbol “A”, the leakage current characteristic in the pressure cooker test can be improved. In FIG. 3, the vertical axis represents leakage current (μA) and the horizontal axis represents time (H). Further, the leakage current characteristic indicated by the symbol “B” is the leakage current characteristic of the semiconductor device that does not include the sealing body 71 according to the first embodiment. That is, the power semiconductor device 1 can be used under severe use conditions in a high temperature and high humidity environment.

更に、導電性樹脂70の露出する表面を局部的に封止体71により耐湿封止するようにしたので、封止体71の占有面積を減少することができ、電力用半導体装置1の小型化を実現することができる。   Furthermore, since the exposed surface of the conductive resin 70 is locally moisture-resistant sealed by the sealing body 71, the area occupied by the sealing body 71 can be reduced, and the power semiconductor device 1 can be downsized. Can be realized.

更に、電力用半導体装置1において、半導体素子10の表面側の主電極11上に導電性樹脂70を介在させて幅広導体である電極引出導体50を配設し、そして半導体素子10の裏面側の主電極12下に第1のマウント用導体20A、シート状放熱絶縁体30、放熱体40のそれぞれを配設したので、熱抵抗特性を向上することができる。図4に示すように、図1及び図2に示す第1の実施の形態に係る電力用半導体装置1の熱抵抗特性(符号「C」を付して示す。)は、前述の図11に示す電力用半導体装置100の熱抵抗特性(符号「E」を付して示す。)に比べて、半導体素子10の表面側、裏面側のそれぞれからの放熱経路を充分に確保しているので優れている。ここで、図4において、縦軸は熱抵抗(k/W)であり、横軸は時間(sec)である。図4から明らかなように、電力用半導体装置1においては、特に起動時の過渡熱抵抗並びに一定期間経過後の定常熱抵抗を減少することができる。   Further, in the power semiconductor device 1, the electrode lead conductor 50 which is a wide conductor is disposed on the main electrode 11 on the front surface side of the semiconductor element 10 with the conductive resin 70 interposed therebetween, and the back surface side of the semiconductor element 10 is disposed. Since each of the first mounting conductor 20A, the sheet-like heat radiating insulator 30, and the heat radiating body 40 is disposed under the main electrode 12, the thermal resistance characteristics can be improved. As shown in FIG. 4, the thermal resistance characteristics (indicated by reference numeral “C”) of the power semiconductor device 1 according to the first embodiment shown in FIGS. 1 and 2 are shown in FIG. Compared to the thermal resistance characteristics of the power semiconductor device 100 shown (shown with the symbol “E”), the heat dissipation paths from the front side and the back side of the semiconductor element 10 are sufficiently secured, which is excellent. ing. Here, in FIG. 4, the vertical axis represents thermal resistance (k / W) and the horizontal axis represents time (sec). As can be seen from FIG. 4, in the power semiconductor device 1, it is possible to reduce the transient thermal resistance especially at the start-up and the steady thermal resistance after a certain period.

更に、電力用半導体装置1において、半導体素子10の主電極11と電極引出導体50との間を導電性樹脂70により電気的かつ機械的に接続しているので、この接続部分の信頼性を向上することができる。図5に示すように、接続部分に導電性樹脂70(第1の実施の形態)を使用した場合と、半田を使用した場合とにおいて、双方のクラック発生率を比較すると、熱サイクル数が増加しても導電性樹脂70のクラック発生率が半田のクラック発生率に比べて極めて低くなる。従って、電力用半導体装置1においては、主電極11と電極引出導体50との間の接続不良を減少することができる。   Further, in the power semiconductor device 1, since the main electrode 11 of the semiconductor element 10 and the electrode lead conductor 50 are electrically and mechanically connected by the conductive resin 70, the reliability of this connection portion is improved. can do. As shown in FIG. 5, when the conductive resin 70 (first embodiment) is used for the connection portion and when the solder is used, the number of thermal cycles increases when both crack occurrence rates are compared. Even so, the crack occurrence rate of the conductive resin 70 is extremely low compared to the crack occurrence rate of the solder. Therefore, in the power semiconductor device 1, poor connection between the main electrode 11 and the electrode lead conductor 50 can be reduced.

(第2の実施の形態)
本発明の第2の実施の形態は、第1の実施の形態に係る電力用半導体装置1において、シート状放熱絶縁体30と放熱体40との間の構造を代えた例を説明するものである。すなわち、第2の実施の形態に係る電力用半導体装置1は、放熱体40上に熱伝導グリース42を介在して放熱板41を備え、この放熱板41上にシート状放熱絶縁体30を介在して第1のマウント用導体20A及び第2のマウント用導体20Bを配設している。第1のマウント用導体20A上には、前述の図1及び図2に示す電力用半導体装置1と同様に、半導体素子10が実装されている。
(Second Embodiment)
The second embodiment of the present invention describes an example in which the structure between the sheet-like heat dissipation insulator 30 and the heat dissipation body 40 is changed in the power semiconductor device 1 according to the first embodiment. is there. That is, the power semiconductor device 1 according to the second embodiment includes a heat radiation plate 41 with a heat conductive grease 42 interposed on a heat radiator 40, and a sheet-shaped heat radiation insulator 30 interposed on the heat radiation plate 41. Thus, the first mounting conductor 20A and the second mounting conductor 20B are provided. The semiconductor element 10 is mounted on the first mounting conductor 20A in the same manner as the power semiconductor device 1 shown in FIGS. 1 and 2 described above.

第2の実施の形態において、放熱板41は、熱伝導性に優れた金属板、例えば銅板、セラミックス基板、炭化シリコン(SiC)基板等により形成されている。放熱体40は、第1の実施の形態に係る電力用半導体装置1の放熱体40と同様に、空冷方式若しくは水冷方式を採用するヒートシンク(冷却器)として使用されている。   In the second embodiment, the heat radiating plate 41 is formed of a metal plate excellent in thermal conductivity, such as a copper plate, a ceramic substrate, a silicon carbide (SiC) substrate, or the like. The radiator 40 is used as a heat sink (cooler) employing an air cooling method or a water cooling method, similarly to the radiator 40 of the power semiconductor device 1 according to the first embodiment.

第2の実施の形態に係る電力用半導体装置1においては、第1の実施の形態に係る電力用半導体装置1により得られる効果と同様の効果を得ることができ、更に、放熱板41及び外装ケース60により囲まれた容器内部に半導体素子10等を収納し、放熱板41を熱伝導グリース42を介在させて放熱体40に装着するようにしたので、放熱体40の冷却方式を適宜選択することができ、互換性を向上することができる。   In the power semiconductor device 1 according to the second embodiment, the same effect as that obtained by the power semiconductor device 1 according to the first embodiment can be obtained. Since the semiconductor element 10 and the like are housed in the container surrounded by the case 60 and the heat radiating plate 41 is attached to the heat radiating body 40 with the heat conductive grease 42 interposed, the cooling method of the heat radiating body 40 is appropriately selected. Can improve compatibility.

更に、第2の実施の形態に係る電力用半導体装置1においては、前述の図4に符号「D」を付して示すように、第1の実施の形態に係る電力用半導体装置1の熱抵抗特性(符号「C」)に比べて若干劣るものの、前述の図11に示す電力用半導体装置100の熱抵抗特性(符号「E」)に比べて、熱抵抗特性が優れている。   Furthermore, in the power semiconductor device 1 according to the second embodiment, as indicated by the reference numeral “D” in FIG. 4 described above, the heat of the power semiconductor device 1 according to the first embodiment. Although slightly inferior to the resistance characteristic (symbol “C”), the thermal resistance characteristic is superior to the thermal resistance characteristic (symbol “E”) of the power semiconductor device 100 shown in FIG.

(第3の実施の形態)
本発明の第3の実施の形態に係る電力用半導体装置1は、図7に示すように、半導体素子10と電極引出導体50との間に熱緩衝板75を備えている。第3の実施の形態において、導電性樹脂70は半導体素子10の主電極11と熱緩衝板75との間に配設されている。封止体71は、主電極11、熱緩衝板75のそれぞれと導電性樹脂70との間の接合部を除き、導電性樹脂70の露出する外周囲を局部的に覆うように形成されている。なお、導電性樹脂70は、熱緩衝板75と電極引出導体50との間に、又は主電極11と熱緩衝板75との間及び熱緩衝板75と電極引出導体50との間の双方に配設するようにしてもよい。熱緩衝板75には、熱膨張係数の低い金属、好ましくは半導体素子10の熱膨張係数と電極引出導体50の熱膨張係数との間の熱膨張係数を有する金属、具体的にはモリブデン(Mo)を実用的に使用することができる。
(Third embodiment)
The power semiconductor device 1 according to the third embodiment of the present invention includes a thermal buffer plate 75 between the semiconductor element 10 and the electrode lead conductor 50 as shown in FIG. In the third embodiment, the conductive resin 70 is disposed between the main electrode 11 of the semiconductor element 10 and the heat buffer plate 75. The sealing body 71 is formed so as to locally cover the outer periphery where the conductive resin 70 is exposed, except for the joint between the main electrode 11 and the heat buffer plate 75 and the conductive resin 70. . The conductive resin 70 is provided between the heat buffer plate 75 and the electrode lead conductor 50, or between the main electrode 11 and the heat buffer plate 75 and between the heat buffer plate 75 and the electrode lead conductor 50. It may be arranged. The thermal buffer plate 75 has a metal having a low thermal expansion coefficient, preferably a metal having a thermal expansion coefficient between the thermal expansion coefficient of the semiconductor element 10 and the thermal expansion coefficient of the electrode lead conductor 50, specifically molybdenum (Mo ) Can be used practically.

第3の実施の形態に係る電力用半導体装置1においては、第1の実施の形態に係る電力用半導体装置1により得られる効果と同様の効果を得ることができ、更に、熱緩衝板75の挿入により熱抵抗値が約5%程度上昇するが、熱緩衝板75の挿入に伴い熱応力を減少することができるので、半導体素子10の主電極11と電極引出導体50との間の接合部の耐久性、詳細には導電性樹脂70の耐久性を向上することができる。従って、電力用半導体装置1において、半導体素子10の主電極11と電極引出導体50との間の接続部の電気的信頼性を向上することができる。   In the power semiconductor device 1 according to the third embodiment, the same effect as that obtained by the power semiconductor device 1 according to the first embodiment can be obtained. Although the thermal resistance increases by about 5% due to the insertion, the thermal stress can be reduced with the insertion of the thermal buffer plate 75, so that the junction between the main electrode 11 of the semiconductor element 10 and the electrode lead conductor 50 can be reduced. In particular, the durability of the conductive resin 70 can be improved. Accordingly, in the power semiconductor device 1, the electrical reliability of the connection portion between the main electrode 11 of the semiconductor element 10 and the electrode lead conductor 50 can be improved.

(第4の実施の形態)
本発明の第4の実施の形態に係る電力用半導体装置1は、図8に示すように、半導体素子10の主電極11と電極引出導体50との間の接続部分において、電極引出導体50に細孔50Hを備えている。電極引出導体50は前述の第1の実施の形態に係る電力用半導体装置1の電極引出導体50と同様に幅広導体により構成されており、細孔50Hの直径は例えば0.2mm以上に設定されている。細孔50Hは主電極11と電極引出導体50との間に配設される導電性樹脂70の余剰部分を内部に引き込むことができ、導電性樹脂70の主電極11の外周囲への不必要なはみ出しを防止することができる。
(Fourth embodiment)
As shown in FIG. 8, the power semiconductor device 1 according to the fourth embodiment of the present invention is connected to the electrode lead conductor 50 at the connection portion between the main electrode 11 and the electrode lead conductor 50 of the semiconductor element 10. It has pores 50H. The electrode lead conductor 50 is composed of a wide conductor like the electrode lead conductor 50 of the power semiconductor device 1 according to the first embodiment described above, and the diameter of the pore 50H is set to 0.2 mm or more, for example. ing. The pore 50H can draw an excess portion of the conductive resin 70 disposed between the main electrode 11 and the electrode lead conductor 50 into the inside, and is unnecessary for the outer periphery of the main electrode 11 of the conductive resin 70. It is possible to prevent protrusion.

また、電力用半導体装置1の製造プロセス(組立プロセス)において、細孔50Hを導電性樹脂70の注入口として使用することができる。この場合、半導体素子10の主電極11と電極引出導体50との間に適度な隙間を生成しておき、滴下塗布装置のディスペンサから電極引出導体50の細孔50Hを通して隙間に導電性樹脂70を注入し、注入された導電性樹脂70を硬化させることにより実現することができる。   Further, in the manufacturing process (assembly process) of the power semiconductor device 1, the pore 50 </ b> H can be used as an inlet for the conductive resin 70. In this case, an appropriate gap is generated between the main electrode 11 of the semiconductor element 10 and the electrode lead conductor 50, and the conductive resin 70 is put into the gap through the pore 50H of the electrode lead conductor 50 from the dispenser of the drop coating apparatus. It can be realized by injecting and curing the injected conductive resin 70.

なお、第4の実施の形態において、1つの電極引出導体50には1つの細孔50Hが配設されているが、本発明は、この配設個数に限定されるものではなく、1つの電極引出導体50に複数の細孔50Hを配設してもよい。   In the fourth embodiment, one electrode lead conductor 50 is provided with one pore 50H. However, the present invention is not limited to this arrangement number, and one electrode is provided with one electrode. A plurality of pores 50 </ b> H may be disposed in the lead conductor 50.

第4の実施の形態に係る電力用半導体装置1においては、第1の実施の形態に係る電力用半導体装置1により得られる効果と同様の効果を得ることができ、更に、電極引出導体50に細孔50Hを備えたので、導電性樹脂70の余剰部分を細孔50H内部に吸収することができ、主電極11と電極引出導体50との間の接続部分をはみ出す導電性樹脂70をなくすことができる。従って、導電性樹脂70の余剰部分のはみ出しに起因する不良、例えば外観不良、隣接導体間短絡不良等を排除することができるので、電力用半導体装置1の製造上の歩留まりを向上することができる。   In the power semiconductor device 1 according to the fourth embodiment, the same effect as that obtained by the power semiconductor device 1 according to the first embodiment can be obtained. Since the pores 50H are provided, surplus portions of the conductive resin 70 can be absorbed into the pores 50H, and the conductive resin 70 that protrudes from the connection portion between the main electrode 11 and the electrode lead conductor 50 is eliminated. Can do. Accordingly, defects due to the excess portion of the conductive resin 70 protruding, for example, appearance defects, adjacent conductor short-circuit defects, and the like can be eliminated, so that the manufacturing yield of the power semiconductor device 1 can be improved. .

更に、電力用半導体装置1の製造プロセスにおいて、主電極11と電極引出導体50との間の接続部分の側面周囲から導電性樹脂70を注入する必要がなくなり、電極引出導体50に配設された細孔50Hを通して導電性樹脂70を注入することができるので、導電性樹脂70の注入時間を短縮することができ、量産性を向上することができる。   Further, in the manufacturing process of the power semiconductor device 1, it is not necessary to inject the conductive resin 70 from the periphery of the side surface of the connection portion between the main electrode 11 and the electrode lead conductor 50, and the electrode semiconductor is disposed on the electrode lead conductor 50. Since the conductive resin 70 can be injected through the pores 50H, the injection time of the conductive resin 70 can be shortened and the mass productivity can be improved.

(第5の実施の形態)
本発明の第5の実施の形態に係る電力用半導体装置1は、図9に示すように、その製造プロセスにおいて、半導体素子10の主電極11と電極引出導体50の一端との間に適度な隙間Sを生成した状態で電極引出導体50の他端を第2のマウント用導体20Bに接合し、この状態において隙間Sに導電性樹脂70を注入し、注入された導電性樹脂70を硬化するようになっている。第5の実施の形態において、隙間Sは例えば0.025mm〜1mmの範囲内に設定されることが好ましい。滴下塗布装置のディスペンサを利用して導電性樹脂70を隙間Sに注入することができる。また、主電極11と電極引出導体50との間の隙間Sの周囲に導電性樹脂70を滴下塗布し、キャピラリー効果を利用して隙間Sに導電性樹脂70を充填するようにしてもよい。
(Fifth embodiment)
As shown in FIG. 9, the power semiconductor device 1 according to the fifth embodiment of the present invention has an appropriate amount between the main electrode 11 of the semiconductor element 10 and one end of the electrode lead conductor 50 in the manufacturing process. In the state where the gap S is generated, the other end of the electrode lead conductor 50 is joined to the second mounting conductor 20B. In this state, the conductive resin 70 is injected into the gap S, and the injected conductive resin 70 is cured. It is like that. In 5th Embodiment, it is preferable that the clearance gap S is set in the range of 0.025 mm-1 mm, for example. The conductive resin 70 can be injected into the gap S using the dispenser of the dropping application device. Alternatively, the conductive resin 70 may be dropped and applied around the gap S between the main electrode 11 and the electrode lead conductor 50, and the conductive resin 70 may be filled into the gap S using the capillary effect.

第5の実施の形態に係る電力用半導体装置1の製造プロセスにおいては、半導体素子10の主電極11と電極引出導体50との間に予め隙間Sを生成し、この隙間Sに導電性樹脂70を注入するようにしたので、導電性樹脂70の厚さを隙間Sにより予め決定することができ、導電性樹脂70の滴下塗布に起因する厚さのばらつきを減少することができる。従って、電力用半導体装置1の製造プロセスにおいて、製造上の歩留まりを向上することができる。   In the manufacturing process of the power semiconductor device 1 according to the fifth embodiment, a gap S is generated in advance between the main electrode 11 of the semiconductor element 10 and the electrode lead conductor 50, and the conductive resin 70 is formed in the gap S. Therefore, the thickness of the conductive resin 70 can be determined in advance by the gap S, and variations in thickness due to the dropping application of the conductive resin 70 can be reduced. Therefore, in the manufacturing process of the power semiconductor device 1, the manufacturing yield can be improved.

更に、電力用半導体装置1においては、主電極11と電極引出導体50との間の導電性樹脂70の厚さのばらつきを減少することができるので、導電性樹脂70(主電極11と電極引出導体50との間の接続部分)の熱抵抗のばらつきを減少することができる。   Furthermore, in the power semiconductor device 1, since the variation in the thickness of the conductive resin 70 between the main electrode 11 and the electrode lead conductor 50 can be reduced, the conductive resin 70 (the main electrode 11 and the electrode lead-out) is reduced. Variations in the thermal resistance of the connecting portion between the conductor 50 and the conductor 50 can be reduced.

(第6の実施の形態)
本発明の第6の実施の形態に係る電力用半導体装置1は、図10に示すように、半導体素子10、電極引出導体50、第1のマウント用導体20A、第2のマウント用導体20B、シート状放熱絶縁体30及び放熱体40の裏面を除く、大半を覆う封止体72を備えている。すなわち、電力用半導体装置1は、第1の実施の形態に係る電力用半導体装置1の局部的な封止体71とは異なり、半導体素子10の主電極11と電極引出導体50との間の接続部分を含む大半を封止体72により気密封止している。封止体72は、電力用半導体装置1の製造プロセスにおいて、トランスファモールド法により成型することができる。封止体72には、エポキシ系樹脂等の絶縁性樹脂基材に溶融シリカ粉末、石英粉末、ガラス粉末、ガラス短繊維等の充填剤を添加した樹脂を実用的に使用することができる。
(Sixth embodiment)
As shown in FIG. 10, the power semiconductor device 1 according to the sixth embodiment of the present invention includes a semiconductor element 10, an electrode lead conductor 50, a first mounting conductor 20 </ b> A, a second mounting conductor 20 </ b> B, A sealing body 72 that covers most of the sheet-like heat radiation insulator 30 and the back surface of the heat radiation body 40 is provided. That is, the power semiconductor device 1 is different from the local sealing body 71 of the power semiconductor device 1 according to the first embodiment, between the main electrode 11 of the semiconductor element 10 and the electrode lead conductor 50. The majority including the connecting portion is hermetically sealed by the sealing body 72. The sealing body 72 can be molded by a transfer molding method in the manufacturing process of the power semiconductor device 1. For the sealing body 72, a resin obtained by adding a filler such as fused silica powder, quartz powder, glass powder, or short glass fiber to an insulating resin base material such as an epoxy resin can be practically used.

封止体72の内部において、第1のマウント用導体20Aには外部接続端子62の一端が電気的に接続されている。外部接続端子62の他端は封止体72の外部に引出されている。外部接続端子62はいわゆるリードであり、この外部接続端子62には、鉄−ニッケル合金、銅、又はこれらの表面にメッキ処理を施したものを実用的に使用することができる。   Inside the sealing body 72, one end of the external connection terminal 62 is electrically connected to the first mounting conductor 20A. The other end of the external connection terminal 62 is drawn out of the sealing body 72. The external connection terminal 62 is a so-called lead, and for this external connection terminal 62, an iron-nickel alloy, copper, or a material obtained by plating these surfaces can be used practically.

第6の実施の形態に係る電力用半導体装置1においては、導電性樹脂70、半導体素子10等の大半を封止体72により耐湿封止し、水分の浸入経路を長くすることができるので、より一層の水分の浸入を防止することができ、導電性樹脂70に含まれる導電性物質のエレクトロマイグレーションの発生を防止することができる。   In the power semiconductor device 1 according to the sixth embodiment, most of the conductive resin 70, the semiconductor element 10 and the like can be moisture-resistant sealed by the sealing body 72, and the moisture infiltration path can be lengthened. Further infiltration of moisture can be prevented, and electromigration of the conductive substance contained in the conductive resin 70 can be prevented.

(その他の実施の形態)
本発明は、前述の実施の形態に限定されるものではない。例えば、前述の第1の実施の形態に係る電力用半導体装置1は、1つの半導体素子10と1つの電極引出導体50との間の接続部分に配設された導電性樹脂70を局部的に覆う封止体71を各接続部分において個別に備えているが、本発明は、複数の接続部分を1つの封止体71で耐湿封止するようにしてもよい。
(Other embodiments)
The present invention is not limited to the embodiment described above. For example, the power semiconductor device 1 according to the first embodiment described above locally uses the conductive resin 70 disposed in the connection portion between one semiconductor element 10 and one electrode lead conductor 50. Although the sealing body 71 to cover is provided individually in each connection part, according to the present invention, a plurality of connection parts may be moisture-resistant sealed with one sealing body 71.

更に、本発明は、前述の第1の実施の形態に係る電力用半導体装置1と第6の実施の形態に係る電力用半導体装置1とを組み合わせてもよい。すなわち、電力用半導体装置1は、半導体素子10の主電極11と電極引出導体50との接続部分の導電性樹脂70を局部的に覆う封止体71を備えるとともに、半導体素子10等の大半を覆う封止体72を備えてもよい。   Furthermore, in the present invention, the power semiconductor device 1 according to the first embodiment described above and the power semiconductor device 1 according to the sixth embodiment may be combined. That is, the power semiconductor device 1 includes a sealing body 71 that locally covers the conductive resin 70 at a connection portion between the main electrode 11 and the electrode lead conductor 50 of the semiconductor element 10 and covers most of the semiconductor element 10 and the like. You may provide the sealing body 72 to cover.

本発明の第1の実施の形態に係る電力用半導体装置の要部拡大断面図である。It is a principal part expanded sectional view of the power semiconductor device which concerns on the 1st Embodiment of this invention. 図1に示す電力用半導体装置の全体構造を示す断面図である。It is sectional drawing which shows the whole structure of the power semiconductor device shown in FIG. 図1に示す電力用半導体装置の漏れ電流特性図である。FIG. 2 is a leakage current characteristic diagram of the power semiconductor device shown in FIG. 1. 図1に示す電力用半導体装置の熱抵抗特性図である。FIG. 2 is a thermal resistance characteristic diagram of the power semiconductor device shown in FIG. 1. 図1に示す電力用半導体装置のクラック発生率を示す図である。It is a figure which shows the crack generation rate of the power semiconductor device shown in FIG. 本発明の第2の実施の形態に係る電力用半導体装置の全体構造を示す断面図である。It is sectional drawing which shows the whole structure of the power semiconductor device which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る電力用半導体装置の要部拡大断面図である。It is a principal part expanded sectional view of the power semiconductor device which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る電力用半導体装置の要部拡大平面図である。It is a principal part enlarged plan view of the power semiconductor device which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る電力用半導体装置の要部拡大断面図である。It is a principal part expanded sectional view of the power semiconductor device which concerns on the 5th Embodiment of this invention. 本発明の第6の実施の形態に係る電力用半導体装置の全体構造を示す断面図である。It is sectional drawing which shows the whole structure of the power semiconductor device which concerns on the 6th Embodiment of this invention. 本発明の先行技術に係る電力用半導体装置の断面図である。It is sectional drawing of the semiconductor device for electric power which concerns on the prior art of this invention. 本発明の先行技術に係る電力用半導体装置の部分的な斜視図である。It is a partial perspective view of the power semiconductor device according to the prior art of the present invention.

符号の説明Explanation of symbols

1 電力用半導体装置
10 半導体素子
11、12 主電極
20A 第1のマウント用導体
20B 第2のマウント用導体
30 シート状放熱絶縁体
40 放熱体
41 放熱板
42 熱伝導グリース
50 電極引出導体
50H 細孔
60 外装ケース
61、62 外部接続端子
65 樹脂封止体
66 端子ホルダ
67 固形樹脂体
70 導電性樹脂
71、72 封止体
75 熱緩衝板
S 隙間
DESCRIPTION OF SYMBOLS 1 Power semiconductor device 10 Semiconductor element 11, 12 Main electrode 20A 1st mounting conductor 20B 2nd mounting conductor 30 Sheet-like thermal insulation 40 Thermal radiator 41 Radiating plate 42 Thermal conductive grease 50 Electrode extraction conductor 50H Pore 60 Exterior case 61, 62 External connection terminal 65 Resin sealing body 66 Terminal holder 67 Solid resin body 70 Conductive resin 71, 72 Sealing body 75 Thermal shock absorbing plate S Gap

Claims (11)

トランジスタの主電極を表面上に配設した半導体素子と、
前記主電極上に形成され、絶縁性樹脂基材に導電性物質を含有する導電性樹脂と、
前記主電極に前記導電性樹脂を介して一端を接続する電極引出導体と、
前記導電性樹脂の周囲を耐湿封止する封止体と、
を備えたことを特徴とする半導体装置。
A semiconductor element in which the main electrode of the transistor is disposed on the surface;
A conductive resin formed on the main electrode and containing a conductive substance in an insulating resin base;
An electrode lead conductor connecting one end to the main electrode through the conductive resin;
A sealing body for moisture-proof sealing around the conductive resin;
A semiconductor device comprising:
前記半導体素子を搭載する第1のマウント用導体と、
前記電極引出導体の他端を接続する第2のマウント用導体と、
前記第1のマウント用導体及び前記第2のマウント用導体を表面上に搭載する放熱体と、
前記第1のマウント用導体及び前記第2のマウント用導体と前記放熱体との間に配設されたシート状放熱絶縁体と、
を更に備えたことを特徴とする請求項1に記載の半導体装置。
A first mounting conductor on which the semiconductor element is mounted;
A second mounting conductor connecting the other end of the electrode lead conductor;
A radiator for mounting the first mounting conductor and the second mounting conductor on the surface;
A sheet-like heat dissipating insulator disposed between the first mounting conductor and the second mounting conductor and the heat dissipating body;
The semiconductor device according to claim 1, further comprising:
前記第1のマウント用導体上に前記半導体素子を複数搭載し、
前記複数の半導体素子のそれぞれの主電極と前記第2のマウント用導体との間は、各々、前記電極引出導体により電気的に並列に接続されていることを特徴とする請求項2に記載の半導体装置。
A plurality of the semiconductor elements are mounted on the first mounting conductor,
The main electrode of each of the plurality of semiconductor elements and the second mounting conductor are each electrically connected in parallel by the electrode lead conductor. Semiconductor device.
前記封止体は、前記主電極と前記導電性樹脂との接続部及び前記電極引出導体と前記導電性樹脂との接続部を除き、前記導電性樹脂の露出する表面を局部的に覆うことを特徴とする請求項1乃至請求項3のいずれかに記載の半導体装置。   The sealing body covers the exposed surface of the conductive resin locally except for a connection portion between the main electrode and the conductive resin and a connection portion between the electrode lead conductor and the conductive resin. The semiconductor device according to claim 1, wherein the semiconductor device is a semiconductor device. 前記封止体は、前記導電性樹脂、前記半導体素子、前記第1のマウント用導体、前記第2のマウント用導体、前記シート状放熱絶縁体、及び裏面を除いた前記放熱体を覆うことを特徴とする請求項2又は請求項3に記載の半導体装置。   The sealing body covers the conductive resin, the semiconductor element, the first mounting conductor, the second mounting conductor, the sheet-shaped heat dissipation insulator, and the heat dissipation body excluding the back surface. The semiconductor device according to claim 2, wherein the semiconductor device is characterized. 前記封止体は、トランスファモールド型封止体であることを特徴とする請求項5に記載の半導体装置。   The semiconductor device according to claim 5, wherein the sealing body is a transfer mold type sealing body. 前記導電性樹脂は、エポキシ樹脂又はシリコーン樹脂を主成分とする前記絶縁性樹脂基材に、銀、金、錫合金、カーボンブラック、炭素繊維、銅、ニッケル、金属メッキしたポリマーのいずれか1つ又は複数を前記導電性物質として含有したことを特徴とする請求項1乃至請求項6のいずれかに記載の半導体装置。   The conductive resin is any one of a polymer obtained by plating silver, gold, tin alloy, carbon black, carbon fiber, copper, nickel, or metal on the insulating resin base material mainly composed of epoxy resin or silicone resin. 7. The semiconductor device according to claim 1, wherein a plurality of the conductive materials are contained as the conductive material. 前記封止体は、硬化剤を配合したエポキシ樹脂に、硬化促進剤、低応力化剤、充填剤、難燃剤、カップリング剤、難型剤、顔料の1つ又は複数を加えた一液性樹脂であることを特徴とする請求項1乃至請求項7のいずれかに記載の半導体装置。   The encapsulant is a one-component type in which one or more of a curing accelerator, a stress reducing agent, a filler, a flame retardant, a coupling agent, a hardener, and a pigment are added to an epoxy resin containing a curing agent. The semiconductor device according to claim 1, wherein the semiconductor device is a resin. 前記主電極と前記電極引出導体との間に熱応力を減少する金属板を更に備えたことを特徴とする請求項1乃至請求項8のいずれかに記載の半導体装置。   9. The semiconductor device according to claim 1, further comprising a metal plate that reduces thermal stress between the main electrode and the electrode lead conductor. 前記電極引出導体の前記主電極との接続部に細孔を更に備えたことを特徴とする請求項1乃至請求項9のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, further comprising a pore in a connection portion between the electrode lead conductor and the main electrode. 前記導電性樹脂は前記主電極と前記電極引出導体との間に生成された隙間に充填されたことを特徴とする請求項1乃至請求項9のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, wherein the conductive resin is filled in a gap generated between the main electrode and the electrode lead conductor.
JP2004259956A 2004-09-07 2004-09-07 Semiconductor device Pending JP2006080153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004259956A JP2006080153A (en) 2004-09-07 2004-09-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004259956A JP2006080153A (en) 2004-09-07 2004-09-07 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2006080153A true JP2006080153A (en) 2006-03-23

Family

ID=36159386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004259956A Pending JP2006080153A (en) 2004-09-07 2004-09-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2006080153A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016711A (en) * 2007-07-09 2009-01-22 Seiko Instruments Inc Resin-sealed semiconductor apparatus
WO2014041936A1 (en) * 2012-09-13 2014-03-20 富士電機株式会社 Semiconductor device, method for attaching heat dissipating member to semiconductor device, and method for manufacturing semiconductor device
JP2017041514A (en) * 2015-08-18 2017-02-23 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
JP2017108130A (en) * 2015-11-30 2017-06-15 株式会社東芝 Semiconductor module
WO2020144907A1 (en) * 2019-01-08 2020-07-16 トヨタ自動車株式会社 Semiconductor device
WO2023119438A1 (en) * 2021-12-21 2023-06-29 住友電気工業株式会社 Semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016711A (en) * 2007-07-09 2009-01-22 Seiko Instruments Inc Resin-sealed semiconductor apparatus
WO2014041936A1 (en) * 2012-09-13 2014-03-20 富士電機株式会社 Semiconductor device, method for attaching heat dissipating member to semiconductor device, and method for manufacturing semiconductor device
JP5871076B2 (en) * 2012-09-13 2016-03-01 富士電機株式会社 Semiconductor device, method for attaching heat dissipation member to semiconductor device, and method for manufacturing semiconductor device
US9711430B2 (en) 2012-09-13 2017-07-18 Fuji Electric Co., Ltd. Semiconductor device, method for installing heat dissipation member to semiconductor device, and a method for producing semiconductor device
JP2017041514A (en) * 2015-08-18 2017-02-23 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
CN106469688A (en) * 2015-08-18 2017-03-01 富士电机株式会社 Semiconductor device and the manufacture method of semiconductor device
CN106469688B (en) * 2015-08-18 2020-08-28 富士电机株式会社 Semiconductor device and method for manufacturing semiconductor device
JP2017108130A (en) * 2015-11-30 2017-06-15 株式会社東芝 Semiconductor module
WO2020144907A1 (en) * 2019-01-08 2020-07-16 トヨタ自動車株式会社 Semiconductor device
JPWO2020144907A1 (en) * 2019-01-08 2021-11-11 株式会社デンソー Semiconductor device
JP7192886B2 (en) 2019-01-08 2022-12-20 株式会社デンソー semiconductor equipment
WO2023119438A1 (en) * 2021-12-21 2023-06-29 住友電気工業株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JP3429921B2 (en) Semiconductor device
US9171773B2 (en) Semiconductor device
US7868436B2 (en) Semiconductor device
CN104620372B (en) Semiconductor device
CN104637832B (en) Semiconductor device and its manufacturing method
CN109659284B (en) Semiconductor device with a plurality of semiconductor chips
KR102004785B1 (en) Power Semi-Conductor package and Method of Manufacturing for the same
US10163752B2 (en) Semiconductor device
CN103996667B (en) Semiconductor device with bypass functionality and method thereof
US9466542B2 (en) Semiconductor device
JP2007305702A (en) Semiconductor device and its manufacturing method
US11362008B2 (en) Power semiconductor module embedded in a mold compounded with an opening
JP2009194327A (en) Power semiconductor device
JP2015130457A (en) Semiconductor device
CN111696936A (en) Power module of integrated radiator and manufacturing method thereof
JP2008270469A (en) Power module and its manufacturing method
JP2007067084A (en) Power semiconductor element and semiconductor power converter
US20220051960A1 (en) Power Semiconductor Module Arrangement and Method for Producing the Same
JP2005210006A (en) Semiconductor device
JP2004087735A (en) Semiconductor device
JP2006080153A (en) Semiconductor device
JP2012209470A (en) Semiconductor device, semiconductor device module, and manufacturing method of the semiconductor device
JP2004221381A (en) Semiconductor device
CN114258219A (en) Semiconductor device with a plurality of semiconductor chips
CN112397472A (en) Semiconductor device with a plurality of semiconductor chips

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331