JP2006079704A - 磁気記録媒体およびその製造方法 - Google Patents

磁気記録媒体およびその製造方法 Download PDF

Info

Publication number
JP2006079704A
JP2006079704A JP2004261594A JP2004261594A JP2006079704A JP 2006079704 A JP2006079704 A JP 2006079704A JP 2004261594 A JP2004261594 A JP 2004261594A JP 2004261594 A JP2004261594 A JP 2004261594A JP 2006079704 A JP2006079704 A JP 2006079704A
Authority
JP
Japan
Prior art keywords
recording medium
magnetic
magnetic layer
magnetic recording
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004261594A
Other languages
English (en)
Inventor
Koji Hattori
康志 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004261594A priority Critical patent/JP2006079704A/ja
Priority to US11/217,499 priority patent/US20060051621A1/en
Priority to EP05019428A priority patent/EP1635334A3/en
Publication of JP2006079704A publication Critical patent/JP2006079704A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/842Coating a support with a liquid magnetic dispersion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/702Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the bonding agent
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/727Inorganic carbon protective coating, e.g. graphite, diamond like carbon or doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/007Thin magnetic films, e.g. of one-domain structure ultrathin or granular films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/123Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys having a L10 crystallographic structure, e.g. [Co,Fe][Pt,Pd] thin films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/26Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
    • H01F10/265Magnetic multilayers non exchange-coupled
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/716Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by two or more magnetic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/065Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by a reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/16Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates the magnetic material being applied in the form of particles, e.g. by serigraphy, to form thick magnetic films or precursors therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

【課題】 磁性層の厚み変動が少なく、高い出力を発揮することが可能な磁気記録媒体およびその製造方法を提供する。
【解決手段】 支持体上に磁性層が形成されている磁気記録媒体であって、前記磁性層が、CuAu型あるいはCu3Au型強磁性規則合金を含み、残留磁束密度(Mr(G))に前記磁性層の厚み(t(μm))をかけた値(Mr・t(G・μm))が、30以上であることを特徴とする磁気記録媒体である。
また、上記磁気記録媒体の製造方法であって、支持体上に磁性層を形成するための塗布液を塗布し、乾燥処理を施す塗布乾燥処理を少なくとも2回行うことを特徴とする磁気記録媒体の製造方法である。
【選択図】 なし

Description

本発明は、CuAu型あるいはCu3Au型強磁性規則合金を含む磁性層を有する磁気記録媒体およびその製造方法に関する。
粒子サイズを小さくする事は磁気記録密度を高くする上で必要である。例えば、ビデオテープ、コンピューターテープ、ディスク等として広く用いられている磁気記録媒体では、強磁性体の重量が同じ場合、粒子サイズを小さくしていった方がノイズは下がる。CuAu型あるいはCu3Au型強磁性規則合金は、規則化時に発生する歪みのために結晶磁気異方性が大きい。そのため、粒子サイズを小さくしても強磁性を示す事から磁気記録密度向上に有望な素材である(例えば、特許文献1参照)。
一方で、粒子サイズが小さい状態で、塗布液中の固形分濃度を高くすると凝集しやすくなる。そのため、固形分濃度が高い状態で塗布を行うと、表面が粗くなり、磁気記録媒体に適したものを得ることができなかった。また、凝集防止のため、バインダー(結合剤)等を添加すると磁化が小さくなり、これも磁気記録媒体として望ましいものではない。この結果、塗布厚が薄いものしかできなかった。磁性層の厚みが薄いと、磁気記録媒体の磁気的エネルギー(残留磁化×厚み)が小さくなり、その結果、出力が低いものとなってしまう。
特開2003−73705号公報
以上より、本発明は、上記課題を解決することを目的とする。すなわち、本発明は、高い出力を発揮することが可能な磁気記録媒体およびその製造方法を提供することを目的とする。
前記課題は、下記本発明により解決することができる。
すなわち、本発明は、支持体上に磁性層が形成されている磁気記録媒体であって、前記磁性層が、CuAu型あるいはCu3Au型強磁性規則合金を含み、残留磁束密度(Mr(G))に前記磁性層の平均厚み(tave(μm))をかけた値(Mr・tave(G・μm))が、30以上であることを特徴とする磁気記録媒体である。
前記磁性層は2層以上からなることが好ましく、前記磁性層は、結合剤を含むことが好ましい。前記磁性層の厚み(t)は、40〜100nmであることが好ましく、前記磁性層の平均厚み(tave)の標準偏差(σ)は、0.03μm以下であることが好ましい。
また、本発明は、上記本発明の磁気記録媒体の製造方法であって、支持体上にCuAu型あるいはCu3Au型強磁性規則合金を含む磁性層を形成するための塗布液を塗布し、乾燥処理を施す塗布乾燥処理を少なくとも2回行うことを特徴とする磁気記録媒体の製造方法である。
前記塗布液には結合剤を含有させることが好ましい。前記乾燥処理の温度は、100℃以上とすることが好ましい。
本発明によれば、高い出力を発揮することが可能な磁気記録媒体およびその製造方法を提供することができる。
以下、本発明の磁気記録媒体およびその製造方法について、詳細に説明する。
[磁気記録媒体]
本発明の磁気記録媒体は、支持体上に、CuAu型あるいはCu3Au型強磁性規則合金(以下、「強磁性規則合金」ということがある)を含む磁性層が形成されている。当該磁気記録媒体としては、ビデオテープ、コンピューターテープ等の磁気テープ;フロッピー(登録商標)ディスク、ハードディスク等の磁気ディスク;等が挙げられる。強磁性規則合金を磁性層に含有させることで、強磁性(高い保磁力)を発揮させることができる。なお、本発明の場合、強磁性規則合金とは種々の形態を含むが、強磁性規則合金からなる磁性粒子であることが好ましい。
また、残留磁束密度(Mr)に磁性層の平均厚み(tave)をかけた値(Mr・tave)が、30(G・μm)以上となっている。「Mr・tave」が30(G・μm)未満だと、出力が低下してしまう。また、当該値が高すぎると、MRヘッドが飽和してしまい、意味を有しなくなってしまうことがあるため、「Mr・tave」は、30〜150(G・μm)であることが好ましく、30〜80(G・μm)であることより好ましい。
「Mr・t」を30(G・μm)以上とするには、磁性層を2層以上の多層とすることが好ましい。磁性層が1層で形成されているとその厚みが小さいため、磁気記録媒体の磁気的エネルギー(残留磁化×厚み)が小さくなる。その結果、出力が低いものとなってしまう。また、1回の塗布では、厚めに磁性層を形成することが困難である。このような問題に対し、磁性層を2層以上とすることで、厚みムラを無くしながら、高い出力を発生させることが可能となる。磁性層は、コストや生産性といった実用面を考慮して、2〜6層とすることがより好ましい。磁性層を2層以上とするには、後述の製造方法で説明するように、磁性層を形成するための塗布液を支持体上に塗布し、乾燥処理を施す塗布乾燥処理を少なくとも2回行う方法を適用することが好ましい。
「Mr・tave」の残留磁束密度(Mr)は、VSM(Vibrating Sample Magnetometer)により測定して、求めることができる。
本発明の磁気記録媒体における磁性層には、結合剤が含有されていることが好ましい。結合剤を含有させることで、磁性層を形成させるための熱処理温度を低くすることができる。その結果、磁性粒子の凝集がない磁気記録媒体とすることができる。なお、結合剤の例や含有量は、後述の磁気記録媒体の製造方法で詳述する。
磁性層の厚み(t)は40〜100nmであることが好ましく、40〜80nmであることがより好ましい。上記範囲より小さいと出力が低くなることがある。また、記録波長が短くなった場合に磁性層を厚くしても表層しか記録されないので、上記範囲より大きくすることは意味をなさない。
本発明において、磁性層の平均厚み(tave)の標準偏差σは、0.03μm以下が好ましく、0.005〜0.02μmであることがより好ましい。標準偏差σを、0.03μm以下とすることで、ノイズを低減することができる。標準偏差σを0.03μm以下とするには、塗布乾燥処理を少なくとも2回行う方法を適用し、適宜、公知の手法を併用すればよい。
標準偏差σを磁性層の平均厚みtaveで割った磁性層厚変動値(σ/tave)は、0.5以下であることが好ましく、0.3以下であることがより好ましく、0.2以下であることがさらに好ましい。磁性層厚変動値(σ/tave)を0.5以下とすることで、ノイズを低減することができる。
磁性層の「平均厚みtave」及び磁性層の平均厚みtaveの「標準偏差σ」とは、重層構成の場合、以下の方法により測定した値を指す。磁性層単層の場合もこれに準じて測定した値を指す。
すなわち、まず、磁気記録媒体を長手方向に渡りFIBで約0.1μmの厚さに切り出し透過型電子顕微鏡で倍率10,000倍〜100,000倍、好ましくは50,000倍〜100,000倍で観察し、その写真撮影を行う。
写真のプリントサイズはA4〜A5とすることが好ましい。その後、磁性層、下層が形成されている場合は、当該下層の強磁性金属粉末や非磁性無機粉末の形状差に注目して界面を目視判断しながら黒く渕どり、かつ磁性層表面も同様に黒く渕どる。
その後、Zeiss社製の画像処理装置IBAS2にて渕どりした線の長さを測定する。例えば、A4サイズに焼きのばした試料写真の長さが21cmの場合、測定を85〜300回行う。その際の測定値の平均値をtaveとし、以下の式から標準偏差σを求める。
σ=[{(t1−tave2+(t2−tave2+・・・・+(tn−tave2}/(n−1)]1/2
上記式中、「t1、t2、……tn」は層厚の各測定値を示す。nは85〜300である。なお、磁性層の厚みの各測定値の最大値は、taveの1.0〜3倍程度の範囲にあることが好ましい。また、同測定値の最小値はtaveの0.4〜1倍程度の範囲にあることが好ましい。
なお、特に断らない限り、磁性層の厚み(t)とは各磁性層の合計の厚さをいい、磁性層の平均厚み(tave)は、各磁性層の合計の厚さの平均値をいう。
中心線平均粗さが、0.1nm未満では、ヘッドと磁気記録媒体との摩擦係数が高くなって貼りついてしまい、実用に供することができない。また、5nmを超えると、スペーシングロスが大きくなり出力が低下してしまう。
本発明の磁気記録媒体は、表面の中心線平均粗さ(Ra)が、カットオフ値0.25mmにおいて、0.1〜5nmとなっていることが好ましい。0.1nm未満では、ヘッドと磁気記録媒体との摩擦係数が高くなって貼りついてしまうことがある。また、5nmを超えると、スペーシングロスが大きくなり出力が低下してしまうことがある。極めて優れた平滑性を有する表面であることが高密度記録用の磁気記録媒体として好ましいため、上記Raは0.1〜4nmの範囲であることがより好ましい。
特に、本発明の磁気記録媒体をハードディスク用記録媒体として用いるには、Raは0.1〜1nmであることが好ましく、0.3〜0.8nmであることがより好ましい。1nmを超えるとフライングヘッドが浮上しなくなり、ヘッドが媒体表面にクラッシュしてしまうことがある。0.1nm未満だとトラブルによりヘッドが媒体表面に接触した状態で媒体の回転が止まった場合、当該ヘッドが媒体表面に貼り付いてしまい動かなくなってしまうことがある。
また、本発明の磁気記録媒体をフロッピー(登録商標)ディスクまたはテープなどのフレキシブル媒体に用いる場合は、ヘッドが媒体に接触した状態で走行する記録方式がとられるため、媒体表面が平滑になりすぎると摩擦係数が高くなりヘッドが媒体に貼り付いてしまうことがある。そこで、好ましいRaは1〜5nmであり、さらに好ましくは2〜3nmである。Raが大きすぎるとヘッドと媒体の実効の距離が離れ、良好な電磁変換特性を得る事ができなくなることがある。
磁性層の表面を平滑にする方法として、結合剤としてのマトリックス剤を磁性層に含有させることが有効である。さらに、磁性層を形成した後にカレンダー処理を施すことが好ましい。また、微小突起あるいは塵埃を除去するために、バーニッシュ処理を施してもよい。
本発明の磁気記録媒体をハードディスクとして使用し、その媒体をヘッドバーニッシュによりバーニッシュ処理を施す場合、処理前の表面がある程度平滑であることが好ましい。平滑でないと、バーニッシュヘッドが浮上できなくなり、媒体表面にクラッシュしてしまうことがある。
バーニッシュ処理後、ヘッドに歪みゲージがついたグライドヘッドで表面突起の有無を調べることができる。ヘッドの浮上量は、バーニッシュヘッド、グライドヘッド、電磁変換特性ヘッドの順に高くなる。当該バーニッシュヘッドの浮上量は、5〜15nmとすることが好ましく、10〜12nmとすることが好ましい。なお、通常、グライドヘッドの浮上量は約12nmである。また、バーニッシュ処理を行う際の荷重は、3〜12gとすることが好ましく、3〜6gとすることがより好ましい。
磁気記録媒体の表面突起は、グライドヘッドを用いて評価する事ができる。磁性層表面に突起が存在すると電磁変換特性ヘッドと突起がぶつかり、突起が削られる結果、削りカスがヘッドに付着し、ヘッドギャップをうめ、電磁変換特性が評価できなくなるため、存在しないことが好ましいが、グライドヘッドでの評価時に当該表面突起を除去することができる。従って、12nm以上の表面突起は好ましくは5個以下、さらに好ましくは3個以下であり、理想的には0個である。これは、個数が多くなるとグライドヘッドの汚れが多く、グライドヘッドを掃除する回数が増え、あるいは交換回数が増えることから工業的に好ましくないからである。
本発明の磁気記録媒体は、磁性層のほかに必要に応じて他の層を有していてもよい。例えば、ディスクの場合、磁性層の反対側の面にさらに磁性層や非磁性層を設けることが好ましい。テープの場合、磁性層が形成された面とは反対側の支持体上にバック層を設けることが好ましい。
また、磁性層上に非常に薄い保護膜を形成することで、耐磨耗性を改善し、さらにその保護膜上に潤滑剤を塗布して滑り性を高めることによって、十分な信頼性を有する磁気記録媒体とすることができる。
保護膜の材質としては、シリカ、アルミナ、チタニア、ジルコニア、酸化コバルト、酸化ニッケルなどの酸化物;窒化チタン、窒化ケイ素、窒化ホウ素などの窒化物;炭化ケイ素、炭化クロム、炭化ホウ素等の炭化物;グラファイト、無定型カーボンなどの炭素(カーボン);等があげられるが、特に好ましくは、一般に、ダイヤモンドライクカーボンと呼ばれる硬質の非晶質のカーボンである。
カーボンからなるカーボン保護膜は、非常に薄い膜厚で十分な耐磨耗性を有し、摺動部材に焼き付きを生じ難いため、保護膜の材料としては好適である。
カーボン保護膜の形成方法として、ハードディスクにおいては、スパッタリング法が一般的であるが、ビデオテープ等の連続成膜を行う必要のある製品ではより成膜速度の高いプラズマCVDを用いる方法が多数提案されている。従って、これらの方法を適用することが好ましい。
中でもプラズマインジェクションCVD(PI−CVD)法は成膜速度が非常に高く、得られるカーボン保護膜も硬質かつピンホールが少ない良質な保護膜が得られると報告されている(例えば、特開昭61−130487号公報、特開昭63−279426号公報、特開平3−113824号公報等)。
このカーボン保護膜は、ビッカース硬度で1000kg/mm2以上であることが好ましく、2000kg/mm2以上であることがより好ましい。また、その結晶構造はアモルファス構造であり、かつ非導電性であることが好ましい。
そして、カーボン保護膜として、ダイヤモンド状炭素(ダイヤモンドライクカーボン)膜を使用した場合、この構造はラマン光分光分析によって確認することができる。すなわち、ダイヤモンド状炭素膜を測定した場合には、1520〜1560cm-1にピークが検出されることによって確認することができる。炭素膜の構造がダイヤモンド状構造からずれてくるとラマン光分光分析により検出されるピークが上記範囲からずれるとともに、保護膜としての硬度も低下する。
このカーボン保護膜を形成するための炭素原料としては、メタン、エタン、プロパン、ブタン等のアルカン;エチレン、プロピレン等のアルケン;アセチレン等のアルキン;をはじめとした炭素含有化合物を用いることが好ましい。また、必要に応じてアルゴンなどのキャリアガスや膜質改善のための水素や窒素などの添加ガスを加えることができる。
カーボン保護膜の膜厚が厚いと、電磁変換特性の悪化や磁性層に対する密着性の低下が生じ、膜厚が薄いと耐磨耗性が不足する。従って、膜厚は、2.5〜20nmとすることが好ましく、5〜10nmとすることがより好ましい。
また、この保護膜と基板となる磁性層の密着性を改善するために、あらかじめ磁性層表面を不活性ガスでエッチングしたり、酸素等の反応性ガスプラズマに曝して表面改質する事が好ましい。
本発明の磁気記録媒体では、磁性層の下に公知の非磁性下地層や中間層を有していてもよい。走行耐久性および耐食性を改善するため、既述のように、上記磁性層もしくは保護膜上に潤滑剤や防錆剤を付与することが好ましい。添加する潤滑剤としては公知の炭化水素系潤滑剤、フッ素系潤滑剤、極圧添加剤などが使用できる。
炭化水素系潤滑剤としては、ステアリン酸、オレイン酸等のカルボン酸類;ステアリン酸ブチル等のエステル類;オクタデシルスルホン酸等のスルホン酸類;リン酸モノオクタデシル等のリン酸エステル類;ステアリルアルコール、オレイルアルコール等のアルコール類;ステアリン酸アミド等のカルボン酸アミド類;ステアリルアミン等のアミン類;などが挙げられる。
フッ素系潤滑剤としては、上記炭化水素系潤滑剤のアルキル基の一部または全部をフルオロアルキル基もしくはパーフルオロポリエーテル基で置換した潤滑剤が挙げられる。
パーフルオロポリエーテル基としては、パーフルオロメチレンオキシド重合体、パーフルオロエチレンオキシド重合体、パーフルオロ−n−プロピレンオキシド重合体(CF2CF2CF2O)n、パーフルオロイソプロピレンオキシド重合体(CF(CF3)CF2O)nまたはこれらの共重合体等である。
また、炭化水素系潤滑剤のアルキル基の末端や分子内に水酸基、エステル基、カルボキシル基などの極性官能基を有する化合物が、摩擦力を低減する効果が高く好適である。
さらに、この分子量は、500〜5000、好ましくは1000〜3000である。500未満では揮発性が高く、また潤滑性が低いなることがある。また、5000を超えると、粘度が高くなるため、スライダーとディスクが吸着しやすく、走行停止やヘッドクラッシュなどを発生しやすくなることがある。
このパーフルオロポリエーテルは、具体例的には、アウジモンド社製のFOMBLIN、デュポン社製のKRYTOXなどの商品名で市販されている。
極圧添加剤としては、リン酸トリラウリル等のリン酸エステル類;亜リン酸トリラウリル等の亜リン酸エステル類;トリチオ亜リン酸トリラウリル等のチオ亜リン酸エステルやチオリン酸エステル類;二硫化ジベンジル等の硫黄系極圧剤;などが挙げられる。
前記潤滑剤は単独もしくは複数を併用して使用される。これらの潤滑剤を磁性層もしくは保護膜上に付与する方法としては、潤滑剤を有機溶剤に溶解し、ワイヤーバー法、グラビア法、スピンコート法、ディップコート法等で塗布するか、真空蒸着法によって付着させればよい。
防錆剤としては、ベンゾトリアゾール、ベンゾイミダゾール、プリン、ピリミジン等の窒素含有複素環類およびこれらの母核にアルキル側鎖等を導入した誘導体;ベンゾチアゾール、2−メルカプトンベンゾチアゾール、テトラザインデン環化合物、チオウラシル化合物等の窒素および硫黄含有複素環類およびこの誘導体;等が挙げられる。
既述のように、磁気記録媒体が磁気テープ等の場合は、支持体の磁性層が形成されていない面にバックコート層(バッキング層)が設けられていてもよい。バックコート層は、支持体の磁性層が形成されていない面に、研磨材、帯電防止剤などの粒状成分と結合剤とを公知の有機溶剤に分散したバックコート層形成塗料を塗布して設けられる層である。
粒状成分として各種の無機顔料やカーボンブラックを使用することができ、また結合剤としてはニトロセルロース、フェノキシ樹脂、塩化ビニル系樹脂、ポリウレタン等の樹脂を単独またはこれらを混合して使用することができる。
また、合金粒子含有液の塗布面およびバックコート層が形成される面側には、公知の接着剤層が設けられていてもよい。
[磁気記録媒体の製造方法]
本発明の磁気記録媒体の製造方法は、磁性層を形成するための塗布液を支持体上に塗布し、乾燥処理を施す塗布乾燥処理を少なくとも2回行って、支持体上に磁性層を形成して磁気記録媒体を製造する方法である。
具体的には、まず、CuAu型あるいはCu3Au型強磁性規則合金を含む合金粒子を作製する(合金粒子作製工程)。合金粒子を含有する合金粒子含有液を塗布液として、支持体上に塗布し、乾燥処理を施す(塗布乾燥処理)。この塗布乾燥処理後、再び、塗布乾燥処理を施して、多層とし(塗布乾燥処理工程)、所定の温度でアニール処理(アニール処理工程)を施して、合金粒子を磁性粒子とし、支持体上に2層以上からなる磁性層を形成する。その後、必要に応じて、保護層や潤滑剤層等を形成して、本発明の磁気記録媒体を製造する。以下、各工程をより詳細に説明する。
<合金粒子作製工程>
アニール処理により磁性粒子となる合金粒子は、気相法や液相法により製造することができる。量産性に優れることを考慮すると、液相法が好ましい。液相法としては、従来から知られている種々の方法を適用することができるが、これらに改良を加えた還元法を適用することが好ましく、還元法のなかでも粒径が制御しやすい逆ミセル法が特に好ましい。
(逆ミセル法)
上記逆ミセル法は、少なくとも、(1)2種の逆ミセル溶液を混合して還元反応を行う還元工程と、(2)還元反応後に所定温度で熟成する熟成工程と、を有する。
以下、各工程について説明する。
(1)還元工程:
まず、界面活性剤を含有する非水溶性有機溶媒と還元剤水溶液とを混合した逆ミセル溶液(I)を調製する。
前記界面活性剤としては、油溶性界面活性剤が用いられる。具体的には、スルホン酸塩型(例えば、エーロゾルOT(和光純薬製))、4級アンモニウム塩型(例えば、セチルトリメチルアンモニウムブロマイド)、エーテル型(例えば、ペンタエチレングリコールドデシルエーテル)などが挙げられる。
非水溶性有機溶媒中の界面活性剤量は、20〜200g/リットルであることが好ましい。
前記界面活性剤を溶解する非水溶性有機溶媒として好ましいものは、アルカン、エーテルおよびアルコール等が挙げられる。
アルカンとしては、炭素数7〜12のアルカン類であることが好ましい。具体的には、ヘプタン、オクタン、イソオクタン、ノナン、デカン、ウンデカン、ドデカン等が好ましい。
エーテルとしては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等が好ましい。
アルコールとしては、エトキシエタノール、エトキシプロパノール等が好ましい。
還元剤水溶液中の還元剤としては、アルコール類;ポリアルコール類;H2;HCHO、S26 2-、H2PO2 -、BH4 -、N25 +、H2PO3 -などを含む化合物;を単独で使用、または2種以上を併用することが好ましい。
水溶液中の還元剤量は、金属塩1モルに対して、3〜50モルであることが好ましい。
ここで、逆ミセル溶液(I)溶液中の水と界面活性剤との質量比(水/界面活性剤)は、20以下となるようにすることが好ましい。質量比が20を超えると、沈殿が起きやすく、粒子も不揃いとなりやすいといった問題が生じることがある。質量比は、15以下とすることが好ましく、0.5〜10とすることがより好ましい。
上記とは別に、界面活性剤を含有する非水溶性有機溶媒と金属塩水溶液とを混合した逆ミセル溶液(II)を調製する。
界面活性剤および非水溶性有機溶媒の条件(使用する物質、濃度等)については、逆ミセル溶液(I)の場合と同様である。
なお、逆ミセル溶液(I)と同種のものまたは異種のものを使用することができる。また、逆ミセル溶液(II)溶液中の水と界面活性剤との質量比も逆ミセル溶液(I)の場合と同様であり、逆ミセル溶液(I)の質量比と同一としてもよく、異なっていてもよい。
金属塩水溶液に含有される金属塩としては、作製しようとする磁性粒子がCuAu型あるいはCu3Au型強磁性規則合金を形成し得るように、適宜選択することが好ましい。
ここで、当該CuAu型強磁性規則合金としては、FeNi、FePd、FePt、CoPt、CoAuなどが挙げられ、なかでもFePd、FePt、CoPtであることが好ましい。
Cu3Au型強磁性規則合金としては、Ni3Fe、FePd3、Fe3Pt、FePt3、CoPt3、Ni3Pt、CrPt3、Ni3Mnが挙げられ、なかでもFePd3、FePt3、CoPt3、Fe3Pd、Fe3Pt、Co3Ptが好ましい。
金属塩の具体例としては、H2PtCl6、K2PtCl4、Pt(CH3COCHCOCH32、Na2PdCl4、Pd(OCOCH32、PdCl2、Pd(CH3COCHCOCH32、HAuCl4、Fe2(SO43、Fe(NO33、(NH43Fe(C243、Fe(CH3COCHCOCH33、NiSO4、CoCl2、Co(OCOCH32などが挙げられる。
金属塩水溶液中の濃度(金属塩濃度として)は、0.1〜1000μmol/mlであることが好ましく、1〜100μmol/mlであることがより好ましい。
前記金属塩を適宜選択することで、卑な金属と貴な金属とが合金を形成したCuAu型もしくはCu3Au型強磁性規則合金を形成し得る合金粒子が作製される。
合金粒子は後述するアニール処理によって合金相を不規則相から規則相へ変態させる必要があるが、当該変態温度を下げるために、前記2元系合金に、Sb、Pb、Bi、Cu、Ag、Zn、Inなどの第三元素を加えることが好ましい。これらの第三元素は、それぞれの第三元素の前駆体を、前記金属塩溶液に予め添加しておくことが好ましい。添加量としては、2元系合金に対し、1〜30at%であることが好ましく、5〜20at%であることがより好ましい。
以上のようにして調製した逆ミセル溶液(I)と(II)とを混合する。混合方法としては、特に限定されるものではないが、還元の均一性を考慮して、逆ミセル溶液(I)を撹拌しながら、逆ミセル溶液(II)を添加していって混合することが好ましい。混合終了後、還元反応を進行させることになるが、その際の温度は、−5〜30℃の範囲で、一定の温度とすることが好ましい。
還元温度が−5℃未満では、水相が凝結して還元反応が不均一になるといった問題が生じ、30℃を超えると、凝集または沈殿が起こりやすく系が不安定となることがある。好ましい還元温度は0〜25℃であり、より好ましくは5〜25℃である。
ここで、前記「一定温度」とは、設定温度をT(℃)とした場合、当該TがT±3℃の範囲にあることをいう。なお、このようにした場合であっても、当該Tの上限および下限は、上記還元温度(−5〜30℃)の範囲にあるものとする。
還元反応の時間は、逆ミセル溶液の量等により適宜設定する必要があるが、1〜30分とすることが好ましく、5〜20分とすることがより好ましい。
還元反応は、粒径分布の単分散性に大きな影響を与えるため、できるだけ高速攪拌しながら行うことが好ましい。
好ましい攪拌装置は高剪断力を有する攪拌装置であり、詳しくは、攪拌羽根が基本的にタービン型あるいはパドル型の構造を有し、さらに、その羽根の端もしくは、羽根と接する位置に鋭い刃を付けた構造であり、羽根をモーターで回転させる攪拌装置である。具体的には、ディゾルバー(特殊機化工業製)、オムニミキサー(ヤマト科学製)、ホモジナイザー(SMT製)などの装置が有用である。これらの装置を用いることにより、単分散な合金粒子を安定な分散液として合成することができる。
前記逆ミセル溶液(I)および(II)の少なくともいずれかに、アミノ基またはカルボキシ基を1〜3個有する少なくとも1種の分散剤を、作製しようとする合金粒子1モル当たり、0.001〜10モル添加することが好ましい。
かかる分散剤を添加することで、より単分散で、凝集の無い合金粒子を得ることが可能となる。
添加量が、0.001未満では、合金粒子の単分散性をより向上させされない場合があり、10モルを超えると凝集が起こる場合がある。
前記分散剤としては、合金粒子表面に吸着する基を有する有機化合物が好ましい。具体的には、アミノ基、カルボキシ基、スルホン酸基またはスルフィン酸基を1〜3個有するものであり、これらを単独または併用して用いることができる。
構造式としては、R−NH2、NH2−R−NH2、NH2−R(NH2)−NH2、R−COOH、COOH−R−COOH、COOH−R(COOH)−COOH、R−SO3H、SO3H−R−SO3H、SO3H−R(SO3H)−SO3H、R−SO2H、SO2H−R−SO2H、SO2H−R(SO2H)−SO2Hで表される化合物であり、式中のRは直鎖、分岐または環状の飽和、不飽和の炭化水素である。
分散剤として特に好ましい化合物はオレイン酸である。オレイン酸はコロイドの安定化において周知の界面活性剤であり、鉄等の金属粒子を保護するのに用いられてきた。オレイン酸の比較的長い(たとえば、オレイン酸は18炭素鎖を有し長さは〜20オングストローム(〜2nm)である。オレイン酸は脂肪族ではなく二重結合が1つある)鎖は粒子間の強い磁気相互作用を打ち消す重要な立体障害を与える。
エルカ酸やリノール酸など類似の長鎖カルボン酸もオレイン酸同様に(たとえば、8〜22の間の炭素原子を有する長鎖有機酸を単独でまたは組み合わせて用いることができる)用いられる。オレイン酸は(オリーブ油など)容易に入手できる安価な天然資源であるので好ましい。また、オレイン酸から誘導されるオレイルアミンもオレイン酸同様有用な分散剤である。
以上のような還元工程では、CuAu型あるいはCu3Au型強磁性規則合金相中のCo、Fe、Ni、Cr等の酸化還元電位が卑な金属(−0.2V(vs.N.H.E)程度以下の金属)が還元され、極小サイズで単分散な状態で析出するものと考えられる。その後、昇温段階および後述する熟成工程において、析出した卑な金属を核とし、その表面で、Pt、Pd、Rh等の酸化還元電位が貴な金属(−0.2V(vs.N.H.E)程度以上の金属)が卑な金属で還元されて置換、析出する。イオン化した卑な金属は還元剤で再度還元されて析出すると考えられる。このような繰返しによって、CuAu型あるいはCu3Au型強磁性規則合金を形成し得る合金粒子が得られる。
(2)熟成工程:
還元反応終了後、反応後の溶液を熟成温度まで昇温する。
前記熟成温度は、30〜90℃で一定の温度とすることが好ましく、その温度は、前記還元反応の温度より高くする。また、熟成時間は、5〜180分とすることが好ましい。熟成温度および時間が上記範囲より高温長時間側にずれると、凝集または沈殿が起きやすく、逆に低温短時間側にずれると、反応が完結しなくなり組成が変化することがある。好ましい熟成温度および時間は40〜80℃および10〜150分であり、より好ましい熟成温度および時間は40〜70℃および20〜120分である。
ここで、前記「一定温度」とは、還元反応の温度の場合と同義(但し、この場合、「還元温度」は「熟成温度」となる)であるが、特に、上記熟成温度の範囲(30〜90℃)内で、前記還元反応の温度より5℃以上高いことが好ましく、10℃以上高いことがより好ましい。5℃未満では、処方通りの組成が得られないことがある。
以上のような熟成工程では、還元工程で還元析出した卑な金属上に貴な金属が析出する。
すなわち、卑な金属上でのみ貴な金属の還元が起こり、卑な金属と貴な金属とが別々に析出することが無いため、効率良くCuAu型あるいはCu3Au型強磁性規則合金を形成し得る合金粒子を、高収率で処方組成比どおりに作製することが可能で、所望の組成に制御することができる。また、熟成の際の温度の撹拌速度を適宜調整することで、得られる合金粒子の粒径を所望なものとすることができる。
前記熟成を行った後は、水と1級アルコールとの混合溶液で前記熟成後の溶液を洗浄し、その後、1級アルコールで沈殿化処理を施して沈殿物を生成させ、該沈殿物を有機溶媒で分散させる洗浄・分散工程を設けることが好ましい。
かかる洗浄・分散工程を設けることで、不純物が除去され、磁気記録媒体の磁性層を塗布により形成する際の塗布性をより向上させることができる。
上記洗浄および分散は、少なくともそれぞれ1回、好ましくは、それぞれ2回以上行う。
洗浄で用いる前記1級アルコールとしては、特に限定されるものではないが、メタノール、エタノール等が好ましい。体積混合比(水/1級アルコール)は、10/1〜2/1の範囲にあることが好ましく、5/1〜3/1の範囲にあることがより好ましい。
水の比率が高いと、界面活性剤が除去されにくくなることがあり、逆に1級アルコールの比率が高いと、凝集を起こしてしまうことがある。
以上のようにして、溶液中に分散した合金粒子(合金粒子含有液)が得られる。
当該合金粒子は、単分散であるため、支持体に塗布しても、これらが凝集することなく均一に分散した状態を保つことができる。従って、アニール処理を施しても、それぞの合金粒子が凝集することがないため、効率良く強磁性化することが可能で、塗布適性に優れる。
後述する酸化処理前の合金粒子の粒径は、ノイズを下げる観点から小さいことが好ましいが、小さすぎるとアニール後に超常磁性となり、磁気記録に不適当となることがある。一般に、1〜100nmであることが好ましく、1〜20nmであることがより好ましく、3〜10nmであることがさらに好ましい。
(還元法)
還元法でCuAu型あるいはCu3Au型強磁性規則合金を形成し得る合金粒子を作製するには種々の方法があるが、少なくとも、酸化還元電位が卑な金属(以下、単に「卑な金属」ということがある)と、酸化還元電位が貴な金属(以下、単に「貴な金属」ということがある)と、を有機溶剤もしくは水、または有機溶剤と水との混合溶液中で還元剤等を使用して還元する方法を適用することが好ましい。
卑な金属と貴な金属との還元順序は、特に限定されず、同時に還元してもよい。
前記有機溶剤としては、アルコール、ポリアルコール等を使用することが可能で、アルコールとしては、メタノール、エタノール、ブタノール等が挙げられ、ポリアルコールとしては、エチレングリコール、グリセリン等が挙げられる。
なお、CuAu型あるいはCu3Au型強磁性規則合金の例としては、既述の逆ミセル法の場合と同様である。
また、貴な金属を先に析出させて合金粒子を調製する方法としては、特願2001−269255号の段落18〜30等に記載の方法等を適用することができる。
酸化還元電位が貴な金属としては、Pt、Pd、Rh等が好ましく用いることができ、H2PtCl6・6H2O、Pt(CH3COCHCOCH32、RhCl3・3H2O、Pd(OCOCH32、PdCl2、Pd(CH3COCHCOCH32等を溶媒に溶解して用いることができる。溶液中の金属の濃度は、0.1〜1000μmol/mlが好ましく、0.1〜100μmol/mlがより好ましい。
また、酸化還元電位が卑な金属としては、Co、Fe、Ni、Crを好ましく用いることができ、特に好ましくは、Fe、Coである。このような金属は、FeSO4・7H2O、NiSO4・7H2O、CoCl2・6H2O、Co(OCOCH32・4H2O等を溶媒に溶解して用いることができる。溶液中の金属の濃度は、0.1〜1000μmol/mlが好ましく、0.1〜100μmol/mlがより好ましい。
また、既述の逆ミセル法と同様に2元系合金に、第三元素を加える事で強磁性規則合金への変態温度を下げる事が好ましい。添加量としては逆ミセル法と同様である。
例えば、還元剤を用いて卑な金属と貴な金属とをこの順に還元して析出させる場合、−0.2V(vs.N.H.E)より卑な還元電位を持つ還元剤を用いて卑な金属あるいは卑な金属と貴な金属の一部を還元したものを、貴な金属源に加え酸化還元電位が−0.2V(vs.N.H.E)より貴な還元剤を用いて還元した後、−0.2V(vs.N.H.E)より卑な還元電位を持つ還元剤を用いて還元する事が好ましい。
酸化還元電位は系のpHに依存するが、酸化還元電位が−0.2V(vs.N.H.E)より貴な還元剤には、1,2−ヘキサデカンジオール等のアルコール類、グリセリン類、H2、HCHOが好ましく用いられる。
−0.2V(vs.N.H.E)より卑な還元剤にはS26 2-、H2PO2 -、BH4 -、N25 +、H2PO3 -が好ましく用いる事ができる。
なお、卑な金属の原料として、Feカルボニル等の0価の金属化合物と用いる場合は、特に卑な金属の還元剤は必要ない。
貴な金属を還元析出させる際に吸着剤を存在させる事で合金粒子を安定して調製することができる。吸着剤としてはポリマーや界面活性剤を使用することが好ましい。
前記ポリマーとしては、ポリビニルアルコール(PVA)、ポリN−ビニル−2ピロリドン(PVP)、ゼラチン等が挙げられる。なかでも、特に好ましくはPVPである。
また、分子量は2万〜6万が好ましく、より好ましくは3万〜5万である。ポリマーの量は生成する合金粒子の質量の0.1〜10倍であることが好ましく、0.1〜5倍がより好ましい。
吸着剤として好ましく用いられる界面活性剤は、一般式:R−X、で表される長鎖有機化合物である「有機安定剤」を含むことが好ましい。上記一般式中のRは、直鎖または分岐ハイドロカーボンまたはフルオロカーボン鎖である「テール基」であり、通常8〜22個の炭素原子を含む。また、上記一般式中のXは、合金粒子表面に特定の化学結合を提供する部分(X)である「ヘッド基」であり、スルフィネート(−SOOH)、スルホネート(−SO2OH)、ホスフィネート(−POOH)、ホスホネート(−OPO(OH)2)、カルボキシレート、およびチオールのいずれかであることが好ましい。
前記有機安定剤としては、スルホン酸(R−SO2OH)、スルフィン酸(R−SOOH)、ホスフィン酸(R2POOH)、ホスホン酸(R−OPO(OH)2)、カルボン酸(R−COOH)、チオール(R−SH)等のいずれかであることが好ましい。これらのなかでも、逆ミセル法と同様のオレイン酸が特に好ましい。
前記ホスフィンと有機安定剤との組合せ(トリオルガノホスフィン/酸等)は、粒子の成長および安定化に対する優れた制御性を提供することができる。ジデシルエーテルおよびジドデシルエーテルも用いることができるが、フェニルエーテルまたはn−オクチルエーテルはその低コストおよび高沸点のため溶媒として好適に用いられる。
反応は必要な合金粒子および溶媒の沸点により80℃〜360℃の範囲の温度で行うことが好ましく、80℃〜240℃がより好ましい。温度がこの温度範囲より低いと粒子が成長しないことがある。温度がこの範囲より高いと粒子は制御されないで成長し、望ましくない副産物の生成が増加することがある。
合金粒子の粒径は逆ミセル法と同様で、1〜100nmが好ましく、より好ましくは3〜20nmであり、さらに好ましくは3〜10nmである。
粒子サイズ(粒径)を大きくする方法としては種晶法が有効である。磁気記録媒体として用いるには合金粒子を最密充填することが記録容量を高くする上で好ましく、そのためには、合金粒子のサイズの標準偏差は10%未満が好ましく、より好ましくは5%以下である。
粒子サイズが小さすぎると超常磁性となり好ましくない。そこで粒子サイズを大きくするため既述のように、種晶法を用いることが好ましい。その際、粒子を構成する金属より貴な金属を析出させるケースが出てくる。このとき、粒子の酸化が懸念されるため、予め粒子を水素化処理することが好ましい。
合金粒子の最外層は酸化防止の観点から貴な金属にすることが好ましいが、凝集しやすいため、本発明では貴な金属と卑な金属との合金であることが好ましい。かかる構成は、既述のような、液相法によれば容易かつ効率良く実現させることができる。
合金粒子合成後に溶液から塩類を除くことは、合金粒子の分散安定性を向上させる意味から好ましい。脱塩にはアルコールを過剰に加え、軽凝集を起こし、自然沈降あるいは遠心沈降させ塩類を上澄みと共に除去する方法があるが、このような方法では凝集が生じやすいため、限外濾過法を採用することが好ましい。
以上のようにして、溶液中に分散した合金粒子(合金粒子含有液)が得られる。
合金粒子の粒径評価には透過型電子顕微鏡(TEM)を用いることができる。合金粒子もしくは磁性粒子の結晶系を決めるにはTEMによる電子回折でもよいが、X線回折を用いた方が精度が高いため好ましい。合金粒子もしくは磁性粒子の内部の組成分析には、電子線を細く絞ることができるFE−TEMにEDAXを付け評価することが好ましい。また、合金粒子もしくは磁性粒子の磁気的性質の評価はVSMを用いて行うことができる。
<酸化処理工程>
作製した合金粒子に酸化処理を施すことで、後のアニール処理を施す際の温度を高くすることなく、強磁性を有する磁性粒子を効率よく製造することができる。これは、以下に説明する現象によると考えられる。
すなわち、まず、合金粒子を酸化することで、その結晶格子上に酸素が進入する。酸素が進入した状態でアニール処理を行うと、熱により酸素が結晶格子上から脱離する。酸素が脱離することで欠陥が生じ、かかる欠陥を通じて合金を構成する金属原子の移動が容易になるため、比較的低温でも相変態が起こりやすくなると考えられる。
かかる現象は、例えば、酸化処理後の合金粒子とアニール処理を行った磁性粒子とをEXAFS(広範囲X線吸収微細構造)測定することで、推察される。
例えば、Fe−Pt合金粒子で酸化処理を施さない合金粒子では、Fe原子と、Pt原子やFe原子との結合の存在が確認できる。
これに対し、酸化処理を施した合金粒子では、Fe原子と酸素原子との結合の存在を確認できる。しかし、Pt原子やFe原子との結合はほとんど見えなくなる。このことは、酸素原子によりFe−Pt、Fe−Feの結合が切られていることを意味する。これによりアニール時にPt原子やFe原子が動きやすくなったと考えられる。
そして、当該合金粒子にアニール処理を施した後は、酸素の存在を確認することができず、Fe原子の周りにはPt原子やFe原子との結合の存在が確認できる。
上記現象を考慮すれば、酸化しないと相変態が進行しにくくなりアニール処理温度を高くする必要が生じることがわかる。しかし、過度に酸化するとFe等の酸化されやすい金属と酸素との相互作用が強くなりすぎて金属酸化物が生成してしまうことも考えられる。
よって、合金粒子の酸化状態を制御することが重要となり、そのためには酸化処理条件を最適なものに設定する必要がある。
酸化処理は、例えば、既述の液相法などにより合金粒子を作製した場合は、作製した後の合金粒子含有液に少なくとも酸素を含有するガスを供給すればよい。
このときの酸素分圧は、全圧の10〜100%とすることが好ましく、15〜50%とすることが好ましい。
また、酸化処理温度は、0〜100℃とすることが好ましく、15〜80℃とすることが好ましい。
合金粒子の酸化状態は、EXAFS等で評価することが好ましく、Fe等の卑な金属と酸素との結合数は、酸素によりFe−Fe結合、Pt−Fe結合を切るという観点から、0.5〜4であることが好ましく、1〜3であることがより好ましい。
<塗布乾燥処理工程>
合金粒子含有液(必要に応じて、酸化処理を施した場合はその後の合金粒子含有液)を支持体上に塗布する。このとき、合金粒子含有液に結合剤を含有させることが好ましい。
オレイン酸、オレイルアミンのような低分子の分散助剤だけを用いて塗布層を形成した場合、次の層を塗布する塗布液の溶媒により合金粒子等が再分散されてしまい、多重塗布することができない。
また、低分子の分散助剤だけを用いるような系において多重塗布するためには、高温でオレイン酸、オレイルアミンを炭化した後、塗布する必要がある。このような場合、加熱温度は炭化させる観点から一定以上の温度が必要であり、具体的には250℃〜400℃が好ましく、より好ましくは300℃〜350℃である。
結合剤としては、種々のものを使用することができるが、マトリックス剤を使用することが好ましい。マトリックス剤を使うことは、低温でマトリックス剤が膜を形成することから、好ましい対応である。この場合、膜を形成するための加熱温度(乾燥温度)は100℃以上であることが好ましい。高温側は上述と同じ理由により400℃以下が好ましい。さらに好ましくは150℃〜250℃である。
加熱雰囲気としては酸化、還元いずれの雰囲気でもかまわない。酸素欠陥を導入しCuAu型あるいはCu3Au型強磁性規則合金への変態温度を下げるとの観点から、酸化雰囲気であることが好ましい。この場合、空気中で加熱する方法が簡便であり、工業適性に優れる。
金属酸化物マトリックス中に磁性粒子を含有する層を磁性層とすることで、当該磁性層の耐傷性を高め、支持体との密着性を高めることができる。すなわち、合金粒子を規則化するためのアニール処理を施しても、金属酸化物マトリックスがバインダーとしての役割を果たすため、支持体との密着性を高い状態に維持することが可能となる。また、アニール処理を行っても、金属酸化物マトリックスの構成が変化せずに、強固な磁性層が形成されるため、有機分散剤やポリマーの炭化による膜強度の低下が抑制され、耐傷性を向上させることができる。
さらに、金属酸化物マトリックスに含有された磁性粒子は、互いに凝集することがなく、高分散な状態を維持することができるので、磁性粒子の有する強磁性を効率よく発揮させることができる。
金属酸化物マトリックスは、シリカ、チタニアおよびポリシロキサンから選ばれる少なくとも1種のマトリックス剤からなることが好ましく、具体的には、オルガノシリカゾル(例えば、日産化学製シリカゾル、シーアイ化成製ナノテックSiO2)、オルガノチタニアゾル(例えば、シーアイ化成製ナノテックTiO2)およびシリコーン樹脂(例えば、東レ製トレフィルR910)から選ばれる少なくとも1種のマトリックス剤からなることが好ましい。
上記材料は、磁性層の耐傷性および密着性を高めるのに特に有効である。
マトリックス剤の添加量は、磁性粒子の全体積に対して、1〜50体積%であることが好ましく、2〜30体積%であることがより好ましく、3〜20体積%であることがさらに好ましく、5〜20体積%であることが特に好ましい。これはマトリックス剤の添加量が少ないと表面の平滑化効果が少なく、多すぎると磁性体(磁性粒子)の充填度が低くなり、良好な電磁変換特性を得ることができなくなるためである。マトリックス剤を始めとした結合剤は、適当な溶媒(例えば、デカン等のアルカン類)に溶解して、合金粒子含有液に添加して使用することが好ましい。
合金粒子含有液を塗布するには、スピンコーター、ディップコーター等の公知の方法で塗布する方法を適用することができる。一回の塗布量は、1〜100ml/mm2とすることが好ましく、2〜10ml/mm2とすることがより好ましい。
乾燥後の塗布膜上に、再び、合金粒子含有液を塗布し、乾燥を行う。このよう塗布乾燥処理を所望の回数行って、磁性層となる塗布膜を複数層形成する。
<アニール処理工程>
塗布膜中の合金粒子は不規則相である。既述のように不規則相では強磁性は得られない。そこで、規則相とするためには、熱処理(アニール)を施す必要がある。前記熱処理は、示差熱分析(DTA)を用い、合金粒子を構成する合金が規則不規則変態する変態温度を求め、その温度以上で行う事が必要である。
上記変態温度は、通常500℃程度であるが、アニール処理前に酸化し、還元雰囲気でアニール処理することで、変態温度を低下させることができる。また、第三元素の添加により下がることがある。従って、アニール処理温度は150℃以上とすることが好ましく、150〜500℃とすることがより好ましく、300〜450℃がさらに好ましい。
また、粒子状態でアニール処理を施すと粒子の移動が起こりやすく融着が生じやすい。このため高い保磁力は得られるが粒子サイズが大きくなる欠点を有しやすい。しかし、アニール処理は、合金粒子の凝集を防ぐ観点から、支持体上などで塗布した状態で行うため、上記のような現象が生じにくいといえる。
支持体としては、磁気記録媒体に使用される支持体であれば、無機物および有機物のいずれでもよい。
無機物の支持体としては、Al、Al−Mg、Mg−Al−Zn等のMg合金、ガラス、石英、カーボン、シリコン、セラミックス等が用いられる。これらの支持体は耐衝撃性に優れ、また薄型化や高速回転に適した剛性を有する。また、有機物の支持体と比較して、熱に強い特徴を有している。
有機物の支持体としては、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル類;ポリオレフィン類;セルロ−ストリアセテート、ポリカ−ボネート、ポリアミド(脂肪族ポリアミドやアラミド等の芳香族ポリアミドを含む)、ポリイミド、ポリアミドイミド、ポリスルフォン、ポリベンゾオキサゾール;等を用いる事ができる。
支持体上に合金粒子を塗布するには、前記酸化処理を施した後の合金粒子含有液に必要に応じて種々の添加剤を添加して、支持体上に塗布すればよい。
このときの合金粒子の含有量は所望の濃度(0.01〜0.1mg/ml)とすることが好ましい。
支持体に塗布する方法としては、エアードクターコート、ブレードコート、ロッドコート、押出しコート、エアナイフコート、スクイズコート、含浸コート、リバースロールコート、トランスファーロールコート、グラビヤコート、キスコート、キャストコート、スプレイコート、スピンコート等が利用できる。
アニール処理を施す際の雰囲気としては、相変態を効率良く進行させ合金の酸化を防ぐため、H2、N2、Ar、He、Ne等の非酸化性雰囲気下とすることが好ましい。特に、酸化処理により格子上に存在する酸素を脱離させる観点から、メタン、エタン、H2等の還元性雰囲気とすることが好ましい。さらに、粒径維持の観点から、還元性雰囲気下の磁場中でアニール処理を行うことが好ましい。なお、H2雰囲気とする場合は防爆の観点から、不活性ガスを混合させることが好ましい。
また、アニール時に粒子の融着を防止するために、変態温度以下、不活性ガス中で一旦アニール処理を行い、分散剤を炭化した後、還元性雰囲気中で変態温度以上でアニール処理を行うことが好ましい。このとき、必要に応じて変態温度以下の前記アニール処理後に、合金粒子からなる層上にSi系の樹脂等を塗布し、変態温度以上でアニール処理を行うことが最も好ましい態様である。
以上のようなアニール処理を施すことで、合金粒子が不規則相から規則相に相変態し、強磁性を有する磁性粒子へと相変態する。
既述の本発明の製造方法により製造される磁性粒子は、その保磁力が95.5〜398kA/m(1200〜5000Oe)であることが好ましく、磁気記録媒体に適用した場合、記録ヘッドが対応できることを考慮して95.5〜278.6kA/m(1200〜3500Oe)であることがより好ましい。
また、当該磁性粒子の粒径は1〜100nmであることが好ましく、3〜20nmであることがより好ましく、3〜10nmであることがさらに好ましい。
必要に応じて、既述のような潤滑剤層や保護層を形成して、本発明の磁気記録媒体が製造される。当該磁気記録媒体は、適宜、打ち抜き機で打ち抜いたり、裁断機などを使用して所望の大きさに裁断して使用することができる。
以下、実施例をもとに本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
〔実施例1〕
(FePt合金粒子の作製)
高純度N2ガス中で下記の操作を行った。
NaBH4(和光純薬製)0.76gを水(脱酸素:0.1mg/リットル以下)16mlに溶解した還元剤水溶液に、エーロゾルOT(和光純薬製)10.8gとデカン(和光純薬製)80mlとオレイルアミン(東京化成製)2mlとを混合したアルカン溶液を添加、混合して逆ミセル溶液(I)を調製した。
三シュウ酸三アンモニウム鉄(Fe(NH43(C243)(和光純薬製)0.46gと塩化白金酸カリウム(K2PtCl4)(和光純薬製)0.38gとを水(脱酸素)12mlに溶解した金属塩水溶液に、エーロゾルOT5.4gとデカン40mlとを混合したアルカン溶液を添加、混合して逆ミセル溶液(II)を調製した。
逆ミセル溶液(I)を22℃でオムニミキサー(ヤマト科学製)で高速攪拌しながら、逆ミセル溶液(II)を瞬時に添加した。10分後、マグネチックスターラーで攪拌しながら、50℃に昇温して60分間熟成した。
オレイン酸(和光純薬製)2mlを添加して、室温まで冷却した。冷却後大気中に取出した。逆ミセルを破壊するために、水100mlとメタノール100mlとの混合溶液を添加して水相と油相とに分離した。油相側に合金粒子が分散した状態が得られた。油相側を水600mlとメタノール200mlとの混合溶液で5回洗浄した。
その後、メタノールを1100ml添加して合金粒子にフロキュレーションを起こさせて沈降させた。上澄み液を除去して、ヘプタン(和光純薬製)20mlを添加して再分散した。
さらに、メタノール100ml添加による沈降とヘプタン20mlに添加による分散との沈降分散を2回繰り返して、最後にヘプタン5mlを添加して、水と界面活性剤との質量比(水/界面活性剤)が2のFePt合金粒子を含有する合金粒子含有液を調製した。
得られた合金粒子について、収率、組成、体積平均粒径および分布(変動係数)の測定を行ったところ、下記のような結果が得られた。
なお、組成および収率は、ICP分光分析(誘導結合高周波プラズマ分光分析)で測定により求めた。
体積平均粒径および分布は、TEM(透過型電子顕微鏡:日立製作所製 300kV)により撮影した粒子を計測して統計処理して求めた。
測定用合金粒子は、調製した合金粒子含有液から合金粒子を捕集し、十分乾燥させ、電気炉で加熱した後のものを使用した。
組成:Pt44.5at%のFePt合金、収率:85%、
平均粒径:4.2nm、変動係数:5%、
合金粒子含有液に真空脱気を施して溶媒を除去した後、N2雰囲気のグローボックス中でデカンを加え合金粒子が4質量%の分散物を得た。この分散物1mlあたり下記表1記載の添加量にて1質量%のシリコーンレジン(東レ R910 溶媒は塗布液と同じ溶媒を用いた)溶液(結合剤溶液)を添加し塗布液を調製した。
塗布は、ハードディスク用のガラス製支持体(東洋鋼鈑製65/20−0.635tガラス・ポリッシュ・サブスト)をスピンコータにて500rpmに回転し、ガラス上に塗布液を滴下し、その2秒後に8000rpmに回転数をあげ乾燥した。この後、下記表1記載の乾燥温度の空気中で25分間加熱した。
このような塗布乾燥処理を繰り返すことで多重塗布を行った。塗布回数は下記表1の通りである。
昇温速度を200℃/minとし、H2とArとの混合ガス(H2:Ar=5:95)雰囲気下の電気炉(450℃)中で30分間加熱し、50℃/minで室温まで降温してアニール処理を施し磁性層を形成した。
(保護層の形成)
アニール処理後、400WのRfスパッタにより、カーボンからなる保護層を磁性層上に形成した。膜厚は10nmであった。
(バーニッシュ処理)
下記のバーニッシュヘッドを用い、7200rpmで回転させながら保護層表面をバーニッシュ処理した。
−バーニッシュヘッド仕様(グライドシグナス社)−
スライダー:24pads、荷重:5g、
サスペンション:Type 2030、
Z−height:29mil(0.7366mm)。
(潤滑剤層の形成)
表面をフロリナートFC72(住友スリーエム社製)で洗浄後乾燥した。
フォンブリンZゾル(アウジモント社製)を溶媒(フロリナートFC72)で1質量%とした溶液を調製し、ディップコータで3mm/minで当該溶液から引き上げながら塗布し、保護層上に潤滑剤層を形成し、磁気記録媒体を作製した。
〔実施例2〜4および比較例1,2〕
下記表1のように、レジン量、塗布回数、乾燥温度等を変更した以外は、実施例1と同様にして、磁気記録媒体を作製した。
〔評価〕
実施例1〜4および比較例1,2のそれぞれの磁気記録媒体をFIB(Seiko Instruments社製SMI2050)により端面を切り出し、透過電子顕微鏡(日立製作所製H9000)で加速電圧を300kVとし観察を行った。この結果、磁性層の粒子直径は5nmであった。また、磁性層厚を下記表1に記載した。
磁気特性(保磁力の測定)は、磁性層を磁気記録媒体ごと測定した。ソレノイドからなる着磁機(東英工業製MPM−04)にて面内方向に40kOeの磁場をかけた後、東英工業製の高感度磁化ベクトル測定機と同社製DATA処理装置を使用し、印加磁場790kA/m(10kOe)の条件で行った。
残留磁束密度(Mr)に磁性層の平均厚み(tave)をかけた値(Mr・tave)および保磁力(Hc)を下記表1に示す。なお、電磁変換特性(出力)は協同電子社製スピンスタンドLS90を用い評価を行った。書き込み電流は40mAであった。記録媒体の回転数は7200rpmとした。その他の条件は、下記の通りである。
Writeヘッド リングヘッドギャップ幅:0.29μm、
Readヘッド MRヘッド ギャップ幅:0.19μm、
回転数:7200rpm、測定位置直径:49mm、
相対速度:18.47m/s、記録電流値:35mA、MRセンス電流:6mA
Figure 2006079704
表1の結果より、磁性層を多層としMr・taveを30(G・μm)以上とした実施例1〜4の磁気記録媒体では、良好な電磁変換特性が得られた。

Claims (8)

  1. 支持体上に磁性層が形成されている磁気記録媒体であって、
    前記磁性層が、CuAu型あるいはCu3Au型強磁性規則合金を含み、
    残留磁束密度(Mr(G))に前記磁性層の平均厚み(tave(μm))をかけた値(Mr・tave(G・μm))が、30以上であることを特徴とする磁気記録媒体。
  2. 前記磁性層が2層以上からなることを特徴とする請求項1に記載の磁気記録媒体。
  3. 前記磁性層が、結合剤を含むことを特徴とする請求項1または2に記載の磁気記録媒体。
  4. 前記磁性層の厚み(t)が、40〜100nmであることを特徴とする請求項1〜3のいずれか1項に記載の磁気記録媒体。
  5. 前記磁性層の平均厚み(tave)の標準偏差(σ)が、0.03μm以下であることを特徴とする請求項4に記載の磁気記録媒体。
  6. 請求項1〜5のいずれか1項に記載の磁気記録媒体の製造方法であって、
    支持体上にCuAu型あるいはCu3Au型強磁性規則合金を含む磁性層を形成するための塗布液を塗布し、乾燥処理を施す塗布乾燥処理を少なくとも2回行うことを特徴とする磁気記録媒体の製造方法。
  7. 前記塗布液に結合剤を含有させることを特徴とする請求項6に記載の磁気記録媒体の製造方法。
  8. 前記乾燥処理の温度を、100℃以上とすることを特徴とする請求項6または7に記載の磁気記録媒体の製造方法。
JP2004261594A 2004-09-08 2004-09-08 磁気記録媒体およびその製造方法 Withdrawn JP2006079704A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004261594A JP2006079704A (ja) 2004-09-08 2004-09-08 磁気記録媒体およびその製造方法
US11/217,499 US20060051621A1 (en) 2004-09-08 2005-09-02 Magnetic recording medium and manufacturing method thereof
EP05019428A EP1635334A3 (en) 2004-09-08 2005-09-07 Magnetic recording medium and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004261594A JP2006079704A (ja) 2004-09-08 2004-09-08 磁気記録媒体およびその製造方法

Publications (1)

Publication Number Publication Date
JP2006079704A true JP2006079704A (ja) 2006-03-23

Family

ID=35501045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004261594A Withdrawn JP2006079704A (ja) 2004-09-08 2004-09-08 磁気記録媒体およびその製造方法

Country Status (3)

Country Link
US (1) US20060051621A1 (ja)
EP (1) EP1635334A3 (ja)
JP (1) JP2006079704A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4891880B2 (ja) * 2007-09-28 2012-03-07 富士フイルム株式会社 強磁性六方晶フェライト粉末用表面改質剤およびそれを含む磁性塗料
CN103887813B (zh) * 2014-01-21 2016-04-27 国家电网公司 基于风功率预测不确定度的风电系统运行的控制方法
CN103915855B (zh) * 2014-04-10 2015-12-09 华北电力大学 一种降低风电机组机械损耗的风电场内优化调度方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3016310A (en) * 1959-01-05 1962-01-09 Bell Telephone Labor Inc Magnetic record device and method of preparing it
DE2001482A1 (de) * 1969-01-14 1970-07-23 Ibm Verfahren zur Herstellung magnetischer Teilchen
JP2002140808A (ja) * 2000-11-02 2002-05-17 Fuji Photo Film Co Ltd 磁気記録媒体
JP2004005937A (ja) * 2002-04-25 2004-01-08 Fuji Photo Film Co Ltd 磁気記録媒体
JP2004113880A (ja) * 2002-09-25 2004-04-15 Fuji Photo Film Co Ltd 塗布装置
US20050089683A1 (en) * 2003-09-12 2005-04-28 Fuji Photo Film Co., Ltd. Magnetic particles and method of producing the same and magnetic recording medium

Also Published As

Publication number Publication date
EP1635334A3 (en) 2006-06-07
US20060051621A1 (en) 2006-03-09
EP1635334A2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
JP4524078B2 (ja) 磁性粒子およびその製造方法、並びに、磁気記録媒体およびその製造方法
JP2006253325A (ja) 磁性材料の製造方法、磁性材料および高密度磁気記録媒体
US20060068231A1 (en) Magnetic recording medium and method for manufacturing the same
JP4179922B2 (ja) 磁気記録媒体及びその製造方法
JP2005015839A (ja) 合金ナノ粒子
JP2004165630A (ja) 磁性粒子塗布物、磁性粒子塗布物の製造方法、磁気記録媒体、電磁シールド材
JP2004005937A (ja) 磁気記録媒体
JP2004265489A (ja) 磁性粒子塗布物
JP2004152385A (ja) 磁気記録媒体
US20060051621A1 (en) Magnetic recording medium and manufacturing method thereof
JP3900414B2 (ja) ナノ粒子およびナノ粒子の製造方法、並びに、磁気記録媒体
JP2005183898A (ja) 磁性粒子およびその製造方法、並びに、磁気記録媒体
JP3950030B2 (ja) 磁性粒子塗布物及びその製造方法
JP2005293702A (ja) 磁気記録媒体及びその製造方法
JP2004342259A (ja) 磁気記録媒体
JP2005056489A (ja) 磁気記録媒体
JP2005063583A (ja) 積層体及び磁気記録媒体
JP2005293704A (ja) 磁気記録媒体及びその製造方法
JP2005293705A (ja) 磁気記録媒体及びその製造方法
JP2004110945A (ja) 磁気記録媒体及びその製造方法
JP2004110873A (ja) 磁性粒子塗布物およびその製造方法
JP2004145951A (ja) 合金粒子分散物および合金粒子分散物を用いた磁性粒子塗布物
JP2005056493A (ja) 積層体及びその製造方法
JP2004342159A (ja) 磁気記録媒体
JP2004039830A (ja) 磁性粒子及びその製造方法、並びに磁気記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070130

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20071207