JP2006078487A - Guide path - Google Patents

Guide path Download PDF

Info

Publication number
JP2006078487A
JP2006078487A JP2005259192A JP2005259192A JP2006078487A JP 2006078487 A JP2006078487 A JP 2006078487A JP 2005259192 A JP2005259192 A JP 2005259192A JP 2005259192 A JP2005259192 A JP 2005259192A JP 2006078487 A JP2006078487 A JP 2006078487A
Authority
JP
Japan
Prior art keywords
gas
sensor
side wall
path
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005259192A
Other languages
Japanese (ja)
Other versions
JP4142036B2 (en
Inventor
Kenichi Nakamura
健一 中村
Norihiro Konda
徳大 根田
Satoshi Nozoe
悟史 野添
Akira Sasaki
昌 佐々木
Masato Kondo
正登 近藤
Takuji Shigeoka
卓二 重岡
Akito Eda
秋人 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Tokyo Gas Co Ltd
Original Assignee
Omron Corp
Tokyo Gas Co Ltd
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Tokyo Gas Co Ltd, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2005259192A priority Critical patent/JP4142036B2/en
Publication of JP2006078487A publication Critical patent/JP2006078487A/en
Application granted granted Critical
Publication of JP4142036B2 publication Critical patent/JP4142036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Air Supply (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a guide path that eliminates pulsation in a sensor output even in a high flow rate region, while guiding a gas of an object to be measured to a sensor in a condition that waste materials such as dust and dirt are properly removed. <P>SOLUTION: The guide path comprises narrow paths 31-35 for raising the flow speed of a gas and deposition chambers 21-25 forming hollow rectangular solids for depositing the waste materials in the gas. The outlets of the narrow paths 31-35 are opened by pulling either side of right and left sides of one side wall surface of the deposition chambers 21-25, and the gas outlets from the deposition chambers 21-25 are opened to side wall surfaces of far sides from the outlets of the narrow paths 31-35 from among side wall surfaces vertical to one side wall surface to which the outlets of the narrow paths 31-35 are opened, and therewith the opening position is set at a position sufficiently separated from a side wall surface facing one side wall surface forward than it. Thereby, the gas changes a flow direction thereof at an angle larger than 90 degrees from flowing in to flowing out and passes widely in the deposition chambers 21-25, and then a deposition place is spread and the deposition chambers 21-25 are efficiently utilized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、測定対象の気体からちり、ほこり、霧状の水分、油分などの不要物を取り除くなど、測定に適した状態で気体をセンサに導くための誘導路に関する。   The present invention relates to a guide path for guiding a gas to a sensor in a state suitable for measurement, such as removing unnecessary substances such as dust, dust, mist-like moisture, and oil from a measurement target gas.

近年、給湯機などの燃焼装置では、適正な空気量を供給するために、燃焼ファンから送り込む空気の流速を熱線式流速センサ等で実測し、これに基づいて燃焼ファンの回転数等を制御している。   In recent years, in a combustion apparatus such as a water heater, in order to supply an appropriate amount of air, the flow velocity of air sent from the combustion fan is measured with a hot wire flow velocity sensor or the like, and the rotational speed of the combustion fan is controlled based on this. ing.

このように気体の流速を測定するセンサの一つである熱線式流速センサは、ヒーターとして作用する抵抗素子を中心にしてその近傍に2つの温度検出用の薄膜抵抗素子を、測定対象となる気体の流れの上流側と下流側とに分けて配置した構造を成しており、温度検出用の2つの薄膜抵抗素子の検出する温度差に基づいて気体の流速を検知するものである。   In this way, a hot-wire flow rate sensor, which is one of the sensors that measure the flow rate of gas, has two temperature detecting thin film resistance elements in the vicinity of the resistance element that acts as a heater, and the gas to be measured. The gas flow velocity is detected on the basis of the temperature difference detected by the two thin film resistance elements for temperature detection.

かかるセンサでは、センサの表面にゴミなどが付着すると的確な測定ができなくなるので、測定対象の気体からちりやほこりなどの微少なゴミのほか、霧状になっている水分や油分などの不要物を除去するための対策が施される。   With such a sensor, accurate measurement cannot be performed if dust adheres to the surface of the sensor. Therefore, in addition to minute dust such as dust and dust from the gas to be measured, unnecessary substances such as mist-like moisture and oil Measures are taken to remove

たとえば、図14に示すように、ある程度の容量を備えた堆積室1400の一の側壁面1401に気体の入口1402を一方の隅に片寄せて設け、対面する側壁面1403の反対側の隅に気体の出口1404を設けるとともに、先の入口1402に狭い流路から流速を高めて気体を送り込むように構成したゴミトラップ用の気体誘導路を、センサの前段に配置する。   For example, as shown in FIG. 14, a gas inlet 1402 is provided on one side wall surface 1401 of a deposition chamber 1400 having a certain capacity so as to be shifted to one corner, and is provided at a corner opposite to the facing side wall surface 1403. A gas outlet 1404 is provided, and a gas guiding path for dust traps configured to increase the flow velocity from a narrow flow path to the previous inlet 1402 and to send the gas is disposed in front of the sensor.

このような気体誘導路では、高い流速で堆積室1400内に流入した気体に含まれる不要物は、気体の分子に比べて質量が大きいので、その分、慣性が強く作用し、堆積室1400の対面する側壁面1403に衝突して堆積する。一方慣性の小さい気体自身は、入口1402から出口1404に向かって堆積室1400の中を斜めに流れて通過する。   In such a gas guide path, the unnecessary matter contained in the gas flowing into the deposition chamber 1400 at a high flow rate has a mass larger than that of the gas molecules. It collides with the facing side wall surface 1403 and deposits. On the other hand, the gas having a small inertia flows through the deposition chamber 1400 obliquely from the inlet 1402 toward the outlet 1404.

かかる従来の気体誘導路では、気体の入口と出口とを対面する側壁面の相反する隅寄りに設けているので、気体中の不要物が図14の斜線で示すような入口の正面部分だけに堆積する。このため堆積室の入口が目詰まりを起こしやすいとともに、不要物が堆積室の一部分にしか堆積しないので、堆積室が有効利用されていないという問題があった。また堆積室のみでは、不要物を完全に除去することは困難であった。   In such a conventional gas guide path, since the gas inlet and outlet are provided near the opposite corners of the side wall surface facing each other, unnecessary substances in the gas are only present at the front portion of the inlet as shown by the oblique lines in FIG. accumulate. For this reason, there is a problem that the entrance of the deposition chamber is likely to be clogged and unnecessary materials are deposited only in a part of the deposition chamber, so that the deposition chamber is not effectively used. Moreover, it was difficult to completely remove unnecessary materials only in the deposition chamber.

このほか、熱線式流速センサを高流速域で用いた場合には、流路内の屈曲等によって気体が振動したり脈動し、安定したセンサ出力を得ることができないという問題もあった。   In addition, when a hot-wire flow rate sensor is used in a high flow rate region, there is a problem that gas cannot vibrate or pulsate due to bending or the like in the flow path and a stable sensor output cannot be obtained.

本発明は、このような従来の技術が有する問題点に着目してなされたもので、測定対象の気体を、ちりやほこりなどの不要物が適切に除去された状態でセンサに導くとともに、高流速域でもセンサ出力に脈動の生じない気体誘導路を提供することを目的としている。   The present invention has been made paying attention to such problems of the conventional technology, and guides the gas to be measured to the sensor in a state in which unnecessary objects such as dust and dust are appropriately removed, An object of the present invention is to provide a gas guiding path in which no pulsation occurs in the sensor output even in the flow velocity region.

かかる目的を達成するための本発明の要旨とするところは、次の各項の発明に存する。
[1]所定のセンサ(70)に測定対象となる気体を導くための気体誘導路において、
測定対象となる気体の流速を高める加速用流路部(102、202)と、前記加速用流路部(102、202)の側壁面に入口部が開口され前記加速用流路部(102、202)で加速された気体の一部を分流するバイパス流路(110、210)とを備え、
前記バイパス流路(110、210)の途中に前記センサ(70)を配置するように構成したことを特徴とする気体誘導路。
The gist of the present invention for achieving the object lies in the inventions of the following items.
[1] In a gas guiding path for guiding a gas to be measured to a predetermined sensor (70),
An acceleration channel (102, 202) for increasing the flow velocity of the gas to be measured, and an inlet is opened on a side wall surface of the acceleration channel (102, 202), and the acceleration channel (102, 202) and a bypass flow path (110, 210) for diverting a part of the gas accelerated in step 202)
A gas guiding path characterized in that the sensor (70) is arranged in the middle of the bypass flow path (110, 210).

[2]所定のセンサ(70)に測定対象となる気体を導くための気体誘導路において、
測定対象となる気体の流速を高める加速用流路部(102、202)と、前段の流路の側壁面に入口部が開口されたバイパス流路(301〜303)であって前記前段の流路内の気体の一部を分流するものを前記加速用流路部(102、202)の側壁面に入口部が開口したものを1段目として複数段設け、
最終段のバイパス流路(303)の途中に前記センサ(70)を配置するように構成したことを特徴とする気体誘導路。
[2] In a gas guiding path for guiding a gas to be measured to a predetermined sensor (70),
An accelerating flow path portion (102, 202) for increasing the flow velocity of the gas to be measured, and a bypass flow path (301 to 303) in which an inlet portion is opened on a side wall surface of the previous flow path, Provided a plurality of stages in which a part of the gas in the passage is shunted with the opening part opened on the side wall surface of the acceleration channel part (102, 202) as the first stage,
A gas guiding path characterized in that the sensor (70) is arranged in the middle of the final stage bypass flow path (303).

[3]前記バイパス流路(110、210)のうち少なくとも前記センサ(70)の配置される個所の流路断面積を当該バイパス流路(110、210)の他の部分よりも小さくしたことを特徴とする[1]または[2]記載の気体誘導路。 [3] The flow path cross-sectional area of at least the place where the sensor (70) is arranged in the bypass flow path (110, 210) is made smaller than other portions of the bypass flow path (110, 210). The gas guiding path according to [1] or [2], which is characterized.

[4]所定のセンサ(70)に測定対象となる気体を導くための気体誘導路において、
前記センサ(70)の上流側に均圧室としてのチャンバ(401)を設けたことを特徴とする気体誘導路。
[4] In the gas guiding path for guiding the gas to be measured to the predetermined sensor (70),
A gas guiding path, characterized in that a chamber (401) as a pressure equalizing chamber is provided upstream of the sensor (70).

[5]前記均圧室としてのチャンバ(401)の容積を、前記センサ(70)に到達する気体の最大流速に応じて設定したことを特徴とする[4]記載の気体誘導路。 [5] The gas guiding path according to [4], wherein the volume of the chamber (401) as the pressure equalizing chamber is set according to the maximum flow velocity of the gas reaching the sensor (70).

前記本発明は次のように作用する。
測定対象となる気体の流速を高める加速用流路部(102、202)と、加速用流路部(102、202)の側壁面に入口部が開口されかつ加速用流路部(102、202)で加速された気体の一部を分流するバイパス流路(110、210)とを備えた構成の気体誘導路では、質量の大きな不要物は、加速用流路部(102、202)で加速されてその流速が高まっているので、慣性の作用が強く現れ、バイパス流路(110、210)の入口部の前を通過し、バイパス流路(110、210)へは不要物の取り除かれた気体成分だけが流れ込む。したがって、このパイパス流路の途中にセンサ(70)を配置することで、不要物がセンサ(70)に到達することを回避することができる。
The present invention operates as follows.
An acceleration channel (102, 202) for increasing the flow velocity of the gas to be measured, an inlet is opened in the side wall surface of the acceleration channel (102, 202), and the acceleration channel (102, 202). In the gas guide path having a bypass flow path (110, 210) for diverting a part of the gas accelerated in step), unnecessary mass having a large mass is accelerated by the acceleration flow path section (102, 202). Since the flow rate is increased, the inertial action appears strongly, passes in front of the inlet of the bypass channel (110, 210), and unnecessary materials are removed to the bypass channel (110, 210). Only gas components flow in. Therefore, by disposing the sensor (70) in the middle of the bypass flow path, it is possible to avoid unnecessary objects from reaching the sensor (70).

また、前段のバイパス流路(110、210)から気体の一部を分流するようにバイパス流路(110、210)を複数段設け、最終段のバイパス流路(110、210)内にセンサ(70)を配置したものでは、不要物がセンサ(70)に到達することを、より効果的に防止することができる。また、不要物を堆積させないので、不要物の堆積による圧損が変化してしまうことを避けることができる。   Further, a plurality of bypass channels (110, 210) are provided so that a part of the gas is diverted from the bypass channel (110, 210) in the previous stage, and a sensor ( 70), it is possible to more effectively prevent unwanted objects from reaching the sensor (70). In addition, since unnecessary objects are not deposited, it is possible to avoid a change in pressure loss due to accumulation of unnecessary objects.

なお、分流することでバイパス流路(110、210)内での気体の流量が元の気体の流量に比べて少なくなるので、バイパス流路(110、210)のうち少なくともセンサ(70)の配置される個所の流路断面積を当該バイパス流路(110、210)の他の部分よりも小さくする。これにより、センサ(70)のすぐ前を通過する気体の流量(流速)が増え、感度の低下が防止される。   In addition, since the flow rate of the gas in the bypass flow path (110, 210) becomes smaller than the flow rate of the original gas by the diversion, at least the sensor (70) is disposed in the bypass flow path (110, 210). The flow path cross-sectional area of the place to be made is made smaller than the other part of the bypass flow path (110, 210). As a result, the flow rate (flow velocity) of the gas passing immediately in front of the sensor (70) increases, and the sensitivity is prevented from decreasing.

このほか、センサ(70)の上流側に均圧室としてのチャンバ(401)を設ける。また均圧室としてのチャンバ(401)の容積を、センサ(70)に到達する気体の最大流速に応じて設定する。このようにある程度の容積を持ったチャンバ(401)をセンサ(70)の上流側に設けることで、気体の流速を高めた場合にも熱線式流速センサ(70)の出力に脈動が現れることを防止できる。なお、流速が高まるほど脈動を防止するために必要とされる、チャンバ(401)の容量が増加するので、チャンバ(401)の容量は予測される最大流速に応じて設定される。   In addition, a chamber (401) as a pressure equalizing chamber is provided on the upstream side of the sensor (70). Further, the volume of the chamber (401) as the pressure equalizing chamber is set according to the maximum flow velocity of the gas reaching the sensor (70). By providing the chamber (401) having a certain volume on the upstream side of the sensor (70) in this way, even when the gas flow rate is increased, pulsation appears in the output of the hot wire flow rate sensor (70). Can be prevented. In addition, since the capacity | capacitance of the chamber (401) required in order to prevent a pulsation increases, so that the flow velocity increases, the capacity | capacitance of the chamber (401) is set according to the maximum flow velocity estimated.

気体をセンサまで導く気体誘導路を、気体の流速を高める加速用流路部と、加速用流路部で加速された気体の一部を分流するバイパス流路で構成したものでは、加速することによって、質量の大きな不要物の慣性が高まり、バイパス流路の入口部の前を不要物が通過して、バイパス流路には不要物の取り除かれた気体成分だけが流れ込む。したがって、このパイパス流路の途中にセンサを配置することで、不要物がセンサに到達することを効果的に回避することができる。   Accelerate the gas guiding path that leads the gas to the sensor with an acceleration channel that increases the gas flow velocity and a bypass channel that divides a part of the gas accelerated in the acceleration channel. As a result, the inertia of an unnecessary object having a large mass is increased, the unnecessary object passes in front of the inlet portion of the bypass channel, and only the gas component from which the unnecessary object is removed flows into the bypass channel. Therefore, by disposing the sensor in the middle of the bypass flow path, it is possible to effectively avoid unnecessary objects from reaching the sensor.

さらにセンサの上流側に均圧室としてのチャンバを設けた気体誘導路では、熱線式流速センサ等のセンサ出力に高い流速域で脈動が現れることを防止することができる。   Furthermore, in the gas guide path provided with a chamber as a pressure equalizing chamber upstream of the sensor, it is possible to prevent pulsation from appearing in a high flow velocity region in the sensor output of a hot wire flow velocity sensor or the like.

以下、図面に基づき本発明の各種実施の形態を説明する。
図1から図5は、本発明の第1の実施の形態にかかる気体誘導路10を示している。各図は、上蓋および底蓋を外した状態の気体誘導路本体部10aを示している。図1は、気体誘導路本体部10aを上から見た様子を、図2は、図1のA−A断面を、図3は、気体誘導路本体部10aを下から見た様子を、図4は、図3のB−B断面をそれぞれ示している。
Hereinafter, various embodiments of the present invention will be described with reference to the drawings.
1 to 5 show a gas guiding path 10 according to a first embodiment of the present invention. Each figure shows the gas guiding path main body 10a with the top cover and bottom cover removed. FIG. 1 is a view of the gas guiding path body 10a as viewed from above, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is a view of the gas guiding path body 10a as viewed from below. 4 shows the BB cross section of FIG.

気体誘導路10は、気体に含まれるちりやほこり、あるいは霧状の水分や油分などの不要物を熱線式流速センサ70等のセンサに送る前に除去する機能を果たすものである。   The gas guiding path 10 serves to remove dust and dust contained in the gas, or unnecessary substances such as mist-like moisture and oil before being sent to a sensor such as the hot-wire flow rate sensor 70.

熱線式流速センサ70は、ヒーターとして作用する抵抗素子を中心にしてその近傍に2つの温度検出用の薄膜抵抗素子を、測定対象となる気体の流れの上流側と下流側とに分けて配置した構造を成しており、温度検出用の2つの薄膜抵抗素子の検出する温度差に基づいて気体の流速を検知するものである。   The hot wire type flow rate sensor 70 has two temperature detecting thin film resistance elements arranged in the vicinity of the resistance element acting as a heater, divided into the upstream side and the downstream side of the gas flow to be measured. The gas flow velocity is detected based on the temperature difference detected by the two thin film resistance elements for temperature detection.

熱線式流速センサ70は、給湯機などの燃焼装置において、適正な空気比を確保するために燃焼ファンから実際に送り込んでいる空気の流速を測定する等の目的で使用される。   The hot-wire flow rate sensor 70 is used in a combustion apparatus such as a water heater for the purpose of measuring the flow rate of air actually sent from a combustion fan in order to ensure an appropriate air ratio.

気体誘導路10は、各図に示す気体誘導路本体部10aと、図示省略した上蓋および底蓋で構成される。気体誘導路本体部10aは、気体流入口11と、気体流出口12と、不要物を除去するための複数の堆積室21〜25と、隣り合う堆積室を接続するとともに気体の流速を高めるための狭通路部31〜35と、前室40と、最終段の堆積室25と前室40とを結ぶ挟通路部36と、センサ取付け通路部50と、後室60とから構成されている。なお挟通路部31〜36の流路断面積は、堆積室21〜25に比べて十分小さくなっている。   The gas guide path 10 includes a gas guide path main body 10a shown in the drawings, and an upper cover and a bottom cover that are not shown. The gas guiding path main body 10a connects the gas inlet 11, the gas outlet 12, the plurality of deposition chambers 21 to 25 for removing unnecessary substances, and the adjacent deposition chambers, and increases the gas flow rate. The narrow passage portions 31 to 35, the front chamber 40, the narrow passage portion 36 connecting the deposition chamber 25 and the front chamber 40 in the final stage, the sensor attachment passage portion 50, and the rear chamber 60. Note that the cross-sectional area of the narrow passage portions 31 to 36 is sufficiently smaller than that of the deposition chambers 21 to 25.

気体流入口11から流入した気体は、第1の狭通路部31〜第1の堆積室21〜第2の狭通路部32〜第2の堆積室22〜第3の狭通路部33〜第3の堆積室23〜第4の狭通路部34〜第4の堆積室24〜第5の狭通路部35〜第5の堆積室25〜第6の狭通路部36を順に通過して前室40に到達するようになっている。   The gas flowing in from the gas inlet 11 is from the first narrow passage portion 31 to the first deposition chamber 21 to the second narrow passage portion 32 to the second deposition chamber 22 to the third narrow passage portion 33 to third. The pre-chamber 40 sequentially passes through the deposition chamber 23 to the fourth narrow passage portion 34 to the fourth deposition chamber 24 to the fifth narrow passage portion 35 to the fifth deposition chamber 25 to the sixth narrow passage portion 36. To come to reach.

前室40には、センサ取付け通路部50への入口51が開口している。前室40内の気体は、入口51から気体誘導路10の裏面側へ抜け、図3、図4に示すように中央部のくびれたセンサ取付け通路部50を通り、出口52から後室60に流れ出て、気体流出口12を通じて気体誘導路10から排出されるようになっている。なお、センサ取付け通路部50自体は溝の形を成しており、図4に示すように熱線式流速センサ70を取り付けた平板71でセンサ取付け通路部50を裏面側から覆うことで流路が形成されるようになっている。   In the front chamber 40, an inlet 51 to the sensor mounting passage 50 is opened. The gas in the front chamber 40 escapes from the inlet 51 to the back side of the gas guiding path 10, passes through the constricted sensor mounting passage 50 in the center as shown in FIGS. 3 and 4, and passes from the outlet 52 to the rear chamber 60. The gas flows out and is discharged from the gas guiding path 10 through the gas outlet 12. The sensor mounting passage 50 itself is in the form of a groove, and the flow path is formed by covering the sensor mounting passage 50 from the back side with a flat plate 71 on which a hot-wire flow velocity sensor 70 is mounted as shown in FIG. It is supposed to be formed.

図2に示すように各堆積室21〜25は、狭通路部31〜36の断面高さよりも深く形成され、各狭通路部31〜36は、図示省略した上蓋寄りの位置にて各堆積室21〜25および前室40をつないでいる。なお、狭通路部31〜36および堆積室21〜25は、上蓋を閉じることで、それぞれ通路および室としての形を成すようになっている。   As shown in FIG. 2, each of the deposition chambers 21 to 25 is formed deeper than the cross-sectional height of the narrow passage portions 31 to 36, and each of the narrow passage portions 31 to 36 is located at a position near the upper lid (not shown). 21 to 25 and the front chamber 40 are connected. The narrow passage portions 31 to 36 and the deposition chambers 21 to 25 are formed as passages and chambers, respectively, by closing the upper lid.

第1の堆積室21、第4の堆積室24、第5の堆積室25においては、気体の入口は、一の側壁面のうち左右いずれかの隅に片寄せた箇所に開口し、気体の出口は、入口の開口している側壁面と垂直な2つの側壁面のうち入口から遠い方の側壁面であって、入口の対向している側壁面から最も遠い角寄りの位置に開口している。   In the first deposition chamber 21, the fourth deposition chamber 24, and the fifth deposition chamber 25, the gas inlet opens at a position that is shifted to one of the left and right corners of one side wall surface, The outlet is a side wall surface that is farthest from the inlet side of the two side wall surfaces that are perpendicular to the side wall surface that the inlet opens, and is opened at a position that is farthest from the opposite side wall surface of the inlet. Yes.

また第2の堆積室22では、入口は上述と同様に開口し、気体の出口は、入口の開口している側壁面と垂直な2つの側壁面のうち入口から遠い方の側壁面の中央上部に開口している。第3の堆積室23の入口は、第2の堆積室22の出口に連通しているので、これまた側壁面の中央上部部分に開口している。第3の堆積室23の気体出口は、入口の開口している側壁面と垂直ないずれか一方の側壁面であって、入口の対向している側壁面から最も遠い角寄りの位置に開口している。ここでは、各堆積室21〜25は一辺が6ミリで深さ8ミリの中空直方体形状を成し、各狭通路部31〜36は、略2ミリ四方の断面を備えている。   In the second deposition chamber 22, the inlet is opened in the same manner as described above, and the gas outlet is at the center upper portion of the side wall surface far from the inlet of the two side wall surfaces perpendicular to the side wall surface where the inlet is opened. Is open. Since the inlet of the third deposition chamber 23 communicates with the outlet of the second deposition chamber 22, it also opens at the center upper portion of the side wall surface. The gas outlet of the third deposition chamber 23 is one of the side wall surfaces perpendicular to the side wall surface where the inlet is open, and is opened at a position near the corner farthest from the side wall surface facing the inlet. ing. Here, each of the deposition chambers 21 to 25 has a hollow rectangular parallelepiped shape with a side of 6 mm and a depth of 8 mm, and each of the narrow passage portions 31 to 36 has a cross section of about 2 mm square.

次に作用を説明する。
図5は、第1の狭通路部31、第1の堆積室21、第2の狭通路部32を上方から見た様子を示している。第1の狭通路部31から流入する気体は、第1の狭通路部31の流路断面積が小さいことからその流速を増した状態で第1の堆積室21の中へ流れ込む。ちりやほこり、あるいは霧状になった水分や油分等の不要物は、気体自身に比べて質量密度が大きいので、慣性の影響で第1の狭通路部31から流入した方向にそのまま直進し、対向する側壁面81に衝突し、下方に落下して堆積する。一方、慣性の小さい気体自身は、堆積室内で方向を変えて、第2の狭通路部32から次の堆積室へと流れ込む。
Next, the operation will be described.
FIG. 5 shows a state in which the first narrow passage portion 31, the first deposition chamber 21, and the second narrow passage portion 32 are viewed from above. The gas flowing in from the first narrow passage portion 31 flows into the first deposition chamber 21 in a state where the flow velocity is increased because the flow passage cross-sectional area of the first narrow passage portion 31 is small. Dust and dust, or unnecessary substances such as mist-like moisture and oil have a mass density larger than that of the gas itself, so go straight in the direction of flowing from the first narrow passage portion 31 due to inertia, It collides with the opposite side wall surface 81 and falls downward and accumulates. On the other hand, the gas having a small inertia changes its direction in the deposition chamber and flows from the second narrow passage portion 32 to the next deposition chamber.

ここで、堆積室からの気体の出口32が、入口31に対して図示するような位置関係にあるので、気体が堆積室の中で90度以上方向を変えて堆積室内を広範囲に通過するので、不要物の堆積可能な場所が、図14に示す従来のものに比して広がり、堆積室を不要物の堆積場所として有効利用することができる。   Here, since the gas outlet 32 from the deposition chamber has a positional relationship as shown in the figure with respect to the inlet 31, the gas changes direction by 90 degrees or more in the deposition chamber and passes through the deposition chamber over a wide range. The place where unnecessary materials can be deposited is wider than that of the conventional one shown in FIG. 14, and the deposition chamber can be effectively used as a place for depositing unnecessary materials.

なお、第2の堆積室22のように気体の出口が側壁面の中央上部に位置するものや第3の堆積室23のように気体の入口が側壁面の中央上部に位置する場合であっても、入口と対向する面に出口が存在する場合に比べると、不要物の堆積場所を多く確保することができる。   It is to be noted that the gas outlet is located at the center upper portion of the side wall surface as in the second deposition chamber 22, or the gas inlet is located at the center upper portion of the side wall surface as in the third deposition chamber 23. However, as compared with the case where the exit exists on the surface facing the entrance, it is possible to secure a large number of deposits of unnecessary materials.

さらに側壁面に衝突した不要物が堆積室の底から順に堆積することから、堆積室21〜25の深さを狭通路部31〜36の断面高さよりも大きくし、狭通路部31〜35の出口および堆積室21〜25からの気体の出口部を堆積室の上面寄りに設けることで、入口や出口が目詰まりするまでにより多くの不要物を堆積室内に溜めることが可能になっている。   Furthermore, since the unnecessary matter colliding with the side wall surface is deposited sequentially from the bottom of the deposition chamber, the depth of the deposition chambers 21 to 25 is made larger than the cross-sectional height of the narrow passage portions 31 to 36, and the narrow passage portions 31 to 35. By providing the outlet and the gas outlet from the deposition chambers 21 to 25 near the upper surface of the deposition chamber, it is possible to accumulate more unnecessary materials in the deposition chamber until the inlet and the outlet are clogged.

なお、複数の堆積室21〜25を狭通路部31〜36を介して直列接続することで、不要物の除去効果が高められている。また第3の堆積室23のように側壁面の中央に気体の出入口を備えたものを含むことで、多数の堆積室を密集配置でき、気体誘導路10の小型化に貢献している。   In addition, the removal effect of an unnecessary thing is heightened by connecting the some deposition chambers 21-25 in series via the narrow channel | path parts 31-36. In addition, by including the one having the gas inlet / outlet at the center of the side wall surface like the third deposition chamber 23, a large number of deposition chambers can be densely arranged, which contributes to the miniaturization of the gas guiding path 10.

また図1等で示したものでは、熱線式流速センサ70の上流側にのみ堆積室21〜25を設けているので、センサの上流側と下流側の双方に堆積室等を設ける場合に比べて圧損が低減され、センサに気体を高速で流す必要のある場合(低圧損用のセンサを用いる場合)等に好適である。   1 and the like, since the deposition chambers 21 to 25 are provided only on the upstream side of the hot-wire flow rate sensor 70, compared to the case where deposition chambers are provided on both the upstream side and the downstream side of the sensor. This is suitable when the pressure loss is reduced and gas needs to flow through the sensor at a high speed (when using a sensor for low pressure loss).

図6は、本発明の第2の実施の形態にかかる気体誘導路100を示している。気体誘導路100は、気体導入口101と、流入した気体の流速を高める加速用流路部102と、バイパス流路110と、気体導出口104とから構成されている。バイパス流路110の入口は、加速用流路部102の側壁に開口し、出口は、気体導出口104の側壁に開口している。   FIG. 6 shows a gas guiding path 100 according to the second embodiment of the present invention. The gas guiding path 100 includes a gas introduction port 101, an acceleration channel portion 102 that increases the flow velocity of the gas that has flowed in, a bypass channel 110, and a gas outlet port 104. The inlet of the bypass channel 110 opens in the side wall of the acceleration channel unit 102, and the outlet opens in the side wall of the gas outlet port 104.

加速用流路部102の流路断面積は、流速を高めるために気体導入口101より小さくなっており、バイパス流路110の流路断面積は、加速用流路部102よりもさらに小さくなっている。またバイパス流路110の途中に、熱線式流速センサ70が配置されている。   The flow passage cross-sectional area of the acceleration flow passage portion 102 is smaller than the gas inlet 101 in order to increase the flow velocity, and the flow passage cross-sectional area of the bypass flow passage 110 is further smaller than that of the acceleration flow passage portion 102. ing. A hot-wire flow rate sensor 70 is disposed in the middle of the bypass flow path 110.

次に作用を説明する。
気体導入口101から流入した気体は、流路断面積の小さい加速用流路部102に入ることで流速が高められる。またバイパス流路110の出口が加速用流路部102の中に比して低圧の気体導出口104に開口しているので、加速用流路部102中の流速の高まった気体の一部はバイパス流路110側へと分流し、残りはそのまま直進して気体導出口104に到達する。
Next, the operation will be described.
The flow rate of the gas flowing in from the gas introduction port 101 is increased by entering the acceleration channel portion 102 having a small channel cross-sectional area. In addition, since the outlet of the bypass channel 110 opens to the gas outlet port 104 having a lower pressure than that in the acceleration channel unit 102, a part of the gas having a high flow velocity in the acceleration channel unit 102 is The flow is diverted to the bypass flow path 110 side, and the rest goes straight and reaches the gas outlet 104.

気体導入口101から流入した気体に含まれるちりやほこり、あるいは霧状の水分、油分等の不要物は、加速用流路部102に入ることで流速が高められて慣性が増す。このため、気体中の不要物121は、バイパス流路110の入口正面をそのまま直進して通過して、ほとんどバイパス流路110の中に侵入しなくなる。したがって、熱線式流速センサ70には、不要物の除去された気体が到達することになる。   Dust and dust contained in the gas flowing in from the gas inlet 101, or unnecessary substances such as mist-like moisture and oil enter the flow path portion 102 for acceleration to increase the flow velocity and increase the inertia. For this reason, the unnecessary substance 121 in the gas passes straight through the front face of the inlet of the bypass channel 110 and hardly enters the bypass channel 110. Therefore, the gas from which unnecessary substances are removed reaches the hot-wire flow rate sensor 70.

このように気体誘導路100では、不要物を堆積させることなく、熱線式流速センサ70への不要物の到達を防止することができる。その結果、不要物の堆積によって堆積室が目詰まりを起こしたり、多量の不要物が堆積したために圧損が増加して流速の測定結果に誤差が生じる等の問題が生じない。   As described above, in the gas guiding path 100, it is possible to prevent an unnecessary object from reaching the hot-wire flow rate sensor 70 without depositing an unnecessary object. As a result, problems such as clogging of the deposition chamber due to the accumulation of unnecessary materials and an increase in pressure loss due to the accumulation of a large amount of unnecessary materials and an error in the measurement result of the flow velocity do not occur.

図7は、本発明の第3の実施の形態にかかる気体誘導路200を示している。気体誘導路200は、気体導入口201と、流入した気体の流速を高める加速用流路部202と、バイパス流路210と、気体導出口204とから構成されている。加速用流路部202は、その途中に流路断面積を小さくした絞り部203を有している。   FIG. 7 shows a gas guiding path 200 according to the third embodiment of the present invention. The gas guiding path 200 includes a gas introduction port 201, an acceleration channel portion 202 that increases the flow velocity of the gas that has flowed in, a bypass channel 210, and a gas outlet port 204. The acceleration flow path section 202 has a throttle section 203 with a flow path cross-sectional area reduced in the middle thereof.

バイパス流路210の入口は、絞り部203の上流側で加速用流路部202の側壁に開口し、バイパス流路210の出口は、絞り部203の直ぐ下流側で加速用流路部202の側壁に開口している。加速用流路部202の流路断面積は、流速を高めるために気体導入口201よりも小さくなっており、バイパス流路210の流路断面積は、加速用流路部202よりもさらに小さくなっている。またバイパス流路210の途中に、熱線式流速センサ70が配置されている。   The inlet of the bypass channel 210 opens to the side wall of the acceleration channel unit 202 on the upstream side of the throttle unit 203, and the outlet of the bypass channel 210 is located immediately downstream of the throttle unit 203 on the acceleration channel unit 202. Open to the side wall. The flow path cross-sectional area of the acceleration flow path section 202 is smaller than the gas inlet 201 in order to increase the flow velocity, and the flow path cross-sectional area of the bypass flow path 210 is further smaller than that of the acceleration flow path section 202. It has become. A hot-wire flow rate sensor 70 is arranged in the middle of the bypass flow path 210.

次に作用を説明する。
気体導入口201から流入した気体は、流路断面積の小さい加速用流路部202に入る際に流速が高められる。また加速用流路部202の出口が加速用流路部202の途中に設けた絞り部203の直ぐ下流側の低圧な領域に開口しているので、バイパス流路210の出口から加速用流路部202へと気体が吸い出される。その結果、気体導入口201から加速用流路部202に流入した気体の一部が、バイパス流路210側に分流する。
Next, the operation will be described.
The gas flowing in from the gas inlet 201 has an increased flow velocity when entering the acceleration channel portion 202 having a small channel cross-sectional area. Further, since the outlet of the acceleration channel portion 202 is open to a low pressure region immediately downstream of the throttle portion 203 provided in the middle of the acceleration channel portion 202, the acceleration channel from the outlet of the bypass channel 210 is opened. Gas is sucked out to the part 202. As a result, part of the gas that has flowed into the acceleration channel portion 202 from the gas inlet 201 is diverted to the bypass channel 210 side.

気体導入口201から加速用流路部202へ流入することで流速の高まった気体の中の不要物は、その慣性のためにバイパス流路210の入口正面をそのまま直進して通過して、ほとんどバイパス流路210内に侵入せず、図6に示したものと同様の効果を得ることができる。   Unnecessary substances in the gas whose flow velocity has been increased by flowing into the acceleration flow path section 202 from the gas inlet 201 pass straight through the front face of the bypass flow path 210 due to its inertia, and almost pass. The same effect as shown in FIG. 6 can be obtained without entering the bypass flow path 210.

分流することでバイパス流路110、210の中での気体の流量は、気体導入口101、201に流入した気体の元の流量に比べて少なくなる。そこで、図8に示すようにバイパス流路110、210のうち、熱線式流速センサ70の近傍を、他の部分よりさらに流路断面積を小さくすることで、熱線式流速センサ70の前を通過する気体の流速を高め、流量不足を補うことができる。すなわち、バイパス流路の中でセンサの近傍を他の箇所よりも細くして流路幅をセンサの接触面の大きさに近づけることで、センサの前を実際に通過する気体の流量(流速)を増やすことができ、感度の低下を補うことができる。   By dividing the gas, the flow rate of the gas in the bypass channels 110 and 210 becomes smaller than the original flow rate of the gas flowing into the gas inlets 101 and 201. Therefore, as shown in FIG. 8, in the bypass flow paths 110 and 210, the vicinity of the hot-wire flow rate sensor 70 is passed in front of the hot-wire flow rate sensor 70 by making the flow path cross-sectional area smaller than other portions. The flow rate of the gas to be increased can be compensated for. That is, the flow rate (velocity) of the gas that actually passes in front of the sensor is reduced by making the vicinity of the sensor in the bypass flow path narrower than other parts and bringing the flow path width close to the size of the contact surface of the sensor. Can be increased, and a decrease in sensitivity can be compensated.

また、図9に示すように、最終段を除くバイパス流路に加速用流路としての機能を具備させ、バイパス流路301〜303を複数段接続し、最終段のバイパス流路303に熱線式流速センサ70を設けるようにしてもよい。これにより熱線式流速センサ70に到達する不要物の量をさらに低減することができる。なお、気体導入口に続く加速用流路部で気体の流速を十分に高めてある場合には、各バイパス流路に気体の流速を加速する機能を具備させる必要はない。ただし、バイパス流路側に気体を分流させるためには、たとえば、図7で示した絞り部を最終段以外のバイパス流路に設ける等を行う必要がある。   Further, as shown in FIG. 9, the bypass flow path excluding the final stage is provided with a function as an acceleration flow path, a plurality of bypass flow paths 301 to 303 are connected, and the final-stage bypass flow path 303 is connected to a hot-wire type. A flow rate sensor 70 may be provided. As a result, the amount of unwanted matter reaching the hot wire flow rate sensor 70 can be further reduced. In addition, when the gas flow velocity is sufficiently increased in the acceleration flow channel portion following the gas introduction port, it is not necessary to provide a function of accelerating the gas flow velocity in each bypass flow channel. However, in order to divert the gas to the bypass flow path side, for example, it is necessary to provide the throttle portion shown in FIG. 7 in the bypass flow path other than the final stage.

次に、本発明の第4の実施の形態にかかる気体誘導路400について説明する。図10に示すものは、高い流速域で使用しても熱線式流速センサ70の出力値が脈動しないような対策を施した気体誘導路400を示している。   Next, the gas induction path 400 concerning the 4th Embodiment of this invention is demonstrated. FIG. 10 shows a gas guiding path 400 in which measures are taken so that the output value of the hot-wire flow rate sensor 70 does not pulsate even when used in a high flow rate region.

気体誘導路400は、熱線式流速センサ70の上流側に均圧室として機能するチャンバ401を備えている。図11は、チャンバ401を設けない場合における気体の流速と熱線式流速センサ70の出力との関係を示したものである。この図で、縦軸は、センサ出力を、横軸は時間を示し、所定時間ごとに流速を段階的に高めた様子を示している。この例では、流速が4m/sを越えるあたりから、熱線式流速センサ70の出力値が安定せず、脈動501が現れている。これは送り込む流速が4m/sを越えたあたりから、センサの前を通過する気体の流速が実際に脈打つように変動していることを示している。   The gas guiding path 400 includes a chamber 401 that functions as a pressure equalizing chamber on the upstream side of the hot-wire flow rate sensor 70. FIG. 11 shows the relationship between the gas flow velocity and the output of the hot wire flow velocity sensor 70 when the chamber 401 is not provided. In this figure, the vertical axis indicates the sensor output, the horizontal axis indicates the time, and the state in which the flow rate is increased stepwise for each predetermined time. In this example, since the flow velocity exceeds 4 m / s, the output value of the hot-wire flow velocity sensor 70 is not stable and pulsation 501 appears. This indicates that the flow velocity of the gas passing in front of the sensor fluctuates so as to actually pulsate since the flow velocity of flow exceeds 4 m / s.

図12は、熱線式流速センサ70の上流側にチャンバ401を設けた場合における図11と同様の測定結果を示している。このように、チャンバ401を配置することで、流速が4m/sあたりでの脈動は抑えられ、流速7m/s付近において、はじめて脈動が観測されている。   FIG. 12 shows the same measurement results as FIG. 11 when the chamber 401 is provided on the upstream side of the hot-wire flow rate sensor 70. As described above, by arranging the chamber 401, pulsation around a flow velocity of 4 m / s is suppressed, and pulsation is observed for the first time around a flow velocity of 7 m / s.

図13は、チャンバ401の容量と、気体の流速と、センサ出力との関係を示している。点線で示す部分は脈動が生じた流速域である。   FIG. 13 shows the relationship between the volume of the chamber 401, the gas flow rate, and the sensor output. A portion indicated by a dotted line is a flow velocity region where pulsation occurs.

この図から、流速が増すほど、その脈動を抑えるために必要なチャンバの容量が大きくなることがわかる。したがって、センサの前を流れる気体の最大流速に応じてチャンバ401の容量を設定することで、必要な流速域において脈動が生じることを的確に防止することができる。なお、第1の実施の形態で示したものの前室40は、本実施の形態のチャンバとしての機能を果たしている。   From this figure, it can be seen that as the flow rate increases, the volume of the chamber required to suppress the pulsation increases. Therefore, by setting the capacity of the chamber 401 according to the maximum flow velocity of the gas flowing in front of the sensor, it is possible to accurately prevent pulsation from occurring in a necessary flow velocity region. In addition, the front chamber 40 of what was shown in 1st Embodiment has fulfill | performed the function as the chamber of this Embodiment.

以上説明した実施の形態では、気体誘導路に設けるセンサとして熱線式流速センサを用いたが、不要物の除去が必要とされるセンサであれば、他の種類のセンサであってもかまわない。また第1の実施の形態にかかる気体誘導路では、狭通路部は、その長さが堆積室の壁面厚さに等しい短いものであったが、より長いダクトを狭通路部としてもよい。この場合には、入口から堆積室に流入した不要物の進む方向性がより強まり、堆積室内で気体の流れる方向を大きく変えても、入口と対向する壁面に不要物を的確に衝突させて堆積させることができる。   In the embodiment described above, the hot-wire flow rate sensor is used as the sensor provided in the gas guiding path. However, other types of sensors may be used as long as they are required to remove unnecessary materials. Further, in the gas guiding path according to the first embodiment, the narrow passage portion has a short length equal to the wall thickness of the deposition chamber, but a longer duct may be used as the narrow passage portion. In this case, the direction of travel of the unwanted material that has flowed into the deposition chamber from the entrance becomes stronger, and even if the direction of gas flow in the deposition chamber is greatly changed, the unwanted material is allowed to collide with the wall facing the entrance accurately. Can be made.

また、発明を実施するための最良の形態には、次の各項の発明も含まれている。
[1]気体中の不要物を取り除くための気体誘導路において、
前記気体の流速を高めるための狭通路部(31〜35)と、前記気体中の不要物を堆積させるための中空直方体を成した堆積室(21〜25)であってその通路断面積が前記狭通路部(31〜35)より大きいものとを備え、
前記狭通路部(31〜35)の出口を前記堆積室(21〜25)の一の側壁面に開口させ、
前記堆積室(21〜25)からの気体の出口部を、前記堆積室(21〜25)の側壁面のうち前記狭通路部(31〜35)の出口が開口している前記一の側壁面と垂直な側壁面の中で前記一の側壁面と対面する側壁面から離した位置に設けたことを特徴とする気体誘導路。
The best mode for carrying out the invention includes the inventions of the following items.
[1] In a gas guiding path for removing unnecessary substances in the gas,
Narrow passage portions (31 to 35) for increasing the flow velocity of the gas, and deposition chambers (21 to 25) having hollow cuboids for depositing unnecessary substances in the gas, the passage sectional area of which is With a narrow passage (31-35) larger than,
The outlet of the narrow passage portion (31-35) is opened on one side wall surface of the deposition chamber (21-25),
The one side wall surface in which the outlet of the narrow passage portion (31 to 35) is opened in the outlet portion of the gas from the deposition chamber (21 to 25) among the side wall surfaces of the deposition chamber (21 to 25). A gas guide path provided at a position separated from the side wall surface facing the one side wall surface among the side wall surfaces perpendicular to the first side wall surface.

[2]気体中の不要物を取り除くための気体誘導路において、
前記気体の流速を高めるための狭通路部(31〜35)と、前記気体中の不要物を堆積させるための中空直方体を成した堆積室(21〜25)であってその通路断面積が前記狭通路部(31〜35)より大きいものとを備え、
前記狭通路部(31〜35)の出口を前記堆積室(21〜25)の一の側壁面にその左右のいずれかに片寄せて開口させ、
前記堆積室(21〜25)からの気体の出口部を、前記堆積室(21〜25)の側壁面のうち前記狭通路部(31〜35)の出口が開口している前記一の側壁面に垂直であって前記狭通路部(31〜35)の出口から遠い方の側壁面の中で前記一の側壁面と対面する側壁面から離した位置に設けたことを特徴とする気体誘導路。
[2] In a gas guiding path for removing unnecessary substances in the gas,
Narrow passage portions (31 to 35) for increasing the flow velocity of the gas, and deposition chambers (21 to 25) having hollow cuboids for depositing unnecessary substances in the gas, the passage sectional area of which is With a narrow passage (31-35) larger than,
The outlet of the narrow passage portion (31 to 35) is opened to one of the left and right sides of one side wall surface of the deposition chamber (21 to 25),
The one side wall surface in which the outlet of the narrow passage portion (31 to 35) is opened in the outlet portion of the gas from the deposition chamber (21 to 25) among the side wall surfaces of the deposition chamber (21 to 25). A gas guiding path provided at a position separated from a side wall surface facing the one side wall surface in a side wall surface perpendicular to the narrow channel portion (31 to 35) and far from the outlet of the narrow channel portion (31 to 35) .

[3]前記堆積室(21〜25)からの気体の出口部を、前記狭通路部(31〜35)の出口が開口している前記一の側壁面寄りに設けたことを特徴する[1]または[2]記載の気体誘導路。 [3] The gas outlet from the deposition chamber (21-25) is provided near the one side wall surface where the outlet of the narrow passage (31-35) is open [1] ] Or the gas guiding path according to [2].

[4]前記堆積室(21〜25)の高さを前記狭通路部(31〜35)の断面高さよりも大きくし、前記狭通路部(31〜35)の出口および前記堆積室(21〜25)からの気体の出口部を堆積室(21〜25)の天上面寄りに設けたことを特徴とする[1]、[2]または[3]記載の気体誘導路。 [4] The height of the deposition chamber (21-25) is made larger than the cross-sectional height of the narrow passage portion (31-35), and the outlet of the narrow passage portion (31-35) and the deposition chamber (21-21). 25) The gas guiding path according to [1], [2] or [3], wherein an outlet portion of the gas from 25) is provided near the top surface of the deposition chamber (21 to 25).

[5]複数の堆積室(21〜25)を前記狭通路部(31〜35)を介して直列に接続したことを特徴とする[1]、[2]、[3]または[4]記載の気体誘導路。 [5] [1], [2], [3] or [4], wherein a plurality of deposition chambers (21 to 25) are connected in series via the narrow passage portions (31 to 35) Gas guideway.

[6]前記堆積室(21〜25)および前記狭通路部(31〜35)を前記気体を測定対象とする所定のセンサの前記気体の流れで上流側にのみ配置したことを特徴とする[1]、[2]、[3]、[4]または[5]記載の気体誘導路。 [6] The deposition chambers (21 to 25) and the narrow passage portions (31 to 35) are arranged only on the upstream side in the gas flow of a predetermined sensor whose measurement target is the gas. 1], [2], [3], [4] or [5].

前記本発明は次のように作用する。
堆積室(21〜25)からの気体の出口部を、狭通路部(31〜35)の出口が開口している一の側壁面と垂直な側壁面の中で先の一の側壁面と対面する側壁面から離した位置に設けてあるので、狭通路部(31〜35)から堆積室(21〜25)内に流入した気体が、堆積室(21〜25)を出るまでに流れの向きを90度以上変えて堆積室(21〜25)内を広範囲に通過する。そのため、不要物の堆積する場所が広がり、堆積室(21〜25)を不要物の堆積場所として有効利用することができる。
The present invention operates as follows.
The gas outlet from the deposition chamber (21-25) faces the first side wall in the side wall perpendicular to the side wall where the outlet of the narrow passage (31-35) opens. Since the gas flowing into the deposition chambers (21-25) from the narrow passage portions (31-35) exits the deposition chambers (21-25), the direction of the flow is Is passed through the deposition chamber (21-25) over a wide range by changing the angle 90 degrees or more. Therefore, the place where an unnecessary thing accumulates spreads, and the deposition chamber (21-25) can be used effectively as a deposit place of an unwanted object.

また狭通路部(31〜35)の出口を堆積室(21〜25)の一の側壁面の左右いずれかに片寄せて開口させ、堆積室(21〜25)からの気体の出口部を、狭通路部(31〜35)の出口の開口箇所から遠い方の側壁面に設けたり、堆積室(21〜25)からの気体の出口部を、狭通路部(31〜35)の出口が開口している一の側壁面側に寄せて設けたものでは、堆積室(21〜25)に入ってから出るまでに気体が堆積室(21〜25)内をより広範囲に通過するようになり、不要物の堆積場所をさらに広げることができる。   Moreover, the exit of the narrow channel | path part (31-35) is opened in one side of the side wall surface of the deposition chamber (21-25), and the gas exit part from the deposition chamber (21-25) is made open. It is provided on the side wall surface far from the opening of the outlet of the narrow passage portion (31 to 35), or the outlet portion of the gas from the deposition chamber (21 to 25) is opened at the outlet of the narrow passage portion (31 to 35). In the case where it is provided close to the one side wall surface side, the gas passes through the deposition chamber (21-25) more extensively after entering the deposition chamber (21-25) and exiting, It is possible to further expand the depositing place for unnecessary materials.

さらに堆積室(21〜25)の高さを狭通路部(31〜35)の断面高さよりも大きくし、狭通路部(31〜35)の出口および堆積室(21〜25)からの気体の出口部を堆積室(21〜25)の天上面寄りに設けたものでは、慣性の作用で側壁面に衝突した不要物が堆積室(21〜25)の底から順に堆積するので、上部に設けた入口や出口が目詰まりするまでにより多くの不要物を堆積室(21〜25)内に溜めることができる。   Further, the height of the deposition chamber (21-25) is made larger than the cross-sectional height of the narrow passage portion (31-35), and the gas from the outlet of the narrow passage portion (31-35) and the deposition chamber (21-25) In the case where the outlet portion is provided near the top surface of the deposition chamber (21 to 25), unnecessary matter colliding with the side wall surface due to inertia is deposited in order from the bottom of the deposition chamber (21 to 25). More unnecessary materials can be accumulated in the deposition chambers (21 to 25) until the inlet and outlet are clogged.

なお、複数の堆積室(21〜25)を狭通路部(31〜35)を介して直列に接続するものでは、不要物の除去効果をより一層高めることができる。また堆積室(21〜25)および狭通路部(31〜35)を、気体を測定対象とする所定のセンサ(70)の上流側にのみ配置するよう構成したものでは、センサ(70)の上流側と下流側の双方に堆積室(21〜25)を設ける場合に比べて、圧損が低減され、センサ(70)の前に気体を高速で流す必要のある場合、すなわち低圧損用のセンサを用いる場合等に好適である。   In addition, in the thing which connects a some deposition chamber (21-25) in series via a narrow channel | path part (31-35), the removal effect of an unnecessary thing can be improved further. Further, in the configuration in which the deposition chambers (21 to 25) and the narrow passage portions (31 to 35) are arranged only on the upstream side of the predetermined sensor (70) for measuring gas, the upstream of the sensor (70). Compared with the case where the deposition chambers (21 to 25) are provided on both the downstream side and the downstream side, the pressure loss is reduced, and when the gas needs to flow at a high speed before the sensor (70), that is, a sensor for low pressure loss is provided. It is suitable for use.

本発明にかかる気体誘導路によれば、狭通路部で加速した気体が堆積室に流入してから当該堆積室を出るまでに流れの向きを90度以上変えて堆積室内を広範囲に通過するように入口と出口との配置を定めたので、不要物の堆積する場所が広がり、不要物の堆積場所として堆積室を有効利用することができる。これにより、堆積室の目詰まりが起こりにくく、長い寿命を得ることができる。   According to the gas guide path of the present invention, the gas accelerated in the narrow passage portion changes in the flow direction by 90 degrees or more from flowing into the deposition chamber and exiting the deposition chamber so as to pass through the deposition chamber over a wide range. Since the arrangement of the inlet and the outlet is determined, the place where the unnecessary material is deposited spreads, and the deposition chamber can be effectively used as a place for depositing the unnecessary material. Thereby, clogging of the deposition chamber hardly occurs and a long life can be obtained.

本発明の第1の実施の形態に係る気体誘導路本体部を示す上面図である。It is a top view which shows the gas induction path main-body part which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る気体誘導路本体部のうち堆積室の存する箇所における断面図である。It is sectional drawing in the location where a deposition chamber exists among the gas induction path main-body parts which concern on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る気体誘導路本体部を示す底面図である。It is a bottom view which shows the gas induction path main-body part which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る気体誘導路本体部の中心位置における断面図である。It is sectional drawing in the center position of the gas induction path main-body part which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る気体誘導路内での気体の軌跡および不要物の堆積場所を示す説明図である。It is explanatory drawing which shows the locus | trajectory of the gas in the gas induction path which concerns on the 1st Embodiment of this invention, and the deposit place of an unnecessary material. 本発明の第2の実施の形態に係る気体誘導路を示す断面図である。It is sectional drawing which shows the gas induction path which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る気体誘導路を示す断面図である。It is sectional drawing which shows the gas induction path which concerns on the 3rd Embodiment of this invention. センサの周辺で流路断面積をさらに狭くしたものの一例を示す説明図である。It is explanatory drawing which shows an example which further narrowed the flow-path cross-sectional area around the sensor. バイパス流路を複数段構成としたものの一例を示す説明図である。It is explanatory drawing which shows an example of what made the bypass flow path the multistage structure. 本発明の第4の実施の形態に係る気体誘導路を示す断面図である。It is sectional drawing which shows the gas induction path which concerns on the 4th Embodiment of this invention. チャンバが無い場合におけるセンサ出力と流速との関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the sensor output and the flow velocity when there is no chamber. チャンバを設けた場合におけるセンサ出力と流速との関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the sensor output in the case of providing a chamber, and the flow velocity. 流速とセンサ出力とチャンバの容積との関係を示す説明図である。It is explanatory drawing which shows the relationship between a flow velocity, a sensor output, and the volume of a chamber. 従来から使用されている気体誘導路内での気体の軌跡および不要物の堆積箇所を示す説明図である。It is explanatory drawing which shows the locus | trajectory of the gas in the gas guide path used conventionally, and the deposit location of an unnecessary material.

符号の説明Explanation of symbols

10…気体誘導路
10a…気体誘導路本体部
11…気体流入口
12…気体流出口
21〜25…堆積室
31〜36…狭通路部
40…前室
50…センサ取付け通路部
51…入口
52…出口
60…後室
70…熱線式流速センサ
71…平板
100、200…気体誘導路
101、201…気体導入口
102、202…加速用流路部
104、204…気体導出口
110、210…バイパス流路
203…絞り部
400…気体誘導路
401…チャンバ
DESCRIPTION OF SYMBOLS 10 ... Gas induction path 10a ... Gas induction path main-body part 11 ... Gas inflow port 12 ... Gas outflow port 21-25 ... Deposition chamber 31-36 ... Narrow channel | path part 40 ... Front chamber 50 ... Sensor attachment channel | path part 51 ... Inlet 52 ... Outlet 60 ... Rear chamber 70 ... Heat flow rate sensor 71 ... Plate 100, 200 ... Gas induction path 101, 201 ... Gas inlet 102, 202 ... Acceleration channel 104,204 ... Gas outlet 110,210 ... Bypass flow Path 203 ... Restriction section 400 ... Gas induction path 401 ... Chamber

Claims (5)

所定のセンサに測定対象となる気体を導くための気体誘導路において、
測定対象となる気体の流速を高める加速用流路部と、前記加速用流路部の側壁面に入口部が開口され前記加速用流路部で加速された気体の一部を分流するバイパス流路とを備え、
前記パイパス流路の途中に前記センサを配置するように構成したことを特徴とする気体誘導路。
In a gas guiding path for guiding a gas to be measured to a predetermined sensor,
An accelerating flow path portion that increases the flow velocity of the gas to be measured, and a bypass flow that opens an inlet portion on the side wall surface of the accelerating flow path portion and diverts part of the gas accelerated in the accelerating flow path portion With roads,
A gas guide path configured to arrange the sensor in the middle of the bypass flow path.
所定のセンサに測定対象となる気体を導くための気体誘導路において、
測定対象となる気体の流速を高める加速用流路部と、前段の流路の側壁面に入口部が開口されたバイパス流路であって前記前段の流路内の気体の一部を分流するものを前記加速用流路部の側壁面に入口部が開口したものを1段目として複数段設け、
最終段のバイパス流路の途中に前記センサを配置するように構成したことを特徴とする気体誘導路。
In a gas guiding path for guiding a gas to be measured to a predetermined sensor,
An acceleration flow path portion that increases the flow velocity of the gas to be measured, and a bypass flow path having an inlet portion opened on the side wall surface of the previous flow path, and part of the gas in the previous flow path is diverted Provided a plurality of stages as the first stage with the opening part on the side wall surface of the acceleration flow path part,
A gas induction path configured to arrange the sensor in the middle of a final-stage bypass flow path.
前記バイパス流路のうち少なくとも前記センサの配置される個所の流路断面積を当該バイパス流路の他の部分よりも小さくしたことを特徴とする請求項1または2記載の気体誘導路。   3. The gas guiding path according to claim 1, wherein at least a portion of the bypass channel where the sensor is disposed has a smaller channel cross-sectional area than other portions of the bypass channel. 所定のセンサに測定対象となる気体を導くための気体誘導路において、
前記センサの上流側に均圧室としてのチャンバを設けたことを特徴とする気体誘導路。
In a gas guiding path for guiding a gas to be measured to a predetermined sensor,
A gas guiding path characterized in that a chamber as a pressure equalizing chamber is provided upstream of the sensor.
前記均圧室としてのチャンバの容積を、前記センサに到達する気体の最大流速に応じて設定したことを特徴とする請求項4記載の気体誘導路。   The gas guiding path according to claim 4, wherein the volume of the pressure equalizing chamber is set in accordance with a maximum flow velocity of the gas reaching the sensor.
JP2005259192A 2005-09-07 2005-09-07 Taxiway Expired - Lifetime JP4142036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259192A JP4142036B2 (en) 2005-09-07 2005-09-07 Taxiway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259192A JP4142036B2 (en) 2005-09-07 2005-09-07 Taxiway

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP08229399A Division JP3779090B2 (en) 1999-03-25 1999-03-25 Taxiway

Publications (2)

Publication Number Publication Date
JP2006078487A true JP2006078487A (en) 2006-03-23
JP4142036B2 JP4142036B2 (en) 2008-08-27

Family

ID=36158051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259192A Expired - Lifetime JP4142036B2 (en) 2005-09-07 2005-09-07 Taxiway

Country Status (1)

Country Link
JP (1) JP4142036B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014632A1 (en) * 2010-07-26 2012-02-02 オムロン株式会社 Flow measurement structure and flow measurement device
JP2014238273A (en) * 2013-06-06 2014-12-18 株式会社フジクラ Flow rate sensor and flow rate detection system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014632A1 (en) * 2010-07-26 2012-02-02 オムロン株式会社 Flow measurement structure and flow measurement device
JP2012026930A (en) * 2010-07-26 2012-02-09 Omron Corp Structure for flow rate measurement and flow rate measuring equipment
CN102959364A (en) * 2010-07-26 2013-03-06 欧姆龙株式会社 Flow measurement structure and flow measurement device
US9103706B2 (en) 2010-07-26 2015-08-11 Omron Corporation Flow measurement structure and flow measurement device
JP2014238273A (en) * 2013-06-06 2014-12-18 株式会社フジクラ Flow rate sensor and flow rate detection system

Also Published As

Publication number Publication date
JP4142036B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
KR100913680B1 (en) Device for determining at least one parameter of a medium flowing in a conduit
JP5408195B2 (en) Air flow measurement device
KR100880549B1 (en) Device for determining at least one parameter of a flowing medium
SE424814B (en) DEVICE FOR SEPARATION OF LIQUID DROPPERS OR FINE-CORRECT SOLID PARTICLES FROM A GAS FLOW
CN106716078B (en) For determining the sensor module for flowing through at least one parameter of fluid media (medium) of Measurement channel
US9719823B2 (en) Gas meter
JP5464294B2 (en) Air flow measurement device
JP3706300B2 (en) Flow measuring device
JP5167343B2 (en) Equipment for measuring fluid media
JP5168223B2 (en) Air flow measurement device
JP5085827B2 (en) Apparatus for measuring at least one parameter of a flowing medium and method for separating a liquid in a flowing medium in a conduit
WO2007000865A1 (en) Flow rate measurement device
JPH11248504A (en) Air flow rate measuring device
KR20220012874A (en) Duct sensor with duct probe for sampling fluid from duct and method of operation
KR101009271B1 (en) Device for determining at least one parameter of a medium flowing in a line
JP4142036B2 (en) Taxiway
US8347706B2 (en) Flow-rate measurement apparatus
JP2005128038A (en) Air flow rate measuring device
KR100866268B1 (en) Device for measuring air flow, comprising a device for separating foreign particles
JP3848934B2 (en) Air flow measurement device
JP3779090B2 (en) Taxiway
JP2021088933A (en) Air cleaner
US6945105B2 (en) Air mass flowmeter with controlled flow separation position
JP2520735Y2 (en) Dust removal means for shunt tube
JP2709202B2 (en) Fluidic flow meter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term