JP2005128038A - Air flow rate measuring device - Google Patents

Air flow rate measuring device Download PDF

Info

Publication number
JP2005128038A
JP2005128038A JP2005035366A JP2005035366A JP2005128038A JP 2005128038 A JP2005128038 A JP 2005128038A JP 2005035366 A JP2005035366 A JP 2005035366A JP 2005035366 A JP2005035366 A JP 2005035366A JP 2005128038 A JP2005128038 A JP 2005128038A
Authority
JP
Japan
Prior art keywords
passage
air flow
sub
flow rate
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005035366A
Other languages
Japanese (ja)
Other versions
JP2005128038A5 (en
JP4512499B2 (en
Inventor
Hiroshi Onikawa
博 鬼川
Izumi Watanabe
泉 渡辺
Shinya Igarashi
信弥 五十嵐
Keiichi Nakada
圭一 中田
Kei Kamiyama
圭 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2005035366A priority Critical patent/JP4512499B2/en
Publication of JP2005128038A publication Critical patent/JP2005128038A/en
Publication of JP2005128038A5 publication Critical patent/JP2005128038A5/ja
Application granted granted Critical
Publication of JP4512499B2 publication Critical patent/JP4512499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat element type air flow rate measuring device reducing dirt, deterioration along with the time, and breakage of a flow rate measuring element due to dust and droplets in intake air. <P>SOLUTION: In this air flow rate measuring device, the flow passage shape of an auxiliary passage, in which the air flow rate measuring element is installed, is defined. Without using any new production method or the like, the heat element type air flow rate measuring device can be provided at a low cost. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、空気量を測定する空気流量測定装置に係わり、特に内燃機関に吸入される空気流量を測定することを主目的とした発熱抵抗体式空気流量測定装置に関する。   The present invention relates to an air flow rate measuring device for measuring the amount of air, and more particularly to a heating resistor type air flow rate measuring device whose main purpose is to measure the air flow rate taken into an internal combustion engine.

吸気通路内に進入したダストから流量計測素子を保護し、汚損による経時劣化を防止する構造としては下記に上げる数種の構造が知られている。(1)特開平11−248505号は副通路曲折部外周壁に粘着性を持たせ侵入したダストをトラップする構造であるが、トラップされたダストが粘着材表面を完全に覆ってしまった後は効果が無くなり、短期的な効果しか見られず、自動車用流量計としての長期間の使用はまったく考慮されていない。また水分等には効果が無いと言う問題がある。(2)特願昭54−128927号は副通路入口に吸気通路を流れる空気の動圧が加わらない静圧型の副通路を採用する事により、副通路内へのダストの侵入を防止する構造であるが、本構造では副通路内に流れ込む空気流量自体が極端に減少してしまう欠点が有り、安定した空気流量の計測が困難である。(3)ドイツ公開DE−19815654−A1は副通路内を二つの通路に分け、第一の副通路に流量計測素子を配置している。副通路内に侵入したダストはその速度ベクトル方向に開口している第二の副通路に分離される構造となっているが、その構成上、副通路内を流れる空気の主流は流量計測素子を設置していない第二の副通路となってしまい、第一副通路内では十分な安定した空気流が得られず、流量計測精度が大幅に悪化する懸念が有る。   There are several known structures for protecting the flow rate measuring element from dust that has entered the intake passage and preventing deterioration over time due to contamination. (1) Japanese Patent Application Laid-Open No. 11-248505 is a structure that traps dust that has entered the outer circumferential wall of the sub-passage bent portion by tackiness, but after the trapped dust has completely covered the adhesive material surface There is no effect, only a short-term effect is seen, and long-term use as an automotive flow meter is not considered at all. In addition, there is a problem that there is no effect on moisture and the like. (2) Japanese Patent Application No. 54-128927 has a structure that prevents dust from entering the sub-passage by adopting a static-pressure sub-passage that does not apply the dynamic pressure of the air flowing through the intake passage to the sub-passage entrance. However, in this structure, there is a drawback that the air flow rate itself flowing into the sub passage is extremely reduced, and it is difficult to measure a stable air flow rate. (3) German publication DE-19816154-A1 divides the inside of the auxiliary passage into two passages and arranges the flow rate measuring element in the first auxiliary passage. Dust that has entered the sub-passage is separated into a second sub-passage that opens in the velocity vector direction. There is a fear that the second sub-passage that is not installed is provided, a sufficiently stable air flow cannot be obtained in the first sub-passage, and the flow rate measurement accuracy is greatly deteriorated.

本発明による発熱抵抗体式空気流量測定装置は主に自動車用内燃機関の吸気通路内に設置される。この吸気通路には流入空気清浄用のフィルターエレメントが設置されているが、その清浄効果は100%ではなく、吸入空気に含まれるダストもしくは液分などがフィルターエレメントを通過して発熱抵抗体式空気流量測定装置が設置されている吸気通路部分まで到達する事がある。また、市場においては正規品以外の粗悪なフィルターエレメントを使用するケースもまま有る。この場合には更にダスト等の異物が侵入する可能性は大きくなる。吸入空気に含まれるダストが発熱抵抗体式空気流量測定装置の流量計測素子に付着すると、流量計測素子の放熱特性が変化して、出力特性変化を起こす問題がある。また、エレメントの構造と進入ダストの粒径及び速度によっては流量計測素子自体が破損する問題も考えられる。その他にも水等の液体が計測素子に付着すると素子の急激な温度変化による経時劣化及び瞬間的な放熱量の変化による出力異常もしくは熱応力による破損が発生する問題も有る。   The heating resistor type air flow measuring device according to the present invention is mainly installed in an intake passage of an internal combustion engine for automobiles. A filter element for cleaning the inflow air is installed in this intake passage, but its cleaning effect is not 100%. Dust or liquid contained in the intake air passes through the filter element and the heating resistor type air flow rate It may reach the intake passage where the measuring device is installed. In addition, there are cases in which poor filter elements other than genuine products are used in the market. In this case, the possibility that foreign matter such as dust will enter further increases. When dust contained in the intake air adheres to the flow measuring element of the heating resistor type air flow measuring device, there is a problem that the heat radiation characteristic of the flow measuring element changes and the output characteristic changes. Further, the flow measuring element itself may be damaged depending on the structure of the element and the particle size and speed of the incoming dust. In addition, when a liquid such as water adheres to the measuring element, there is a problem that deterioration due to rapid temperature change of the element and damage due to abnormal output or thermal stress due to instantaneous change in heat dissipation occur.

上記課題は、請求項に記載の発明により解決される。例えば、流量計測素子に汚損劣化,経時変化,破損等のダメージを与える空気中に含まれるダストもしくは液滴をその自身の持っている慣性力により分離する事が可能で、尚且つ流量計測素子が設置される部位で十分な空気流を保持する事が可能な副通路形状を採用している。   The above-described problems are solved by the invention described in the claims. For example, it is possible to separate dust or droplets contained in the air that causes damage such as fouling deterioration, aging, damage, etc. to the flow measurement element by its own inertial force, and the flow measurement element Adopting a sub-passage shape that can maintain a sufficient air flow at the site where it is installed.

まず、渦巻き状に構成された副通路中での空気流は通路形状に沿って流れる、それに対し、空気中に含まれる塵埃等の粒は自身の持っている重量と流入速度による慣性力により極力直進しようとするため、渦巻き状の通路外周壁に衝突する。その後は慣性力が遠心力として作用するために、ダスト等の異物は副通路外壁に沿うように進行し、副通路ほぼ中央付近に配置される流量計測素子部は通過しない。この場合でも空気自体の慣性力はダスト等に比較すると非常に小さいため、副通路中央付近及び内周壁付近でも安定した計測に必要な十分な流量が得られる。また、渦巻き型通路の外周壁と通路を構成する側壁の接合部に一定の傾斜を設ける事により、ダストが傾斜壁に衝突した場合の反射方向をより通路外周部に導く事も可能であり、この構造により更にダストの分離効果は増加する。   First, the air flow in the sub-passage configured in a spiral shape flows along the shape of the passage, whereas particles such as dust contained in the air are as much as possible due to their own weight and inertial force due to the inflow velocity. Because it tries to go straight, it collides with the spiral passage outer peripheral wall. Thereafter, since the inertial force acts as a centrifugal force, foreign matter such as dust advances along the outer wall of the sub-passage, and does not pass through the flow rate measuring element portion disposed in the vicinity of the center of the sub-passage. Even in this case, since the inertial force of the air itself is very small compared to dust or the like, a sufficient flow rate necessary for stable measurement can be obtained even near the center of the sub-passage and near the inner peripheral wall. In addition, by providing a certain slope at the joint between the outer peripheral wall of the spiral passage and the side wall constituting the passage, it is also possible to guide the reflection direction when dust collides with the inclined wall to the outer periphery of the passage. This structure further increases the dust separation effect.

更に、渦巻き状に構成された副通路の最底部外周接線方向にダスト排出孔を設けた場合は、前記ダストの慣性の効果により副通路外周壁付近に集められたダストを効果的に副通路外へ排出させる事ができる。   Further, when dust discharge holes are provided in the direction of the tangential line of the bottom of the sub-passage configured in a spiral shape, dust collected near the outer peripheral wall of the sub-passage is effectively removed from the sub-passage by the effect of the dust inertia. Can be discharged.

ダストの慣性力を利用した他の構造として、副通路入口の投影底部壁面に一定の角度を設け、その角度を持った底部壁面の最底部にダスト排出孔を設ける。副通路中に流入したダストは自身の持っている重量と速度による慣性力によって直進し、副通路底部の角度を持った壁面に衝突する。この時壁面の持っている角度によってダストはダスト排出孔方向へ反射し、副通路外へ排出される。   As another structure using the inertia force of dust, a fixed angle is provided on the projected bottom wall surface of the sub-passage entrance, and a dust discharge hole is provided at the bottom of the bottom wall surface having the angle. The dust flowing into the auxiliary passage goes straight by the inertial force due to its own weight and speed, and collides with the wall surface having an angle at the bottom of the auxiliary passage. At this time, the dust is reflected in the direction of the dust discharge hole depending on the angle of the wall surface and is discharged out of the auxiliary passage.

また、本発明における総ての副通路の構成では流量計測素子自身が副通路入口部より直視不可能な位置に配置される。本構造によれば副通路内に進入したダストは進入時の速度そのままで流量計測素子に衝突する事無く、一度もしくは数度にわたり副通路壁面に衝突する事によりその自身の持っている運動エネルギーを減少させる。よって副通路内に進入したダストは本発明の意図する本来の効果である慣性力を利用した気液もしくは気固分離の作用が上手く働かない条件が発生しても、そのダストが流量計測素子部分に到達した時には運動エネルギーが著しく減少しており、ダスト衝突により流量計測素子が破損に至る可能性は著しく減少させる事が可能である。   Further, in all the configurations of the sub passages in the present invention, the flow rate measuring element itself is arranged at a position where it cannot be viewed directly from the inlet portion of the sub passage. According to this structure, the dust that has entered the sub-passage does not collide with the flow rate measuring element at the speed at the time of entry, but the kinetic energy possessed by itself collides with the wall surface of the sub-passage once or several times. Decrease. Therefore, even if the condition that the gas-liquid or gas-solid separation action using the inertial force, which is the original effect intended by the present invention, does not work properly occurs, The kinetic energy is remarkably reduced when reaching the value, and the possibility that the flow measuring element is damaged due to dust collision can be remarkably reduced.

更に、本発明による効果は副通路の形状のみにより達成されるため、経時的な効果の減少は発生せず、継続的に同様な効果が得られる。   Furthermore, since the effect according to the present invention is achieved only by the shape of the sub-passage, the effect over time does not decrease, and the same effect can be continuously obtained.

本実施例によれば、発熱抵抗体式空気流量測定装置の流量計測素子を改良する事無く、その通路構造のみにより、半永久的に異物の流量計測素子への付着による、経時劣化を効果的に防止する事が可能であり、更に異物の衝突による流量計測素子の破損を効果的に防止する事が可能である。尚且つ、本構造によれば、従来の発熱抵抗体式空気流量測定装置の製造方法を変更する事無く従来構造品と同等のコストで目的を達成する事が可能である。   According to the present embodiment, without improving the flow rate measuring element of the heating resistor type air flow measuring device, it is possible to effectively prevent deterioration over time due to adhesion of foreign matter to the flow rate measuring element semipermanently only by the passage structure. In addition, it is possible to effectively prevent the flow rate measuring element from being damaged due to the collision of a foreign object. In addition, according to this structure, the object can be achieved at a cost equivalent to that of the conventional structure without changing the manufacturing method of the conventional heating resistor type air flow measuring device.

以下、本発明の実施の形態を図1から図12により説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

図1は本発明の一実施例を示す発熱抵抗体式空気流量計測装置の縦断面図である。自動車用内燃機関の吸気通路1に発熱抵抗体式空気流量計のモジュールハウジング2がモジュールフランジ2を介して取りつけられている。モジュールハウジング2先端部には副通路7が形成され、副通路7内部には流量計測素子3が設置されている。流量計測素子3(ここでは発熱抵抗体)はモジュールハウジング2内部に設置された電子回路4と電気的に接続され、更に電子回路4はコネクタ6を介して外部と電気的に接続される。副通路7は吸気通路1内部を流れる空気流に垂直に開口した副通路入口部9と吸気通路1内部を流れる空気流と平行につまり、副通路側壁面72に開口した副通路出口部10を有している。更に副通路7はその最底部にて連続的な曲面にて180°迂回しており、流量計測素子3は副通路7の迂回部下流側つまり副通路出口部10の形成される側に設置されている。本構造によれば、副通路7内部に侵入した塵埃等の異物はその自身の持っている速度と質量による慣性力により副通路最底部迂回部8において、迂回部の最外周部分に沿うように進行するため、副通路7のほぼ中心付近に設置されている流量計測素子3に衝突することなく、副通路出口部10より再度吸気通路1へ排出される。   FIG. 1 is a longitudinal sectional view of a heating resistor type air flow measuring device showing an embodiment of the present invention. A module housing 2 of a heating resistor type air flow meter is attached to an intake passage 1 of an automobile internal combustion engine via a module flange 2. A sub-passage 7 is formed at the tip of the module housing 2, and the flow rate measuring element 3 is installed inside the sub-passage 7. The flow rate measuring element 3 (here, the heating resistor) is electrically connected to an electronic circuit 4 installed inside the module housing 2, and the electronic circuit 4 is further electrically connected to the outside via a connector 6. The sub-passage 7 includes a sub-passage inlet portion 9 that opens perpendicularly to the air flow that flows through the intake passage 1 and a sub-passage exit portion 10 that opens in the sub-passage side wall surface 72 in parallel with the air flow that flows through the intake passage 1. Have. Further, the sub-passage 7 bypasses 180 ° with a continuous curved surface at the bottom, and the flow rate measuring element 3 is installed on the downstream side of the sub-passage part of the sub-passage 7, that is, on the side where the sub-passage outlet 10 is formed. ing. According to this structure, the foreign matter such as dust that has entered the sub-passage 7 follows the outermost peripheral portion of the detour portion in the sub-passage bottom detour portion 8 due to its own speed and mass inertial force. Therefore, the air is discharged again from the sub-passage outlet 10 to the intake passage 1 without colliding with the flow rate measuring element 3 installed near the center of the sub-passage 7.

図2は本発明の一実施例を示す副通路構造の縦断面図である。流量計測素子3を内部に有する副通路7は連続的な曲面にて約360°渦巻状に迂回している。流量計測素子3は副通路が約180°迂回した近傍の副通路7ほぼ中央部に設置され、副通路入口部9は吸気通路を流れる空気流に垂直方向に、また副通路出口部10は副通路7が約360°迂回した先端の副通路側壁面に開口している。本構造によれば、副通路7内に進入した塵埃等の異物はその自身の持っている速度と質量による慣性力により副通路7外周壁部分に沿うように進行するため、副通路7のほぼ中心付近に設置されている流量計測素子3に衝突することなく、副通路出口部10より再度吸気通路1へ排出される。更に本構造によれば副通路7の迂回は連続的に形成されているため、通路曲折部内周部分の下流で発生する剥離渦の発生も効果的に抑制することが出来、安定したノイズの少ない発熱抵抗体式空気流量計測装置の出力を得ることが可能である。更に本構造では副通路全体の大きさを変えることなく、副通路出口部10の位置を変えることが可能である、これにより副通路入口部9と副通路出口部10の相対距離を変更することが出来る。副通路入口と出口のの相対距離は副通路全体の慣性効果を決定する重要な要素であり、これを自由に変更できることにより、自動車用内燃機関の吸気通路内で発生する脈動流の発熱抵抗体式空気流量計測装置に与える影響度を調節することが可能となる。   FIG. 2 is a longitudinal sectional view of a sub passage structure showing an embodiment of the present invention. The sub-passage 7 having the flow rate measuring element 3 therein is detoured in a spiral shape with a continuous curved surface. The flow rate measuring element 3 is installed at a substantially central portion of the sub-passage 7 in the vicinity of the sub-passage that is detoured by about 180 °, the sub-passage inlet portion 9 is perpendicular to the air flow flowing through the intake passage, and the sub-passage outlet portion 10 is the sub-passage portion 10. The passage 7 is open to the side wall surface of the sub passage at the tip which is detoured by about 360 °. According to this structure, foreign matter such as dust entering the sub-passage 7 travels along the outer peripheral wall portion of the sub-passage 7 due to its own speed and mass inertial force. Without colliding with the flow rate measuring element 3 installed in the vicinity of the center, the air is again discharged from the auxiliary passage outlet 10 to the intake passage 1. Furthermore, according to this structure, the bypass of the sub-passage 7 is continuously formed, so that it is possible to effectively suppress the generation of separation vortices generated downstream of the inner peripheral portion of the passage bending portion, and there is little stable noise. It is possible to obtain the output of the heating resistor type air flow rate measuring device. Furthermore, in this structure, it is possible to change the position of the sub-passage outlet portion 10 without changing the size of the entire sub-passage, thereby changing the relative distance between the sub-passage inlet portion 9 and the sub-passage outlet portion 10. I can do it. The relative distance between the inlet and outlet of the auxiliary passage is an important factor that determines the inertia effect of the entire auxiliary passage, and this can be changed freely, so that the heating resistor type of the pulsating flow generated in the intake passage of the internal combustion engine for automobiles It is possible to adjust the degree of influence on the air flow rate measuring device.

図3は図1及び図2に示した副通路7の通路断面形状の一実施例を示している。図3−1は特に形状を考慮しておらず、この場合には副通路7内部に侵入した異物は副通路外周壁面71にほぼ垂直に衝突することとなるため、壁面に衝突した異物は再度副通路中央部方向へ反射してしまう可能性がある。実際にはこの反射と衝突を繰り返しながら徐々に副通路外周壁面に沿うように流れていくのであるが、図3−2〜図3−4では副通路外周壁面の形状を考慮することにより、異物を効果的に副通路最外周部へガイドすることを目的としている。図3−2は副通路外周壁面71を半円形状としている。図3−3は副通路外周壁面71と副通路側壁面72の接合部の片側に面取りを設け、また図3−4は副通路外周壁面71と副通路側壁面72の接合部の両側に面取りを設けている。何れの構造でも、副通路外周壁面71に衝突した塵埃等の異物は壁面の形成する角度によってより副通路最外周部方向へ反射することとなり、より効果的に異物を副通路最外周部へ集めることが可能となる。   FIG. 3 shows an embodiment of the cross-sectional shape of the sub-passage 7 shown in FIGS. FIG. 3A does not particularly consider the shape. In this case, the foreign matter that has entered the sub-passage 7 collides with the sub-passage outer peripheral wall surface 71 almost perpendicularly. There is a possibility of reflection toward the center of the sub-passage. In actuality, while repeating this reflection and collision, it gradually flows along the outer peripheral wall surface of the sub-passage, but in FIGS. 3-2 to 3-4, the shape of the outer peripheral wall surface of the sub-passage is taken into consideration. Is effectively guided to the outermost periphery of the sub-passage. 3-2, the sub-passage outer peripheral wall surface 71 has a semicircular shape. 3C is a chamfer on one side of the joint between the sub-passage outer peripheral wall surface 71 and the sub-passage side wall surface 72, and FIG. 3-4 is a chamfer on both sides of the joint portion between the sub-passage outer peripheral wall surface 71 and the sub-passage side wall surface 72. Is provided. In any structure, foreign matter such as dust that collides with the outer peripheral wall surface 71 of the sub-path is reflected toward the outermost peripheral part of the sub-passage depending on the angle formed by the wall surface, and the foreign substances are more effectively collected on the outermost peripheral part of the sub-passage. It becomes possible.

図4は図2に示した副通路構造を一部変更した一実施例の縦断面図である。図2に対して、流量計測素子3の副通路内空気流における下流側の副通路側壁面に副通路出口部10の開口面積に対して1/2以下の面積の通気孔11を設置している。本構造によれば、副通路7の持っている慣性効果を効果的に調節することが可能となり、自動車用内燃機関の吸気通路内で発生する脈動流の発熱抵抗体式空気流量計測装置に与える影響度を調節することが可能となる。更に、本渦巻状副通路構造では、静止空気状態では副通路7内部に水が溜まりやすいと言う欠点があるが、この通気孔11により副通路内に進入した水は静止空気状態でも効果的に副通路7外部に排出される。   4 is a longitudinal sectional view of an embodiment in which the sub-passage structure shown in FIG. 2 is partially changed. With respect to FIG. 2, vent holes 11 having an area of ½ or less of the opening area of the sub-passage outlet 10 are provided on the side wall surface of the sub-passage in the downstream side of the air flow in the sub-passage of the flow measuring element 3 Yes. According to this structure, it is possible to effectively adjust the inertia effect of the sub-passage 7, and the influence of the pulsating flow generated in the intake passage of the automobile internal combustion engine on the heating resistor type air flow rate measuring device. The degree can be adjusted. Further, the spiral sub-passage structure has a drawback that water tends to be accumulated in the sub-passage 7 in the still air state, but the water that has entered the sub-passage through the vent holes 11 is effective even in the still air state. The auxiliary passage 7 is discharged to the outside.

図5及び図6は図1及び図2に示した通路構造の一部を変更した一実施例の縦断面図である。何れの例も吸気通路内を流れる空気流に対する副通路7の最下流部分でその外周壁面から曲率の接線方向に高さ1mm程度の通気孔を設けている。本実施例によれば、副通路7の迂回構造によりその外周壁部分に集められた塵埃等の異物は効果的に通気孔より吸気通路1へ排出され、流量計測素子3が設置されている部分へは到達することなく、よりいっそう流量計測素子の経時変化及び破損等の発生を押さえることが可能となる。本構造では副通路7断面積と通気孔11断面積の比を10:1以下とすることで、副通路7の持つ性能を殆ど損なうことなく、前記異物排出を効果的に行うことが可能である。更に、本通気孔は副通路7内へ静止空気状態で水等が溜まりやすいと言う欠点も同時に解消することが可能である。   5 and 6 are longitudinal sectional views of an embodiment in which a part of the passage structure shown in FIGS. 1 and 2 is modified. In any example, a vent hole having a height of about 1 mm is provided in the tangential direction of curvature from the outer peripheral wall surface at the most downstream portion of the sub-passage 7 with respect to the airflow flowing in the intake passage. According to the present embodiment, the foreign matter such as dust collected on the outer peripheral wall portion by the bypass structure of the sub passage 7 is effectively discharged from the vent hole to the intake passage 1 and the portion where the flow rate measuring element 3 is installed. It is possible to further suppress the change of the flow rate measuring element with time, the occurrence of breakage, and the like without reaching the point. In this structure, the ratio of the cross-sectional area of the sub-passage 7 to the cross-sectional area of the vent hole 11 is 10: 1 or less, so that the foreign matter can be effectively discharged without substantially impairing the performance of the sub-passage 7. is there. Furthermore, this vent can also eliminate the disadvantage that water or the like tends to accumulate in the sub-passage 7 in a still air state.

図7は本発明の一実施例を示す副通路構造の縦断面図である。副通路7は吸気通路1内部を流れる空気流に垂直に開口した副通路入口部9と吸気通路1内部を流れる空気流と平行につまり、副通路側壁面72に開口した副通路出口部10を有している。更に副通路7はその最底部にて180°迂回しており、流量計測素子3は副通路7の迂回部下流側つまり副通路出口部10の形成される側に設置されている。更に副通路7における最底部の副通路入口部9よりの投影面には一定の角度を持った第一縦通路底部傾斜面12が形成され、この傾斜面12の先端部には通気孔11が形成される。本構造によれば副通路7に侵入した塵埃等の異物はその自身の持っている速度と重量により、副通路最底部迂回部でも直進しようとして、第一縦通路底部傾斜面12に衝突する。この時塵埃等の異物はその速度ベクトル方向と傾斜面の角度により通気孔11方向へ反射し、副通路7外へ排出される。   FIG. 7 is a longitudinal sectional view of a sub passage structure showing an embodiment of the present invention. The sub-passage 7 includes a sub-passage inlet portion 9 that opens perpendicularly to the air flow that flows through the intake passage 1 and a sub-passage exit portion 10 that opens in the sub-passage side wall surface 72 in parallel with the air flow that flows through the intake passage 1. Have. Further, the sub-passage 7 bypasses 180 ° at the bottom, and the flow rate measuring element 3 is installed downstream of the sub-passage 7, that is, on the side where the sub-passage outlet 10 is formed. Further, a first vertical passage bottom inclined surface 12 having a certain angle is formed on the projection surface from the sub-passage inlet portion 9 at the bottom of the sub-passage 7, and a vent hole 11 is formed at the tip of the inclined surface 12. It is formed. According to this structure, foreign matter such as dust that has entered the auxiliary passage 7 collides with the inclined surface 12 at the bottom of the first longitudinal passage, trying to go straight through the bypass portion at the bottom of the auxiliary passage due to its own speed and weight. At this time, foreign matter such as dust is reflected in the direction of the vent hole 11 by the velocity vector direction and the angle of the inclined surface, and is discharged out of the sub-passage 7.

図8は図7の実施例に対し、副通路7の高さ寸法を小さくするために第一縦通路底部傾斜面の形状を工夫した一実施例であり、形状の持つ効果及び作用は図8の実施例と同一である。   FIG. 8 shows an embodiment in which the shape of the inclined surface of the bottom of the first vertical passage is devised in order to reduce the height dimension of the sub passage 7 with respect to the embodiment of FIG. This is the same as the embodiment.

図9及び図10は図7の実施例に対し第二横通路76の構成を変えた一実施例であり、副通路7内に進入した異物に対する効果及び作用は図7の実施例と同様である。図11は本発明の効果を確認するために実施したCAE計算結果の一例である。実線は通路壁面、点線は空気中のダストの軌跡を示す。副通路入口部9より侵入したダストは副通路外周壁面71に衝突−反射を繰り返しながら徐々に副通路外周壁面71に沿って進行していくことが確認される。尚、壁を横切る粒子は出口(入口)を出た粒子である。   9 and 10 show an embodiment in which the configuration of the second lateral passage 76 is changed with respect to the embodiment of FIG. 7, and the effect and action on the foreign matter entering the sub passage 7 is the same as that of the embodiment of FIG. is there. FIG. 11 is an example of a CAE calculation result performed to confirm the effect of the present invention. The solid line shows the passage wall surface, and the dotted line shows the locus of dust in the air. It is confirmed that the dust that has entered from the sub-passage inlet 9 gradually progresses along the sub-passage outer peripheral wall 71 while repeatedly colliding and reflecting on the sub-passage outer peripheral wall 71. In addition, the particle | grains which cross a wall are particles which exited the exit (inlet).

図12は本発明の効果を確認するために実施したCAE計算結果の一例である。実線は通路壁面、点線は空気中のダストの軌跡を示す。副通路入口部9より侵入したダストは直線的に進行し、第一縦通路底部傾斜面12に衝突する。その後ダストは傾斜面の角度により通気孔11方向に反射し、副通路7外へ排出されることが確認できる。   FIG. 12 is an example of CAE calculation results performed to confirm the effect of the present invention. The solid line shows the passage wall surface, and the dotted line shows the locus of dust in the air. Dust that has entered from the sub-passage entrance 9 proceeds linearly and collides with the inclined surface 12 at the bottom of the first vertical passage. Thereafter, it can be confirmed that the dust is reflected in the direction of the vent hole 11 depending on the angle of the inclined surface and is discharged out of the sub-passage 7.

本発明の一実施例を示す発熱抵抗体式空気流量計測装置の縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS The longitudinal cross-sectional view of the heating resistor type | formula air flow measuring device which shows one Example of this invention. 本発明の一実施例を示す副通路構造の縦断面図。The longitudinal cross-sectional view of the subchannel | path structure which shows one Example of this invention. 図1及び図2に対する副通路断面形状の一実施例。FIG. 3 is an example of a cross-sectional shape of a sub passage with respect to FIGS. 図2に示した副通路構造の一部変更した一実施例の縦断面図。The longitudinal cross-sectional view of one Example which changed a part of sub-passage structure shown in FIG. 図1及び図2に示した通路構造の一部を変更した一実施例の縦断面図。The longitudinal cross-sectional view of one Example which changed a part of channel structure shown in FIG.1 and FIG.2. 図1及び図2に示した通路構造の一部を変更した一実施例の縦断面図。The longitudinal cross-sectional view of one Example which changed a part of channel structure shown in FIG.1 and FIG.2. 本発明の一実施例を示す副通路構造の縦断面図である。It is a longitudinal cross-sectional view of the subchannel structure which shows one Example of this invention. 図7の実施例に対し、第一縦通路底部傾斜面の形状を変更した一実施例の縦断面図。The longitudinal cross-sectional view of one Example which changed the shape of the 1st vertical path bottom inclined surface with respect to the Example of FIG. 図7の実施例に対し第二縦通路の構成を変えた一実施例の縦断面図。The longitudinal cross-sectional view of one Example which changed the structure of the 2nd vertical passage with respect to the Example of FIG. 図7の実施例に対し第二縦通路の構成を変えた一実施例の縦断面図。The longitudinal cross-sectional view of one Example which changed the structure of the 2nd vertical passage with respect to the Example of FIG. 本発明の効果を確認するために実施したCAE計算結果の一例。An example of the CAE calculation result implemented in order to confirm the effect of this invention. 本発明の効果を確認するために実施したCAE計算結果の一例。An example of the CAE calculation result implemented in order to confirm the effect of this invention.

符号の説明Explanation of symbols

1…内燃機関の吸気通路、2…モジュールハウジング、3…流量計測素子、4…電子回路、5…モジュールフランジ、6…コネクタ、7…副通路、8…副通路最底部迂回部、9…副通路入口部、10…副通路出口部、11…通気孔、12…第一縦通路底部傾斜面、
71…副通路外周壁面、72…副通路側壁面、73…第一縦通路、74…第二縦通路、
75…第一横通路、76…第二横通路。
DESCRIPTION OF SYMBOLS 1 ... Intake passage of internal combustion engine, 2 ... Module housing, 3 ... Flow measuring element, 4 ... Electronic circuit, 5 ... Module flange, 6 ... Connector, 7 ... Subpassage, 8 ... Subpassage bottom part detour part, 9 ... Sub Passage entrance part, 10 ... sub-passage exit part, 11 ... ventilation hole, 12 ... first vertical passage bottom inclined surface,
71 ... Sub-passage outer peripheral wall surface, 72 ... Sub-passage side wall surface, 73 ... First longitudinal passage, 74 ... Second longitudinal passage,
75: first lateral passage, 76: second lateral passage.

Claims (19)

空気流量を計測する計測素子と、
前記計測素子が配置され、出口が前記主空気流に平行に開口する副通路と、
前記副通路が構成され、主空気流中に配置されるハウジングと、
を備えた空気流量測定装置において、
前記計測素子よりも入口側副通路壁面が曲率を持つことを特徴とする空気流量測定装置。
A measuring element for measuring the air flow rate;
A sub-passage in which the measuring element is disposed and an outlet is opened parallel to the main air flow;
A housing in which the secondary passage is configured and disposed in the main air stream;
In the air flow measuring device with
An air flow rate measuring apparatus, wherein the inlet side sub-passage wall surface has a curvature more than the measuring element.
請求項1において、
前記計測素子よりも前記出口側副通路壁面が曲率を持つことを特徴とする空気流量測定装置。
In claim 1,
The air flow rate measuring device, wherein the outlet side sub-passage wall surface has a curvature more than the measuring element.
請求項2において、
前記入口側副通路壁面の曲率より前記出口側副通路壁面の曲率が大であることを特徴とする空気流量測定装置。
In claim 2,
The air flow rate measuring device according to claim 1, wherein a curvature of the outlet side sub-passage wall surface is larger than a curvature of the inlet side sub-passage wall surface.
請求項1において、
前記副通路は、前記出口を囲うように前記ハウジングに構成されていることを特徴とする空気流量測定装置。
In claim 1,
The sub-passage is configured in the housing so as to surround the outlet.
空気流量を計測する計測素子と、
前記計測素子が配置され、屈曲部をもつ副通路と、
前記副通路が構成され、主空気流中に配置されるハウジングと、
を備えた空気流量測定装置において、
前記屈曲部は前記計測素子よりも入口側に設けられ、
前記計測素子よりも入口側副通路壁面に前記主空気流に連通する穴が設けられていることを特徴とする空気流量測定装置。
A measuring element for measuring the air flow rate;
The measuring element is disposed, and a sub-passage having a bent portion;
A housing in which the secondary passage is configured and disposed in the main air stream;
In the air flow measuring device with
The bent portion is provided on the inlet side of the measuring element,
An air flow rate measuring device, wherein a hole communicating with the main air flow is provided in a wall surface on the inlet side sub-passage with respect to the measuring element.
請求項5において、
前記穴の開口面は、入口から前記副通路に入った空気流が向きを変える副通路壁面に設けられていることを特徴とする空気流量測定装置。
In claim 5,
The air flow rate measuring device according to claim 1, wherein the opening surface of the hole is provided on a wall surface of the sub-passage where the air flow entering the sub-passage from the inlet changes direction.
請求項6において、
前記穴の開口面は、前記副通路側よりも前記主空気流側が小であることを特徴とする空気流量測定装置。
In claim 6,
The air flow measuring device according to claim 1, wherein the opening surface of the hole is smaller on the main air flow side than on the sub passage side.
内燃機関の吸気通路に取り付けられ、空気流量を検出する機能を有した発熱抵抗体(以下、流量計測素子とする)を内部に有する副通路と、前記流量計測素子と電気的に接続された電子回路とを備えた発熱抵抗体式空気流量測定装置において、前記副通路の入口部が前記吸気通路の上流側に開口し、前記副通路は前記吸気通路に対する最下流部にて180°以上の連続した曲率により迂回し、前記流量計測素子は前記副通路の迂回部下流の前記副通路中央部付近に設置され、前記副通路出口部は流量計測素子の前記吸気通路における上流側で前記吸気通路の軸線と水平面に開口している事を特徴とする、発熱抵抗体式空気流量測定装置。   A sub-passage having a heating resistor (hereinafter referred to as a flow measurement element) attached to an intake passage of an internal combustion engine and having a function of detecting an air flow rate, and an electron electrically connected to the flow measurement element In the heating resistor type air flow measuring device provided with a circuit, the inlet portion of the auxiliary passage opens upstream of the intake passage, and the auxiliary passage is continuous at 180 ° or more at the most downstream portion with respect to the intake passage. Detouring by curvature, the flow measuring element is installed near the center of the sub-passage downstream of the bypass part of the sub-passage, and the sub-passage outlet is upstream of the intake passage of the flow measuring element and the axis of the intake passage A heating resistor type air flow rate measuring device, characterized by being open in the horizontal plane. 内燃機関の吸気通路に取り付けられ、空気流量を検出する機能を有した流量計測素子を内部に有する副通路と、前記流量計測素子と電気的に接続された電子回路とを備えた発熱抵抗体式空気流量測定装置において、前記副通路の入口部が前記吸気通路の上流側に開口し、前記副通路は連続した曲率により270°から360°渦巻き状に迂回し、前記流量計測素子は前記副通路が入口より180°迂回した近傍の前記副通路中央部付近に設置され、前記副通路出口部は前記副通路の先端部で前記吸気通路の軸線と水平面に開口している事を特徴とする、発熱抵抗体式空気流量測定装置。   A heating resistor air having a sub-passage which is attached to an intake passage of an internal combustion engine and has a flow measuring element having a function of detecting an air flow rate, and an electronic circuit electrically connected to the flow measuring element. In the flow measuring device, the inlet portion of the auxiliary passage opens upstream of the intake passage, the auxiliary passage is detoured in a spiral shape from 270 ° to 360 ° due to continuous curvature, and the auxiliary flow passage is connected to the flow measuring element. It is installed in the vicinity of the central portion of the sub-passage, which is deviated by 180 ° from the inlet, and the sub-passage outlet is open at the tip of the sub-passage in the axis and horizontal plane of the intake passage. Resistor type air flow measuring device. 請求項8または9に記載の発熱抵抗体式空気流量測定装置において、前記副通路の迂回部を形成する通路外周内壁面と側壁面の片側もしくは両側の接合部に面取り状の傾斜面を設けた事を特徴とする発熱抵抗体式空気流量測定装置。   The heating resistor type air flow measuring device according to claim 8 or 9, wherein a chamfered inclined surface is provided at a joint portion on one side or both sides of a passage outer peripheral inner wall surface and a side wall surface forming a bypass portion of the sub-passage. A heating resistor type air flow rate measuring device characterized by. 請求項8または9に記載の発熱抵抗体式空気流量測定装置において、前記副通路の迂回部を形成する通路外周内壁面をU字形状とした事を特徴とする発熱抵抗体式空気流量測定装置。   The heating resistor type air flow measuring device according to claim 8 or 9, characterized in that the inner peripheral wall surface of the passage forming the bypass portion of the sub passage is U-shaped. 請求項9,10または11のいずれかに記載の発熱抵抗体式空気流量測定装置において、前記副通路外周部側壁かつ前記副通路内空気流に対する前記流量計測素子の直下流部の片側もしくは両側に前記副通路出口開口面積に対して1/2以下の面積の通気孔を設けた事を特徴とする発熱抵抗体式空気流量測定装置。   The heating resistor type air flow rate measuring device according to any one of claims 9, 10 and 11, wherein the side wall of the sub-passage and the downstream side of the flow rate measuring element with respect to the air flow in the sub-passage are disposed on one side or both sides. A heating resistor type air flow rate measuring device characterized in that a vent hole having an area of 1/2 or less with respect to the opening area of the auxiliary passage outlet is provided. 請求項8から11のいずれかに記載の発熱抵抗体式空気流量測定装置において、前記吸気通路の空気流に対する最下流部に位置する前記副通路の迂回部と前記流量計測素子の間に位置する前記副通路の外周壁部分より、その接線方向に高さ1mm程度の通気孔を設けた事を特徴とする発熱抵抗体式空気流量測定装置。   The heating resistor type air flow rate measuring device according to any one of claims 8 to 11, wherein the flow rate measuring element is located between a bypass portion of the auxiliary passage located at a most downstream portion with respect to an air flow of the intake passage and the flow rate measuring element. A heating resistor type air flow measuring device, characterized in that a vent hole with a height of about 1 mm is provided in the tangential direction from the outer peripheral wall portion of the auxiliary passage. 内燃機関の吸気通路に取り付けられ、空気流量を検出する機能を有した発熱抵抗体(以下、流量計測素子とする)を内部に有する副通路と、前記流量計測素子と電気的に接続された電子回路とを備えた発熱抵抗体式空気流量測定装置において、前記副通路は前記吸気通路の軸線方向に水平な第一縦通路及び前記吸気通路の軸線方向に垂直な第一横通路を有し、前記第一縦通路の前記吸気通路の空気流に対し上流側に位置する一端は前記吸気通路の軸線方向に対して垂直面に開口し、前記第一縦通路のもう一端は前記第一横通路と接続される。前記第一縦通路と前記第一横通路の接合部分つまり前記第一縦通路の底面は前記第一横通路方向から前記吸気通路の空気流方向に対し下流側に向かって一定の傾斜が設けられており、この傾斜面の先端と前記第一縦通路を構成する壁面が接合する部分に通気孔を設けた事を特徴とする発熱抵抗体式空気流量測定装置。   A sub-passage having a heating resistor (hereinafter referred to as a flow measurement element) attached to an intake passage of an internal combustion engine and having a function of detecting an air flow rate, and an electron electrically connected to the flow measurement element In the heating resistor type air flow measuring device comprising a circuit, the auxiliary passage has a first vertical passage that is horizontal in the axial direction of the intake passage and a first horizontal passage that is perpendicular to the axial direction of the intake passage, One end of the first vertical passage located upstream of the air flow in the intake passage opens in a plane perpendicular to the axial direction of the intake passage, and the other end of the first vertical passage is the first horizontal passage. Connected. A joint portion of the first vertical passage and the first horizontal passage, that is, a bottom surface of the first vertical passage is provided with a certain inclination from the first horizontal passage direction toward the downstream side with respect to the air flow direction of the intake passage. A heating resistor type air flow rate measuring device characterized in that a vent hole is provided at a portion where the tip of the inclined surface and the wall surface constituting the first vertical passage are joined. 請求項14に記載の発熱抵抗体式空気流量測定装置において、前記第一縦通路の底面に形成される傾斜面の傾斜角度が、前記吸気通路の軸線に対して45°±15°である事を特徴とする発熱抵抗体式空気流量測定装置。   The heating resistor type air flow rate measuring device according to claim 14, wherein an inclination angle of an inclined surface formed on a bottom surface of the first vertical passage is 45 ° ± 15 ° with respect to an axis of the intake passage. Heating resistor type air flow measuring device. 請求項14または15に記載の発熱抵抗体式空気流量測定装置において、前記第一縦通路底面に形成された前記傾斜面が、前記第一縦通路開口面の前記吸気通路の軸線方向に対する投影面と一致もしくはそれ以上である事を特徴とする発熱抵抗体式空気流量測定装置。   The heating resistor type air flow rate measuring device according to claim 14 or 15, wherein the inclined surface formed on the bottom surface of the first vertical passage is a projection surface of the first vertical passage opening surface with respect to the axial direction of the intake passage. Heating resistor type air flow rate measuring device characterized by being equal or higher. 請求項14〜16のいずれか記載の発熱抵抗体式空気流量測定装置において、前記副通路は前記吸気通路の軸線方向と平行で更にその内部に前記流量計測素子を有する第二縦通路を有し、直管もしくは曲り管にて形成される前記第一横通路は前記第一縦通路と前記第二縦通路の前記吸気通路に対する最下流部で前記第一縦通路と前記第二縦通路を接続しおり、前記第二縦通路の前記吸気通路に対する最上流部の副通路を構成する側壁の片側もしくは両側に前記副通路出口が開口している事を特徴とする発熱抵抗体式空気流量測定装置。   The heating resistor type air flow rate measuring device according to any one of claims 14 to 16, wherein the auxiliary passage has a second longitudinal passage parallel to the axial direction of the intake passage and further including the flow rate measuring element therein. The first horizontal passage formed by a straight pipe or a curved pipe connects the first vertical passage and the second vertical passage at the most downstream portion of the first vertical passage and the second vertical passage with respect to the intake passage. A heating resistor type air flow rate measuring device, wherein the outlet of the secondary passage is opened on one side or both sides of a side wall constituting the secondary passage of the most upstream portion of the second longitudinal passage with respect to the intake passage. 請求項14〜16のいずれか記載の発熱抵抗体式空気流量測定装置において、前記副通路は前記吸気通路の軸線方向と平行で更にその内部に前記流量計測素子を有する第二縦通路を有し、直管もしくは曲り管にて形成される前記第一横通路は前記第一縦通路の前記吸気通路に対する最下流部と前記第二縦通路の前記吸気通路に対する最上流部を接続しおり、前記第二縦通路の前記吸気通路に対する最下流部の副通路を構成する側壁の片側もしくは両側に前記副通路出口が開口している事を特徴とする発熱抵抗体式空気流量測定装置。   The heating resistor type air flow rate measuring device according to any one of claims 14 to 16, wherein the auxiliary passage has a second longitudinal passage parallel to the axial direction of the intake passage and further including the flow rate measuring element therein. The first horizontal passage formed by a straight pipe or a curved pipe connects the most downstream portion of the first vertical passage with respect to the intake passage and the most upstream portion of the second vertical passage with respect to the intake passage, and A heating resistor type air flow rate measuring device characterized in that the outlet of the auxiliary passage is opened on one side or both sides of a side wall constituting the downstream passage of the longitudinal passage with respect to the intake passage. 請求項14〜16のいずれか記載の発熱抵抗体式空気流量測定装置において、前記副通路は前記吸気通路の軸線方向と平行で更にその内部に前記流量計測素子を有する第二縦通路及び前記吸気通路の軸線方向に垂直な第二横通路を有し、直管もしくは曲り管にて形成される前記第一横通路は前記第一縦通路の前記吸気通路に対する最下流部と前記第二縦通路の前記吸気通路に対する最上流部を接続しおり、前記第二横通路は前記第二縦通路の前記吸気通路に対する最下流部と接続され、前記第二横通路のもう一端における副通路を構成する側壁の片側もしくは両側に前記副通路出口が開口している事を特徴とする発熱抵抗体式空気流量測定装置。   The heating resistor type air flow rate measuring device according to any one of claims 14 to 16, wherein the sub passage is parallel to the axial direction of the intake passage and further includes the flow rate measuring element therein and the intake passage. The first horizontal passage formed by a straight pipe or a curved pipe is the most downstream portion of the first vertical passage with respect to the intake passage and the second vertical passage. The most upstream portion with respect to the intake passage is connected, the second lateral passage is connected to the most downstream portion with respect to the intake passage of the second longitudinal passage, and a side wall constituting a sub-passage at the other end of the second transverse passage is connected. A heating resistor type air flow rate measuring device characterized in that the outlet of the auxiliary passage opens on one side or both sides.
JP2005035366A 2005-02-14 2005-02-14 Air flow measurement device Expired - Lifetime JP4512499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005035366A JP4512499B2 (en) 2005-02-14 2005-02-14 Air flow measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005035366A JP4512499B2 (en) 2005-02-14 2005-02-14 Air flow measurement device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000185907A Division JP3716163B2 (en) 2000-06-16 2000-06-16 Air flow measurement device

Publications (3)

Publication Number Publication Date
JP2005128038A true JP2005128038A (en) 2005-05-19
JP2005128038A5 JP2005128038A5 (en) 2007-02-01
JP4512499B2 JP4512499B2 (en) 2010-07-28

Family

ID=34651195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035366A Expired - Lifetime JP4512499B2 (en) 2005-02-14 2005-02-14 Air flow measurement device

Country Status (1)

Country Link
JP (1) JP4512499B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058128A (en) * 2006-08-31 2008-03-13 Hitachi Ltd Thermal type gas flow measuring apparatus
US7665351B2 (en) 2007-06-14 2010-02-23 Denso Corporation Air flow measuring device
JP2011112569A (en) * 2009-11-27 2011-06-09 Denso Corp Air flow rate measuring device
JP2014066590A (en) * 2012-09-25 2014-04-17 Denso Corp Flow rate measuring device
US8733159B2 (en) 2011-09-05 2014-05-27 Denso Corporation Air flow measuring device
US8752424B2 (en) 2011-07-19 2014-06-17 Denso Corporation Flow measuring device
US8756989B2 (en) 2010-10-28 2014-06-24 Denso Corporation Flow measuring device
JP2015068794A (en) * 2013-09-30 2015-04-13 日立オートモティブシステムズ株式会社 Thermal type flowmeter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6421104B2 (en) * 2015-09-25 2018-11-07 日立オートモティブシステムズ株式会社 Main air passage component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122148A (en) * 1978-03-15 1979-09-21 Kankiyou Rikagaku Kenkiyuushiy Mass flow meter
WO1999053274A1 (en) * 1998-04-08 1999-10-21 Robert Bosch Gmbh Measuring device for measuring the mass of a medium flowing in a line
JP2001004420A (en) * 1999-06-21 2001-01-12 Ngk Spark Plug Co Ltd Measuring apparatus of flow rate and flow velocity
JP2001174305A (en) * 1999-10-06 2001-06-29 Ngk Spark Plug Co Ltd Flow and flow velocity measuring device
JP3716163B2 (en) * 2000-06-16 2005-11-16 株式会社日立製作所 Air flow measurement device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122148A (en) * 1978-03-15 1979-09-21 Kankiyou Rikagaku Kenkiyuushiy Mass flow meter
WO1999053274A1 (en) * 1998-04-08 1999-10-21 Robert Bosch Gmbh Measuring device for measuring the mass of a medium flowing in a line
JP2002506528A (en) * 1998-04-08 2002-02-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Measuring device for measuring the mass of a flowing medium flowing in a pipe
JP2001004420A (en) * 1999-06-21 2001-01-12 Ngk Spark Plug Co Ltd Measuring apparatus of flow rate and flow velocity
JP2001174305A (en) * 1999-10-06 2001-06-29 Ngk Spark Plug Co Ltd Flow and flow velocity measuring device
JP3716163B2 (en) * 2000-06-16 2005-11-16 株式会社日立製作所 Air flow measurement device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058128A (en) * 2006-08-31 2008-03-13 Hitachi Ltd Thermal type gas flow measuring apparatus
US7665351B2 (en) 2007-06-14 2010-02-23 Denso Corporation Air flow measuring device
JP2011112569A (en) * 2009-11-27 2011-06-09 Denso Corp Air flow rate measuring device
US8756989B2 (en) 2010-10-28 2014-06-24 Denso Corporation Flow measuring device
US8752424B2 (en) 2011-07-19 2014-06-17 Denso Corporation Flow measuring device
US8733159B2 (en) 2011-09-05 2014-05-27 Denso Corporation Air flow measuring device
JP2014066590A (en) * 2012-09-25 2014-04-17 Denso Corp Flow rate measuring device
JP2015068794A (en) * 2013-09-30 2015-04-13 日立オートモティブシステムズ株式会社 Thermal type flowmeter

Also Published As

Publication number Publication date
JP4512499B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JP3716163B2 (en) Air flow measurement device
KR100880549B1 (en) Device for determining at least one parameter of a flowing medium
JP5178388B2 (en) Air flow measurement device
JP5178148B2 (en) Heating resistor type air flow measuring device
JP5646030B1 (en) Flow measuring device
JP5168223B2 (en) Air flow measurement device
JP4934198B2 (en) Plug-in sensor with optimized outflow
US20190242321A1 (en) Air flow rate measuring device
JPWO2003008913A1 (en) Gas flow measurement device
JP3709385B2 (en) Gas flow measuring device for internal combustion engine
JP4512499B2 (en) Air flow measurement device
JP3848934B2 (en) Air flow measurement device
JP5826360B1 (en) Flow measuring device
JP6289585B1 (en) Flow measuring device
JP2006506625A (en) Apparatus for measuring at least one parameter of a medium flowing in a conduit
JP6365388B2 (en) Flow measuring device
KR100866268B1 (en) Device for measuring air flow, comprising a device for separating foreign particles
JP3797210B2 (en) Flow measuring device
WO2019156040A1 (en) Physical quantity measurement device
JP5454655B2 (en) Air flow measurement device
JP2003315116A (en) Flow measuring device
JP2004012274A (en) Flow measuring apparatus
JP3345994B2 (en) Engine intake system
JP6421104B2 (en) Main air passage component
JP6927342B2 (en) Air flow measuring device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4512499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

EXPY Cancellation because of completion of term