JP2006078271A - Ultrasonic flaw detection method of steel bar - Google Patents

Ultrasonic flaw detection method of steel bar Download PDF

Info

Publication number
JP2006078271A
JP2006078271A JP2004261318A JP2004261318A JP2006078271A JP 2006078271 A JP2006078271 A JP 2006078271A JP 2004261318 A JP2004261318 A JP 2004261318A JP 2004261318 A JP2004261318 A JP 2004261318A JP 2006078271 A JP2006078271 A JP 2006078271A
Authority
JP
Japan
Prior art keywords
steel bar
flaw detection
ultrasonic flaw
ultrasonic
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004261318A
Other languages
Japanese (ja)
Inventor
Masaru Kawabe
優 川辺
Hiroshi Narai
弘 奈良井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004261318A priority Critical patent/JP2006078271A/en
Publication of JP2006078271A publication Critical patent/JP2006078271A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flaw detection method of a steel bar hardly influenced by foreign substances and air bubbles attached to a surface of the steel bar, and accurately and inexpensively implementing ultrasonic flaw detection of defects that exist in the inside of the steel bar. <P>SOLUTION: When the ultrasonic flaw detection of the steel bar 1 is implemented by a probe 5 as the steel bar 1 is rotated axially on an axis within an ultrasonic transmitting medium 3, the ultrasonic flaw detection is implemented while the steel bar 1 is made to contact an elastic body 4, such as brush and urethane. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ころ軸受等の転がり軸受の転動体素材として用いられる棒鋼の超音波探傷方法に関する。   The present invention relates to an ultrasonic flaw detection method for steel bars used as rolling element materials for rolling bearings such as roller bearings.

ころ軸受の転動体素材として用いられる棒鋼は、一般に、鋼材を圧延して製鋼されるため、地疵などの欠陥が棒鋼の内部に存在していることが多い。このため、製鋼メーカでは棒鋼をころ軸受の転動体素材として用いる場合は、棒鋼を水等の超音波伝質媒体の中に浸漬し、この状態で棒鋼を軸芯回りに回転させながら超音波探傷することによって棒鋼の内部に欠陥が存在するか否かの検査を行なっている。この場合、棒鋼の表面に異物や気泡が付着していると、棒鋼の内部に存在する欠陥を精度よく超音波探傷することが困難となる。このため、従来においては、棒鋼にジェット水流を噴射しながら棒鋼の超音波探傷を行なったり(特許文献1参照)、あるいは棒鋼の表面に気泡が付着しないよう脱気装置で除去しながら棒鋼の超音波探傷を行なっている。
特開2002−296247号公報
Since steel bars used as rolling element materials for roller bearings are generally produced by rolling a steel material, defects such as ground are often present inside the steel bar. For this reason, when steel makers use steel bars as rolling element materials for roller bearings, they are immersed in an ultrasonic transfer medium such as water, and in this state, ultrasonic testing is performed while rotating the steel bars around the axis. By doing so, it is inspected whether or not there is a defect inside the steel bar. In this case, if foreign matter or bubbles are attached to the surface of the steel bar, it is difficult to accurately detect the defects existing inside the steel bar. For this reason, conventionally, ultrasonic inspection of a steel bar is performed while jetting a jet stream to the steel bar (see Patent Document 1), or the steel bar is supersonic while being removed with a degassing device so that bubbles do not adhere to the surface of the steel bar. Sonic flaw detection is performed.
JP 2002-296247 A

しかしながら、棒鋼にジェット水流を噴射して異物や気泡を除去する方式では棒鋼の表面に付着した異物を完全に除去することができないという問題があり、また脱気装置を用いる方式では脱気装置が高価なため、探傷コストを上昇させるという問題があった。
本発明は、このような問題点に着目してなされたものであり、棒鋼の表面に付着した異物や気泡の影響を大きく受けることなく棒鋼の内部に存在する欠陥を精度よく且つ低コストで超音波探傷することのできる棒鋼の超音波探傷方法を提供することを目的とするものである。
However, there is a problem that the foreign matter adhering to the surface of the steel bar cannot be completely removed by the method in which the jet water flow is sprayed on the steel bar to remove the foreign matter and bubbles, and the method using the degassing device has a problem that the degassing device is not used. Since it is expensive, there has been a problem of increasing the flaw detection cost.
The present invention has been made paying attention to such problems, and it is possible to accurately detect defects existing inside the steel bar at a low cost without being greatly affected by foreign matter and bubbles adhering to the surface of the steel bar. It is an object of the present invention to provide an ultrasonic flaw detection method for steel bars that can be subjected to ultrasonic flaw detection.

上記の目的を達成するために、請求項1の発明に係る棒鋼の超音波探傷方法は、超音波伝質媒体中で棒鋼を軸芯回りに回転させながら前記棒鋼を超音波探傷するに際して、前記棒鋼に弾性体を接触させながら超音波探傷することを特徴とする。
請求項2の発明に係る棒鋼の超音波探傷方法は、請求項1記載の棒鋼の超音波探傷方法において、前記棒鋼の平均表面粗さを0.3〜2.0μmRaの範囲内としたことを特徴とする。
In order to achieve the above object, an ultrasonic flaw detection method for a steel bar according to the invention of claim 1 is characterized in that, when the steel bar is ultrasonically flawed while rotating the steel bar around an axis in an ultrasonic transmission medium, Ultrasonic flaw detection is carried out while bringing an elastic body into contact with the steel bar.
An ultrasonic flaw detection method for a steel bar according to a second aspect of the invention is the method for ultrasonic flaw detection of a steel bar according to claim 1, wherein the average surface roughness of the steel bar is within a range of 0.3 to 2.0 μmRa. Features.

本発明に係る棒鋼の超音波探傷方法では、棒鋼に弾性体を接触させながら超音波探傷することで、棒鋼の表面に付着した異物や気泡を弾性体によって除去することができる。したがって、超音波伝質媒体の中で棒鋼を軸芯回りに回転させながら棒鋼を超音波探傷する際に、棒鋼にジェット水流を噴射したり、高価な脱気装置を用いたりする必要がないので、棒鋼の表面に付着した異物や気泡の影響を大きく受けることなく棒鋼の内部に存在する欠陥を精度よく且つ低コストで超音波探傷することができる。   In the ultrasonic flaw detection method for a steel bar according to the present invention, by performing ultrasonic flaw detection while bringing an elastic body into contact with the steel bar, foreign substances and bubbles attached to the surface of the steel bar can be removed by the elastic body. Therefore, it is not necessary to inject a jet water stream into the steel bar or use an expensive degassing device when ultrasonically testing the steel bar while rotating the steel bar around the axis in the ultrasonic transmission medium. In addition, it is possible to perform ultrasonic flaw detection with high accuracy and low cost for defects existing inside the steel bar without being greatly affected by foreign matter or bubbles adhering to the surface of the steel bar.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の第1の実施形態に係る棒鋼の超音波探傷方法を示している。同図において、符号1は検査対象物である棒鋼を示しており、この棒鋼1を超音波探傷する場合は、貯槽2に貯えられた水等の超音波伝質媒体3の中に棒鋼1を浸漬する。次に、棒鋼1の表面に刷毛、ウレタン等の弾性体4を接触させ、この状態で棒鋼1を軸芯回りに回転させる。そして、弾性体4及び超音波探傷用探触子5を棒鋼1の軸方向に移動させながら棒鋼1を超音波探傷用探触子5によって超音波探傷する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an ultrasonic flaw detection method for a steel bar according to the first embodiment of the present invention. In the figure, reference numeral 1 denotes a steel bar as an inspection object. When this steel bar 1 is subjected to ultrasonic flaw detection, the steel bar 1 is placed in an ultrasonic heat transfer medium 3 such as water stored in a storage tank 2. Immerse. Next, an elastic body 4 such as a brush or urethane is brought into contact with the surface of the steel bar 1, and the steel bar 1 is rotated around the axis in this state. The steel bar 1 is ultrasonically flawed by the ultrasonic flaw detection probe 5 while moving the elastic body 4 and the ultrasonic flaw detection probe 5 in the axial direction of the bar steel 1.

このように、棒鋼1に刷毛、ウレタン等の弾性体4を接触させながら超音波探傷すると、棒鋼1の表面に付着した異物6や気泡7が弾性体4によって除去される。したがって、超音波伝質媒体3の中で棒鋼1を軸芯回りに回転させながら棒鋼1を超音波探傷する際に、棒鋼1にジェット水流を噴射したり、高価な脱気装置を用いたりする必要がないので、棒鋼1の表面に付着した異物6や気泡7の影響を大きく受けることなく棒鋼1の内部に存在する欠陥を精度よく且つ低コストで超音波探傷することができる。   In this way, when ultrasonic flaw detection is performed while the elastic body 4 such as a brush or urethane is brought into contact with the steel bar 1, the foreign material 6 and the bubbles 7 attached to the surface of the steel bar 1 are removed by the elastic body 4. Therefore, when ultrasonic inspection is performed on the steel bar 1 while rotating the steel bar 1 around the axis in the ultrasonic conductive medium 3, a jet water flow is sprayed on the steel bar 1 or an expensive deaerator is used. Since it is not necessary, it is possible to ultrasonically detect defects existing inside the steel bar 1 accurately and at low cost without being greatly affected by the foreign matter 6 and the bubbles 7 adhering to the surface of the steel bar 1.

本発明者は、上述した効果を確認するために、図2に示すような試験片8すなわち外径60mm、長さ1000mmの棒鋼(材質:SUJ2、球状化焼鈍材)の端面に直径0.5mm、深さ10mmのドリル穴9を棒鋼の外径面から10mmの内径位置に人工的に設けた試験片8を作製した。そして、周波数15MHz、振動子径12mmの焦点型探触子を用い、本発明に係る棒鋼の超音波探傷方法と従来方法(ジェット水流方式)とで試験片8のドリル穴9のエコー強度が80%になるアンプ強度で超音波探傷した。その探傷結果を図3に示す。なお、探傷範囲は表面下5〜15mm、直径60mm、長さ1000mmを10本とした。   In order to confirm the above-mentioned effect, the inventor has a diameter of 0.5 mm on an end face of a test piece 8 as shown in FIG. 2, that is, a steel bar (material: SUJ2, spheroidized annealing material) having an outer diameter of 60 mm and a length of 1000 mm. A test piece 8 in which a drill hole 9 having a depth of 10 mm was artificially provided at an inner diameter position of 10 mm from the outer diameter surface of the steel bar was produced. The echo intensity of the drill hole 9 of the test piece 8 is 80 by the ultrasonic flaw detection method of the steel bar according to the present invention and the conventional method (jet water flow method) using a focus type probe having a frequency of 15 MHz and a vibrator diameter of 12 mm. Ultrasonic flaw detection was performed at an amplifier strength of%. The flaw detection result is shown in FIG. In addition, the flaw detection range was 5 to 15 mm below the surface, diameter 60 mm, and length 1000 mm.

図3に示す探傷試験結果から、棒鋼にジェット水流を噴射しながら超音波探傷する従来方法では、S/N≧2のエラー検出数が8本であるのに対し、本発明に係る棒鋼の超音波探傷方法では、S/N≧2のエラー検出数が0であることがわかる。これは、刷毛、ウレタン等の弾性体4を棒鋼に接触されることで、棒鋼の表面に付着した異物や気泡が弾性体によって除去されるためである。   From the results of the flaw detection test shown in FIG. 3, in the conventional method in which ultrasonic flaw detection is performed while jetting a jet stream on the steel bar, the number of detected errors with S / N ≧ 2 is 8, whereas In the ultrasonic flaw detection method, it can be seen that the number of detected errors when S / N ≧ 2 is zero. This is because the foreign body and bubbles adhering to the surface of the steel bar are removed by the elastic body when the elastic body 4 such as a brush or urethane is brought into contact with the steel bar.

したがって、本発明に係る棒鋼の超音波探傷方法では、超音波伝質媒体中で棒鋼を軸芯回りに回転させながら棒鋼を超音波探傷する際に、棒鋼にジェット水流を噴射したり、脱気装置を用いたりする必要がないので、棒鋼の表面に付着した異物や気泡の影響を大きく受けることなく棒鋼の内部に存在する欠陥を精度よく且つ低コストで超音波探傷することができる。   Therefore, in the ultrasonic inspection method for a steel bar according to the present invention, when the steel bar is ultrasonically flawed while rotating the steel bar around the axis in the ultrasonic conductive medium, a jet water stream is injected into the steel bar or degassed. Since there is no need to use an apparatus, it is possible to ultrasonically detect defects existing inside the steel bar with high accuracy and low cost without being greatly affected by foreign matter or bubbles adhering to the surface of the steel bar.

次に、本発明者は表面粗さが0.3μmRa,0.5μmRa,0.7μmRa,1.5μmRa,2μmRa,8μmRa,10μmRaの試験片8を作製した。そして、周波数15MHz、振動子径12mmの焦点型探触子を用い、本発明に係る棒鋼の超音波探傷方法で試験片8のドリル穴9のエコー強度が80%になるアンプ強度で超音波探傷した。その探傷結果を図4に示す。なお、探傷範囲は表面下5〜15mm、直径60mm、長さ1000mmを10本とした。   Next, the present inventors produced test pieces 8 having surface roughness of 0.3 μmRa, 0.5 μmRa, 0.7 μmRa, 1.5 μmRa, 2 μmRa, 8 μmRa, and 10 μmRa. Then, using a focus type probe having a frequency of 15 MHz and a transducer diameter of 12 mm, ultrasonic testing is performed with an amplifier strength at which the echo intensity of the drill hole 9 of the test piece 8 is 80% by the steel bar ultrasonic testing method according to the present invention. did. The flaw detection results are shown in FIG. In addition, the flaw detection range was 5 to 15 mm below the surface, diameter 60 mm, and length 1000 mm.

図4に示す探傷試験結果から、試験片8の表面粗さが2μmRaより大きくなると、S/N≧2のエラー検出数が急激に増えることがわかる。これは、試験片8の表面粗さが2μmRaを超えると、図5に示すように、試験片8の表面に付着した異物6や気泡7が粗さの谷間に入り込み、異物6や気泡7を弾性体4によって試験片8の表面から除去できなくなるからである。   From the flaw detection test results shown in FIG. 4, it can be seen that when the surface roughness of the test piece 8 is greater than 2 μmRa, the number of detected errors with S / N ≧ 2 increases rapidly. When the surface roughness of the test piece 8 exceeds 2 μmRa, as shown in FIG. 5, the foreign matter 6 and the bubbles 7 attached to the surface of the test piece 8 enter the valley of the roughness, and the foreign matter 6 and the bubbles 7 are removed. This is because the elastic body 4 cannot be removed from the surface of the test piece 8.

したがって、本発明に係る棒鋼の超音波探傷方法において棒鋼1を超音波探傷する場合には、棒鋼1の平均表面粗さを2μmRa以下とすることが好ましいが、棒鋼1の平均表面粗さを0.3μmRa未満に仕上げるためには、長時間の研削加工を必要とし、研削加工費の大幅な上昇を招くため、棒鋼1の平均表面粗さは0.3〜2μmRaの範囲内とすることが望ましい。   Therefore, when the steel bar 1 is subjected to ultrasonic flaw detection in the steel bar ultrasonic testing method according to the present invention, the average surface roughness of the steel bar 1 is preferably 2 μmRa or less, but the average surface roughness of the steel bar 1 is 0. In order to finish to less than 3 μmRa, it takes a long time of grinding, which causes a significant increase in grinding cost. Therefore, it is desirable that the average surface roughness of the steel bar 1 is in the range of 0.3 to 2 μmRa. .

本発明の第1の実施形態に係る棒鋼の超音波探傷方法を説明するための図である。It is a figure for demonstrating the ultrasonic flaw detection method of the steel bar which concerns on the 1st Embodiment of this invention. 本発明者によって作製された試験片を示す斜視図である。It is a perspective view which shows the test piece produced by this inventor. 本発明に係る棒鋼の超音波探傷方法と従来方法とで図2に示す試験片を超音波探傷したときの探傷結果を示す図である。It is a figure which shows a flaw detection result when the test piece shown in FIG. 2 is ultrasonically flawed by the ultrasonic flaw detection method of the steel bar which concerns on this invention, and the conventional method. 本発明に係る棒鋼の超音波探傷方法で試験片を超音波探傷した場合における試験片の表面粗さとS/N≧2のエラー検出数との関係を示す図である。It is a figure which shows the relationship between the surface roughness of a test piece when the test piece is subjected to ultrasonic flaw detection by the ultrasonic flaw detection method for steel bars according to the present invention, and the number of detected errors of S / N ≧ 2. 本発明に係る棒鋼の超音波探傷方法で棒鋼の表面粗さを2μmRa以下とする理由を説明するための図である。It is a figure for demonstrating the reason which the surface roughness of a steel bar shall be 2 micrometers Ra or less by the ultrasonic flaw detection method of the steel bar concerning this invention.

符号の説明Explanation of symbols

1 棒鋼
2 貯槽
3 超音波伝質媒体
4 弾性体
5 超音波探傷用探触子
6 異物
7 気泡
8 試験片
9 ドリル穴
DESCRIPTION OF SYMBOLS 1 Steel bar 2 Storage tank 3 Ultrasonic transmission medium 4 Elastic body 5 Probe for ultrasonic flaw detection 6 Foreign object 7 Bubble 8 Test piece 9 Drill hole

Claims (2)

超音波伝質媒体中で棒鋼を軸芯回りに回転させながら前記棒鋼を超音波探傷するに際して、前記棒鋼に弾性体を接触させながら超音波探傷することを特徴とする棒鋼の超音波探傷方法。   An ultrasonic flaw detection method for a bar steel, comprising performing ultrasonic flaw detection while bringing an elastic body into contact with the steel bar when the steel bar is subjected to ultrasonic flaw detection while rotating the steel bar around an axis in an ultrasonic conductive medium. 請求項1記載の棒鋼の超音波探傷方法において、前記棒鋼の平均表面粗さを0.3〜2.0μmRaの範囲内としたことを特徴とする棒鋼の超音波探傷方法。   2. The method for ultrasonic testing of steel bars according to claim 1, wherein the average surface roughness of the steel bars is in the range of 0.3 to 2.0 [mu] mRa.
JP2004261318A 2004-09-08 2004-09-08 Ultrasonic flaw detection method of steel bar Pending JP2006078271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004261318A JP2006078271A (en) 2004-09-08 2004-09-08 Ultrasonic flaw detection method of steel bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004261318A JP2006078271A (en) 2004-09-08 2004-09-08 Ultrasonic flaw detection method of steel bar

Publications (1)

Publication Number Publication Date
JP2006078271A true JP2006078271A (en) 2006-03-23

Family

ID=36157864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004261318A Pending JP2006078271A (en) 2004-09-08 2004-09-08 Ultrasonic flaw detection method of steel bar

Country Status (1)

Country Link
JP (1) JP2006078271A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004530A (en) * 2013-06-19 2015-01-08 日本精工株式会社 Ultrasonic wave inspection method and device for round-bar steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004530A (en) * 2013-06-19 2015-01-08 日本精工株式会社 Ultrasonic wave inspection method and device for round-bar steel

Similar Documents

Publication Publication Date Title
CN108351326B (en) Method and device for measuring hydrogen induced cracking
JPWO2007113907A1 (en) Ultrasonic probe, ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2008058314A (en) Nondefective polysilicon molding and method for testing polysilicon molding without contamination nor destruction
WO2012033001A1 (en) Ultrasonic flaw detection device for pipe end and method for setting initial position of probe holder
JP2007178238A (en) Corrosion resistance evaluation method of coating
CN204403791U (en) A kind of in-service pipeline ultrasonic thickness measurement detection device
CN104267106A (en) Self-coupling ultrasonic detection probe device
WO2010116791A1 (en) Ultrasound flaw detection device for pipe ends
JP2006078271A (en) Ultrasonic flaw detection method of steel bar
JP2008014868A (en) Method for measuring attached material, and apparatus for measuring the attached material
JP2010127618A (en) Automatic sphere inspection method and device for the same with ultrasonic flaw detection system
JP2007327914A (en) Ultrasonic inspection method
JP2009150679A (en) Surface flaw evaluation device of round bar steel by submerged ultrasonic flaw detection using electron scanning type array prob,e and surface flaw evaluation method of round bar steel
JP2015094588A (en) Ultrasonic flaw inspection method of measurement target object material
JP2010127621A (en) Automatic sphere inspection method and device for the same with ultrasonic flaw detection system
JP5243215B2 (en) Method for detecting and evaluating defects in the center of round steel bars
CN105758934A (en) Seamless steel pipe ultrasonic flaw detection method
JP2013242220A (en) Array probe, immersion ultrasonic test equipment having the array probe, and method thereof
JP2012032270A (en) Cleanness inspection device for inspection target object, and cleanness inspection method
JP2012018071A (en) Inspection device for pipe internal surface
JP2010281709A (en) Inspection device and inspection method of sphere
JP2006010342A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JP4639328B2 (en) Nondestructive evaluation method for cracks
CN204523615U (en) Finger-type bubble erasing apparatus in a kind of ultrasonic detection equipment
JP2015087170A (en) Ultrasonic flaw inspection method of material to be measured