JPH0875707A - Ultrasonic wave surface flaw detection device and method thereof - Google Patents

Ultrasonic wave surface flaw detection device and method thereof

Info

Publication number
JPH0875707A
JPH0875707A JP6208977A JP20897794A JPH0875707A JP H0875707 A JPH0875707 A JP H0875707A JP 6208977 A JP6208977 A JP 6208977A JP 20897794 A JP20897794 A JP 20897794A JP H0875707 A JPH0875707 A JP H0875707A
Authority
JP
Japan
Prior art keywords
flaw
probe
wave
reception
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6208977A
Other languages
Japanese (ja)
Inventor
Hiroyuki Okubo
寛之 大久保
Tomoya Suzuki
智也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6208977A priority Critical patent/JPH0875707A/en
Publication of JPH0875707A publication Critical patent/JPH0875707A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE: To discriminate between a flaw and a foreign matter, and to detect a depth of the flaw by a method wherein a surface wave is transmitted to a work from a transmitting/ receiving flaw detection probe, the reflection wave is received by the transmitting/receiving flaw detection probe and the straight wave is received by a receiving-only probe and received levels of both of the probes are compared with each other. CONSTITUTION: A surface wave goes from a transmitting/receiving flaw detection probe 2 to a receiving-only probe 3. When there is a flaw on the way, the wave is reflected to be returned to the probe 2. When the work W does not have a flaw and a foreign matter stuck on the surface, a receiving level of the probe 3 becomes markedly high and the receiving level of the probe 2 becomes zero. When the work has a flaw but does not have a foreign matter, a component that the reflection wave is subtracted from the surface wave reaches the probe 3, then the receiving level becomes roughly the middle thereof. If there is no flaw on the work W but there is a foreign matter on it, the surface wave attenuates and the receiving level of the probe 3 becomes roughly medium. The combinations of the levels of the probes 2, 3 are operated by an operator 5 so that the flaw and foreign matter are discriminarted from each other. It is possible to estimate the depth of the flaw from reference data, a real pulse penetration coefficient and real accumulated penetration intensity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は円筒物(例えばロール)
や平板の表面に発生する疵等の欠陥を発見するための超
音波表面探傷法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylinder (eg roll).
TECHNICAL FIELD The present invention relates to an ultrasonic surface flaw detection method and apparatus for detecting defects such as flaws generated on the surface of a flat plate.

【0002】[0002]

【従来の技術】金属材料の表面疵を検出する手法とし
て、渦流探傷法、浸透探傷法、超音波表面波探傷法等が
知られている。渦電流探傷法は対象材料の表面に渦電流
を発生させ、その抵抗値の変化を検出して疵を発見する
というものであるが、疵以外の組織変化や磁気変化など
をも検知するので信頼性が乏しいとされている。浸透探
傷法はカラーチェックと称する手法であり、対象材料の
表面に浸透液を塗布し、次に洗浄液で表面を洗浄し、そ
の次に現像液を塗布する方法である。表面に割れがある
とこの割れに浸透液が滲み込み、現像液にて発色するの
で疵の発見が容易になせる。しかし、基本的に作業員に
よる手作業であるため作業性は良くない。また、目視判
定なので微細な疵を見逃がすこともある。
2. Description of the Related Art Eddy current flaw detection, penetration flaw detection, ultrasonic surface wave flaw detection and the like are known as methods for detecting surface flaws in metal materials. The eddy current flaw detection method is to detect eddy currents on the surface of the target material and detect changes in the resistance value to detect flaws, but it is also reliable because it detects tissue changes and magnetic changes other than flaws. It is said that the sex is poor. The penetrant flaw detection method is a method called color check, and is a method in which a penetrant liquid is applied to the surface of a target material, the surface is then washed with a cleaning liquid, and then a developer is applied. If there is a crack on the surface, the penetrant will permeate into this crack and color will be developed by the developer, which makes it easier to find flaws. However, the workability is not good because it is basically a manual work by a worker. Further, since it is a visual judgment, a minute flaw may be overlooked.

【0003】そこで、検出精度が良く、作業効率も良い
超音波表面探傷法が注目され、この探傷法をロールに適
用したものが、特開昭52−92779号公報「ロー
ルの探傷方法」や特公平5−65027号公報「ロー
ルの超音波探傷法」として提案されている。
Therefore, an ultrasonic surface flaw detection method, which has a high detection accuracy and a high working efficiency, has attracted attention. A method in which this flaw detection method is applied to a roll is disclosed in Japanese Patent Laid-Open No. 52-92779, "Roll flaw detection method" or It is proposed as Japanese Patent Publication No. 5-65027, "Roll ultrasonic flaw detection method".

【0004】上記は、回転中のロールに、ロール速度
の一定値以下において局部水浸法表面波超音波探触子を
超音波結合することを特徴とし、公報の第2図によれば
回転上流側に配置したエアーノズル32で表面の水をパ
ージした後に超音波探傷するものである。上記はタイ
ヤ型表面波探触子と、研削液中の夾雑物を除くワイパー
とを備えたことに特徴がある。
The above is characterized in that the local water immersion method surface wave ultrasonic probe is ultrasonically coupled to the rotating roll at a constant value of the roll speed or less. According to FIG. After the surface water is purged by the air nozzle 32 disposed on the side, ultrasonic flaw detection is performed. The above is characterized in that it is provided with a tire type surface wave probe and a wiper for removing contaminants in the grinding fluid.

【0005】[0005]

【発明が解決しようとする課題】周知の通り超音波探傷
法は感度が非常に優れていることから表面にたとえ小さ
な異物が付いていても疵として検出するので表面をきれ
いに拭き取る必要がある。そこで、上記ではエアーパ
ージ、上記ではワイパーでその処置をしている。
As is well known, since the ultrasonic flaw detection method has very high sensitivity, even if a small foreign matter is attached to the surface, it can be detected as a flaw, and it is necessary to wipe the surface cleanly. Therefore, the above treatment is performed by air purging, and the above treatment is performed by a wiper.

【0006】しかし、上記エアーパージやワイパーが有
効に機能しているか否かの確認はされていない。即ち、
エアーパージやワイパーの清浄化機能が弱ければ誤った
判断がなされる。そこで、エアーパージやワイパーの機
能を必要以上に強化することとなり、例えばエアー量が
倍増して設備費用や運転費用が増えたり、ワイパーを強
くロール面に押圧した結果、ロール面に逆に疵をつける
という不具合も発生する。そこで、ロール面に水滴等の
付着物が存在するか否かを判別する技術が必要となる。
However, it has not been confirmed whether the air purge and the wiper function effectively. That is,
If the air purging or wiper cleaning function is weak, an incorrect decision will be made. Therefore, the functions of the air purge and the wiper are strengthened more than necessary, for example, the amount of air is doubled to increase the equipment cost and operating cost, or the wiper is strongly pressed against the roll surface, resulting in a flaw on the roll surface. There is also the problem of turning on. Therefore, it is necessary to have a technique for determining whether or not there is a deposit such as a water drop on the roll surface.

【0007】また、上記,にて疵を発見した場合
は、ロールを再研磨するが、上記,では疵の存在は
検出しても、疵の深さは検出できないので、研磨量は不
確実となり、研磨量が不足であれば何度も研削する必要
があるので、実際には多めに研削することになる。とす
れば、ロールの寿命は短くなる。そこで、疵の発見のみ
ならず、疵の深さも検知可能な技術が求められている。
従って、本発明の目的はワーク表面に付着する異物を有
効に検出する技術及び疵の深さを検出する技術を備えた
超音波表面探傷装置及びその方法を提供することにあ
る。
Further, when a flaw is found in the above, the roll is re-polished, but in the above, the depth of the flaw cannot be detected even if the presence of the flaw is detected, so the polishing amount becomes uncertain. However, if the polishing amount is insufficient, it is necessary to grind many times, so in reality, a large amount of grinding will be performed. If so, the life of the roll is shortened. Therefore, there is a demand for a technique capable of detecting not only the defect but also the depth of the defect.
Therefore, it is an object of the present invention to provide an ultrasonic surface flaw detector and a method thereof, which are provided with a technique for effectively detecting foreign matter adhering to the surface of a work and a technique for detecting the depth of a flaw.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、ワークに表面波を送り、疵があった場合に
はこの疵による反射波を受信するところの送受信用探触
子と、送受信用探触子から離れた位置にワーク上に配置
され、表面波から反射波を除いたところの直進波を受信
する受信専用探触子と、これら送受信用探触子と受信専
用探触子の受信信号を入力し、反射波の有無と直進波の
強弱により疵の有無と異物の有無を識別する演算器とか
ら超音波表面探傷装置を構成する。
In order to achieve the above object, the present invention provides a transmitting / receiving probe that sends a surface wave to a work and receives a reflected wave due to the flaw if there is a flaw. , A reception-only probe that is arranged on a workpiece at a position away from the transmission / reception probe and receives a rectilinear wave where the reflected wave is removed from the surface wave, and these transmission / reception probe and reception-only probe An ultrasonic surface flaw detector is composed of an operator which receives a received signal of a child and discriminates the presence or absence of a flaw and the presence or absence of a foreign matter based on the presence or absence of a reflected wave and the strength of a straight wave.

【0009】具体的方法としては、円筒物や平板などの
ワークに送受信用探触子を臨ませ、この探触子を表面波
進行方向の直角方向へ移動させつつ、探触子から超音波
表面波を発信して疵のある場合には反射波を受信し、こ
の受信内容から実際のパルス反射回数並びに累積反射強
度を求め、一方、既知の疵から疵の深さとパルス反射回
数と累積反射強度との関係を調べて基準データを作成し
ておき、この基準データと前記実際のパルス反射回数並
びに累積反射強度とから疵の深さを推定する。
As a concrete method, a transmitting / receiving probe is made to face a work such as a cylindrical object or a flat plate, and this probe is moved in a direction perpendicular to a surface wave traveling direction while the ultrasonic wave surface is moved from the probe. When a wave is transmitted and a reflected wave is received, the reflected wave is received, and the actual number of pulse reflections and the cumulative reflection intensity are obtained from the received contents.On the other hand, the depth of the defect from the known flaw, the number of pulse reflections and the cumulative reflection intensity are calculated. And the reference data is created in advance, and the depth of the flaw is estimated from the reference data and the actual number of times of pulse reflection and the cumulative reflection intensity.

【0010】又は、円筒物や平板などのワークに少なく
とも送信機能を備えた探触子及び少なくとも受信機能を
備えた探触子を臨ませ、これら探触子を表面波進行方向
の直角方向へ移動させつつ、一方の探触子から超音波表
面波を発信して疵のある場合にはある程度減衰した直進
波を他方の探触子で受信し、この受信内容から実際のパ
ルス透過回数並びに累積透過強度を求め、一方、既知の
疵から疵の深さとパルス透過回数と累積透過強度との関
係を調べて基準データを作成しておき、この基準データ
と前記実際のパルス透過回数並びに累積透過強度とから
疵の深さを推定する。
Alternatively, a probe having at least a transmitting function and a probe having at least a receiving function are made to face a workpiece such as a cylindrical object or a flat plate, and these probes are moved in a direction perpendicular to the surface wave traveling direction. While transmitting ultrasonic surface waves from one probe, if there is a flaw, the rectilinear wave attenuated to some extent is received by the other probe and the actual number of pulse transmissions and cumulative transmission Obtain the intensity, on the other hand, to create a reference data by examining the relationship between the depth of the flaw from a known flaw and the number of pulse transmissions and the cumulative transmission intensity, and this reference data and the actual number of pulse transmissions and the cumulative transmission intensity and Estimate the depth of the flaw from.

【0011】[0011]

【作用】送受信探触子から表面波を発進し、この表面波
の直進波成分を受信専用探触子で受信させる。途中に、
疵があれば表面波の一部が反射波となって送受信探触子
に受信され、またはワーク表面にスケール等の異物があ
れば直進波は弱められた後に受信専用探触子に受信され
る。従って、双方の探触子の受信レベルを調べることに
より疵の有無、異物の有無及び疵と異物の識別とがなせ
る。
The surface wave is launched from the transmitting / receiving probe, and the rectilinear wave component of this surface wave is received by the receiving-only probe. On the way
If there is a flaw, part of the surface wave becomes a reflected wave and is received by the transmitter / receiver probe, or if there is a foreign substance such as scale on the work surface, the rectilinear wave is weakened and then received by the receive-only probe. . Therefore, by checking the reception levels of both probes, the presence / absence of a flaw, the presence / absence of a foreign matter, and the identification of a flaw and a foreign matter can be determined.

【0012】基準データと前記実際のパルス反射回数並
びに累積反射強度とから疵の深さを推定する。
The depth of the flaw is estimated from the reference data, the actual number of pulse reflections and the cumulative reflection intensity.

【0013】または、基準データと前記実際のパルス透
過回数並びに累積透過強度とから疵の深さを推定する。
Alternatively, the depth of the flaw is estimated from the reference data, the actual number of times of pulse transmission, and the cumulative transmission intensity.

【0014】[0014]

【実施例】本発明の実施例を添付図に基づいて以下に説
明する。図1は本発明に係る超音波表面探傷装置の原理
図であり、超音波表面探傷装置1はワークW(実施例で
はロール)の一側面に臨ませた表面波送受信用探触子2
(以下「送受信用探触子2」と略記する)と、この送受
信用探触子2と対で使用される表面波受信専用探触子3
(以下「受信専用探触子3」と略記する)と、探傷器4
と、演算器5とからなる。これらの作用は後述する。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a principle diagram of an ultrasonic surface flaw detector according to the present invention. The ultrasonic surface flaw detector 1 has a surface wave transmitting / receiving probe 2 facing one side of a work W (roll in the embodiment).
(Hereinafter abbreviated as “transmission / reception probe 2”) and a probe 3 dedicated to surface wave reception used in pair with the transmission / reception probe 2.
(Hereinafter abbreviated as "reception-only probe 3"), and flaw detector 4
And an arithmetic unit 5. These actions will be described later.

【0015】前記送受信用探触子2は自在ローラ11…
(…は複数個を示す。以下同様。)を備えた保持材12
に保持され、この保持材12はアーム13に保持され、
アーム13は図面表裏方向へ摺動移動するスライダ14
に保持されている。スライダ14は例えばモータ15、
ピニオン16、ラック17により駆動されて正確に位置
決めされる。なお、探触子2はシリンダ18を作動する
ことにより、随時ワークWに接離可能である。また、2
1は媒質供給管であり、スライダ14上の接触媒質供給
箱22からフレキシブルホース23を介して供給された
媒質を探触子2の接触面に供給するものである。24は
ワイパであり、ワークW表面の異物(スケール、ごみ、
水滴など)を除去する。
The transmitting / receiving probe 2 includes a flexible roller 11 ...
(... indicates a plurality, the same applies hereinafter) 12
And the holding material 12 is held by the arm 13,
The arm 13 is a slider 14 that slides in the front and back direction of the drawing.
Held in. The slider 14 is, for example, a motor 15,
It is driven by the pinion 16 and the rack 17 for accurate positioning. The probe 2 can be brought into and out of contact with the work W at any time by operating the cylinder 18. Also, 2
Reference numeral 1 denotes a medium supply pipe, which supplies the medium supplied from the contact medium supply box 22 on the slider 14 via the flexible hose 23 to the contact surface of the probe 2. Reference numeral 24 is a wiper, which is a foreign matter (scale, dust,
Water droplets).

【0016】前記受信専用探触子3も自在ローラ11
…、保持材12、シリンダ18、アーム13を介してス
ライダ14に保持されている。構成は送受信用探触子2
のそれと同一なので説明は省略する。
The reception-only probe 3 is also a flexible roller 11
... is held by the slider 14 via the holding material 12, the cylinder 18, and the arm 13. The configuration is the transmitting and receiving probe 2
The description is omitted because it is the same as that of No.

【0017】図2は本発明に係る探触子の原理図であ
り、送受信用探触子2は正三角形に長方形を加えた変形
四角形断面の樹脂くさび2aの斜面にカット水晶2bを
付設したもので、垂線に対して角度iで超音波を入射さ
せることでワークWの表面に矢印のごとく方向性のある
表面波を発生させるものである。送受信用探触子2は矢
印と逆向きの表面波を受信することもできる。受信専用
探触子3も同様の原理で表面波のみを受信する。
FIG. 2 is a principle view of the probe according to the present invention. The transmitting / receiving probe 2 has a resin wedge 2a having a modified quadrangular cross section in which a rectangle is added to an equilateral triangle, and a cut crystal 2b is attached to the slope of the resin wedge 2a. Then, an ultrasonic wave is made incident at an angle i with respect to the perpendicular to generate a directional surface wave as indicated by an arrow on the surface of the work W. The transmitting / receiving probe 2 can also receive a surface wave in the direction opposite to the arrow. The reception-only probe 3 receives only surface waves on the same principle.

【0018】以上に述べた超音波表面探傷装置の作用を
次に説明する。図1において、送受信用探触子2から表
面波を発射すると、この表面波は矢印の通りに受信専
用探触子3に向う。この間に疵があれば表面波は疵で反
射して戻り送受信用探触子2に至る。
The operation of the ultrasonic surface flaw detector described above will be described below. In FIG. 1, when a surface wave is emitted from the transmission / reception probe 2, the surface wave goes toward the reception-only probe 3 as indicated by an arrow. If there is a flaw in the meantime, the surface wave is reflected by the flaw and returns to the transmitting / receiving probe 2.

【0019】図3(a)〜(d)は本発明に係る作用説
明図である。(a)はワークWに疵がなく、表面に異物
の付着もない場合であって、表面波は受信専用探触子3
に十分に至り、受信レベルは極めて高い。また、反射波
は0(ゼロ)である。そこで、略図の下方に受信レベル
をそれぞれ「高」、「0」の如く表記した。(b)はワ
ークWに疵があり、表面に異物の付着がない場合であっ
て、表面波の一部は疵で反射され、その反射波が送受信
用探触子2に戻る。表面波から反射波を除いた成分が直
進波となって受信専用探触子3に至る。その受信レベル
は中程度となる。
3 (a) to 3 (d) are explanatory views of the operation according to the present invention. (A) is a case where the work W has no flaws and no foreign matter adheres to the surface, and the surface wave is the reception-only probe 3
And the reception level is extremely high. The reflected wave is 0 (zero). Therefore, the reception levels are shown as "high" and "0" in the lower part of the schematic diagram. (B) is a case where the work W has a flaw and no foreign matter adheres to the surface thereof, a part of the surface wave is reflected by the flaw, and the reflected wave returns to the transmitting / receiving probe 2. The component obtained by removing the reflected wave from the surface wave becomes a rectilinear wave and reaches the reception-only probe 3. Its reception level is medium.

【0020】(c)はワークWに疵がなく、表面に異物
の付着がある場合であって、表面波は送受信用探触子2
に戻ることはないが、異物により減衰されるので、受信
専用探触子3における直進波の受信レベルはほぼ中程度
となる。(d)はワークWに疵があり、且つ表面に異物
の付着がある場合であって、表面波の一部は疵で反射さ
れて送受信用探触子2に戻る。一方、表面波の直進波成
分は異物で弱められるので、受信専用探触子3の受信レ
ベルは低くなる。
(C) is a case where the work W has no flaws and foreign matter adheres to the surface thereof, and the surface wave is the transmitting / receiving probe 2
However, since it is attenuated by the foreign matter, the reception level of the rectilinear wave in the reception-only probe 3 becomes substantially medium. (D) is a case where the work W has a flaw and a foreign substance adheres to the surface, and a part of the surface wave is reflected by the flaw and returns to the transmitting / receiving probe 2. On the other hand, since the rectilinear wave component of the surface wave is weakened by the foreign matter, the reception level of the reception-only probe 3 becomes low.

【0021】従って、送受信用探触子2と受信専用探触
子3とを組合わせたことにより、疵の発見はもとより疵
と異物との識別が可能であり、この識別は演算器5(図
1参照)で演算させる。
Therefore, by combining the transmission / reception probe 2 and the reception-only probe 3, it is possible to detect a flaw as well as to identify a flaw and a foreign substance. 1)).

【0022】以上の探傷原理に基づいて、図1のワーク
Wを反時計方向に一定の速度で回転しつつワークW表面
の疵を探傷し、ワークWが1回転したら、スライダ14
を1ピッチ(探傷有効幅。例えば5mm)移動し、再度
探傷を実施する。この際に、演算器5で発見された疵の
位置(角度)を記憶しておき、前回回転中に見出した疵
と次の回で見出した疵とが同一疵であるか否かを判別さ
せる。
Based on the above flaw detection principle, the workpiece W shown in FIG. 1 is rotated counterclockwise at a constant speed to detect a flaw on the surface of the workpiece W. When the workpiece W makes one revolution, the slider 14 is rotated.
Is moved by one pitch (effective flaw detection width; for example, 5 mm), and flaw detection is performed again. At this time, the position (angle) of the flaw found by the calculator 5 is stored, and it is determined whether or not the flaw found during the previous rotation and the flaw found in the next time are the same flaw. .

【0023】また、自在ローラ11は球面ロールが全方
向に自在に回転するものであり、ワークWの回転方向並
びにワークWの軸方向に転動可能であるから、スライダ
14の移動を妨げない。更に、媒質供給管21から探触
子2,3に向って注がれた媒質は図1の上から下へ落下
する。受信専用探触子3は送受信用探触子2に対してθ
=約135゜の位置にあり、それに関する媒質は図左下
に落下し、一方、送受信用探触子2に関する媒質は図右
下に落下し、結果として矢印の付近には媒質は至らな
い。また、図3で説明した要領で疵と異物との識別は可
能であるものの、探傷は異物を発見することが目的では
ないので、ワークWは表面に異物を介在させないこのを
原則とする。そこで、図1のワイパ24で強制的に異物
を除去することとした。
Further, since the spherical roller of the free roller 11 rotates freely in all directions and can roll in the rotational direction of the work W and the axial direction of the work W, the movement of the slider 14 is not hindered. Further, the medium poured from the medium supply pipe 21 toward the probes 2 and 3 falls from the top to the bottom of FIG. The reception-only probe 3 is θ with respect to the transmission / reception probe 2.
= 135 °, the medium associated with it falls to the lower left of the figure, while the medium associated with the transmitting / receiving probe 2 falls to the lower right of the figure, and as a result, the medium does not reach in the vicinity of the arrow. Further, although it is possible to distinguish between a flaw and a foreign substance in the manner described with reference to FIG. 3, flaw detection is not intended to detect the foreign substance, and therefore the work W is in principle not to have the foreign substance on the surface. Therefore, the wiper 24 of FIG. 1 is used to forcibly remove the foreign matter.

【0024】次に、本発明装置で疵の深さを調べる方法
について説明をする。図4(a),(b)は疵の模式図
であり、(a)のように比較的小さな疵の場合に、ピッ
チPで探触子2,3を矢印方向(ロール軸方向)に移動
すると、P1,P2の箇所で表面波が疵に衝突し、一部
が反射波として戻り、残りが減衰した直進波となって受
信専用探触子3に至る。即ち、(a)では反射波は2回
計測される。(b)は大きな疵の場合であり、反射はP
1〜P6の6回計測される。
Next, a method for checking the depth of a flaw with the device of the present invention will be described. FIGS. 4A and 4B are schematic diagrams of flaws, and in the case of a relatively small flaw as shown in FIG. 4A, the probes 2 and 3 are moved at the pitch P in the arrow direction (roll axis direction). Then, the surface wave collides with the flaw at the points P1 and P2, a part of the surface wave returns as a reflected wave, and the rest becomes an attenuated rectilinear wave and reaches the dedicated reception probe 3. That is, in (a), the reflected wave is measured twice. (B) is the case of a large flaw, and the reflection is P
It is measured 6 times from 1 to P6.

【0025】図5は反射強度と疵深さの関係を示すグラ
フであり、横軸は送受信用探触子で計測した反射波の累
積強度であり、縦軸は疵の深さであり上位ほど疵は深
い。●はパルス反射回数が1〜3回、○は同4〜6回、
△は同7回以上を示す。具体的には既存のワークWに疵
を入れ、探触子2で反射波の強度を計測したものであ
り、●、○及び△で傾向が分れたので各々を直線で集約
したものである。表面波は一部が疵で反射され、残部が
減衰波となって直進するため、疵が深いほど反射強度は
強くなる。従って、右上りの曲線を描く。
FIG. 5 is a graph showing the relationship between the reflection intensity and the flaw depth. The horizontal axis is the cumulative intensity of the reflected waves measured by the transmitting / receiving probe, and the vertical axis is the flaw depth. The flaw is deep. ● indicates the number of pulse reflections 1 to 3 times, ○ indicates 4 to 6 times,
△ indicates 7 times or more. Specifically, the existing work W is scratched and the intensity of the reflected wave is measured by the probe 2. The tendency is identified by ●, ○ and △, so that each is summarized by a straight line. . A part of the surface wave is reflected by the flaw and the rest becomes an attenuation wave and goes straight. Therefore, the deeper the flaw, the stronger the reflection intensity. Therefore, draw the upper right curve.

【0026】パルス回数の少ない●の場合は、反射波の
累積強度は小さくなる。従って、グラフに表れる程度の
反射波を発生するには、疵の深さは十分に深くなければ
ならない。逆に、パルス回数の多い△の場合は、反射波
の累積強度は大きくなる。疵の深さが浅くても反射波の
累積強度は大きくなる。このように、パルスの回数と反
射強度を知ることにより、疵の深さを推定することがで
きる。
When the number of pulses is small, the cumulative intensity of the reflected wave becomes small. Therefore, the depth of the flaw must be sufficiently deep to generate the reflected wave as shown in the graph. On the contrary, when the number of pulses is large, the cumulative intensity of the reflected wave becomes large. The accumulated intensity of reflected waves increases even if the depth of the flaw is shallow. Thus, the depth of the flaw can be estimated by knowing the number of pulses and the reflection intensity.

【0027】図6は透過強度と疵深さの関係を示すグラ
フであり、横軸は受信専用探触子で計測した表面波の累
積強度であり、縦軸は疵の深さであり上位ほど疵は深
い。●はパルス透過回数が1〜3回、○は同4〜6回、
△は同7回以上を示す。具体的には既存のワークWに疵
を入れ、探触子3で表面波の強度を計測したものであ
り、●、○及び△で傾向が分れたので各々を直線で集約
したものである。表面波は一部が疵で反射され、残部が
減衰波となって直進するため、疵が浅いほど透過強度は
大きくなる。従って、右下りの曲線を描く。
FIG. 6 is a graph showing the relationship between transmission intensity and flaw depth. The horizontal axis represents the cumulative intensity of surface waves measured by the reception-only probe, and the vertical axis represents the flaw depth. The flaw is deep. ● indicates the number of pulse transmissions 1 to 3 times, ○ indicates the same 4 to 6 times,
△ indicates 7 times or more. Specifically, the existing work W is scratched and the intensity of the surface wave is measured by the probe 3, and the trends are indicated by ●, ○, and △, so that each is summarized by a straight line. . A part of the surface wave is reflected by the flaw, and the rest of the surface wave becomes an attenuation wave and travels straight. Therefore, the shallower the flaw, the higher the transmitted intensity. Therefore, draw a downward-sloping curve.

【0028】反射強度と透過強度とは互いに逆の関係と
なるため、図6は図5と逆の傾向になり、やはりパルス
透過回数と透過強度とを知ることで疵の深さを推定する
ことができる。なお、上記図5は深さや幅の分かってい
る疵を良く調整された送受信用探触子2で実測して作成
した基準グラフであり、同様に図6は深さや幅の分かっ
ている疵を良く調整された送信専用探触子2と受信専用
探触子3とで実測して作成した基準グラフであり、これ
らの基準グラフと実際の計測値とから疵の深さを推定す
ることに特徴がある。
Since the reflection intensity and the transmission intensity have an inverse relationship to each other, FIG. 6 has a tendency opposite to that of FIG. 5, and the depth of the flaw can be estimated by knowing the pulse transmission frequency and the transmission intensity. You can Note that FIG. 5 is a reference graph created by actually measuring flaws of known depth and width with the well-tuned transmitting and receiving probe 2, and FIG. 6 similarly shows flaws of known depth and width. It is a reference graph created by actually measuring the transmission-only probe 2 and the reception-only probe 3 which are well adjusted, and is characterized in that the depth of a flaw is estimated from these reference graphs and actual measurement values. There is.

【0029】疵の深さを反射波と直進波とから個別に求
めることができるが、求めた疵の深さをD1,D2とし
た場合に、疵取り研削量をD1とD2の大きい方の数値
を採用すること、またはD1とD2の平均値を採用する
ことは任意であり、更にまた、D1とD2の差が甚だし
い時には計測エラーも考えられるので再検査を実施する
など、以降の処理は自在になせ、この処理は図1の演算
器5で実施させればよい。
The depth of the flaw can be individually calculated from the reflected wave and the straight wave, but when the depth of the flaw thus found is D1 and D2, the flaw removal grinding amount of the larger one of D1 and D2 is obtained. It is arbitrary to adopt a numerical value or an average value of D1 and D2. Furthermore, when the difference between D1 and D2 is great, a measurement error may occur. This processing may be performed freely by the arithmetic unit 5 of FIG.

【0030】次に本発明の実測例を説明する。なお、実
測条件は以下の通りである。 ワーク 圧延ロール ロール径 800mm ロール幅 1840mm ロール表面疵 0.25mm深さ及び0.3mm深さ
の疵各1個 ロール材質 ニッケルクロム鋼 ロール回転 20rpm 探傷周波数 5MHz 探傷感度 深さ0.2mm,長さ1.0mm,幅10
mmの人工疵を50mm離れた位置で計測した時の感度
を50% に設定し、更に+6dBした感
度。 ロール軸方向ピッチ 5mm
Next, an actual measurement example of the present invention will be described. The actual measurement conditions are as follows. Work Roll Roll 800 mm Roll width 1840 mm Roll surface flaw 0.25 mm Depth and 0.3 mm depth 1 flaw each Roll material Nickel chrome steel Roll rotation 20 rpm Testing frequency 5 MHz Testing sensitivity Depth 0.2 mm, Length 1 0.0 mm, width 10
The sensitivity when the artificial flaw of mm was measured at the position 50 mm away was set to 50%, and the sensitivity was further +6 dB. Roll axial pitch 5 mm

【0031】以上の条件で実測したところ、 検査時間 20分 検出疵 2個 検出の深さ 一方が0.21mm、他方が0.34mm 従って、0.2〜0.3mm深さの疵の場合は、±0.
05mm程度の精度で推定できることが確認された。
As a result of actual measurement under the above conditions, the inspection time is 20 minutes, the detection flaw is two, the detection depth is 0.21 mm on the one hand, and 0.34 mm on the other hand. , ± 0.
It was confirmed that it can be estimated with an accuracy of about 05 mm.

【0032】本発明によれば、疵の有無のみならず疵の
深さも推定できるので、従来のように過剰にロール研削
をする必要が無く、研削量を適正な範囲に留めることが
でき、研削加工時間が短縮できるとともに、圧延ロール
の寿命も延ばすことができる。
According to the present invention, not only the presence or absence of a flaw but also the depth of the flaw can be estimated. Therefore, it is not necessary to excessively perform roll grinding as in the conventional case, and the grinding amount can be kept within an appropriate range. The processing time can be shortened and the life of the rolling roll can be extended.

【0033】尚、本実施例では送受信用探触子2と受信
専用探触子3とを対で配置したが、これに限るものでは
ない。例えば、送受信用探触子2は一体であることが望
ましいが送信専用探触子と受信専用探触子とで構成し、
これらを近接配置したものでもよい。また、受信専用探
触子3を送受信用探触子に変更し、通常は受信機能のみ
を使用し、他方の送受信用探触子2において送信機能が
不調になった時に、送信機能を生かすようにしてもよ
い。更にまた、図6に係る直進波で疵を探傷するには、
送受信用探触子は必ずしも必要でなく、「少なくとも送
信機能を備えた探触子」と「少なくとも受信機能を備え
た探触子」があれば十分である。
In this embodiment, the transmitting / receiving probe 2 and the receiving probe 3 are arranged in a pair, but the present invention is not limited to this. For example, although the transmitting / receiving probe 2 is preferably integrated, it is composed of a transmitting-only probe and a receiving-only probe,
These may be arranged close to each other. In addition, the reception-only probe 3 is changed to a transmission / reception probe, and normally only the reception function is used, and when the transmission function of the other transmission / reception probe 2 fails, the transmission function is utilized. You may Furthermore, in order to detect a flaw with a straight wave according to FIG.
The transmitting / receiving probe is not always necessary, and it is sufficient to have “a probe having at least a transmitting function” and “a probe having at least a receiving function”.

【0034】また、実施例ではワークWを1回転させた
後にスライダ14を1ピッチ移動するようにしたが、こ
れに限るものではなく、ワークWの回転とスライダ14
の移動を同時に実施してもよい。探触子2,3の軌跡は
スパイラル(螺旋)となるが探傷時間が短くなる。
Although the slider 14 is moved one pitch after the work W is rotated once in the embodiment, the invention is not limited to this, and the rotation of the work W and the slider 14 are not limited thereto.
May be simultaneously performed. The loci of the probes 2 and 3 are spiral, but the flaw detection time is short.

【0035】[0035]

【発明の効果】本発明は上記構成により次の効果を発揮
する。請求項1の超音波表面探傷装置は、送受信用探触
子と受信専用探触子とからなり、双方の探触子の受信レ
ベルを調べることにより疵の有無、異物の有無及び疵と
異物の識別とがなせるので、疵の検出精度が高まり好ま
しい。
The present invention has the following effects due to the above configuration. The ultrasonic surface flaw detector according to claim 1 comprises a transmission / reception probe and a reception-only probe, and by checking the reception levels of both probes, presence / absence of flaws, presence / absence of foreign matter, and flaw / foreign matter Since the identification can be performed, the flaw detection accuracy is increased, which is preferable.

【0036】請求項2の超音波表面探傷方法によれば、
基準データと実際のパルス反射回数並びに累積反射強度
とから疵の深さを推定することができるので、ワークの
削り過ぎを防止でき、ワークの寿命を延ばすことができ
る。
According to the ultrasonic surface flaw detection method of claim 2,
Since the depth of the flaw can be estimated from the reference data, the actual number of pulse reflections, and the cumulative reflection intensity, it is possible to prevent the work from being over-cut and prolong the life of the work.

【0037】請求項3の超音波表面探傷方法によれば、
基準データと実際のパルス透過回数並びに累積透過強度
とから疵の深さを推定することができるので、ワークの
削り過ぎを防止でき、ワークの寿命を延ばすことができ
る。
According to the ultrasonic surface flaw detection method of claim 3,
Since the depth of the flaw can be estimated from the reference data, the actual number of times of pulse transmission, and the cumulative transmission intensity, it is possible to prevent the work from being over-cut and prolong the life of the work.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る超音波表面探傷装置の原理図FIG. 1 is a principle diagram of an ultrasonic surface flaw detector according to the present invention.

【図2】本発明に係る探触子の原理図FIG. 2 is a principle diagram of a probe according to the present invention.

【図3】本発明に係る作用説明図FIG. 3 is an explanatory view of the operation according to the present invention.

【図4】本発明に係る疵の模式図FIG. 4 is a schematic diagram of a flaw according to the present invention.

【図5】本発明に係る反射強度と疵深さの関係を示すグ
ラフ
FIG. 5 is a graph showing the relationship between reflection intensity and flaw depth according to the present invention.

【図6】本発明に係る透過強度と疵深さの関係を示すグ
ラフ
FIG. 6 is a graph showing the relationship between transmission intensity and flaw depth according to the present invention.

【符号の説明】[Explanation of symbols]

1…超音波表面探傷装置、2…送受信用探触子、3…受
信専用探触子、5…演算器、11…自在ローラ、12…
保持材、13…アーム、14…スライダ、15…モー
タ、18…シリンダ、21…媒質供給管、24…ワイ
パ、W…ワーク。
DESCRIPTION OF SYMBOLS 1 ... Ultrasonic surface flaw detector, 2 ... Transmitting / receiving probe, 3 ... Receiving probe, 5 ... Arithmetic unit, 11 ... Free roller, 12 ...
Holding material, 13 ... Arm, 14 ... Slider, 15 ... Motor, 18 ... Cylinder, 21 ... Medium supply pipe, 24 ... Wiper, W ... Work.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 円筒物や平板などのワークの表面疵を超
音波表面波で探傷する超音波表面探傷装置であって、こ
の超音波表面探傷装置は、前記ワークに表面波を送り、
疵があった場合にはこの疵による反射波を受信するとこ
ろの送受信用探触子と、前記送受信用探触子から離れた
位置にワーク上に配置され、前記表面波から反射波を除
いたところの直進波を受信する受信専用探触子と、これ
ら送受信用探触子と受信専用探触子の受信信号を入力
し、前記反射波の有無と直進波の強弱により疵の有無と
異物の有無を識別する演算器とからなることを特徴とし
た超音波表面探傷装置。
1. An ultrasonic surface flaw detector for detecting flaws on the surface of a workpiece such as a cylindrical object or a flat plate with an ultrasonic surface wave. The ultrasonic surface flaw detector sends a surface wave to the workpiece.
When there is a flaw, the probe for transmission and reception where the reflected wave due to this flaw is received, and the work is placed at a position apart from the probe for transmission and reception, and the reflected wave is removed from the surface wave. However, the reception-only probe that receives the rectilinear wave, and the reception signals of these transmission / reception probe and reception-only probe are input, and the presence / absence of flaws and foreign matter due to the presence or absence of the reflected wave and the strength of the rectilinear wave. An ultrasonic surface flaw detector, comprising an arithmetic unit for identifying the presence / absence.
【請求項2】 円筒物や平板などのワークに送受信用探
触子を臨ませ、この探触子を表面波進行方向の直角方向
へ移動させつつ、探触子から超音波表面波を発信して疵
のある場合には反射波を受信し、この受信内容から実際
のパルス反射回数並びに累積反射強度を求め、一方、既
知の疵から疵の深さとパルス反射回数と累積反射強度と
の関係を調べて基準データを作成しておき、この基準デ
ータと前記実際のパルス反射回数並びに累積反射強度と
から疵の深さを推定することを特徴とした超音波表面探
傷方法。
2. An ultrasonic surface wave is emitted from the probe while a transmitting and receiving probe is exposed to a work such as a cylindrical object or a flat plate, and the probe is moved in a direction perpendicular to the surface wave traveling direction. If there is a flaw, the reflected wave is received, and the actual number of pulse reflections and the cumulative reflection intensity are obtained from this received content.On the other hand, the relationship between the depth of the flaw from the known flaw, the number of pulse reflections, and the cumulative reflection intensity is calculated. An ultrasonic surface flaw detection method characterized in that the depth of a flaw is estimated from the reference data and the reference data and the actual number of times of pulse reflection and the cumulative reflection intensity.
【請求項3】 円筒物や平板などのワークに少なくとも
送信機能を備えた探触子及び少なくとも受信機能を備え
た探触子を臨ませ、これら探触子を表面波進行方向の直
角方向へ移動させつつ、一方の探触子から超音波表面波
を発信して疵のある場合にはある程度減衰した直進波を
他方の探触子で受信し、この受信内容から実際のパルス
透過回数並びに累積透過強度を求め、一方、既知の疵か
ら疵の深さとパルス透過回数と累積透過強度との関係を
調べて基準データを作成しておき、この基準データと前
記実際のパルス透過回数並びに累積透過強度とから疵の
深さを推定することを特徴とした超音波表面探傷方法。
3. A work such as a cylindrical object or a flat plate is made to face a probe having at least a transmitting function and a probe having at least a receiving function, and these probes are moved in a direction perpendicular to a surface wave traveling direction. While transmitting ultrasonic surface waves from one probe, if there is a flaw, the rectilinear wave attenuated to some extent is received by the other probe and the actual number of pulse transmissions and cumulative transmission Obtain the intensity, on the other hand, to create a reference data by examining the relationship between the depth of the flaw from a known flaw and the number of pulse transmissions and the cumulative transmission intensity, and this reference data and the actual number of pulse transmissions and the cumulative transmission intensity and An ultrasonic surface flaw detection method characterized by estimating the depth of a flaw from the surface.
JP6208977A 1994-09-01 1994-09-01 Ultrasonic wave surface flaw detection device and method thereof Pending JPH0875707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6208977A JPH0875707A (en) 1994-09-01 1994-09-01 Ultrasonic wave surface flaw detection device and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6208977A JPH0875707A (en) 1994-09-01 1994-09-01 Ultrasonic wave surface flaw detection device and method thereof

Publications (1)

Publication Number Publication Date
JPH0875707A true JPH0875707A (en) 1996-03-22

Family

ID=16565298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6208977A Pending JPH0875707A (en) 1994-09-01 1994-09-01 Ultrasonic wave surface flaw detection device and method thereof

Country Status (1)

Country Link
JP (1) JPH0875707A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066012A (en) * 2001-08-30 2003-03-05 Idemitsu Eng Co Ltd Method and device for inspecting defect by surface wave
JP2008032466A (en) * 2006-07-27 2008-02-14 Mitsubishi Heavy Ind Ltd Method and device for detecting condition of pipe or plate
JP2018116049A (en) * 2017-01-19 2018-07-26 株式会社神戸製鋼所 Ultrasonic probe
CN114280158A (en) * 2021-12-23 2022-04-05 中航金属材料理化检测科技有限公司 Ultrasonic contact type flaw detection method for large-thickness parts

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066012A (en) * 2001-08-30 2003-03-05 Idemitsu Eng Co Ltd Method and device for inspecting defect by surface wave
JP2008032466A (en) * 2006-07-27 2008-02-14 Mitsubishi Heavy Ind Ltd Method and device for detecting condition of pipe or plate
JP2018116049A (en) * 2017-01-19 2018-07-26 株式会社神戸製鋼所 Ultrasonic probe
CN114280158A (en) * 2021-12-23 2022-04-05 中航金属材料理化检测科技有限公司 Ultrasonic contact type flaw detection method for large-thickness parts
CN114280158B (en) * 2021-12-23 2024-05-07 中航金属材料理化检测科技有限公司 Ultrasonic contact type flaw detection method for large-thickness part

Similar Documents

Publication Publication Date Title
US5469743A (en) Dynamic surface wave roll inspection device
JP5121531B2 (en) Rail flaw detection method and apparatus
CN111751448B (en) Surface leakage wave ultrasonic synthetic aperture focusing imaging method
Zhao et al. Detection of metal, glass and plastic pieces in bottled beverages using ultrasound
JPH0875707A (en) Ultrasonic wave surface flaw detection device and method thereof
JP2010127618A (en) Automatic sphere inspection method and device for the same with ultrasonic flaw detection system
EP0624794B1 (en) Probe and apparatus for detecting defects of cylindrical member with surface ultrasonic wave
JP2010127621A (en) Automatic sphere inspection method and device for the same with ultrasonic flaw detection system
JP3264828B2 (en) Defect detection method of lead sheath pipe for electric wire
CN110988127B (en) Signal identification method for detecting defects on surface and near surface of round bar by rotary ultrasonic
JP2726359B2 (en) Ultrasonic flaw detector for cylindrical surface
JPH0980030A (en) Method and apparatus for inspection of surface of roll by using ultrasonic waves and eddy current
JPS62291560A (en) Ultrasonic flaw detecting apparatus
JP2967858B2 (en) Rolling roll surface inspection device by ultrasonic
CN206876643U (en) A kind of constant ultrasonic detecting probe of pressure
JPH11326290A (en) Method and apparatus for ultrasonic flaw detection of cylindrical body
JP3662231B2 (en) Inspection method for steel drums
JPH04276547A (en) Ultrasonic testing method for surface layer part of cylindrical body
JP2015094588A (en) Ultrasonic flaw inspection method of measurement target object material
KR102499409B1 (en) Ultrasonic testing apparatus
JP3916603B2 (en) Ultrasonic oblique angle flaw detection method and apparatus
JPH0875708A (en) Method for ultrasonic wave flaw detection
KR20030097545A (en) Roll defect auto detection apparatus
JPH06308097A (en) Ultrasonic flaw detection method
JP3573967B2 (en) Plate wave ultrasonic inspection method