JP2006078036A - Refrigeration cycle device for cooling and cold storage - Google Patents

Refrigeration cycle device for cooling and cold storage Download PDF

Info

Publication number
JP2006078036A
JP2006078036A JP2004260741A JP2004260741A JP2006078036A JP 2006078036 A JP2006078036 A JP 2006078036A JP 2004260741 A JP2004260741 A JP 2004260741A JP 2004260741 A JP2004260741 A JP 2004260741A JP 2006078036 A JP2006078036 A JP 2006078036A
Authority
JP
Japan
Prior art keywords
cooling
evaporator
temperature
refrigeration
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004260741A
Other languages
Japanese (ja)
Inventor
Takeya Fujiwara
健也 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004260741A priority Critical patent/JP2006078036A/en
Publication of JP2006078036A publication Critical patent/JP2006078036A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain both ensuring of frost preventing function of a cooling evaporator and improvement in cooling performance in a refrigerator at the time of cooling and cold storage simultaneous operation. <P>SOLUTION: When the cooling evaporator temperature is a set temperature or lower in a case that the cooling and cold storage simultaneous operation is set, a cooling-side solenoid valve is closed while keeping a compressor in an operating state (S130, S160 and S170) to interrupt a refrigerant flow to the cooling evaporator, and the refrigerant is released to a passage of a cold storage evaporator. When the cooling evaporator temperature is higher than the set temperature, the cooling-side solenoid valve is opened while keeping the compressor in the operating state (S130, S140 and S150) to release the refrigerant to a passage of the cooling evaporator. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、並列接続された冷房用蒸発器と冷蔵用蒸発器とを有する冷房冷蔵用冷凍サイクル装置に関する。   The present invention relates to a refrigerating cycle apparatus for cooling and refrigerating having a cooling evaporator and a refrigerating evaporator connected in parallel.

従来より、並列接続された冷房用蒸発器と冷蔵用蒸発器とを有し、冷蔵用蒸発器での冷媒温度を冷房用蒸発器での冷媒温度よりも低温となるようにした冷房冷蔵用冷凍サイクル装置は知られている(例えば、特許文献1参照)。   Conventionally, it has a cooling evaporator and a refrigeration evaporator connected in parallel, and the refrigerant temperature in the refrigeration evaporator is set to be lower than the refrigerant temperature in the cooling evaporator. A cycle device is known (see, for example, Patent Document 1).

この従来技術では、車両冷房冷蔵用冷凍サイクル装置において、冷房用蒸発器の上流側に温度作動式膨張弁および電磁弁を設け、冷蔵用蒸発器の上流側には、減圧手段として冷蔵用蒸発器の冷媒圧力が所定圧力以下に低下したときに開弁する定圧膨張弁を設けている。   In this prior art, in a refrigeration cycle device for vehicle cooling and refrigeration, a temperature-operated expansion valve and a solenoid valve are provided upstream of the cooling evaporator, and the refrigeration evaporator is provided as a decompression means upstream of the refrigeration evaporator. A constant pressure expansion valve is provided that opens when the refrigerant pressure of the refrigerant drops below a predetermined pressure.

そして、冷房用蒸発器上流側の電磁弁を制御装置のタイマー出力により所定の時間間隔で開閉するようにしている。この電磁弁が閉弁すると、冷房用蒸発器側通路の冷媒流れが遮断されるので、圧縮機の冷媒吸入作用によって冷蔵側低圧圧力(冷蔵用蒸発器の冷媒圧力)が急速に低下する。   The solenoid valve upstream of the cooling evaporator is opened and closed at predetermined time intervals by the timer output of the control device. When this solenoid valve is closed, the refrigerant flow in the cooling evaporator side passage is blocked, and the refrigeration side low pressure (refrigerant pressure in the refrigeration evaporator) rapidly decreases due to the refrigerant suction action of the compressor.

この結果、冷蔵用蒸発器の冷媒圧力が所定圧力、例えば、0.1MPaまで低下すると、今まで閉弁状態にあった定圧膨張弁が開弁するので、冷蔵用蒸発器に定圧膨張弁で減圧された低圧冷媒が流入し、この低圧冷媒が冷蔵庫内の空気から吸熱して蒸発することにより、冷蔵庫内を冷却する。   As a result, when the refrigerant pressure of the refrigeration evaporator drops to a predetermined pressure, for example, 0.1 MPa, the constant pressure expansion valve that has been closed until now opens, so the refrigeration evaporator is depressurized with the constant pressure expansion valve. The cooled low-pressure refrigerant flows in, and the low-pressure refrigerant absorbs heat from the air in the refrigerator and evaporates to cool the inside of the refrigerator.

ここで、サイクル循環冷媒がHFC−134aの場合、冷媒圧力=0.1MPaでの冷媒蒸発温度は−10℃という低温であるので、冷蔵庫内にて缶ジュース等を急速に冷却することができ、製氷機能を発揮することができる。一方、冷房用蒸発器側の冷媒圧力(冷房側低圧圧力)は冷房熱負荷により変動するが、通常は、0.2MPa〜0.4MPa程度の範囲でバランスしている。   Here, when the cycle circulation refrigerant is HFC-134a, the refrigerant evaporation temperature at a refrigerant pressure = 0.1 MPa is a low temperature of −10 ° C., so that can juice can be rapidly cooled in the refrigerator, The ice making function can be demonstrated. On the other hand, the refrigerant pressure on the cooling evaporator side (cooling side low pressure) varies depending on the cooling heat load, but is normally balanced in the range of about 0.2 MPa to 0.4 MPa.

ところで、冷房用蒸発器の低負荷条件では、冷房用蒸発器の温度が0℃以下に低下して凝縮水が凍結する、いわゆるフロスト現象が生じるので、冷房用蒸発器の吹出空気温度を検出する温度センサを設け、冷房用蒸発器の吹出空気温度が設定温度(例えば、3℃)以下に低下すると、温度センサの検出信号に基づいて冷凍サイクルの圧縮機の作動を停止する制御を行って、冷房用蒸発器のフロストを防止するようにしている。
特開昭61−280353号公報
By the way, under the low load condition of the cooling evaporator, a so-called frost phenomenon occurs in which the temperature of the cooling evaporator drops to 0 ° C. or less and the condensed water freezes, so the temperature of the air blown from the cooling evaporator is detected. A temperature sensor is provided, and when the temperature of the air blown from the cooling evaporator is lowered to a set temperature (for example, 3 ° C.) or lower, control is performed to stop the operation of the compressor of the refrigeration cycle based on the detection signal of the temperature sensor, The frost of the cooling evaporator is prevented.
JP 61-280353 A

従って、車室内の冷房と冷蔵庫内の冷却とを同時に行う冷房冷蔵同時運転の際に、冷房用蒸発器のフロスト防止のために圧縮機の作動を停止すると、冷蔵用蒸発器の冷却作用も停止されてしまい、冷蔵庫内の冷却が阻害される。   Therefore, if the compressor operation is stopped to prevent frosting of the cooling evaporator during simultaneous cooling and refrigeration, which simultaneously cools the passenger compartment and the refrigerator, the cooling action of the refrigeration evaporator also stops. As a result, cooling in the refrigerator is hindered.

また、冷房用蒸発器のフロスト防止のために圧縮機の作動を停止した後に、冷房用蒸発器の吹出空気温度が上昇して、圧縮機を再起動した直後に、制御装置のタイマー出力により冷蔵用蒸発器側へ冷媒を流すと、この間、冷房用蒸発器に冷媒が流れず、冷房用蒸発器の冷却作用停止が継続される。   In addition, after stopping the operation of the compressor to prevent the frost of the cooling evaporator, the temperature of the air blown from the cooling evaporator rises and immediately after the compressor is restarted, the refrigeration is performed by the timer output of the controller. When the refrigerant is caused to flow to the evaporator side, the refrigerant does not flow to the cooling evaporator during this time, and the cooling action of the cooling evaporator is stopped.

つまり、冷房用蒸発器の吹出空気温度が設定温度以下に低下して圧縮機の作動を停止した後、タイマー出力により冷蔵用蒸発器側への冷媒流れを遮断するまでの間、冷房用蒸発器の冷却作用停止が継続される。   In other words, after the temperature of the air blown from the cooling evaporator drops below the set temperature and the compressor is stopped, the cooling evaporator is used until the refrigerant flow to the refrigeration evaporator is cut off by the timer output. The cooling action is stopped.

この結果、冷房用蒸発器の温度上昇幅が大きくなって車室内吹出空気温度の上昇幅も大きくなるので、乗員の冷房フィーリングが悪化する。   As a result, the temperature rise of the cooling evaporator is increased and the temperature of the air blown out from the passenger compartment is also increased, so that the cooling feeling of the passenger is deteriorated.

本発明は、上記点に鑑み、冷房冷蔵同時運転時に冷房用蒸発器のフロスト防止機能の確保と、冷蔵庫内の冷却性能向上とを両立することを目的とする。   In view of the above points, an object of the present invention is to achieve both the securing of the frost prevention function of the cooling evaporator and the improvement of the cooling performance in the refrigerator during the simultaneous cooling and refrigeration operation.

また、本発明は、冷房冷蔵同時運転時における冷房フィーリングの向上を図ることを他の目的とする。   Another object of the present invention is to improve the cooling feeling during the simultaneous cooling and refrigeration operation.

上記目的を達成するため、請求項1に記載の発明では、冷房用蒸発器(20、24)と、
前記冷房用蒸発器(20、24)と並列に設けられた冷蔵用蒸発器(27)と、
前記冷房用蒸発器(20、24)および前記冷蔵用蒸発器(27)を通過した冷媒を吸入して圧縮する圧縮機(10)と、
前記冷房用蒸発器(20、24)の上流側に設けられ、前記冷房用蒸発器(20、24)への流入冷媒を減圧する冷房用減圧装置(19、23)と、
前記冷蔵用蒸発器(27)の上流側に設けられ、前記冷蔵用蒸発器(27)への流入冷媒を減圧する冷蔵用減圧装置(26)と、
前記冷房用蒸発器(20、24)側の冷媒流れを断続する冷房側電気制御弁(18、22)と、
前記冷房用蒸発器(20、24)の温度を検出する温度検出手段(42a)と、
前記温度検出手段(42a)の検出信号が入力され前記圧縮機(10)の作動の断続および前記冷房側電気制御弁(18、22)の開閉を制御する制御手段(40)とを具備し、
冷房冷蔵同時運転が設定されたときに、前記温度検出手段(42a)の検出温度が設定温度以下に低下すると、前記制御手段(40)によって前記圧縮機(10)を作動状態に維持したまま、前記冷房側電気制御弁(18、22)を閉弁して、前記冷蔵用蒸発器(27)の通路に冷媒が流れるようにし、
前記冷房冷蔵同時運転が設定されたときに、前記温度検出手段(42a)の検出温度が前記設定温度よりも高くなると、前記制御手段(40)によって前記圧縮機(10)を作動状態に維持したまま、前記冷房側電気制御弁(18、22)を開弁して、前記冷房用蒸発器(20、24)の通路に冷媒が流れるようにした冷房冷蔵用冷凍サイクル装置を特徴としている。
In order to achieve the above object, in the invention according to claim 1, a cooling evaporator (20, 24),
A refrigeration evaporator (27) provided in parallel with the cooling evaporator (20, 24);
A compressor (10) that sucks and compresses the refrigerant that has passed through the cooling evaporator (20, 24) and the refrigeration evaporator (27);
A cooling decompression device (19, 23) that is provided upstream of the cooling evaporator (20, 24) and decompresses refrigerant flowing into the cooling evaporator (20, 24);
A refrigeration decompression device (26) that is provided upstream of the refrigeration evaporator (27) and depressurizes refrigerant flowing into the refrigeration evaporator (27);
A cooling-side electric control valve (18, 22) for intermittently flowing the refrigerant flow on the cooling evaporator (20, 24) side;
Temperature detecting means (42a) for detecting the temperature of the cooling evaporator (20, 24);
A control means (40) for controlling the intermittent operation of the compressor (10) and the opening and closing of the cooling side electric control valves (18, 22) when the detection signal of the temperature detection means (42a) is inputted;
When the cooling and refrigeration simultaneous operation is set and the detected temperature of the temperature detecting means (42a) falls below a set temperature, the control means (40) keeps the compressor (10) in an operating state, Closing the cooling-side electric control valves (18, 22) so that the refrigerant flows through the passage of the refrigeration evaporator (27);
When the cooling and refrigeration simultaneous operation is set, if the detected temperature of the temperature detecting means (42a) becomes higher than the set temperature, the control means (40) maintains the compressor (10) in an operating state. The cooling side refrigeration cycle apparatus is characterized in that the cooling-side electric control valves (18, 22) are opened to allow the refrigerant to flow through the passages of the cooling evaporators (20, 24).

これによると、冷房冷蔵同時運転時に、冷房用蒸発器(20、24)の温度が設定温度以下に低下すると、圧縮機(10)を作動状態に維持したまま、冷房側電気制御弁(18、22)を閉弁することにより、冷房用蒸発器(20、24)への冷媒流れを遮断して冷房用蒸発器(20、24)のフロストを防止できる。   According to this, when the temperature of the cooling evaporator (20, 24) decreases below the set temperature during the cooling and refrigeration simultaneous operation, the cooling side electric control valve (18, 24) is maintained while the compressor (10) is maintained in the operating state. By closing the valve 22), the refrigerant flow to the cooling evaporators (20, 24) can be cut off and frosting of the cooling evaporators (20, 24) can be prevented.

しかも、このとき、冷房側電気制御弁(18、22)の閉弁によって冷蔵用蒸発器(27)の通路に冷媒が流れるから、冷蔵庫内の冷却性能を確実に発揮できる。   In addition, at this time, the refrigerant flows into the passage of the refrigeration evaporator (27) by closing the cooling side electric control valves (18, 22), so that the cooling performance in the refrigerator can be surely exhibited.

つまり、冷房用蒸発器(20、24)のフロスト防止を実行しつつ、冷蔵庫内の冷却性能を同時に発揮できる。   That is, while performing the frost prevention of the cooling evaporators (20, 24), the cooling performance in the refrigerator can be exhibited at the same time.

また、圧縮機(10)を作動状態に維持したまま、上記の蒸発器フロスト防止制御と冷蔵庫内の冷却性能発揮とを実行するから、圧縮機作動の断続ショック(異音)を回避でき、車室内環境の快適性を向上できる。   In addition, since the evaporator frost prevention control and the cooling performance in the refrigerator are performed while the compressor (10) is maintained in an operating state, intermittent shock (abnormal noise) due to the compressor operation can be avoided. The comfort of the indoor environment can be improved.

更に、温度検出手段(42a)の検出温度が設定温度よりも高くなると、冷房側電気制御弁(18、22)を開弁して、冷房用蒸発器(20、24)の通路に直ちに冷媒が流れるから、従来技術のように冷房用蒸発器の温度上昇幅が過度に大きくなるという現象が発生せず、乗員の冷房フィーリングを向上できる。   Further, when the temperature detected by the temperature detecting means (42a) becomes higher than the set temperature, the cooling-side electric control valves (18, 22) are opened, and the refrigerant immediately enters the passage of the cooling evaporators (20, 24). Therefore, the phenomenon that the temperature rise of the cooling evaporator becomes excessively large as in the prior art does not occur, and the cooling feeling of the occupant can be improved.

請求項2に記載の発明では、請求項1に記載の冷房冷蔵用冷凍サイクル装置において、前記制御手段(40)には前記冷房用蒸発器(20、24)の冷房負荷に関連した情報値が入力されるようになっており、
前記冷房冷蔵同時運転が設定されたときに、前記制御手段(40)によって前記冷房負荷が所定レベル以上の高負荷状態であると判定されると、前記制御手段(40)によって前記圧縮機(10)を作動状態に維持したまま、前記冷房側電気制御弁(18、22)の開弁状態と閉弁状態を交互に繰り返し、前記冷房側電気制御弁(18、22)の開弁によって前記冷房用蒸発器(20、24)の通路に冷媒が流れ、前記冷房側電気制御弁(18、22)の閉弁によって前記冷蔵用蒸発器(27)の通路に冷媒が流れるようにし、
一方、前記冷房冷蔵同時運転が設定されたときに、前記制御手段(40)によって前記冷房負荷が所定レベル未満の低負荷状態であると判定されると、前記温度検出手段(42a)の検出温度の高低に応じて前記冷房側電気制御弁(18、22)の開閉を決定する制御を行うことを特徴とする。
According to a second aspect of the present invention, in the refrigerating cycle apparatus for cooling and refrigerating according to the first aspect, the control means (40) has an information value related to a cooling load of the cooling evaporator (20, 24). Entered,
When the control unit (40) determines that the cooling load is in a high load state of a predetermined level or more when the cooling and refrigeration simultaneous operation is set, the control unit (40) determines the compressor (10 ) Is maintained in the operating state, and the valve-opening state and the valve-closing state of the cooling-side electric control valve (18, 22) are alternately repeated, and the cooling-side electric control valve (18, 22) is opened. Refrigerant flows through the passage of the evaporator (20, 24), and the refrigerant flows through the passage of the refrigeration evaporator (27) by closing the cooling-side electric control valve (18, 22),
On the other hand, when the simultaneous cooling and refrigeration operation is set, if the control means (40) determines that the cooling load is in a low load state below a predetermined level, the temperature detected by the temperature detection means (42a) Control is performed to determine opening and closing of the cooling side electric control valve (18, 22) according to the height of the air conditioner.

これによると、冷房冷蔵同時運転の冷房高負荷時には、冷房側電気制御弁(18、22)の開弁状態と閉弁状態を交互に強制的に繰り返すことにより、冷房用蒸発器(20、24)の通路に冷媒が流れる状態と、冷蔵用蒸発器(27)の通路に冷媒が流れる状態とを交互に設定できる。従って、冷房高負荷時においても、冷房性能を発揮を発揮すると同時に、冷蔵庫内の冷却性能も確実に発揮できる。   According to this, the cooling evaporator (20, 24) is forcibly repeated by alternately repeating the open state and the closed state of the cooling side electric control valves (18, 22) at the time of cooling high load in the simultaneous cooling and refrigeration operation. ) And a state where the refrigerant flows through the passage of the refrigeration evaporator (27) can be alternately set. Therefore, the cooling performance in the refrigerator can be surely exhibited at the same time that the cooling performance is exhibited even at the time of cooling high load.

そして、冷房低負荷時には、請求項1と同様に、冷房用蒸発器温度の高低に応じて冷房側電気制御弁(18、22)を開閉することにより、冷房用蒸発器(20、24)のフロスト防止を実行しつつ、冷蔵庫内の冷却性能を確実に発揮できる。   And, at the time of cooling low load, as in claim 1, the cooling evaporator (20, 24) is opened and closed by opening and closing the cooling side electric control valves (18, 22) according to the level of the cooling evaporator temperature. While performing frost prevention, the cooling performance in the refrigerator can be reliably exhibited.

請求項3に記載の発明では、請求項1または2に記載の冷房冷蔵用冷凍サイクル装置において、冷房単独運転が設定されたときは、前記制御手段(40)によって前記冷房側電気制御弁(18、22)を開弁状態に維持したまま、前記温度検出手段(42a)の検出温度の高低に応じて前記圧縮機(10)の作動を断続し、
冷蔵単独運転が設定されたときは、前記制御手段(40)によって前記冷房側電気制御弁(18、22)を閉弁状態に維持したまま、前記圧縮機(10)を間欠的に作動させることを特徴とする。
According to a third aspect of the present invention, in the refrigeration cycle apparatus for cooling and refrigerating according to the first or second aspect, when the cooling single operation is set, the cooling means electric control valve (18) is controlled by the control means (40). , 22) while maintaining the valve open state, the operation of the compressor (10) is interrupted according to the detected temperature of the temperature detecting means (42a),
When the refrigeration single operation is set, the compressor (10) is intermittently operated while the cooling electric control valves (18, 22) are kept closed by the control means (40). It is characterized by.

これによると、冷房単独運転時には冷房用蒸発器温度の高低に応じて圧縮機(10)の作動を断続することにより、冷房用蒸発器(20、24)のフロスト防止機能を発揮できるとともに、冷蔵単独運転時には圧縮機(10)の間欠作動によって冷蔵庫内の必要冷却性能を発揮できる。   According to this, the frost prevention function of the cooling evaporators (20, 24) can be exhibited and the refrigeration can be performed by intermittently operating the compressor (10) according to the level of the cooling evaporator temperature during the single cooling operation. The required cooling performance in the refrigerator can be exhibited by intermittent operation of the compressor (10) during the single operation.

つまり、冷房冷蔵同時運転モード、冷房単独運転モード、および冷房単独運転モードをいずれも良好に実行できる。   That is, the cooling / cooling simultaneous operation mode, the cooling single operation mode, and the cooling single operation mode can all be executed satisfactorily.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

以下本発明の一実施形態を図に基づいて説明する。図1は本実施形態による冷房冷蔵用冷凍サイクル装置のサイクル図であり、デュアルエアコンタイプの車両用空調装置に適用した例を示している。ここで、「デュアルエアコンタイプ」とは車室内の前席側領域を空調する前席側空調ユニット21と、車室内の後席側領域を空調する後席側空調ユニット25との両ユニットを備える形式のものである。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cycle diagram of a refrigeration cycle apparatus for cooling and refrigerating according to the present embodiment, and shows an example applied to a dual air conditioner type vehicle air conditioner. Here, the “dual air conditioner type” includes both a front seat side air conditioning unit 21 that air-conditions the front seat side area in the vehicle interior and a rear seat side air conditioning unit 25 that air-conditions the rear seat side area in the vehicle interior. Of the form.

図1において、圧縮機10は電磁クラッチ11を有し、この電磁クラッチ11を介して図示しない車両エンジンにより回転駆動される。圧縮機10の吐出側には高圧冷媒の放熱器をなす凝縮器12が接続される。   In FIG. 1, the compressor 10 has an electromagnetic clutch 11, and is driven to rotate by a vehicle engine (not shown) via the electromagnetic clutch 11. A condenser 12 is connected to the discharge side of the compressor 10 as a radiator for high-pressure refrigerant.

圧縮機10から吐出された高圧ガス冷媒は凝縮器12で外気に放熱して凝縮する。凝縮器12の出口側には受液器13が接続され、この受液器13内にて凝縮器12の出口冷媒(凝縮冷媒)の気液が分離される。   The high-pressure gas refrigerant discharged from the compressor 10 dissipates heat to the outside air through the condenser 12 and condenses. A liquid receiver 13 is connected to the outlet side of the condenser 12, and the gas / liquid of the outlet refrigerant (condensed refrigerant) of the condenser 12 is separated in the liquid receiver 13.

受液器13内部に余剰液冷媒を溜めるとともに、受液器13下流側に液冷媒を導出するようになっている。受液器13下流側の高圧液配管14は3つの並列通路に分岐される。すなわち、前席冷房側冷媒通路15と冷蔵側冷媒通路16と後席冷房側冷媒通路17の並列通路が受液器13下流側に設けてある。   The excess liquid refrigerant is stored inside the liquid receiver 13 and the liquid refrigerant is led out downstream of the liquid receiver 13. The high-pressure liquid pipe 14 on the downstream side of the liquid receiver 13 is branched into three parallel passages. That is, a parallel passage of the front seat cooling side refrigerant passage 15, the refrigeration side refrigerant passage 16 and the rear seat cooling side refrigerant passage 17 is provided on the downstream side of the liquid receiver 13.

前席冷房側冷媒通路15には、その上流側から下流側に向かって前席側電気制御弁をなす電磁弁18と、前席側冷房用減圧装置をなす温度作動式膨張弁19と、前席側冷房用蒸発器20が直列に設けてある。   The front-seat cooling-side refrigerant passage 15 includes an electromagnetic valve 18 that forms a front-seat-side electric control valve from the upstream side toward the downstream side, a temperature-actuated expansion valve 19 that forms a front-seat-side cooling pressure reducing device, A seat-side cooling evaporator 20 is provided in series.

電磁弁18は通電されると開弁するタイプの弁である。温度作動式膨張弁19は、周知のように冷房用蒸発器20の出口冷媒の過熱度に応じて弁体開度を調整し、それにより、冷房用蒸発器20への冷媒流量を調整して冷房用蒸発器20の出口冷媒の過熱度を所定値に維持する。   The solenoid valve 18 is a valve that opens when energized. As is well known, the temperature-actuated expansion valve 19 adjusts the valve element opening according to the degree of superheat of the outlet refrigerant of the cooling evaporator 20, thereby adjusting the refrigerant flow rate to the cooling evaporator 20. The degree of superheat of the outlet refrigerant of the cooling evaporator 20 is maintained at a predetermined value.

前席側冷房用蒸発器20は、上記した前席側空調ユニット21のケース21a内に配置される。このケース21a内には前席側電動送風機21bによって空気が送風され、この送風空気は前席側冷房用蒸発器20等を通過して車室内の前席側領域へ吹き出される。   The front seat side cooling evaporator 20 is disposed in the case 21 a of the front seat side air conditioning unit 21 described above. Air is blown into the case 21a by the front seat side electric blower 21b, and this blown air passes through the front seat side cooling evaporator 20 and is blown out to the front seat side region in the vehicle interior.

冷房用蒸発器20には温度作動式膨張弁19で減圧された低圧冷媒が流入し、この低圧冷媒が前席側空調ユニット21内の送風空気から吸熱して蒸発することにより、送風空気を冷却する。   The low-pressure refrigerant decompressed by the temperature-actuated expansion valve 19 flows into the cooling evaporator 20, and the low-pressure refrigerant absorbs heat from the blowing air in the front seat air conditioning unit 21 and evaporates to cool the blowing air. To do.

前席側電動送風機21bの吸入口21cには周知の内外気切替箱(図示せず)が接続され、この内外気切替箱を通して内気(車室内空気)または外気(車室外空気)が送風機21bに吸入される。   A well-known inside / outside air switching box (not shown) is connected to the suction port 21c of the front seat side electric blower 21b, and the inside air (vehicle compartment air) or the outside air (vehicle compartment outside air) is supplied to the blower 21b through the inside / outside air switching box. Inhaled.

後席冷房側冷媒通路17は前席冷房側冷媒通路15と同一構成であり、その上流側から下流側に向かって後席側電気制御弁をなす電磁弁22と、後席側冷房用減圧装置をなす温度作動式膨張弁23と、後席側冷房用蒸発器24が直列に設けてある。   The rear-seat cooling-side refrigerant passage 17 has the same configuration as the front-seat cooling-side refrigerant passage 15, and includes an electromagnetic valve 22 that forms a rear-seat-side electric control valve from the upstream side toward the downstream side, and a rear-seat-side cooling pressure reducing device. A temperature-actuated expansion valve 23 and a rear seat side cooling evaporator 24 are provided in series.

後席側冷房用蒸発器24は、上記した後席側空調ユニット25のケース25a内に配置される。このケース25a内には後席側電動送風機25bによって空気が送風され、この送風空気は後席側冷房用蒸発器24等を通過して車室内の後席側領域へ吹き出される。後席側電動送風機25bの吸入口25cは車室内の後席側領域に連通して車室内後席側の内気が送風機25bに吸入される。   The rear seat side cooling evaporator 24 is disposed in the case 25 a of the rear seat side air conditioning unit 25 described above. Air is blown into the case 25a by the rear seat side electric blower 25b, and the blown air passes through the rear seat side cooling evaporator 24 and the like and is blown out to the rear seat side region of the vehicle interior. The suction port 25c of the rear seat side electric blower 25b communicates with the rear seat side region of the vehicle interior, and the inside air on the rear seat side of the vehicle interior is sucked into the blower 25b.

一方、冷蔵側冷媒通路16には、その上流側から下流側に向かって冷蔵用減圧装置をなす定圧膨張弁26と冷蔵用蒸発器27と逆止弁28が直列に設けてある。   On the other hand, the refrigeration side refrigerant passage 16 is provided with a constant pressure expansion valve 26, a refrigeration evaporator 27, and a check valve 28, which form a refrigeration decompression device, in series from the upstream side to the downstream side.

冷蔵用蒸発器27は車室内の適宜な場所に搭載される車載冷蔵庫29の断熱ケース29a内に配置される。そして、定圧膨張弁26で減圧された低圧冷媒が冷蔵用蒸発器27において断熱ケース29a内の空気から吸熱して蒸発することにより、断熱ケース29aの内部空間を冷却する。   The refrigerator 27 for refrigeration is arrange | positioned in the heat insulation case 29a of the vehicle-mounted refrigerator 29 mounted in the appropriate place in a vehicle interior. The low-pressure refrigerant decompressed by the constant pressure expansion valve 26 absorbs heat from the air in the heat insulation case 29a and evaporates in the refrigeration evaporator 27, thereby cooling the internal space of the heat insulation case 29a.

逆止弁28は冷蔵用蒸発器27の出口から圧縮機10の吸入側への一方向のみに冷媒が流れることを許容し、これとは逆方向に冷媒が流れることを防止する。従って、冷房用蒸発器20、24の出口側から温度の高い低圧冷媒が冷媒温度(冷媒圧力)の低い冷蔵用蒸発器27内に流れ込むことを逆止弁28にて防止できる。   The check valve 28 allows the refrigerant to flow only in one direction from the outlet of the refrigeration evaporator 27 to the suction side of the compressor 10, and prevents the refrigerant from flowing in the opposite direction. Therefore, the check valve 28 can prevent the low-pressure refrigerant having a high temperature from flowing into the refrigerating evaporator 27 having a low refrigerant temperature (refrigerant pressure) from the outlet side of the cooling evaporators 20 and 24.

定圧膨張弁26は、その下流側圧力(冷蔵用蒸発器27の冷媒圧力)が所定開弁圧以下に低下すると開弁する圧力応動弁である。ここで、定圧膨張弁26の開弁圧は、冷房用蒸発器20、24側の冷媒圧力(冷房側低圧圧力)よりも十分低い値に設定する。   The constant pressure expansion valve 26 is a pressure responsive valve that opens when its downstream pressure (refrigerant pressure in the refrigeration evaporator 27) drops below a predetermined valve opening pressure. Here, the valve opening pressure of the constant pressure expansion valve 26 is set to a value sufficiently lower than the refrigerant pressure (cooling side low pressure) on the cooling evaporators 20 and 24 side.

具体的には、冷房用蒸発器20、24側の冷媒圧力(冷房側低圧圧力)は通常、0.2MPa〜0.4MPa程度の範囲であるのに反し、定圧膨張弁26の開弁圧は、例えば、0.1MPa程度に設定する。この0.1MPaでの冷媒蒸発温度はHFC−134aの場合−10℃である。   Specifically, the refrigerant pressure on the cooling evaporators 20 and 24 side (cooling side low pressure) is normally in the range of about 0.2 MPa to 0.4 MPa, while the valve opening pressure of the constant pressure expansion valve 26 is For example, it is set to about 0.1 MPa. The refrigerant evaporation temperature at 0.1 MPa is −10 ° C. in the case of HFC-134a.

高圧圧力スイッチ30は、サイクル高圧圧力を検出する圧力検出手段であって、本例では受液器13出口側の高圧液配管14に配置されているが、受液器13の入口配管部に高圧圧力スイッチ30を配置してもよい。本例の高圧圧力スイッチ30は、高圧圧力が所定の上限値、例えば、3.1MPa以上に上昇するとオン状態になって、圧縮機停止信号を出す。   The high pressure switch 30 is a pressure detection means for detecting a cycle high pressure, and is arranged in the high pressure liquid pipe 14 on the outlet side of the liquid receiver 13 in this example. A pressure switch 30 may be arranged. The high pressure switch 30 of this example is turned on when the high pressure rises to a predetermined upper limit value, for example, 3.1 MPa or more, and issues a compressor stop signal.

次に、本実施形態の電制御部の概要を図2により説明すると、空調用制御装置40はマイクロコンピュータおよびその周辺回路等から構成され、ROMに記憶されたプログラムに従って所定の演算処理を行って、空調機器の作動を制御する。   Next, the outline of the electric control unit of this embodiment will be described with reference to FIG. 2. The air conditioning control device 40 is composed of a microcomputer and its peripheral circuits, etc., and performs predetermined arithmetic processing according to a program stored in the ROM. Control the operation of air conditioning equipment.

空調用制御装置40の出力側には、圧縮機10の電磁クラッチ11、電磁弁18、22、前席側電動送風機21b、後席側電動送風機25b等が接続されている。図示を省略しているが、実際には、前席側空調ユニット21の内外気切替機構のアクチュエータ、吹出温度制御機構のアクチュエータ、吹出モード切替用アクチュエータ、後席側空調ユニット25の吹出温度制御機構のアクチュエータ、吹出モード切替機構のアクチュエータ等も空調用制御装置40の出力側に接続され、これらの各種空調機器の作動が空調用制御装置40により制御される。従って、空調用制御装置40により本発明の制御手段が構成される。   On the output side of the air conditioning control device 40, the electromagnetic clutch 11, the electromagnetic valves 18, 22 of the compressor 10, the front seat side electric blower 21b, the rear seat side electric blower 25b, and the like are connected. Although not shown, actually, the actuator of the inside / outside air switching mechanism of the front seat side air conditioning unit 21, the actuator of the blowing temperature control mechanism, the blowing mode switching actuator, and the blowing temperature control mechanism of the rear seat side air conditioning unit 25 are illustrated. These actuators, the actuator of the blowing mode switching mechanism, and the like are also connected to the output side of the air conditioning control device 40, and the operations of these various air conditioning devices are controlled by the air conditioning control device 40. Therefore, the control means of the present invention is constituted by the air conditioning control device 40.

一方、空調用制御装置40の入力側にはセンサ群41の検出信号および空調操作パネル43の操作信号が入力される。センサ群41としては、前述した高圧圧力スイッチ30、前席側冷房用蒸発器20の吹出空気温度センサ42a、外気温度センサ42b、内気温度センサ42c、日射センサ42d、車両エンジンの水温センサ42e等が設けられ、これらセンサの検出信号が空調用制御装置40に入力される。   On the other hand, the detection signal of the sensor group 41 and the operation signal of the air conditioning operation panel 43 are input to the input side of the air conditioning control device 40. The sensor group 41 includes the high pressure switch 30 described above, the blowout air temperature sensor 42a of the front seat side cooling evaporator 20, the outside air temperature sensor 42b, the inside air temperature sensor 42c, the solar radiation sensor 42d, the water temperature sensor 42e of the vehicle engine, and the like. The detection signals of these sensors are input to the air conditioning control device 40.

また、空調操作パネル43には、冷房時に圧縮機10の作動指令信号を出すエアコンスイッチ(冷房作動スイッチ)44、前席側電動送風機21bの風量切替信号を出す前席側風量切替スイッチ45、後席側電動送風機25bの風量切替信号を出す後席側風量切替スイッチ46、車室内の設定温度信号を出す温度設定スイッチ47、冷蔵庫作動指令信号を出す冷蔵庫スイッチ48等が設けられている。   The air conditioning operation panel 43 includes an air conditioner switch (cooling operation switch) 44 that outputs an operation command signal for the compressor 10 during cooling, a front seat air volume switching switch 45 that outputs an air volume switching signal for the front seat electric blower 21b, and a rear A rear seat air volume switching switch 46 for outputting an air volume switching signal for the seat side electric blower 25b, a temperature setting switch 47 for outputting a set temperature signal in the passenger compartment, a refrigerator switch 48 for outputting a refrigerator operation command signal, and the like are provided.

なお、図示を省略しているが、空調操作パネル43には、内外気切替信号を出す内外気切替スイッチ、前席側吹出モード切替信号を出す前席側吹出モード切替スイッチ、後席側吹出モード切替信号を出す後席側吹出モード切替スイッチ等が設けられ、各種操作信号が空調操作パネル43から空調用制御装置40に入力されるようになっている。   Although not shown, the air conditioning operation panel 43 includes an inside / outside air switching switch that outputs an inside / outside air switching signal, a front seat side blowing mode switching switch that outputs a front seat side blowing mode switching signal, and a rear seat side blowing mode. A rear-seat side blowing mode changeover switch or the like that outputs a switching signal is provided, and various operation signals are input from the air conditioning operation panel 43 to the air conditioning control device 40.

次に、上記構成において本実施形態の作動を説明する。図3、図4は空調用制御装置40のマイクロコンピュータにより実行される制御フローであり、車両エンジンの始動に連動してスタートし、まず、ステップS10にて運転モードを判定する。   Next, the operation of this embodiment in the above configuration will be described. 3 and 4 are control flows executed by the microcomputer of the air-conditioning control device 40. The control flow starts in conjunction with the start of the vehicle engine. First, in step S10, the operation mode is determined.

具体的には、空調操作パネル43のエアコンスイッチ44のみが投入されているときは冷房単独運転と判定し、空調操作パネル43のエアコンスイッチ44と冷蔵庫スイッチ48が両方とも投入されているときは冷房冷蔵同時運転と判定し、冷蔵庫スイッチ48のみが投入されているときは冷蔵単独運転と判定する。   Specifically, when only the air conditioner switch 44 of the air conditioning operation panel 43 is turned on, it is determined that the cooling operation is independent, and when both the air conditioner switch 44 and the refrigerator switch 48 of the air conditioning operation panel 43 are turned on, the cooling operation is performed. It is determined that the refrigerating operation is simultaneous, and when only the refrigerator switch 48 is turned on, it is determined that the refrigerating operation is independent.

ステップS10にて冷房単独運転が判定されると、ステップS20に進み電磁弁18、22に通電して電磁弁18、22を開弁する。次に、ステップS30にて前席側冷房用蒸発器20の吹出空気温度(温度センサ42aの検出温度)Teに基づいて蒸発器温度の判定を行う。   When it is determined in step S10 that the cooling single operation is performed, the process proceeds to step S20, and the solenoid valves 18 and 22 are energized to open the solenoid valves 18 and 22. Next, in step S30, the evaporator temperature is determined based on the blown air temperature (detected temperature of the temperature sensor 42a) Te of the front seat side cooling evaporator 20.

この判定は具体的には図5に示すように、吹出空気温度Teがフロスト防止のための設定温度TEO(例えば3℃)以下に低下するとOFFの判定を行い、吹出空気温度Teが設定温度TEO+α(例えば、4℃)まで上昇するとONの判定を行う。   Specifically, as shown in FIG. 5, this determination is performed when the blown air temperature Te falls below a set temperature TEO (for example, 3 ° C.) for preventing frost, and the blown air temperature Te is set to the set temperature TEO + α. When it rises to (for example, 4 ° C.), it is determined to be ON.

ステップS30にてONの判定が行われると、ステップS40に進み圧縮機10の電磁クラッチ11に通電して電磁クラッチ11をON(接続)状態にする。これにより、圧縮機10が車両エンジンにより回転駆動されるので、冷凍サイクルでは冷媒が圧縮機10の吐出側→凝縮器12→受液器13→前席冷房側冷媒通路15および後席冷房側冷媒通路17の並列通路→圧縮機10の吸入側に至る閉回路で循環する。   If ON determination is performed in step S30, it will progress to step S40 and will energize the electromagnetic clutch 11 of the compressor 10, and will make the electromagnetic clutch 11 into an ON (connection) state. Thereby, since the compressor 10 is rotationally driven by the vehicle engine, the refrigerant is discharged from the compressor 10 → the condenser 12 → the liquid receiver 13 → the front seat cooling side refrigerant passage 15 and the rear seat cooling side refrigerant in the refrigeration cycle. It circulates in a closed circuit from the parallel passage of the passage 17 to the suction side of the compressor 10.

従って、空調用制御装置40の制御出力により前席側電動送風機21bおよび後席側電動送風機25bを作動させることにより、各送風機21b、25bの送風空気が前席側冷房用蒸発器20および後席側冷房用蒸発器24で冷却されて冷風となり、この冷風が車室内の前席側および後席側領域へ吹き出され、車室内の前席側および後席側領域を冷房する。この際、温度作動式膨張弁19、23によって各冷房用蒸発器20、24の出口冷媒の過熱度が所定値となるように冷媒流量が調整される。   Therefore, by operating the front seat side electric blower 21b and the rear seat side electric blower 25b by the control output of the air conditioning control device 40, the blown air of each of the blowers 21b and 25b is changed to the front seat side cooling evaporator 20 and the rear seat. Cooled by the side-cooling evaporator 24 to become cool air, this cool air is blown out to the front seat side and rear seat side regions in the vehicle interior, and cools the front seat side and rear seat side regions in the vehicle interior. At this time, the refrigerant flow rate is adjusted by the temperature-actuated expansion valves 19 and 23 so that the degree of superheat of the outlet refrigerant of the cooling evaporators 20 and 24 becomes a predetermined value.

そして、前席側冷房用蒸発器20の吹出空気温度Teが設定温度TEO(例えば3℃)以下に低下すると、ステップS30の判定がOFFに切り替わるので、ステップS50に進み、電磁クラッチ11の通電を遮断して電磁クラッチ11をOFF(遮断)状態にする。   Then, when the blown air temperature Te of the front seat side cooling evaporator 20 falls below a set temperature TEO (for example, 3 ° C.), the determination in step S30 is switched to OFF, so the process proceeds to step S50, and the electromagnetic clutch 11 is energized. The electromagnetic clutch 11 is turned off (disconnected) by being disconnected.

これにより、圧縮機10が停止されるので、前席側冷房用蒸発器20および後席側冷房用蒸発器24への冷媒循環が停止されて、前席側冷房用蒸発器20の吹出空気温度Teが上昇し始める。これにより、前席側冷房用蒸発器20および後席側冷房用蒸発器24のフロストを防止できる。   As a result, the compressor 10 is stopped, so that the refrigerant circulation to the front seat side cooling evaporator 20 and the rear seat side cooling evaporator 24 is stopped, and the blown air temperature of the front seat side cooling evaporator 20 is stopped. Te begins to rise. Thereby, the frost of the front seat side cooling evaporator 20 and the rear seat side cooling evaporator 24 can be prevented.

そして、圧縮機10の停止によって前席側冷房用蒸発器20の吹出空気温度TeがTEO+α(例えば、4℃)以上に上昇すると、ステップS30の判定がONに切り替り、圧縮機10が再び作動する。   When the air temperature Te of the front seat side cooling evaporator 20 rises to TEO + α (for example, 4 ° C.) or more due to the stop of the compressor 10, the determination in step S30 is switched ON and the compressor 10 is activated again. To do.

以上により、前席側冷房用蒸発器20の吹出空気温度Teが温度センサ42aにより検出され、この吹出空気温度が設定温度TEO付近(例えば、3〜4℃)となるように空調用制御装置40の制御出力により電磁クラッチ11(圧縮機10)の作動が断続制御される。   As described above, the blown air temperature Te of the front seat side cooling evaporator 20 is detected by the temperature sensor 42a, and the air conditioning control device 40 is set so that the blown air temperature is in the vicinity of the set temperature TEO (for example, 3 to 4 ° C.). The operation of the electromagnetic clutch 11 (compressor 10) is intermittently controlled by the control output.

このように、前席側冷房用蒸発器20の吹出空気温度が設定温度TEO付近に維持されるように圧縮機10の作動を断続制御するため、サイクル低圧圧力は冷房熱負荷の変動に応じて0.2MPa〜0.4MPa程度の範囲でバランスする。因みに、サイクル循環冷媒がHFC−134aの場合、サイクル低圧圧力=0.2MPaは冷媒蒸発温度0℃に対応し、サイクル低圧圧力=0.4MPaは冷媒蒸発温度15℃に対応する。   Thus, since the operation of the compressor 10 is intermittently controlled so that the blown air temperature of the front-seat-side cooling evaporator 20 is maintained in the vicinity of the set temperature TEO, the cycle low pressure is determined according to the variation in the cooling heat load. The balance is in the range of about 0.2 MPa to 0.4 MPa. Incidentally, when the cycle circulation refrigerant is HFC-134a, the cycle low pressure = 0.2 MPa corresponds to the refrigerant evaporation temperature 0 ° C., and the cycle low pressure = 0.4 MPa corresponds to the refrigerant evaporation temperature 15 ° C.

一方、冷蔵側冷媒通路16に備えられる定圧膨張弁26の開弁圧は、庫内冷蔵物(缶ジュース類等)を急速冷却するための低温を得るために、上記冷房運転時のサイクル低圧圧力に比較して十分低い値、具体的には、0.1MPaに設定している。   On the other hand, the opening pressure of the constant pressure expansion valve 26 provided in the refrigeration side refrigerant passage 16 is the cycle low pressure during the cooling operation in order to obtain a low temperature for rapidly cooling the refrigerated product (can juice, etc.). Is set to a sufficiently low value, specifically 0.1 MPa.

この結果、冷房単独運転時にはサイクル低圧圧力が定圧膨張弁26の開弁圧まで低下せず、従って、定圧膨張弁26は閉弁状態のままである。そのため、冷蔵側冷媒通路16にには冷媒が流れない。   As a result, the cycle low pressure does not drop to the opening pressure of the constant pressure expansion valve 26 during the cooling only operation, and therefore the constant pressure expansion valve 26 remains closed. Therefore, the refrigerant does not flow into the refrigeration side refrigerant passage 16.

次に、空調操作パネル43のエアコンスイッチ44が投入された状態において、冷蔵庫スイッチ48も投入されると、ステップS10にて冷房冷蔵同時運転状態が判定され、図4の制御フローに進む。   Next, when the refrigerator switch 48 is also turned on in the state where the air conditioner switch 44 of the air conditioning operation panel 43 is turned on, the simultaneous cooling and refrigerating operation state is determined in step S10, and the process proceeds to the control flow of FIG.

先ず、ステップS60にて冷房負荷が高いか判定する。冷房負荷の判定は種々な手段にて可能であるが、本例では前席側冷房用蒸発器20の吸い込み空気温度が設定温度以上であると冷房負荷が高いと判定し、前席側冷房用蒸発器20の吸い込み空気温度が設定温度未満であると冷房負荷が低いと判定する。   First, it is determined in step S60 whether the cooling load is high. The cooling load can be determined by various means. In this example, if the intake air temperature of the front-seat-side cooling evaporator 20 is equal to or higher than the set temperature, it is determined that the cooling load is high, and the front-seat-side cooling is used. If the intake air temperature of the evaporator 20 is lower than the set temperature, it is determined that the cooling load is low.

なお、前席側冷房用蒸発器20の吸い込み空気温度は特別のセンサを追加設定しなくても、内気循環モードでは内気センサ42cの検出温度Trを前席側冷房用蒸発器20の吸い込み空気温度として用い、外気導入モードでは外気センサ42bの検出温度Tamを前席側冷房用蒸発器20の吸い込み空気温度として用いればよい。   Note that the intake air temperature of the front seat side cooling evaporator 20 does not require any special sensor to be set. In the inside air circulation mode, the detected temperature Tr of the inside air sensor 42c is set to the intake air temperature of the front seat side cooling evaporator 20. In the outside air introduction mode, the detected temperature Tam of the outside air sensor 42b may be used as the intake air temperature of the front seat side cooling evaporator 20.

そして、ステップS60にて冷房負荷が高い(高負荷時である)と判定されると、ステップS70に進み間欠運転用タイマー(以下FIRタイマーという)を始動する。ここで、FIRタイマーは、図6(a)に示すように冷房側電磁弁18、22の開弁と閉弁を所定の時間間隔t1、t2で交互に繰り返すためのON、OFF出力を出すものである。   If it is determined in step S60 that the cooling load is high (high load), the process proceeds to step S70 to start an intermittent operation timer (hereinafter referred to as FIR timer). Here, as shown in FIG. 6 (a), the FIR timer outputs ON and OFF outputs for alternately repeating the opening and closing of the cooling side electromagnetic valves 18 and 22 at predetermined time intervals t1 and t2. It is.

図6(a)の時間t1は冷房側電磁弁18、22の開弁時間で、時間t2は冷房側電磁弁18、22の閉弁時間である。   The time t1 in FIG. 6A is the opening time of the cooling side electromagnetic valves 18 and 22, and the time t2 is the closing time of the cooling side electromagnetic valves 18 and 22.

次のステップS80では、FIRタイマー出力が図6(a)の時間t1による冷房側ON状態(すなわち、電磁弁開弁指令の状態)にあるか判定する。この判定がYESである間は、ステップS90で電磁クラッチ11(圧縮機10)を作動状態とし、ステップS100で冷房側電磁弁18、22を開弁状態とする。   In the next step S80, it is determined whether the FIR timer output is in the cooling side ON state (that is, the state of the solenoid valve opening command) at time t1 in FIG. While this determination is YES, the electromagnetic clutch 11 (compressor 10) is activated in step S90, and the cooling side electromagnetic valves 18 and 22 are opened in step S100.

これにより、冷房側電磁弁18、22を通して冷房側冷媒通路15、17のみに冷媒が流れ、冷房用蒸発器20、24が車室内の冷房作用を発揮する。冷房側電磁弁18、22の開弁時は、前述の冷房単独運転時と同様に、サイクル低圧圧力が冷房熱負荷に応じて決まる0.2MPa〜0.4MPa程度の値になる。このため、定圧膨張弁26は閉弁状態にあるので、冷蔵側冷媒通路16に冷媒が流れない。   As a result, the refrigerant flows only through the cooling side electromagnetic valves 18 and 22 to the cooling side refrigerant passages 15 and 17, and the cooling evaporators 20 and 24 exhibit the cooling action in the vehicle compartment. When the cooling side electromagnetic valves 18 and 22 are opened, the cycle low pressure becomes a value of about 0.2 MPa to 0.4 MPa determined according to the cooling heat load, as in the above-described cooling single operation. For this reason, since the constant pressure expansion valve 26 is in the closed state, the refrigerant does not flow into the refrigeration side refrigerant passage 16.

時間t1が経過して、FIRタイマー出力が図6(a)の時間t2による冷房側OFF状態(すなわち、電磁弁閉弁指令の状態)になると、ステップS80の判定がNOに切り替わるので、ステップS110で電磁クラッチ11(圧縮機10)を作動状態とし、ステップS120で冷房側電磁弁18、22を閉弁状態とする。   When the time t1 elapses and the FIR timer output becomes the cooling side OFF state (that is, the state of the solenoid valve closing command) at the time t2 in FIG. 6A, the determination in step S80 is switched to NO, so step S110 Thus, the electromagnetic clutch 11 (compressor 10) is activated, and the cooling side electromagnetic valves 18 and 22 are closed in step S120.

この冷房側電磁弁18、22が閉弁すると、冷蔵側冷媒通路16のみならず、冷房側冷媒通路15、17も遮断状態となる。これにより、冷凍サイクルの高圧側通路と低圧側通路との間が一時的に遮断された状態が発生する。   When the cooling side electromagnetic valves 18 and 22 are closed, not only the refrigeration side refrigerant passage 16 but also the cooling side refrigerant passages 15 and 17 are cut off. As a result, a state occurs in which the high pressure side passage and the low pressure side passage of the refrigeration cycle are temporarily blocked.

そのため、この通路遮断状態が発生したまま、冷房側冷媒通路15、17および冷蔵側冷媒通路16の低圧通路部(蒸発器20、24、27部分)の冷媒が、圧縮機10を通してサイクル高圧側へ移動することになり、サイクル低圧圧力が急速に低下する。   Therefore, the refrigerant in the low-pressure passage portions (evaporators 20, 24, and 27) of the cooling-side refrigerant passages 15 and 17 and the refrigeration-side refrigerant passage 16 passes through the compressor 10 to the cycle high-pressure side while the passage cutoff state is generated. The cycle low pressure will drop rapidly.

そして、冷房側電磁弁18、22の閉弁後、所定時間t0(図6(b)参照)が経過してサイクル低圧圧力が定圧膨張弁26の開弁圧まで低下すると、定圧膨張弁26が開弁するので、冷蔵側冷媒通路16を通過して冷媒が流れる。   When the cycle low pressure decreases to the valve opening pressure of the constant pressure expansion valve 26 after a predetermined time t0 (see FIG. 6B) elapses after the cooling side solenoid valves 18 and 22 are closed, the constant pressure expansion valve 26 is Since the valve is opened, the refrigerant flows through the refrigeration side refrigerant passage 16.

ここで、定圧膨張弁26の開弁圧は例えば、0.1MPaという低い値に設定してあって、冷媒がHFC−134aの場合、冷蔵用蒸発器27での冷媒蒸発温度が−10℃という低温になるので、冷蔵庫29内の缶ジュース類等の冷蔵物を急速に冷却できるとともに、製氷機能を発揮することも可能である。   Here, the valve opening pressure of the constant pressure expansion valve 26 is set to a low value of, for example, 0.1 MPa, and when the refrigerant is HFC-134a, the refrigerant evaporation temperature in the refrigeration evaporator 27 is −10 ° C. Since the temperature becomes low, refrigerated items such as can juices in the refrigerator 29 can be rapidly cooled and an ice making function can be exhibited.

そして、時間t2が経過して冷房側電磁弁18、22が再び開弁状態に復帰すると、サイクル低圧圧力が冷房熱負荷に応じて決まる0.2MPa〜0.4MPa程度の値に上昇するので、定圧膨張弁26は再び閉弁状態に復帰する。   And when time t2 passes and the cooling side solenoid valves 18 and 22 return to the open state again, the cycle low pressure increases to a value of about 0.2 MPa to 0.4 MPa determined according to the cooling heat load. The constant pressure expansion valve 26 returns to the closed state again.

このとき、冷房用蒸発器20、24の出口側から温度の高い冷媒が冷蔵用蒸発器27内に流入することを逆止弁28により阻止できる。これにより、冷房側電磁弁18、22が開弁してサイクル低圧圧力が上昇した後も冷蔵庫29内の低温状態を維持できる。   At this time, the check valve 28 can prevent the refrigerant having a high temperature from flowing into the refrigeration evaporator 27 from the outlet side of the cooling evaporators 20 and 24. Thereby, the low temperature state in the refrigerator 29 can be maintained even after the cooling side electromagnetic valves 18 and 22 are opened and the cycle low pressure is increased.

なお、冷房側電磁弁18、22の開弁時間t1は例えば、60秒程度であり、閉弁時間t2は例えば、15秒程度である。この冷房側電磁弁18、22の開弁時間と閉弁時間の割り振りは、冷房冷蔵同時運転状態における車室内温度の上昇程度と冷蔵庫内温度が目標温度に低下するまでの所要時間等を考慮して決定される。   The opening time t1 of the cooling side electromagnetic valves 18 and 22 is, for example, about 60 seconds, and the closing time t2 is, for example, about 15 seconds. The allocation of the valve opening time and the valve closing time of the cooling side solenoid valves 18 and 22 takes into consideration the degree of increase in the passenger compartment temperature in the simultaneous cooling and refrigeration operation, the time required for the refrigerator temperature to fall to the target temperature, and the like. Determined.

以上のごとく冷房冷蔵同時運転時における冷房高負荷時には、FIRタイマー出力による所定の時間t1と時間t2で冷房側電磁弁18、22の開弁と閉弁を交互に繰り返すことにより、冷房用蒸発器20、24による車室内冷房作用と冷蔵用蒸発器27による冷蔵庫29内冷却作用とを間欠的に実行できる。   As described above, at the time of a high cooling load during the simultaneous cooling and refrigeration operation, the opening and closing of the cooling side electromagnetic valves 18 and 22 are alternately repeated at a predetermined time t1 and time t2 based on the output of the FIR timer. The vehicle compartment cooling operation 20 and 24 and the refrigerator 29 cooling operation by the refrigeration evaporator 27 can be executed intermittently.

一方、ステップS60において冷房負荷が低いと判定されると、ステップS130に進み、前席側冷房用蒸発器20の吹出空気温度(温度センサ42aの検出温度)Teに基づいて蒸発器温度の判定を行う。この判定は、前述のステップS30と同様に図5に示すように吹出空気温度Teと設定温度TEOおよび設定温度TEO+αとを比較して、ON、OFFの判定を行う。   On the other hand, if it is determined in step S60 that the cooling load is low, the process proceeds to step S130, and the evaporator temperature is determined based on the blown air temperature (detected temperature of the temperature sensor 42a) Te of the front seat side cooling evaporator 20. Do. In this determination, as in step S30 described above, as shown in FIG. 5, the blown air temperature Te is compared with the set temperature TEO and the set temperature TEO + α to determine ON or OFF.

吹出空気温度Teが設定温度TEO(例えば、3℃)よりも高い間はステップS130の判定がONとなり、ステップS140に進み電磁クラッチ11(圧縮機10)を作動状態とし、ステップS150で冷房側電磁弁18、22を開弁状態とする。これにより、冷房用蒸発器20、24に冷媒が流れて車室内冷房作用が行われる。   While the blown air temperature Te is higher than the set temperature TEO (eg, 3 ° C.), the determination in step S130 is ON, the process proceeds to step S140, the electromagnetic clutch 11 (compressor 10) is activated, and the cooling side electromagnetic wave is activated in step S150. The valves 18 and 22 are opened. Thereby, a refrigerant | coolant flows into the evaporators 20 and 24 for cooling, and a vehicle interior cooling effect | action is performed.

吹出空気温度Teが設定温度TEOより低下すると、ステップS130の判定がOFFとなり、ステップS160に進み電磁クラッチ11(圧縮機10)を作動状態とし、ステップS170で冷房側電磁弁18、22を閉弁状態とする。   When the blown air temperature Te falls below the set temperature TEO, the determination in step S130 is turned off, the process proceeds to step S160, the electromagnetic clutch 11 (compressor 10) is activated, and the cooling side electromagnetic valves 18, 22 are closed in step S170. State.

この閉弁によって、前席側および後席側冷房用蒸発器20、24への冷媒流れが遮断されるので、前席側および後席側冷房用蒸発器20、24のフロストを防止できる。これと同時に、冷房側電磁弁18、22の閉弁によって、サイクル低圧圧力が前述のごとく低下して定圧膨張弁26が開弁するので、冷蔵用蒸発器27に冷媒が流れて冷蔵庫29内の冷却作用を発揮できる。   By closing the valve, the refrigerant flow to the front seat side and rear seat side cooling evaporators 20 and 24 is blocked, so that the front seat side and rear seat side cooling evaporators 20 and 24 can be prevented from being frosted. At the same time, by closing the cooling-side solenoid valves 18 and 22, the cycle low pressure is lowered as described above and the constant pressure expansion valve 26 is opened, so that the refrigerant flows into the refrigeration evaporator 27 and the inside of the refrigerator 29 Cooling action can be demonstrated.

すなわち、冷房低負荷時において、蒸発器吹出空気温度Teが設定温度TEOより低下したときに、圧縮機10を作動状態のまま、冷房側電磁弁18、22を閉弁することによって、冷房用蒸発器20、24のフロスト防止作用と冷蔵庫29内の冷却作用とを同時に発揮できる。   That is, when the evaporator blown air temperature Te is lower than the set temperature TEO at the time of cooling low load, the cooling side electromagnetic valves 18 and 22 are closed while the compressor 10 is in an operating state, thereby evaporating for cooling. The frost preventing action of the containers 20 and 24 and the cooling action in the refrigerator 29 can be exhibited simultaneously.

従って、冷房用蒸発器20、24のフロスト防止のために、圧縮機10が停止して冷蔵庫29内の冷却作用が停止することを回避できる。   Therefore, it is possible to avoid that the compressor 10 is stopped and the cooling operation in the refrigerator 29 is stopped to prevent the cooling evaporators 20 and 24 from being frosted.

そして、冷房側電磁弁18、22の閉弁によって蒸発器吹出空気温度Teが設定温度TEO+α(例えば、4℃)まで上昇すれば、ステップS130の判定がONとなり、冷房側電磁弁18、22が直ちに開弁状態に復帰する。これにより、冷房用蒸発器20、24の車室内冷房作用が直ちに再開されるので、従来技術のように冷房用蒸発器20、24の温度上昇幅が過度に大きくなるという不具合を防止できる。   Then, if the evaporator blown air temperature Te rises to the set temperature TEO + α (for example, 4 ° C.) by closing the cooling side electromagnetic valves 18 and 22, the determination in step S130 is ON, and the cooling side electromagnetic valves 18 and 22 are turned on. Immediately returns to the valve open state. As a result, the vehicle compartment cooling operation of the cooling evaporators 20 and 24 is immediately restarted, so that the problem of excessively large temperature rises in the cooling evaporators 20 and 24 as in the prior art can be prevented.

また、冷房冷蔵同時運転時における冷房低負荷時に、圧縮機10を作動状態のまま、冷房用蒸発器20、24のフロスト防止を行うから、圧縮機作動の断続に伴う異音やショック等が発生せず、車室内環境の快適性を向上できる。   In addition, during the cooling and refrigeration simultaneous operation, the cooling evaporators 20 and 24 are prevented from being frosted while the compressor 10 is in an operating state at the time of cooling low load. The comfort of the passenger compartment environment can be improved.

次に、空調操作パネル43の冷蔵庫スイッチ48のみが投入されたときは、図3のステップS10にて冷蔵単独運転が判定され、ステップS180に進み、冷房側電磁弁18、22を閉弁状態に維持する。   Next, when only the refrigerator switch 48 of the air-conditioning operation panel 43 is turned on, the refrigeration single operation is determined in step S10 of FIG. 3, and the process proceeds to step S180, and the cooling side electromagnetic valves 18 and 22 are closed. maintain.

そして、次のステップS190にてFIRタイマーを始動する。このFIRタイマーはステップS70で前述したFIRタイマーと同じものである。次のステップS200では、FIRタイマー出力が図6(a)の時間t2による冷蔵側ON状態にあるか判定する。この判定がYESである間は、ステップS210で電磁クラッチ11(圧縮機10)を作動状態とする。   Then, in the next step S190, the FIR timer is started. This FIR timer is the same as the FIR timer described in step S70. In the next step S200, it is determined whether the FIR timer output is in the refrigeration side ON state at time t2 in FIG. While this determination is YES, in step S210, the electromagnetic clutch 11 (compressor 10) is put into an operating state.

これにより、冷蔵単独運転時には、圧縮機10の作動に伴ってサイクル低圧圧力が急激に低下して定圧膨張弁26が開弁するので、冷蔵用蒸発器27のみに冷媒が流れて冷蔵庫29内の冷却作用のみを発揮する。   As a result, at the time of refrigeration single operation, the cycle low pressure decreases rapidly with the operation of the compressor 10 and the constant pressure expansion valve 26 opens, so that the refrigerant flows only in the refrigeration evaporator 27 and the inside of the refrigerator 29 Only exhibits cooling effect.

これに反し、FIRタイマー出力が時間t1による冷蔵側OFF状態になると、ステップS200の判定がNOとなって、ステップS220で電磁クラッチ11を遮断して、圧縮機10を停止状態とする。   On the other hand, when the FIR timer output is in the refrigeration side OFF state at time t1, the determination in step S200 is NO, the electromagnetic clutch 11 is disconnected in step S220, and the compressor 10 is stopped.

このように、冷蔵単独運転時にはFIRタイマー出力に従って圧縮機10は所定の時間間隔で間欠的に作動する。そして、圧縮機10の間欠作動の際に冷蔵用蒸発器27側のみに冷媒を流して、冷蔵用蒸発器27の冷媒圧力を引き下げることにより、冷蔵庫内を製氷可能な低温まで良好に冷却できる。   Thus, the compressor 10 operates intermittently at predetermined time intervals in accordance with the FIR timer output during refrigeration single operation. Then, when the compressor 10 is intermittently operated, the refrigerant is allowed to flow only to the refrigeration evaporator 27 side, and the refrigerant pressure in the refrigeration evaporator 27 is lowered, so that the inside of the refrigerator can be satisfactorily cooled to a low temperature capable of making ice.

なお、冷蔵単独運転時に圧縮機10を間欠的に作動させるのは、車載冷蔵庫29の容量が小さくて、車載冷蔵庫29の必要冷却能力が車室内の必要冷房能力に比較して大幅に小さいためである。   The reason why the compressor 10 is intermittently operated during the refrigeration single operation is that the capacity of the in-vehicle refrigerator 29 is small and the required cooling capacity of the in-vehicle refrigerator 29 is significantly smaller than the required cooling capacity in the vehicle compartment. is there.

(他の実施形態)
なお、本発明は上述の一実施形態に限定されることなく、以下のごとく種々変形可能である。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and can be variously modified as follows.

(1)上述の一実施形態では、前席側冷房用蒸発器20の冷房負荷を前席側冷房用蒸発器20の吸い込み空気温度に基づいて判定しているが、前席側冷房用蒸発器20の吸い込み風量が増加すれば冷房負荷が増加するので、この吸い込み風量をも考慮して冷房負荷の判定を行うようにすれば、冷房負荷判定の精度を向上できる。吸い込み風量は電動送風機21bの回転数制御信号により判定できる。   (1) In the above-described embodiment, the cooling load of the front seat side cooling evaporator 20 is determined based on the intake air temperature of the front seat side cooling evaporator 20, but the front seat side cooling evaporator is Since the cooling load increases when the suction air volume of 20 increases, the accuracy of the cooling load determination can be improved by determining the cooling load in consideration of the suction air volume. The suction air volume can be determined by the rotation speed control signal of the electric blower 21b.

(2)車室内温度の自動制御を行う自動制御方式の空調装置(オートエアコン)では、車室内温度を設定温度に維持するための必要吹出空気温度TAOを算出するようになっており、この必要吹出空気温度TAOは冷房負荷が増加するにつれて低くなるという相関関係がある。従って、この必要吹出空気温度TAOに基づいて冷房負荷の判定を行うようにしてもよい。   (2) In an automatic control type air conditioner (automatic air conditioner) that automatically controls the interior temperature of the vehicle, the necessary blown air temperature TAO for maintaining the interior temperature at the set temperature is calculated. There is a correlation that the blown air temperature TAO decreases as the cooling load increases. Therefore, the cooling load may be determined based on the necessary blown air temperature TAO.

また、冷房負荷が減少するにつれて前席側冷房用蒸発器20の吹出空気温度Teが低下するという相関関係があるので、この蒸発器吹出空気温度Teによって冷房負荷の高低を判定してもよい。但し、この冷房負荷の高低を判定する温度は、図5のフロスト防止のための設定温度TEO(例えば3℃付近)よりも十分高い温度(例えば10℃付近)である。 また、冷房始動後の経過時間が長くなるにつれて車室内温度が低下して冷房負荷が減少するので、冷房始動後の経過時間に基づいて冷房負荷の高低を判定してもよい。   Further, since there is a correlation that the blowing air temperature Te of the front-seat-side cooling evaporator 20 decreases as the cooling load decreases, the level of the cooling load may be determined based on the evaporator blowing air temperature Te. However, the temperature for determining whether the cooling load is high or low is a temperature (for example, about 10 ° C.) sufficiently higher than the set temperature TEO (for example, about 3 ° C.) for preventing frost in FIG. Further, as the elapsed time after the cooling start becomes longer, the passenger compartment temperature decreases and the cooling load decreases, so the level of the cooling load may be determined based on the elapsed time after the cooling start.

(3)上述の一実施形態では、冷房用蒸発器として、前席側冷房用蒸発器20と後席側冷房用蒸発器24とを並列に設けるデュアルエアコンタイプの冷凍サイクル装置について説明したが、冷房用蒸発器を1個のみ設けるシングルエアコンタイプの冷凍サイクル装置においても本発明は同様に実施できる。   (3) In the above-described embodiment, the dual air conditioner type refrigeration cycle apparatus in which the front seat side cooling evaporator 20 and the rear seat side cooling evaporator 24 are provided in parallel as the cooling evaporator has been described. The present invention can be similarly applied to a single air-conditioner type refrigeration cycle apparatus in which only one cooling evaporator is provided.

(4)上述の一実施形態では、前席側冷房用蒸発器20の吹出空気温度を温度センサ42aで検出して前席側冷房用蒸発器20のフロスト防止の制御を行っているが、蒸発器吹出空気温度の代わり、蒸発器フィン表面温度、蒸発器冷媒チューブ表面温度等を検出して蒸発器フロスト防止の制御を行うようにしてもよい。   (4) In the above-described embodiment, the temperature of the blown air from the front seat side cooling evaporator 20 is detected by the temperature sensor 42a, and the frost prevention control of the front seat side cooling evaporator 20 is performed. Instead of the evaporator blowing air temperature, the evaporator fin frost prevention control may be performed by detecting the evaporator fin surface temperature, the evaporator refrigerant tube surface temperature, and the like.

(5)上述の一実施形態では、冷房冷蔵同時運転時に図6(a)に示す冷房側電磁弁18、22の開弁時間t1、閉弁時間t2をタイマー機能によって所定時間に設定しているが、例えば、冷蔵庫内の温度を温度センサにより検出して、冷蔵庫内の温度が第1所定温度まで上昇すると、冷房側電磁弁18、22を閉弁し、そして、冷蔵用蒸発器27に冷媒が流れて冷蔵庫内の温度が第1所定温度より低い第2所定温度まで低下すると、冷房側電磁弁18、22を閉弁状態から開弁状態に復帰させるようにしてもよい。   (5) In the above-described embodiment, the valve opening time t1 and the valve closing time t2 of the cooling side electromagnetic valves 18 and 22 shown in FIG. 6A are set to predetermined times by the timer function during the simultaneous cooling and refrigerating operation. However, for example, when the temperature in the refrigerator is detected by a temperature sensor and the temperature in the refrigerator rises to the first predetermined temperature, the cooling-side electromagnetic valves 18 and 22 are closed, and the refrigerant is supplied to the refrigeration evaporator 27. When the temperature in the refrigerator decreases to a second predetermined temperature lower than the first predetermined temperature, the cooling-side electromagnetic valves 18 and 22 may be returned from the closed state to the open state.

つまり、タイマー機能ではなく、冷蔵庫内の冷却状態の変化に対応して冷房側電磁弁18、22の開弁、閉弁を交互に切り替えるようにしてもよい。   That is, instead of the timer function, the opening and closing of the cooling side electromagnetic valves 18 and 22 may be switched alternately in response to a change in the cooling state in the refrigerator.

同様に、冷蔵単独運転時における圧縮機10の間欠作動もタイマー機能でなく冷蔵庫内の冷却状態の変化に対応して設定してもよい。   Similarly, the intermittent operation of the compressor 10 during the refrigeration single operation may be set in response to a change in the cooling state in the refrigerator instead of the timer function.

(6)上述の一実施形態では、冷房用減圧装置として温度作動式膨張弁19、23を用いているが、温度作動式式膨張弁19、23の代わりにキャピラリチューブやオリフィスといった固定絞りを用いてもよい。   (6) In the above-described embodiment, the temperature-actuated expansion valves 19 and 23 are used as the cooling pressure reducing device. However, instead of the temperature-actuated expansion valves 19 and 23, a fixed throttle such as a capillary tube or an orifice is used. May be.

(7)上述の一実施形態では、下流側圧力が所定開弁圧以下に低下すると開弁する定圧膨張弁26を冷蔵側の減圧装置として設けているが、定圧膨張弁26の代わりに、例えば、下流側圧力を検出する圧力検出手段の検出信号に応じて開閉作動を行う電気制御弁を設け、この電気制御弁を下流側圧力が所定開弁圧以下に低下すると開弁するように構成してもよい。   (7) In the above-described embodiment, the constant pressure expansion valve 26 that opens when the downstream side pressure falls below a predetermined valve opening pressure is provided as a pressure reducing device on the refrigeration side. An electric control valve that opens and closes in response to a detection signal from the pressure detecting means for detecting the downstream pressure is provided, and the electric control valve is configured to open when the downstream pressure drops below a predetermined valve opening pressure. May be.

(8)上述の実施形態では、車両用の冷房冷蔵用冷凍サイクル装置について説明したが、車両以外の用途の冷房冷蔵用冷凍サイクル装置に対しても本発明は同様に適用できる。   (8) In the above-described embodiment, the vehicle cooling / refrigeration refrigeration cycle apparatus has been described. However, the present invention can be similarly applied to a cooling / refrigeration refrigeration cycle apparatus for uses other than vehicles.

本発明の一実施形態を示す冷凍サイクル図である。It is a refrigerating cycle figure showing one embodiment of the present invention. 本発明の一実施形態における電気制御部のブロック図である。It is a block diagram of the electric control part in one Embodiment of this invention. 本発明の一実施形態における制御フローチャートである。It is a control flowchart in one embodiment of the present invention. 本発明の一実施形態における制御フローチャートである。It is a control flowchart in one embodiment of the present invention. 本発明の一実施形態における蒸発器温度判定の説明図である。It is explanatory drawing of evaporator temperature determination in one Embodiment of this invention. 本発明の一実施形態における冷房側電磁弁と冷蔵側定圧膨張弁の作動説明図である。It is operation | movement explanatory drawing of the cooling side solenoid valve and refrigeration side constant pressure expansion valve in one Embodiment of this invention.

符号の説明Explanation of symbols

10…圧縮機、15、17…冷房側冷媒通路、16…冷蔵側冷媒通路、
18、22…電磁弁(電気制御弁)、19、23…温度作動式膨張弁(冷房用減圧装置)、20、24…冷房用蒸発器、26…定圧膨張弁(冷蔵用減圧装置)、27…冷蔵用蒸発器、
40…空調用制御装置(制御手段)、42a…温度センサ(温度検出手段)。
DESCRIPTION OF SYMBOLS 10 ... Compressor, 15, 17 ... Cooling side refrigerant passage, 16 ... Refrigeration side refrigerant passage,
18, 22 ... Solenoid valve (electric control valve), 19, 23 ... Temperature operated expansion valve (cooling decompression device), 20, 24 ... Cooling evaporator, 26 ... Constant pressure expansion valve (refrigeration decompression device), 27 ... Evaporator for refrigeration,
40 ... Air-conditioning control device (control means), 42a ... Temperature sensor (temperature detection means).

Claims (3)

冷房用蒸発器(20、24)と、
前記冷房用蒸発器(20、24)と並列に設けられた冷蔵用蒸発器(27)と、
前記冷房用蒸発器(20、24)および前記冷蔵用蒸発器(27)を通過した冷媒を吸入して圧縮する圧縮機(10)と、
前記冷房用蒸発器(20、24)の上流側に設けられ、前記冷房用蒸発器(20、24)への流入冷媒を減圧する冷房用減圧装置(19、23)と、
前記冷蔵用蒸発器(27)の上流側に設けられ、前記冷蔵用蒸発器(27)への流入冷媒を減圧する冷蔵用減圧装置(26)と、
前記冷房用蒸発器(20、24)側の冷媒流れを断続する冷房側電気制御弁(18、22)と、
前記冷房用蒸発器(20、24)の温度を検出する温度検出手段(42a)と、
前記温度検出手段(42a)の検出信号が入力され前記圧縮機(10)の作動の断続および前記冷房側電気制御弁(18、22)の開閉を制御する制御手段(40)とを具備し、
冷房冷蔵同時運転が設定されたときに、前記温度検出手段(42a)の検出温度が設定温度以下に低下すると、前記制御手段(40)によって前記圧縮機(10)を作動状態に維持したまま、前記冷房側電気制御弁(18、22)を閉弁して、前記冷蔵用蒸発器(27)の通路に冷媒が流れるようにし、
前記冷房冷蔵同時運転が設定されたときに、前記温度検出手段(42a)の検出温度が前記設定温度よりも高くなると、前記制御手段(40)によって前記圧縮機(10)を作動状態に維持したまま、前記冷房側電気制御弁(18、22)を開弁して、前記冷房用蒸発器(20、24)の通路に冷媒が流れるようにしたことを特徴とする冷房冷蔵用冷凍サイクル装置。
Cooling evaporators (20, 24);
A refrigeration evaporator (27) provided in parallel with the cooling evaporator (20, 24);
A compressor (10) that sucks and compresses the refrigerant that has passed through the cooling evaporator (20, 24) and the refrigeration evaporator (27);
A cooling decompression device (19, 23) that is provided upstream of the cooling evaporator (20, 24) and decompresses refrigerant flowing into the cooling evaporator (20, 24);
A refrigeration decompression device (26) that is provided upstream of the refrigeration evaporator (27) and depressurizes refrigerant flowing into the refrigeration evaporator (27);
A cooling-side electric control valve (18, 22) for intermittently flowing the refrigerant flow on the cooling evaporator (20, 24) side;
Temperature detecting means (42a) for detecting the temperature of the cooling evaporator (20, 24);
A control means (40) for controlling the intermittent operation of the compressor (10) and the opening and closing of the cooling side electric control valves (18, 22) when the detection signal of the temperature detection means (42a) is inputted;
When the cooling and refrigeration simultaneous operation is set and the detected temperature of the temperature detecting means (42a) falls below a set temperature, the control means (40) keeps the compressor (10) in an operating state, Closing the cooling-side electric control valves (18, 22) so that the refrigerant flows through the passage of the refrigeration evaporator (27);
When the cooling and refrigeration simultaneous operation is set, if the detected temperature of the temperature detecting means (42a) becomes higher than the set temperature, the control means (40) maintains the compressor (10) in an operating state. The cooling side refrigeration cycle apparatus is characterized in that the cooling side electric control valves (18, 22) are opened and the refrigerant flows through the passages of the cooling evaporators (20, 24).
前記制御手段(40)には前記冷房用蒸発器(20、24)の冷房負荷に関連した情報値が入力されるようになっており、
前記冷房冷蔵同時運転が設定されたときに、前記制御手段(40)によって前記冷房負荷が所定レベル以上の高負荷状態であると判定されると、前記制御手段(40)によって前記圧縮機(10)を作動状態に維持したまま、前記冷房側電気制御弁(18、22)の開弁状態と閉弁状態を交互に繰り返し、前記冷房側電気制御弁(18、22)の開弁によって前記冷房用蒸発器(20、24)の通路に冷媒が流れ、前記冷房側電気制御弁(18、22)の閉弁によって前記冷蔵用蒸発器(27)の通路に冷媒が流れるようにし、
一方、前記冷房冷蔵同時運転が設定されたときに、前記制御手段(40)によって前記冷房負荷が所定レベル未満の低負荷状態であると判定されると、前記温度検出手段(42a)の検出温度の高低に応じて前記冷房側電気制御弁(18、22)の開閉を決定する制御を行うことを特徴とする請求項1に記載の冷房冷蔵用冷凍サイクル装置。
An information value related to the cooling load of the cooling evaporator (20, 24) is input to the control means (40),
When the control unit (40) determines that the cooling load is in a high load state of a predetermined level or more when the cooling and refrigeration simultaneous operation is set, the control unit (40) determines the compressor (10 ) Is maintained in the operating state, and the valve-opening state and the valve-closing state of the cooling-side electric control valve (18, 22) are alternately repeated, and the cooling-side electric control valve (18, 22) is opened. Refrigerant flows through the passage of the evaporator (20, 24), and the refrigerant flows through the passage of the refrigeration evaporator (27) by closing the cooling-side electric control valve (18, 22),
On the other hand, when the simultaneous cooling and refrigeration operation is set, if the control means (40) determines that the cooling load is in a low load state below a predetermined level, the temperature detected by the temperature detection means (42a) 2. The refrigeration cycle apparatus for cooling and refrigerating according to claim 1, wherein control for determining opening and closing of the cooling-side electric control valve (18, 22) is performed in accordance with a height of the cooling.
冷房単独運転が設定されたときは、前記制御手段(40)によって前記冷房側電気制御弁(18、22)を開弁状態に維持したまま、前記温度検出手段(42a)の検出温度の高低に応じて前記圧縮機(10)の作動を断続し、
冷蔵単独運転が設定されたときは、前記制御手段(40)によって前記冷房側電気制御弁(18、22)を閉弁状態に維持したまま、前記圧縮機(10)を間欠的に作動させることを特徴とする請求項1または2に記載の冷房冷蔵用冷凍サイクル装置。
When the cooling only operation is set, the detected temperature of the temperature detecting means (42a) is increased or decreased while the cooling-side electric control valves (18, 22) are kept open by the control means (40). In response, the operation of the compressor (10) is interrupted,
When the refrigeration single operation is set, the compressor (10) is intermittently operated while the cooling electric control valves (18, 22) are kept closed by the control means (40). The refrigeration cycle apparatus for cooling and refrigerating according to claim 1 or 2.
JP2004260741A 2004-09-08 2004-09-08 Refrigeration cycle device for cooling and cold storage Withdrawn JP2006078036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004260741A JP2006078036A (en) 2004-09-08 2004-09-08 Refrigeration cycle device for cooling and cold storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004260741A JP2006078036A (en) 2004-09-08 2004-09-08 Refrigeration cycle device for cooling and cold storage

Publications (1)

Publication Number Publication Date
JP2006078036A true JP2006078036A (en) 2006-03-23

Family

ID=36157637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004260741A Withdrawn JP2006078036A (en) 2004-09-08 2004-09-08 Refrigeration cycle device for cooling and cold storage

Country Status (1)

Country Link
JP (1) JP2006078036A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303796A (en) * 2006-05-15 2007-11-22 Hoshizaki Electric Co Ltd Cooling storage and operation method for it
CN108302712A (en) * 2018-01-03 2018-07-20 广东美的暖通设备有限公司 Heat pump air conditioner unit and its energy-saving control method and control device
JP7091557B2 (en) 2018-10-24 2022-06-27 ライカ バイオシステムズ イメージング インコーポレイテッド Camera exposure control when acquiring fluorescence in situ hybridization images

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303796A (en) * 2006-05-15 2007-11-22 Hoshizaki Electric Co Ltd Cooling storage and operation method for it
US9080805B2 (en) 2006-05-15 2015-07-14 Hoshizaki Denki Kabushiki Kaisha Cooling storage cabinet with dual evaporators and an inverter compressor
CN108302712A (en) * 2018-01-03 2018-07-20 广东美的暖通设备有限公司 Heat pump air conditioner unit and its energy-saving control method and control device
JP7091557B2 (en) 2018-10-24 2022-06-27 ライカ バイオシステムズ イメージング インコーポレイテッド Camera exposure control when acquiring fluorescence in situ hybridization images

Similar Documents

Publication Publication Date Title
JP3596345B2 (en) Refrigeration cycle device and vehicle air conditioner
JP5482728B2 (en) Refrigeration cycle equipment
US7150158B2 (en) Freezing prevention system for refrigeration device and air conditioner using the same
JP2002200917A (en) Air conditioner for vehicle
JPH1053019A (en) Air-conditioning device for vehicle
JP2006021711A (en) Air conditioner for vehicle
JP3356142B2 (en) Refrigeration cycle device
JP2003279180A (en) Refrigerating cycle device for vehicle
WO2014136427A1 (en) Vehicle air conditioning device
JP2001012830A (en) Refrigeration cycle device
JP6957951B2 (en) Air conditioning controller
JP4992622B2 (en) Refrigeration cycle equipment
JPS6155017B2 (en)
JP2008261603A (en) Refrigerating cycle device and air conditioner for vehicle
JP2009019847A (en) Refrigerating cycle device
JP2006078036A (en) Refrigeration cycle device for cooling and cold storage
JP3257109B2 (en) Vehicle refrigeration cycle control device
JP4844241B2 (en) Refrigeration cycle equipment
JP3700286B2 (en) Air conditioner
JP2006145170A (en) Refrigerating cycle
JP2007327701A (en) Refrigerating cycle device
JP2007083877A (en) Air-conditioner having cold accumulator
JP2005300015A (en) Refrigerating cycle device for cooling and refrigeration
JPH10315753A (en) Refrigerating and air-conditioning device
JP2007269217A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090219