JP2006077788A - Variable damping force damper - Google Patents

Variable damping force damper Download PDF

Info

Publication number
JP2006077788A
JP2006077788A JP2004259183A JP2004259183A JP2006077788A JP 2006077788 A JP2006077788 A JP 2006077788A JP 2004259183 A JP2004259183 A JP 2004259183A JP 2004259183 A JP2004259183 A JP 2004259183A JP 2006077788 A JP2006077788 A JP 2006077788A
Authority
JP
Japan
Prior art keywords
fluid
magnetic
damping force
vehicle
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004259183A
Other languages
Japanese (ja)
Other versions
JP4371962B2 (en
Inventor
Masaki Izawa
正樹 伊澤
Yoshio Onoe
良雄 尾上
Tsukasa Fukusato
司 福里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004259183A priority Critical patent/JP4371962B2/en
Publication of JP2006077788A publication Critical patent/JP2006077788A/en
Application granted granted Critical
Publication of JP4371962B2 publication Critical patent/JP4371962B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To minimize functional deterioration of a variable damping force damper due to sedimentation of magnetic substance particles in a magnetic viscous fluid. <P>SOLUTION: Even if the stop state of a vehicle continues for predetermined time or more so that the magnetic particulates in the magnetic viscous fluid settle to the bottom of a cylinder 21 due to gravity, an electric current of a predetermined value or more is supplied to a coil 28 regardless of the operating condition of the traveling vehicle in later traveling the vehicle, whereby much more magnetic particulates particles are accumulated in a fluid passage 22a in a piston 22 by a magnetic field generated by the coil 28 to reduce the substantial sectional area of the fluid passage 22a more than that in the ordinary control of damping force. Thus, with the movement of the piston 22, the flow velocity of the magnetic viscous fluid passing through the fluid passage 22a is increased to stir and whirl up the magnetic particulates deposited at the bottom of a cylinder 21 to be uniformly diffused, thereby minimizing the functional deterioration of the variable damping force damper 14 due to sedimentation of magnetic particulates. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁性体粒子を含む磁気粘性流体を満たしたシリンダの内部をピストンで第1流体室および第2流体室に区画し、ピストンを貫通するように形成した流体通路で前記第1流体室および第2流体室を相互に連通させ、ピストンに設けたコイルに通電して流体通路中の磁気粘性流体の粘性を変化させて減衰力を制御する可変減衰力ダンパーに関する。   In the present invention, the inside of a cylinder filled with a magnetorheological fluid containing magnetic particles is partitioned by a piston into a first fluid chamber and a second fluid chamber, and the first fluid chamber is formed by a fluid passage formed so as to penetrate the piston. Further, the present invention relates to a variable damping force damper that controls a damping force by causing a second fluid chamber to communicate with each other and energizing a coil provided in a piston to change the viscosity of a magnetorheological fluid in a fluid passage.

サスペンション装置用の可変減衰力ダンパーの粘性流体として、磁界の作用で粘性が変化する磁気粘性流体(MRF: Magneto-Rheological Fluids )を採用し、シリンダに摺動自在に嵌合するピストンに、その流体通路中の磁気粘性流体に磁界を作用させるためのコイルを設けたものが、下記特許文献1により公知である。この可変減衰力ダンパーによれば、コイルに通電して発生した磁界で流体通路中の磁気粘性流体の粘性を変化させることで、ダンパーの減衰力を任意に制御することができる。
特開昭60−113711号公報
As the viscous fluid of the variable damping force damper for the suspension device, a magnetic viscous fluid (MRF: Magneto-Rheological Fluids) whose viscosity is changed by the action of a magnetic field is adopted. Patent Document 1 below discloses a coil provided with a coil for applying a magnetic field to a magnetorheological fluid in a passage. According to this variable damping force damper, the damping force of the damper can be arbitrarily controlled by changing the viscosity of the magnetorheological fluid in the fluid passage by a magnetic field generated by energizing the coil.
JP-A-60-113711

ところで、磁気粘性流体はオイルのような粘性流体に鉄粉のような磁性体微粒子を分散させたものであり、長時間に亘って車両を停止状態にしておくと、磁気粘性流体中の磁性体微粒子が重力で沈降してシリンダの底部に堆積してしまい、磁気粘性流体中の磁性体微粒子の濃度が低くなってしまう傾向がある。このような状態で車両を走行させると、ダンパーの作動により磁気粘性流体が充分に攪拌されて磁性体微粒子が均一に拡散するまでの間、コイルに適正な電流を供給してもダンパーの減衰力が目標値まで増加せず、車両の乗り心地を損ねる可能性があった。   By the way, the magnetic viscous fluid is obtained by dispersing magnetic fine particles such as iron powder in a viscous fluid such as oil. If the vehicle is stopped for a long time, the magnetic material in the magnetic viscous fluid There is a tendency that the fine particles settle by gravity and accumulate on the bottom of the cylinder, and the concentration of the magnetic fine particles in the magnetorheological fluid becomes low. When the vehicle is driven in such a state, even if an appropriate current is supplied to the coil until the magnetorheological fluid is sufficiently stirred by the operation of the damper and the magnetic fine particles are uniformly diffused, the damping force of the damper May not increase to the target value, which may impair the ride comfort of the vehicle.

本発明は前述の事情に鑑みてなされたもので、磁気粘性流体中の磁性体微粒子の沈降による可変減衰力ダンパーの機能低下を最小限に抑えることを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to minimize the functional deterioration of the variable damping force damper due to the sedimentation of magnetic fine particles in the magnetorheological fluid.

上記目的を達成するために、請求項1に記載された発明によれば、磁性体粒子を含む磁気粘性流体を満たしたシリンダの内部をピストンで第1流体室および第2流体室に区画し、ピストンを貫通するように形成した流体通路で前記第1流体室および第2流体室を相互に連通させ、ピストンに設けたコイルに通電して流体通路中の磁気粘性流体の粘性を変化させて減衰力を制御する可変減衰力ダンパーにおいて、車両の停止状態が所定時間以上継続した後に車両を走行させる場合に、走行中の車両の運動状態に関わらずに所定値以上の電流をコイルに供給することを特徴とする可変減衰力ダンパーが提案される。   In order to achieve the above object, according to the first aspect of the present invention, the inside of a cylinder filled with a magnetorheological fluid containing magnetic particles is partitioned into a first fluid chamber and a second fluid chamber by a piston, The first fluid chamber and the second fluid chamber are communicated with each other by a fluid passage formed so as to penetrate the piston, and a coil provided in the piston is energized to change the viscosity of the magnetorheological fluid in the fluid passage to be attenuated. In the variable damping force damper that controls the force, when the vehicle is driven after the vehicle has been stopped for a predetermined time or longer, a current greater than a predetermined value is supplied to the coil regardless of the moving state of the running vehicle. A variable damping force damper is proposed.

また請求項2に記載された発明によれば、請求項1の構成に加えて、コイルへの前記所定値以上の電流の供給は、シリンダ内でのピストンの上昇時に行うことを特徴とする可変減衰力ダンパーが提案される。   According to a second aspect of the invention, in addition to the configuration of the first aspect, the variable current is supplied to the coil when the piston is raised in the cylinder. A damping force damper is proposed.

請求項1の構成によれば、車両の停止状態が所定時間以上継続したために磁気粘性流体中の磁性体粒子が重力でシリンダの底部に沈降しても、その後に車両を走行させる際に走行中の車両の運動状態に関わらずに所定値以上の電流をコイルに供給するので、コイルにより発生する磁界でピストン内の流体通路中に磁性体粒子をより多く集積させ、通常の減衰力の制御時よりも流体通路の実質的な通路断面積を狭くすることができる。これにより、ピストンの移動に伴って流体通路を通過する磁気粘性流体の流速を高め、シリンダの底部に堆積した磁性体粒子を攪拌して巻き上げることで均一に拡散させ、磁性体微粒子の沈降による可変減衰力ダンパーの機能低下を最小限に抑えることができる。   According to the configuration of the first aspect, even if the magnetic particles in the magnetorheological fluid settle on the bottom of the cylinder due to gravity because the vehicle has been stopped for a predetermined time or longer, the vehicle is running when the vehicle is subsequently run. Since a current exceeding a predetermined value is supplied to the coil regardless of the vehicle's motion state, more magnetic particles are accumulated in the fluid passage in the piston by the magnetic field generated by the coil, and the normal damping force is controlled. The substantial passage cross-sectional area of the fluid passage can be made narrower. This increases the flow velocity of the magnetorheological fluid that passes through the fluid passage as the piston moves, stirs and rolls up the magnetic particles deposited on the bottom of the cylinder, and uniformly spreads them, making it variable by the sedimentation of the magnetic particles Degradation of the damping force damper can be minimized.

請求項2の構成によれば、シリンダ内でピストンが上昇するときに、つまり流体通路を通過した磁気粘性流体がシリンダの底部に堆積した磁性体粒子に向けて流れるときに、磁性体粒子を攪拌するためのコイルへの通電を実行するので、この通電をシリンダ内でのピストンの上昇時および下降時の両方に実行する場合に比べて、車両の乗り心地への影響を小さくすることができる。   According to the configuration of the second aspect, the magnetic particles are agitated when the piston moves up in the cylinder, that is, when the magnetorheological fluid that has passed through the fluid passage flows toward the magnetic particles deposited on the bottom of the cylinder. Since the energization of the coil is performed, the influence on the riding comfort of the vehicle can be reduced as compared with the case where the energization is performed both when the piston is raised and lowered in the cylinder.

以下、本発明の実施の形態を、添付の図面に示した本発明の実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples of the present invention shown in the accompanying drawings.

図1および図2は本発明の一実施例を示すもので、図1は車両のサスペンション装置の正面図、図2は可変減衰力ダンパーの拡大断面図である。   1 and 2 show an embodiment of the present invention. FIG. 1 is a front view of a vehicle suspension device, and FIG. 2 is an enlarged sectional view of a variable damping force damper.

図1に示すように、四輪の自動車の車輪Wを懸架するサスペンション装置Sは、車体11にナックル12を上下動自在に支持するサスペンションアーム13と、サスペンションアーム13および車体11を接続する可変減衰力のダンパー14と、サスペンションアーム13および車体11を接続するコイルバネ15とを備える。ダンパー14の減衰力を制御する電子制御ユニットUには、バネ上加速度を検出するバネ上加速度センサSbからの信号と、ダンパー14の変位(ストローク)を検出するダンパー変位センサScからの信号と、車両の横加速度を検出する横加速度センサSdからの信号と、車両の前後加速度を検出する前後加速度センサSeからの信号とが入力される。   As shown in FIG. 1, a suspension device S that suspends a wheel W of a four-wheeled vehicle has a suspension arm 13 that supports a knuckle 12 in a vertically movable manner on a vehicle body 11, and a variable damping that connects the suspension arm 13 and the vehicle body 11. A force damper 14 and a coil spring 15 connecting the suspension arm 13 and the vehicle body 11 are provided. The electronic control unit U that controls the damping force of the damper 14 includes a signal from the sprung acceleration sensor Sb that detects the sprung acceleration, a signal from the damper displacement sensor Sc that detects the displacement (stroke) of the damper 14, and A signal from the lateral acceleration sensor Sd that detects the lateral acceleration of the vehicle and a signal from the longitudinal acceleration sensor Se that detects the longitudinal acceleration of the vehicle are input.

図2に示すように、ダンパー14は、下端がサスペンションアーム13に接続されたシリンダ21と、シリンダ21に摺動自在に嵌合するピストン22と、ピストン22から上方に延びてシリンダ21の上壁を液密に貫通し、上端を車体に接続されたピストンロッド23と、シリンダの下部に摺動自在に嵌合するフリーピストン24とを備えており、シリンダ21の内部にピストン22により仕切られた上側の第1流体室25および下側の第2流体室26が区画されるとともに、フリーピストン24の下部に圧縮ガスが封入されたガス室27が区画される。   As shown in FIG. 2, the damper 14 includes a cylinder 21 whose lower end is connected to the suspension arm 13, a piston 22 that is slidably fitted into the cylinder 21, and an upper wall of the cylinder 21 that extends upward from the piston 22. And a free piston 24 that is slidably fitted to the lower part of the cylinder, and is partitioned by the piston 22 inside the cylinder 21. An upper first fluid chamber 25 and a lower second fluid chamber 26 are partitioned, and a gas chamber 27 in which a compressed gas is sealed in a lower portion of the free piston 24 is partitioned.

ピストン22にはその上下面を連通させるように複数の流体通路22a…が形成されており、これらの流体通路22a…によって第1、第2流体室25,26が相互に連通する。第1、第2流体室25,26および流体通路22a…に封入される磁気粘性流体は、オイルのような粘性流体に鉄粉のような磁性体微粒子を分散させたもので、磁界を加えると磁力線に沿って磁性体微粒子が整列することで粘性流体が流れ難くなり、見かけの粘性が増加する性質を有している。ピストン22の内部にコイル28が設けられており、電子制御ユニットUによりコイル28への通電が制御される。コイル28に通電されると矢印で示すように磁束が発生し、流体通路22a…を通過する磁束により磁気粘性流体の粘性が変化する。   A plurality of fluid passages 22a are formed in the piston 22 so that the upper and lower surfaces thereof communicate with each other, and the first and second fluid chambers 25 and 26 communicate with each other through these fluid passages 22a. The magnetorheological fluid sealed in the first and second fluid chambers 25 and 26 and the fluid passages 22a is a dispersion of magnetic fine particles such as iron powder in a viscous fluid such as oil. By aligning the magnetic fine particles along the magnetic field lines, it is difficult for the viscous fluid to flow, and the apparent viscosity increases. A coil 28 is provided inside the piston 22, and energization of the coil 28 is controlled by the electronic control unit U. When the coil 28 is energized, a magnetic flux is generated as indicated by an arrow, and the viscosity of the magnetorheological fluid changes due to the magnetic flux passing through the fluid passages 22a.

ダンパー14が収縮してシリンダ21に対してピストン22が下動すると、第1流体室25の容積が増加して第2流体室26の容積が減少するため、第2流体室26の磁気粘性流体がピストン22の流体通路22a…を通過して第1流体室25に流入し、逆にダンパー14が伸長してシリンダ21に対してピストン22が上動すると、第2流体室26の容積が増加して第1流体室25の容積が減少するため、第1流体室25の磁気粘性流体がピストン22の流体通路22a…を通過して第2流体室26に流入し、その際に流体通路22a…を通過する磁気粘性流体の粘性抵抗によりダンパー14が減衰力を発生する。   When the damper 14 contracts and the piston 22 moves downward with respect to the cylinder 21, the volume of the first fluid chamber 25 increases and the volume of the second fluid chamber 26 decreases. Passes through the fluid passage 22a of the piston 22 and flows into the first fluid chamber 25. Conversely, when the damper 14 extends and the piston 22 moves upward relative to the cylinder 21, the volume of the second fluid chamber 26 increases. Since the volume of the first fluid chamber 25 decreases, the magnetorheological fluid in the first fluid chamber 25 passes through the fluid passage 22a ... of the piston 22 and flows into the second fluid chamber 26, and at that time, the fluid passage 22a The damper 14 generates a damping force due to the viscous resistance of the magnetorheological fluid passing through.

このとき、コイル28に通電して磁界を発生させると、ピストン22の流体通路22a…に存在する磁気粘性流体の見かけの粘性が増加して該流体通路22aを通過し難くなるため、ダンパー14の減衰力が増加する。この減衰力の増加量は、コイル28に供給する電流の大きさにより任意に制御することができる。   At this time, if the coil 28 is energized to generate a magnetic field, the apparent viscosity of the magnetorheological fluid existing in the fluid passage 22a of the piston 22 increases and it becomes difficult to pass through the fluid passage 22a. Damping force increases. The amount of increase in the damping force can be arbitrarily controlled by the magnitude of the current supplied to the coil 28.

尚、ダンパー14に衝撃的な圧縮荷重が加わって第2流体室26の容積が減少するとき、ガス室27を縮小させながらフリーピストン24が下降することで衝撃を吸収する。またダンパー14に衝撃的な引張荷重が加わって第2流体室26の容積が増加するとき、ガス室27を拡張させながらフリーピストン24が上昇することで衝撃を吸収する。更に、ピストン22が下降してシリンダ21内に収納されるピストンロッド23の容積が増加したとき、その容積の増加分を吸収するようにフリーピストン24が下降する。   When a shocking compressive load is applied to the damper 14 to reduce the volume of the second fluid chamber 26, the free piston 24 descends while the gas chamber 27 is contracted to absorb the impact. Further, when a shocking tensile load is applied to the damper 14 to increase the volume of the second fluid chamber 26, the impact is absorbed by the free piston 24 rising while the gas chamber 27 is expanded. Further, when the piston 22 descends and the volume of the piston rod 23 accommodated in the cylinder 21 increases, the free piston 24 descends so as to absorb the increase in the volume.

しかして、電子制御ユニットUは、バネ上加速度センサSbで検出したバネ上加速度、ダンパー変位センサScで検出したダンパー変位、横加速度センサSdで検出した横加速度および前後加速度センサSeで検出した前後加速度に基づいて、各車輪W…の合計4個のダンパー14…の減衰力を個別に制御することで、路面の凹凸を乗り越える際の車両の動揺を抑えて乗り心地を高めたり、車両の旋回時のローリングを抑えて操安性能を高めたり、車両の急加速時や急減速時のピッチングを抑えて操安性能を高めたりすることができる。   Thus, the electronic control unit U detects the sprung acceleration detected by the sprung acceleration sensor Sb, the damper displacement detected by the damper displacement sensor Sc, the lateral acceleration detected by the lateral acceleration sensor Sd, and the longitudinal acceleration detected by the longitudinal acceleration sensor Se. Based on the above, the damping force of each of the four dampers 14 of each wheel W is individually controlled, so that the vehicle can be prevented from being shaken when overcoming road irregularities, thereby improving the ride comfort, or when the vehicle is turning The rolling performance of the vehicle can be suppressed to improve the steering performance, and the steering performance can be improved by suppressing the pitching during sudden acceleration or deceleration of the vehicle.

ところで、車両を長時間に亘って停止状態にしておくと、ダンパー14の磁気粘性流体中の磁性体粒子が重力で次第に沈降し、シリンダ21の下部にある第2液室26の底部に堆積する傾向がある。その結果、磁気粘性流体中の磁性体微粒子の濃度が低くなってしまい、次に車両を走行させ際にコイル28に適正な電流を供給してもダンパー14が目標とする減衰力を発生することができなくなる可能性がある。このような状態は、車両が所定距離走行し、その間のダンパー14の作動により磁気粘性流体が充分に攪拌されて磁性体微粒子が均一に拡散するまで継続することになる。   By the way, when the vehicle is stopped for a long time, the magnetic particles in the magnetorheological fluid of the damper 14 gradually settle down by gravity and accumulate on the bottom of the second liquid chamber 26 at the bottom of the cylinder 21. Tend. As a result, the concentration of the magnetic fine particles in the magnetorheological fluid becomes low, and the damper 14 generates the target damping force even if an appropriate current is supplied to the coil 28 when the vehicle is next driven. May not be possible. Such a state continues until the vehicle travels a predetermined distance and the magnetic viscous fluid is sufficiently stirred by the operation of the damper 14 during that time, and the magnetic fine particles are uniformly diffused.

上述したダンパー14の一時的な機能低下を最小限に抑え、できるだけ早期に通常の機能を発揮させるために、本実施例では、車両の停止状態が所定時間以上継続した後に車両を走行させる場合に、走行中の車両の運動状態に関わらずに所定値以上の電流をコイル28に供給する。即ち、車両の走行中にダンパー14のコイル28には乗り心地制御および操安制御のための電流が供給されるが、この電流の最小値が所定値以上になるように増加方向に補正し、かつ前記所定値以上の電流を所定時間継続的に供給する。   In this embodiment, in order to minimize the temporary deterioration of the function of the damper 14 described above and to exhibit the normal function as soon as possible, in the present embodiment, when the vehicle is driven after the vehicle has been stopped for a predetermined time or more. Regardless of the state of motion of the running vehicle, a current of a predetermined value or more is supplied to the coil 28. That is, while the vehicle 28 is running, a current is supplied to the coil 28 of the damper 14 for ride comfort control and steering control, and the current is corrected in an increasing direction so that the minimum value of the current becomes a predetermined value or more. In addition, a current exceeding the predetermined value is continuously supplied for a predetermined time.

その結果、コイル28により発生する磁界で流体通路22a…中に磁性体粒子がより多く集積し、流体通路22a…の実質的な通路断面積がより狭くなるために、ピストン22の移動に伴って流体通路22a…を通過する磁気粘性流体の流速を高めることができる。これにより、第2流体室26の底部に堆積した磁性体粒子を効果的に攪拌して巻き上げ、シリンダ21内に均一に拡散させることで、磁性体微粒子の沈降によるダンパー14の機能低下を最小限に抑えることができる。そして所定時間が経過して磁気粘性流体内に磁性体粒子が均一に拡散すると、コイル28に供給される電流は乗り心地制御や操安制御のための通常の電流に戻される。   As a result, the magnetic field generated by the coils 28 accumulates more magnetic particles in the fluid passages 22a, and the substantial passage cross-sectional area of the fluid passages 22a becomes narrower. The flow velocity of the magnetorheological fluid passing through the fluid passages 22a can be increased. This effectively stirs and rolls up the magnetic particles deposited on the bottom of the second fluid chamber 26 and uniformly diffuses them into the cylinder 21, thereby minimizing the deterioration of the function of the damper 14 due to the sedimentation of the magnetic fine particles. Can be suppressed. When the magnetic particles are uniformly diffused in the magnetorheological fluid after a predetermined time has elapsed, the current supplied to the coil 28 is returned to a normal current for ride comfort control and steering control.

このように、長時間に亘って停止状態にあった車両を走行させる際に、ダンパー14のコイル28に供給する電流を一時的に増加させることで、沈降していた磁性体粒子を磁気粘性流体中に早期に拡散させ、ダンパー14の機能を速やかに回復させることができる。尚、車両が停止状態にあった時間は、イグニッションスイッチをオンした履歴や、車速が所定値以上になった履歴を記憶しておくことで、容易に算出することができる。   In this way, when the vehicle that has been in a stopped state for a long time is run, the current supplied to the coil 28 of the damper 14 is temporarily increased, so that the magnetic particles that have settled are removed from the magnetorheological fluid. The function of the damper 14 can be promptly restored by diffusing it early. Note that the time during which the vehicle has been stopped can be easily calculated by storing a history of turning on the ignition switch and a history of when the vehicle speed has exceeded a predetermined value.

以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   Although the embodiments of the present invention have been described above, various design changes can be made without departing from the scope of the present invention.

例えば、上述した実施例では、長時間に亘って停止状態にあった車両を走行させる際に、所定時間に亘って継続的にコイル28の電流を増加させているが、別実施例として、ピストン22が上昇するときだけにコイル28の電流を増加させることができる。ピストン22が上昇するときには、上側の第1流体室25から下側の下側の第2流体室26に向かって磁気粘性流体が下向きに流れるため、下側の第2流体室26の底部に堆積した磁性体粒子を効果的に攪拌することができ、しかもピストン22の上昇時および下降時の両方にコイル28に通電する場合に比べて、車両の乗り心地制御や操安制御に対する影響を小さくすることができる。   For example, in the above-described embodiment, when the vehicle that has been stopped for a long time is traveled, the current of the coil 28 is continuously increased for a predetermined time. Only when 22 rises can the current in coil 28 be increased. When the piston 22 moves up, the magnetorheological fluid flows downward from the upper first fluid chamber 25 toward the lower lower second fluid chamber 26, so that it accumulates at the bottom of the lower second fluid chamber 26. As compared with the case where the coil 28 is energized both when the piston 22 is raised and lowered, the influence on the ride comfort control and the steering control of the vehicle is reduced. be able to.

車両のサスペンション装置の正面図Front view of vehicle suspension system 可変減衰力ダンパーの拡大断面図Expanded sectional view of variable damping force damper

符号の説明Explanation of symbols

21 シリンダ
22 ピストン
22a 流体通路
25 第1流体室
26 第2流体室
28 コイル
21 Cylinder 22 Piston 22a Fluid passage 25 First fluid chamber 26 Second fluid chamber 28 Coil

Claims (2)

磁性体粒子を含む磁気粘性流体を満たしたシリンダ(21)の内部をピストン(22)で第1流体室(25)および第2流体室(26)に区画し、ピストン(22)を貫通するように形成した流体通路(22a)で前記第1流体室(25)および第2流体室(26)を相互に連通させ、ピストン(22)に設けたコイル(28)に通電して流体通路(22a)中の磁気粘性流体の粘性を変化させて減衰力を制御する可変減衰力ダンパーにおいて、
車両の停止状態が所定時間以上継続した後に車両を走行させる場合に、走行中の車両の運動状態に関わらずに所定値以上の電流をコイル(28)に供給することを特徴とする可変減衰力ダンパー。
A cylinder (21) filled with a magnetorheological fluid containing magnetic particles is partitioned by a piston (22) into a first fluid chamber (25) and a second fluid chamber (26) so as to penetrate the piston (22). The first fluid chamber (25) and the second fluid chamber (26) are communicated with each other through the fluid passage (22a) formed in the fluid passage (22a), and the coil (28) provided in the piston (22) is energized to supply the fluid passage (22a ) In the variable damping force damper that controls the damping force by changing the viscosity of the magnetorheological fluid in the
A variable damping force characterized by supplying a current of a predetermined value or more to the coil (28) irrespective of the motion state of the running vehicle when the vehicle is driven after the vehicle has been stopped for a predetermined time or longer. Damper.
コイルへ(28)の前記所定値以上の電流の供給は、シリンダ(21)内でのピストン(22)の上昇時に行うことを特徴とする、請求項1に記載の可変減衰力ダンパー。
2. The variable damping force damper according to claim 1, wherein the current of the predetermined value or more of the coil is supplied to the coil when the piston rises in the cylinder.
JP2004259183A 2004-09-07 2004-09-07 Variable damping force damper Expired - Fee Related JP4371962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004259183A JP4371962B2 (en) 2004-09-07 2004-09-07 Variable damping force damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004259183A JP4371962B2 (en) 2004-09-07 2004-09-07 Variable damping force damper

Publications (2)

Publication Number Publication Date
JP2006077788A true JP2006077788A (en) 2006-03-23
JP4371962B2 JP4371962B2 (en) 2009-11-25

Family

ID=36157420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004259183A Expired - Fee Related JP4371962B2 (en) 2004-09-07 2004-09-07 Variable damping force damper

Country Status (1)

Country Link
JP (1) JP4371962B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100363643C (en) * 2006-06-21 2008-01-23 天津大学 Multistep assemblied anti-settle magnetic rheological damper
KR101222645B1 (en) 2011-04-26 2013-01-21 현대로템 주식회사 Particle agitating apparatus for smart fluid damper with the same
CN104165204A (en) * 2014-07-25 2014-11-26 华侨大学 Energy feedback type damper combining piezoelectric ceramic and magnetorheological fluid
CN108788333A (en) * 2018-06-14 2018-11-13 浙江师范大学 A kind of tapping auxiliary device based on magnetic rheology effect

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110985588B (en) * 2019-11-15 2020-11-20 北京控制工程研究所 Variable damping vibration isolator based on ultrasonic motor adjustment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100363643C (en) * 2006-06-21 2008-01-23 天津大学 Multistep assemblied anti-settle magnetic rheological damper
KR101222645B1 (en) 2011-04-26 2013-01-21 현대로템 주식회사 Particle agitating apparatus for smart fluid damper with the same
CN104165204A (en) * 2014-07-25 2014-11-26 华侨大学 Energy feedback type damper combining piezoelectric ceramic and magnetorheological fluid
CN108788333A (en) * 2018-06-14 2018-11-13 浙江师范大学 A kind of tapping auxiliary device based on magnetic rheology effect
CN108788333B (en) * 2018-06-14 2024-01-16 浙江师范大学 Tapping auxiliary device based on magneto-rheological effect

Also Published As

Publication number Publication date
JP4371962B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
US7617032B2 (en) Control system for adjustable damping force
JP4546308B2 (en) Control device for variable damping force damper
US20060118370A1 (en) Damper with variable damping force
JP2009040171A (en) Controller for attenuation force variable damper
JP4875377B2 (en) Variable damping force damper
JP5021348B2 (en) Control device for damping force variable damper
JP4427555B2 (en) Control device for damping force variable damper
JP2009234323A (en) Suspension system for vehicle
JP2006273222A (en) Controlling device for adjustable damping force damper
JP4371962B2 (en) Variable damping force damper
JP2006281876A (en) Variable damping force damper control device
JP2006077787A (en) Variable damping force damper
JP4690759B2 (en) Control device for variable damping force damper
JP4546323B2 (en) Variable damping force damper
JP2006321259A (en) Adjustable damper
JP5162283B2 (en) Control device and control method for damping force variable damper
JP2006273225A (en) Controlling device for adjustable damping force damper
JP2006307982A (en) Variable damping force damper
JP2008238922A (en) Control device of damping force variable damper
JP2006088739A (en) Damper with variable damping force
JP4877287B2 (en) Damping device
JP2006335160A (en) Vibration control system and vibration control method for vehicle body
JP2006076318A (en) Variable attenuating force damper
JP2006321260A (en) Adjustable damper
JP2006281875A (en) Variable damping force damper control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140911

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees