JP2006074055A - 固体撮像素子 - Google Patents

固体撮像素子 Download PDF

Info

Publication number
JP2006074055A
JP2006074055A JP2005259741A JP2005259741A JP2006074055A JP 2006074055 A JP2006074055 A JP 2006074055A JP 2005259741 A JP2005259741 A JP 2005259741A JP 2005259741 A JP2005259741 A JP 2005259741A JP 2006074055 A JP2006074055 A JP 2006074055A
Authority
JP
Japan
Prior art keywords
lens
light receiving
solid
imaging device
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005259741A
Other languages
English (en)
Inventor
Tomohiko Sasano
智彦 笹埜
Yasuhiro Tanaka
康弘 田中
Michihiro Yamagata
道弘 山形
Yoshikazu Sano
義和 佐野
Tomoko Otagaki
智子 大田垣
Michiyo Ichikawa
美千代 市川
Hiromitsu Aoki
裕光 青木
Sumio Terakawa
澄雄 寺川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005259741A priority Critical patent/JP2006074055A/ja
Publication of JP2006074055A publication Critical patent/JP2006074055A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】 感度が向上した固体撮像素子を提供する。
【解決手段】 2次元平面に配列された受光部上にレンズアレイが積層されている。前記レンズアレイは、縦横方向に集光レンズが複数個配列されてなり、前記レンズアレイの個々の集光レンズは個々の前記受光部に1対1に対応する。前記集光レンズは凸レンズである。一つの前記受光部に対応する面積のうち前記集光レンズが占める割合が100%である。
【選択図】 図1

Description

本発明は、固体撮像素子に関する。
固体撮像装置を例にとって説明する。
図15は、一般的な固体撮像装置の構成の概略を示した断面図である。
一般に固体撮像素子は、図15に示されるように、n型半導体基板312、pウェル層311、受光部310、電荷転送部309、シリコン酸化膜あるいは窒化膜307、ポリシリコン電極308、メタル遮光層306、素子表面保護層305、平坦膜304、カラーフィルター層303、中間透明膜302、レンズアレイ(オンチップレンズ)301から成っている。なおカラーフィルター層303は3板式撮像装置や白黒撮像装置の場合、あるいはその他の波長選別手段によって色分けされる場合には必要ではない。
一般的な固体撮像素子では、光は受光部310のみで受け、それ以外にあたった光線は感度に寄与しない。そのため、高感度化の技術のひとつとして、レンズアレイ301を受光部310上の透明表面層に形成し、受光部310により多く光を集めることが知られている。
レンズアレイ301の各レンズを各受光部310に対応させて配置し、その集光作用を用いて、レンズに入射する光を各受光部310に効率よく導く。
従来のレンズアレイの構造を図16に示す。図16(a)はレンズアレイ301を上から見た平面図であり、図16(b)は図16(a)のXII−XII線での矢印方向から見た断面図である。1画素に対応する領域は、縦の辺355と横の辺354で囲まれた領域であり、このほぼ中央部にレンズ301を配置し、感度向上に貢献している。ここで、隣り合うレンズの間には、製造上の理由から、隙間353を持たせてある。なお、図16では、図面を簡素化するために4画素のみを示したが、実際には図16(a)に示した各画素が縦横方向にそれぞれ所定個数配列されている。
上記レンズアレイでは、隣り合うレンズ間に隙間353を設けているため、ここに入射した光はほとんど受光素子に入ることがない。また、レンズ形状が略円形または略楕円形のため、四角い画素領域のうち、レンズ301が形成されていない角部にも隙間が生じ、この部分に入射する光についてもほとんど受光素子に入ることがなく、感度に寄与しないという問題があった。
同様に、透過型液晶表示装置などに使用される液晶表示素子においても、各画素に対応するように図16に示したような隙間を有するレンズアレイが積層されるが、上記隙間に入射する光は液晶表示装置の画面の輝度に寄与しないという問題があった。
本発明は、上記の問題点に鑑み、レンズの開口を拡げること等により、例えば固体撮像装置に使用した場合には感度を向上させることができ、また液晶表示素子に使用した場合には画面の輝度を向上させることができるレンズアレイを提供することを目的とする。
上記の目的を達成するために、本発明のレンズアレイは以下の構成とする。
すなわち、本発明の第1の構成にかかるレンズアレイは、縦横方向に集光レンズが複数個配列されてなり、個々の前記集光レンズは2次元平面に配列された各画素に1対1に対応するように設置して使用されるレンズアレイであって、前記集光レンズは、縦横方向に隣り合う集光レンズと接触して形成されていることを特徴とする。
本発明の第2の構成にかかるレンズアレイは、縦横方向に集光レンズが複数個配列されてなり、個々の前記集光レンズは2次元平面に配列された各画素に1対1に対応するように設置して使用されるレンズアレイであって、前記集光レンズは凸レンズであり、前記画素に対応する領域の全域に形成されていることを特徴とする。
上記第2の構成において前記画素に対応する領域は矩形状であり、前記領域の縦方向及び横方向の長さを順にX,Yとしたとき、前記集光レンズの曲率半径Rが下記式(1)を満足することが好ましい。
(1/2)×(X2+Y21/2≦R≦(2/3)×(X2+Y21/2 ・・(1)
また、上記第2の構成において、前記画素に対応する領域は矩形状であり、前記領域の縦方向及び横方向の長さを順にX,Y、前記集光レンズの曲率半径をRとしたとき、下記式(2)及び(3)を満足することが好ましい。
4μm≦(X2+Y21/2≦5.7μm ・・(2)
2μm≦R≦4μm ・・(3)
本発明の第3の構成にかかるレンズアレイは、縦横方向に集光レンズが複数個配列されてなり、個々の前記集光レンズは2次元平面に配列された各画素に1対1に対応するように設置して使用されるレンズアレイであって、前記集光レンズは、前記画素に対応する領域の略中央部に形成された第1のレンズと、前記領域のうち前記第1のレンズが形成されていない四隅の領域に形成された第2のレンズとを含み、前記第1のレンズは凸レンズであり、前記四隅に形成された各第2のレンズは共通する曲率中心点を有することを特徴とする。
本発明の第4の構成にかかるレンズアレイは、縦横方向に集光レンズが複数個配列されてなり、個々の前記集光レンズは2次元平面に配列された各画素に1対1に対応するように設置して使用されるレンズアレイであって、前記集光レンズは、前記画素に対応する領域の略中央部に形成された第1のレンズと、前記領域のうち前記第1のレンズが形成されていない四隅の領域に形成された第2のレンズとを含み、前記第1のレンズは凸レンズであり、前記四隅に形成された各第2のレンズは共通する曲率中心点を有し、前記第2のレンズの前記第1のレンズ側の壁面が前記集光レンズの配列面に対して垂直でないことを特徴とする。
本発明の第5の構成にかかるレンズアレイは、縦横方向に集光レンズが複数個配列されてなり、個々の前記集光レンズは2次元平面に配列された各画素に1対1に対応するように設置して使用されるレンズアレイであって、前記集光レンズはフレネルレンズであることを特徴とする。
本発明の第6の構成にかかるレンズアレイは、縦横方向に集光レンズが複数個配列されてなり、個々の前記集光レンズは2次元平面に配列された各画素に1対1に対応するように設置して使用されるレンズアレイであって、前記集光レンズはフレネルレンズであって、前記フレネルレンズは前記画素に対応する領域ごとに少なくとも2種類以上の異なる溝深さを有することを特徴とする。
上記第6の構成において、前記フレネルレンズは、フレネルレンズ形成材料の屈折率をn、前記フレネルレンズを透過する光の波長または中心波長をλとしたとき、溝深さがmλ/(n−1)(m:自然数)である鋸歯形状であることが好ましい。
上記第5又は第6の構成において前記フレネルレンズが、前記画素に対応する領域の全域に形成されていることが好ましい。
上記第1〜第6の構成において、前記集光レンズは、その形状を階段状に近似したバイナリー形状で形成されていることが好ましい。
本発明の第7の構成にかかるレンズアレイは、縦横方向に集光レンズが複数個配列されてなり、個々の前記集光レンズは2次元平面に配列された各画素に1対1に対応するように設置して使用されるレンズアレイであって、前記集光レンズは屈折率の変化によりレンズ機能が付与されたレンズであり、前記レンズアレイの表面が略平面であることを特徴とする。
上記第7の構成において、屈折率の変化によりレンズ機能が付与された前記レンズが前記画素に対応する領域の全域に形成されていることが好ましい。
本発明の第8の構成にかかるレンズアレイは、縦横方向に集光レンズが複数個配列されてなり、個々の前記集光レンズは2次元平面に配列された各画素に1対1に対応するように設置して使用されるレンズアレイであって、前記集光レンズは屈折率分布型レンズであり、前記レンズアレイの表面が略平面であることを特徴とする。
上記第8の構成において、前記屈折率分布型レンズが前記画素に対応する領域の全域に形成されていることが好ましい。
本発明の第9の構成にかかるレンズアレイは、縦横方向に集光レンズが複数個配列されてなり、個々の前記集光レンズは2次元平面に配列された各画素に1対1に対応するように設置して使用されるレンズアレイであって、前記集光レンズは、屈折率の変化によりレンズ機能が付与されたレンズと、この上に形成された凸レンズとからなることを特徴とする。
上記第9の構成において、屈折率の変化によりレンズ機能が付与された前記レンズが前記画素に対応する領域の全域に形成されていることが好ましい。
本発明の第10の構成にかかるレンズアレイは、縦横方向に集光レンズが複数個配列されてなり、個々の前記集光レンズは2次元平面に配列された各画素に1対1に対応するように設置して使用されるレンズアレイであって、前記集光レンズは、前記画素に対応する領域の略中央部に形成された第1のレンズと、前記領域のうち前記第1のレンズが形成されていない領域に形成された第3のレンズとを含み、前記第1のレンズは凸レンズであり、前記第3のレンズは屈折率の変化によりレンズ機能が付与されたレンズであることを特徴とする。
上記第10の構成において、前記画素に対応する領域には、前記第1のレンズ及び前記第3のレンズのいずれか一方が形成されていることが好ましい。
本発明のレンズアレイは、上記の第1〜第10の構成としたことにより、例えば固体撮像装置に使用した場合には感度を向上させることができ、また液晶表示素子に使用した場合には画面の輝度を向上させることができるレンズアレイを提供することができる。
また、本発明にかかる固体撮像素子は、2次元平面に配列された受光部と、前記受光部上に積層された上記のいずれかに記載のレンズアレイとを有する固体撮像素子であって、前記レンズアレイの個々の集光レンズは個々の前記受光部に1対1に対応することを特徴とする。
また、本発明にかかる固体撮像装置は、2次元平面に配列された受光部と、前記受光部上に積層された透明基板とを有する固体撮像素子であって、前記透明基板が上記第7又は第8の構成にかかるレンズアレイであって、前記レンズアレイの個々の集光レンズは個々の前記受光部に1対1に対応することを特徴とする。
上記の固体撮像素子において、前記集光レンズの焦点距離が、前記受光部までの距離に略等しいことが好ましい。
また、本発明にかかる液晶表示素子は、2次元平面に配列された画素と、前記画素上に積層された上記のいずれかに記載のレンズアレイとを有する液晶表示素子であって、前記レンズアレイの個々の集光レンズは個々の前記画素に1対1に対応することを特徴とする。
上記の液晶表示素子において、前記集光レンズの焦点距離が、前記画素までの距離に略等しいことが好ましい。
本発明によれば、例えば凸レンズで画素領域全域を覆うこと等により画素領域を有効に使用することなどによって、例えば固体撮像装置に使用した場合には感度を向上させることができ、また液晶表示素子に使用した場合には画面の輝度を向上させることができるレンズアレイを提供することができる。
以下本発明のレンズアレイについて、図面を参照しつつさらに具体的に説明する。
(実施の形態1)
図1は本発明の実施の形態1にかかるレンズアレイの概念図であって、図1(a)は平面図、図1(b)は図1(a)のIb−Ib線での矢印方向から見た断面図、図1(c)は図1(a)のIc−Ic線での矢印方向から見た断面図である。なお、図1では、図面を簡素化するために4画素のみを示したが、実際には図1(a)に示した各画素が縦横方向にそれぞれ所定個数配列されている。
本実施の形態のレンズアレイは、縦横方向に配列された矩形状の画素領域に凸レンズ形状を有する集光レンズ111が、一つの画素領域に一つの集光レンズが対応するように配置されている。
ここで、集光レンズ111は縦横方向に隣り合う集光レンズと接触している。例えば受光素子間隔が5μmの固体撮像素子にレンズアレイを形成した場合を考える。従来の集光レンズの間隙(図16(b)の隙間353)が0.4μmとすると、一つの受光素子に対応する面積(画素領域)のうち集光レンズの占める面積の割合は66.5%である。これに対して、本実施の形態の集光レンズのように縦横方向に隣り合う集光レンズの間隙が0の場合は、一つの受光素子に対応する面積のうち集光レンズの占める面積の割合は78.5%となり、従来と比較して、レンズに入る光線が18%増加するので、固体撮像素子の感度がそれに伴い増加する。
図15に示したように、pウェル層311を設け、その表層部に1辺約2.5μmの受光部310を構成し、次に厚さ約0.1μmのシリコン酸化膜あるいは窒化膜307を構成し、屈折率1.55、厚さ約0.9μmの素子表面保護膜305と、屈折率1.47、厚さ約1μmの平坦膜304と、屈折率1.52で厚さ約2μmのカラーフィルター層303を構成し、その受光素子に対応する画素領域の範囲が縦横約4.5μmの正方形である固体撮像素子を仮定する。その画素領域の上部に、屈折率が1.5、曲率半径が3μmの集光レンズ301を、縦横方向に隣り合う集光レンズ同士の間隔を変化させて形成した場合の集光率の変化をシミュレーションした。結果を図2に示す。本実施の形態のレンズアレイは縦横方向に隣り合う集光レンズ同士は接触しているため、この集光レンズ間隔は0であり、集光率は75%である。一方、従来の一般的なレンズアレイの縦横方向の集光レンズ間隙は、約0.4μmであるので、その集光率は68%であり、本発明の集光率は従来に比べて約10%向上したことがわかる。
このとき、集光率とは、任意に光線追跡を実施したとき、1つの受光素子に対応する画素領域を通る光線の本数の内、受光素子に入射する光線の本数である。ただし、本シミュレーションでは、画素領域への入射光線角度は、0度から15度の範囲で任意である。
(実施の形態2)
図3は本発明の実施の形態2にかかるレンズアレイの概念図であって、図3(a)は平面図、図3(b)は図3(a)のIIb−IIb線での矢印方向から見た断面図、図3(c)は図3(a)のIIc−IIc線での矢印方向から見た断面図である。なお、図3では、図面を簡素化するために4画素のみを示したが、実際には図3(a)に示した各画素が縦横方向にそれぞれ所定個数配列されている。
本実施の形態のレンズアレイは、縦横方向に配列された矩形状の画素領域に凸レンズ形状を有する集光レンズ121が、一つの画素領域に一つの集光レンズが対応するように配置されている。
ここで、集光レンズ121は画素領域の全域を覆っており、画素領域内に集光レンズが形成されていない領域が存在しない。例えば受光素子間隔が5μmの固体撮像素子にレンズアレイを形成した場合を考える。従来の集光レンズの間隙(図16(b)の隙間353)が0.4μmとすると、一つの受光素子に対応する面積(画素領域)のうち集光レンズの占める面積の割合は66.5%である。これに対して、本実施の形態のレンズアレイは、一つの受光素子に対応する面積のうちの集光レンズが占める割合は100%となる。したがって、本実施の形態のレンズアレイにより、受光有効面積は50.7%向上する。それに伴い、固体撮像素子の受光感度も向上する。
レンズの曲率半径は、例えばレンズが画素領域の全領域を覆うためには最短でも画素の対角線の長さの半分以上が必要となる。また、曲率半径が大きくなりすぎても集光力が弱まり、感度の低下を引き起こす。このため、画素の縦の長さをX、横の長さをYとすると、集光レンズの曲率半径Rが下記式(1)を満足することが好ましい。式(1)を満足すると、レンズは画素領域全域を覆うことができ、かつ十分な集光力を得ることができる。式(1)の下限を下回ると、レンズは画素領域全域を覆うことができない。一方、式(1)の上限を上回ると、十分な集光力が得られない。
(1/2)×(X2+Y21/2≦R≦(2/3)×(X2+Y21/2 ・・(1)
また、下記式(2)及び(3)を満足すると、十分な感度を得ることができ、かつ十分な解像度を得ることができるので好ましい。
4μm≦(X2+Y21/2≦5.7μm ・・(2)
2μm≦R≦4μm ・・(3)
ここで、シミュレーションを行うために、固体撮像素子の形状を以下のようにした。図15に示したように、厚さ約3μmのpウェル層311があって、その表層部に1辺約1μmおよび他の1辺約2.5μmの受光部310を構成し、次に厚さ約0.1μmのシリコン酸化膜または窒化膜307を構成した。さらに、屈折率1.55、厚さ約0.9μmの素子表面保護膜305と、屈折率1.47であり、厚さ約1μmの平坦膜304と、屈折率1.52で厚さ約2μmのカラーフィルター層303を構成し、その受光素子に対応する画素領域の範囲が縦横約4.5μmの正方形である固体撮像素子を仮定する。その画素領域の上部に、屈折率が1.5の集光レンズを形成した場合、その曲率半径と集光率との関係は図4のようになる。曲率半径が3.4μmのときが集光率が最大となり、そのときの集光率は94%であり、従来の集光率68%と比べて、38%向上する。
(実施の形態3)
図5は本発明の実施の形態3にかかるレンズアレイの概念図であって、図5(a)は平面図、図5(b)は図5(a)のIIIb−IIIb線での矢印方向から見た断面図、図5(c)は図5(a)のIIIc−IIIc線での矢印方向から見た断面図である。なお、図5では、図面を簡素化するために4画素のみを示したが、実際には図5(a)に示した各画素が縦横方向にそれぞれ所定個数配列されている。
本実施の形態のレンズアレイは、縦横方向に配列された矩形状の個々の画素領域の略中央部に形成された凸レンズ形状を有する第1のレンズ131と、第1のレンズ131が形成されていない四隅の領域を含む画素領域の残りの領域に形成された第2のレンズ132とを一単位とする集光レンズが、一つの画素領域に一つの集光レンズが対応するように配置されている。ここで、画素領域の四隅に形成された第2のレンズ132は共通する曲率中心点を有する。
一般に、矩形状の画素領域内に凸レンズを形成しようとすると、実施の形態2のような構成を採らない限り、少なくとも対角線方向にレンズが形成されない領域ができてしまう。本実施の形態は、この領域にもう一つ別の第2のレンズ132を形成することで、有効受光面積を大きく取ることができる。さらに、この第2のレンズ132の曲率は、中心にある第1のレンズ131の曲率と同じにする必要がないので、例えばシミュレーションなどによって2つのレンズの曲率の組み合わせを最適化して、より多くの受光量を確保することが可能となる。
また、本実施の形態によれば、第2のレンズ132の曲率半径を画素領域の対角線の長さの半分以上にすることにより、画素領域の全域に隙間なくレンズを形成することができる。例えば受光素子間隔が5μmの固体撮像素子にレンズアレイを形成した場合を考える。従来の集光レンズの間隙(図16(b)の隙間353)が0.4μmとすると、一つの受光素子に対応する面積(画素領域)のうち集光レンズの占める面積の割合は66.5%である。これに対して、本実施の形態のレンズアレイは、一つの受光素子に対応する面積のうちの集光レンズが占める割合をほぼ100%とすることができる。したがって、本実施の形態のレンズアレイにより、受光有効面積は50.7%向上する。それに伴い、固体撮像素子の受光感度も向上する。
なお、本実施の形態では、第1のレンズ131のまわりに第2のレンズ132を構成したが、第2のレンズ132のまわりにさらに曲率の異なる別のレンズを構成しても良い。
ここで、シミュレーションを行うために、固体撮像素子の形状を以下のようにした。図15に示したように、厚さ約3μmのpウェル層311があって、その表層部に1辺約1μmおよび他の1辺約2.5μmの受光部310を構成し、次に厚さ約0.1μmのシリコン酸化膜または窒化膜307を構成した。さらに、屈折率1.55、厚さ約0.9μmの素子表面保護膜305と、屈折率1.47であり、厚さ約1μmの平坦膜304と、屈折率1.52で厚さ約2μmのカラーフィルター層303を構成し、その受光素子に対応する画素領域の範囲が縦横約4.5μmの正方形である固体撮像素子を仮定する。その画素領域の上部の略中央部に屈折率が1.5の従来と同様の凸レンズ(第1のレンズ)を形成し、その周りに曲率半径4μmの第2のレンズを形成した場合、集光率は78%となり、従来の中央部のレンズのみの場合の集光率68%と比べて、集光率が15%向上する。
(実施の形態4)
図6は本発明の実施の形態4にかかるレンズアレイの概念図であって、図6(a)は平面図、図6(b)は図6(a)のIVb−IVb線での矢印方向から見た断面図、図6(c)は図6(a)のIVc−IVc線での矢印方向から見た断面図である。なお、図6では、図面を簡素化するために4画素のみを示したが、実際には図6(a)に示した各画素が縦横方向にそれぞれ所定個数配列されている。
本実施の形態のレンズアレイは、縦横方向に配列された矩形状の個々の画素領域の略中央部に形成された凸レンズ形状を有する第1のレンズ141と、第1のレンズ141が形成されていない四隅の領域を含む画素領域の残りの領域に形成された第2のレンズ142とを一単位とする集光レンズが、一つの画素領域に一つの集光レンズが対応するように配置されている。ここで、画素領域の四隅に形成された第2のレンズ142は共通する曲率中心点を有する。
一般に、矩形状の画素領域内に凸レンズを形成しようとすると、実施の形態2のような構成を採らない限り、少なくとも対角線方向にレンズが形成されない領域ができてしまう。本実施の形態は、この領域にもう一つ別の第2のレンズ142を形成することで、有効受光面積を大きく取ることができる。さらに、この第2のレンズ142の曲率は、中心にある第1のレンズ141の曲率と同じにする必要がないので、例えばシミュレーションなどによって2つのレンズの曲率の組み合わせを最適化して、より多くの受光量を確保することが可能となる。
更に、外側の第2のレンズ142は、入射角度の比較的小さな光線が内壁143で全反射して光線が散乱するのを防ぐために、内壁143は第1のレンズ141の中心145から外側方向に角度θだけ傾斜させてある。
また、本実施の形態によれば、第2のレンズ142の曲率半径を画素領域の対角線の長さの半分以上にすることにより、画素領域の全域に隙間なくレンズを形成することができる。例えば受光素子間隔が5μmの固体撮像素子にレンズアレイを形成した場合を考える。従来の集光レンズの間隙(図16(b)の隙間353)が0.4μmとすると、一つの受光素子に対応する面積(画素領域)のうち集光レンズの占める面積の割合は66.5%である。これに対して、本実施の形態のレンズアレイは、一つの受光素子に対応する面積のうちの集光レンズが占める割合をほぼ100%とすることができる。したがって、本実施の形態のレンズアレイにより、受光有効面積は50.7%向上する。それに伴い、固体撮像素子の受光感度も向上する。
なお、本実施の形態では、第1のレンズ141のまわりに第2のレンズ142を構成したが、第2のレンズ142のまわりにさらに曲率の異なる別のレンズを構成しても良い。
ここで、シミュレーションを行うために、固体撮像素子の形状を以下のようにした。図15に示したように、厚さ約3μmのpウェル層311があって、その表層部に1辺約1μmおよび他の1辺約2.5μmの受光部310を構成し、次に厚さ約0.1μmのシリコン酸化膜または窒化膜307を構成した。さらに、屈折率1.55、厚さ約0.9μmの素子表面保護膜305と、屈折率1.47であり、厚さ約1μmの平坦膜304と、屈折率1.52で厚さ約2μmのカラーフィルター層303を構成し、その受光素子に対応する画素領域の範囲が縦横約4.5μmの正方形である固体撮像素子を仮定する。その画素領域の上部の略中央部に屈折率が1.5の従来と同様の凸レンズ(第1のレンズ)を形成し、その周りに内側の壁面を外側に傾斜させた第2のレンズを形成した。ここで、第2のレンズの曲率半径と第2のレンズの内壁の傾斜角θを変えた場合の集光率の変化の様子を表1に示す。
Figure 2006074055
第2のレンズの曲率半径を4μm、傾斜角θを10deg.とすると、集光率が約81%となり、同じ曲率半径で傾斜角θが0deg.の場合の集光率約78%と比べて、集光率が約3%向上する。また、従来レンズの集光率68%と比べると、約19%向上する。
(実施の形態5)
図7は本発明の実施の形態5にかかるレンズアレイの概念図であって、図7(a)は平面図、図7(b)は図7(a)のV−V線での矢印方向から見た断面図である。なお、図7では、図面を簡素化するために4画素のみを示したが、実際には図7(a)に示した各画素が縦横方向にそれぞれ所定個数配列されている。
本実施の形態のレンズアレイは、縦横方向に配列された矩形状の個々の画素領域に形成された集光作用を有するフレネルレンズ151より構成される。このフレネルレンズ151は、レンズの位相変調量に応じた凹凸部がレンズ表面に形成されて構成される。このことにより、例えば固体撮像素子においては、受光素子とレンズ間の距離が縮められ、感度向上に役立つ。また、一つの受光素子に対応する画素領域全域にフレネルレンズを形成することにより、有効受光面積が拡大し、感度を向上させることができる。
(実施の形態6)
図8は本発明の実施の形態6にかかるレンズアレイの概念図であって、図8(a)は平面図、図8(b)は図8(a)のVI−VI線での矢印方向から見た断面図である。なお、図8では、図面を簡素化するために4画素のみを示したが、実際には図8(a)に示した各画素が縦横方向にそれぞれ所定個数配列されている。
本実施の形態のレンズアレイは、縦横方向に配列された矩形状の個々の画素領域に形成された集光作用を有するフレネルレンズ161,162,163より構成される。各フレネルレンズは、フレネルレンズ形成材料の屈折率をn、透過する光の波長または中心波長をλとしたとき、溝深さがmλ/(n−1)(m:自然数)の鋸歯形状である。本実施の形態におけるレンズアレイの各フレネルレンズは、3種類の異なる波長に対応させるべく、各波長に対して最適な形状としてある。従って、例えば固体撮像素子に使用した場合には、特定波長の光線に対して感度を向上させることに役立つ。
なお、図8では、レンズアレイは3種類の波長に対応する3種類のフレネルレンズで構成されているが、2種類のフレネルレンズで構成されていても良いし、4種類以上のフレネルレンズで構成されていても良い。
また、それぞれのフレネルレンズは波長選択性を持っているので、波長フィルターを省略することができる。
また、一つの受光素子に対応する画素領域全域にフレネルレンズを形成することにより、有効受光面積が拡大し、感度を向上させることができる。
(実施の形態7)
図9は本発明の実施の形態7にかかるレンズアレイの概念図であって、図9(a)は平面図、図9(b)は図9(a)のVII−VII線での矢印方向から見た断面図である。なお、図9では、図面を簡素化するために4画素のみを示したが、実際には図9(a)に示した各画素が縦横方向にそれぞれ所定個数配列されている。
本実施の形態のレンズアレイは、縦横方向に配列された矩形状の画素領域に、実施の形態2(図3)で示したように一の画素領域全域を凸レンズで覆う方式のレンズアレイであって、レンズ形状を階段状で近似したバイナリーレンズとしたものである。
もとのレンズ形状172に近づくように階段形状171を形成する。この場合、階段のステップ数が多いほど、本来のレンズ形状の持つ性能に近づく。このようなバイナリーレンズ形状を用いることで、レンズアレイの製造上の選択肢を拡げることができる。
図9では、実施の形態2(図3)に示したレンズアレイをバイナリーレンズとした例を示したが、上述の他の実施の形態で示したレンズアレイを同様にバイナリーレンズとすることもできる。
(実施の形態8)
図10は本発明の実施の形態8にかかるレンズアレイの概念図であって、図10(a)は平面図、図10(b)は図10(a)のVIIIb−VIIIb線での矢印方向から見た断面図、図10(c)は図10(a)のVIIIc−VIIIc線での矢印方向から見た断面図である。なお、図10では、図面を簡素化するために4画素のみを示したが、実際には図10(a)に示した各画素が縦横方向にそれぞれ所定個数配列されている。
本実施の形態のレンズアレイは、縦横方向に配列された矩形状の画素領域に屈折率の変化によりレンズ機能が付与された集光レンズが、一つの画素領域に一つの集光レンズが対応するように配置されている。
すなわち、レンズ材層183は、高屈折率部181と低屈折率部182とから構成され、両者の界面が所定の曲率を有している。この結果、両者の界面を光線が透過する際に屈折し、高屈折率部181が集光レンズとして機能する。従って、例えば、固体撮像素子に適用した場合には、レンズ部が受光素子により近くなり、レンズに対して入射角の比較的大きな光線に対して有効に働く。よって、受光感度が向上する。
なお、本実施例において屈折率変化による集光レンズは画素領域の全域に形成されているが、一部でもよい。画素領域全域に集光レンズを形成することにより、有効受光面積が拡大し、感度を向上させることができる。
また、屈折率変化によるレンズを、図10のようにレンズ材層183を新たに設けてその内部に形成するのではなく、固体撮像素子または液晶表示素子等の内部に直接屈折率変化を持たせて集光レンズを形成しても良い。
(実施の形態9)
図11は本発明の実施の形態9にかかるレンズアレイの概念図であって、図11(a)は平面図、図11(b)は図11(a)のIX−XI線での矢印方向から見た断面図である。なお、図11では、図面を簡素化するために4画素のみを示したが、実際には図11(a)に示した各画素が縦横方向にそれぞれ所定個数配列されている。
本実施の形態のレンズアレイは、縦横方向に配列された矩形状の画素領域に集光レンズとして機能する屈折率分布型レンズが、一つの画素領域に一つの集光レンズが対応するように配置されている。
すなわち、矩形状の各画素領域におけるレンズ材層193は、画素領域の対角線の交点(中心部)を中心として同心円状に屈折率の異なる複数の層からなり、中心部191が最も高い屈折率を有し、周辺部192にいくにしたがって順に屈折率が小さくなるように構成されている。以上のようにして形成された屈折率分布型レンズは全体として集光レンズとして機能する。従って、例えば、固体撮像素子に適用した場合には、レンズ部が受光素子により近くなり、レンズに対して入射角の比較的大きな光線に対して有効に働く。よって、受光感度が向上する。
なお、本実施例において屈折率分布型レンズは画素領域の全域に形成されているが、一部でもよい。画素領域全域に形成することにより、有効受光面積が拡大し、感度を向上させることができる。
また、屈折率分布型レンズを、図11のようにレンズ材層193を新たに設けてその内部に形成するのではなく、固体撮像素子または液晶表示素子等の内部に直接屈折率分布を持たせて集光レンズを形成しても良い。
(実施の形態10)
図12は本発明の実施の形態10にかかるレンズアレイの概念図であって、図12(a)は平面図、図12(b)は図12(a)のX−X線での矢印方向から見た断面図である。なお、図12では、図面を簡素化するために4画素のみを示したが、実際には図12(a)に示した各画素が縦横方向にそれぞれ所定個数配列されている。
本実施の形態のレンズアレイは、矩形状の画素領域に、実施の形態8で説明した屈折率の変化によりレンズ機能が付与されたレンズと、その上に形成された凸レンズとからなる集光レンズが、一つの画素領域に一つの集光レンズが対応するように縦横方向に配置されて構成されている。
すなわち、レンズ材層204の上部表面には、凸レンズ201が画素領域の略中央部に形成されている。また、レンズ材層204は、高屈折率部202と低屈折率部203とから構成され、両者の界面が所定の曲率を有している。この結果、両者の界面を光線が透過する際に屈折し、高屈折率部202が集光レンズとして機能する。
以上により、画素領域の中央部は凸レンズ201と、屈折率変化によるレンズ202の2つのレンズ作用が得られ、集光力が高められる。また、例えば、固体撮像素子に適用した場合には、屈折率変化によるレンズ202の存在によりレンズ部が受光素子により近くなり、レンズに対して入射角の比較的大きな光線に対して有効に働く。よって、受光感度が向上する。
また、屈折率変化によるレンズ202を図12のように画素領域全域に形成することにより、一つの受光素子に対応する面積のうちレンズが占める割合は、ほぼ100%となり、有効受光面積が拡大し、感度を向上させることができる。
なお、屈折率変化によるレンズ202は、必ずしも凸レンズ201より面積が大きく受光素子に対応する画素領域すべてに形成されている必要はなく、その一部でもよい。ただし、画素領域全域に屈折率変化によるレンズ202を形成することにより、有効受光面積が拡大し、感度を向上させることができる。
また、凸レンズ201は必ずしも、受光素子に対応する画素領域の一部に形成されている必要はなく、その画素領域のすべてに形成されていてもよい。画素領域全域に凸レンズ201を形成することにより、有効受光面積が拡大し、感度を向上させることができる。
また、屈折率変化によるレンズ202を、図12のようにレンズ材層204を新たに設けてその内部に形成するのではなく、固体撮像素子または液晶表示素子等の内部に直接屈折率変化を持たせて集光レンズを形成しても良い。
(実施の形態11)
図13は本発明の実施の形態11にかかるレンズアレイの概念図であって、図13(a)は平面図、図13(b)は図13(a)のXI−XI線での矢印方向から見た断面図である。なお、図13では、図面を簡素化するために4画素のみを示したが、実際には図13(a)に示した各画素が縦横方向にそれぞれ所定個数配列されている。
本実施の形態のレンズアレイは、矩形状の画素領域の略中央部に形成された凸レンズ(第1のレンズ)と、画素領域の凸レンズが形成されていない領域に形成された屈折率の変化によりレンズ機能が付与されたレンズ(第3のレンズ)とからなる集光レンズが、一つの画素領域に一つの集光レンズが対応するように縦横方向に配置されて構成されている。
すなわち、レンズ材層214の上部表面には、凸レンズ211が画素領域の略中央部に形成されている。また、レンズ材層214は、高屈折率部213と低屈折率部212とから構成される。これにより、図13(b)の上方より入射した光線に対して低屈折率部212は発散レンズとして機能する。
以上により、例えば固体撮像素子に適用した場合には、画素領域の中央部では凸レンズ211により光が集光され、凸レンズ211が形成されていない周辺部では屈折率変化によるレンズ212により光線が各受光素子に導かれる。従って、画素領域全域を有効に使え、感度向上に寄与できる。
なお、屈折率変化によるレンズ212は画素領域全域に形成しても良く、凸レンズ211と重なっていても良い。これにより、有効受光面積が拡大し、感度を向上させることができる。
また、屈折率変化によるレンズ212を、図13のようにレンズ材層214を新たに設けてその内部に形成するのではなく、固体撮像素子または液晶表示素子等の内部に直接屈折率変化を持たせて集光レンズを形成しても良い。
以上の各実施の形態で説明したレンズアレイは、固体撮像素子に使用する場合には、レンズアレイを構成する集光レンズの焦点距離が固体撮像素子の受光部までの距離に略等しくなるように形成するのが好ましい。また、液晶表示素子に使用する場合には、レンズアレイを構成する集光レンズの焦点距離が液晶表示素子の画素までの距離に略等しくなるように形成するのが好ましい。いずれの場合も、そのような構成とすることにより、鮮明な画像を得ることができる。
(実施の形態12)
以下に本発明のレンズアレイの製造方法の一例を説明する。
例えば、固体撮像素子の平坦膜上にレンズアレイを形成する場合について、図14を用いて説明する。
まず、平坦膜402上に、レンズ材料となる合成樹脂層421を回転塗布で形成する(図14(a))。合成樹脂層421に用いられる材料としては、例えばフェノール系樹脂、スチレン系樹脂、アクリル系樹脂が使用できるが、その他従来から用いられてきた材料も使用できる。合成樹脂層421の材料としては、具体的には、ポリパラビニルフェノール系樹脂にナフトキノンジアジドを添加した感光性樹脂が好ましい。この樹脂は、ポジ型レジストとして用いることができ、熱処理すると熱可塑性により液状化して形状が半球状に変形し、その後熱硬化性による形状固定と固化が進行し、硬化したレンズ形状が実現される。また、上記感光性樹脂は、現像直後の工程において紫外線照射により可視光透過率を90%以上にまで向上させ、この透明化した状態でレンズ形状へと変形させることができる。
ついで、塗布形成された合成樹脂層421を選択露光する。上記ポリパラビニルフェノール樹脂のようなポジ型のレジストを用いる場合には、除去すべき部分にのみ紫外光423を照射し、現像する。このような紫外線ステッパを用いたパターニングにより、合成樹脂層421を各受光部と1対1に対応するように分割する(図14(b))。
さらに、分割した各合成樹脂部分422をブリーチングする。すなわち、紫外光を照射して不透明な材料を透明化する。この後、断面矩形の合成樹脂部分422を回転塗布等の方法でオーバーコート層425により被覆する(図14(c))。
オーバーコート層425により覆われた各合成樹脂部分422は加熱されることにより軟化して、上方に凸となった曲線により断面が構成されるドーム型レンズ形状401へと変形する(図14(d))。この変形の際、オーバーコート層425が形成されているために、隣接する各合成樹脂部分は互いに接触しにくくなる。換言すれば、オーバーコート層425は、合成樹脂部分が急速に接近しないように緩衝作用を発揮する。オーバーコート層425の材料は、上記の緩衝作用を奏し得る材料であれば特に制限することなく使用することができる。一方、オーバーコート層425には、合成樹脂部分422が加熱される温度において合成樹脂部分422の変形を完全に制限してしまわないことが要求される。
オーバーコート層425をそのまま残しておくことで、縦横方向に隣り合う集光レンズと相互に接触して形成されたレンズアレイを形成することができる。また、画素に対応する領域全域にレンズを形成する場合も上記と同様の方法で作成することが可能である。
また、オーバーコート層425が極端に薄い場合には、図14(e)のように、オーバーコート層を取り除いても、隣り合う集光レンズ401がほぼ接触したレンズアレイを得ることができる。
本発明の実施の形態1にかかるレンズアレイの概念図であって、図1(a)は平面図、図1(b)は図1(a)のIb−Ib線での矢印方向から見た断面図、図1(c)は図1(a)のIc−Ic線での矢印方向から見た断面図である。 縦横方向に隣り合う凸レンズの間隔と集光率との関係を示した図である。 本発明の実施の形態2にかかるレンズアレイの概念図であって、図3(a)は平面図、図3(b)は図3(a)のIIb−IIb線での矢印方向から見た断面図、図3(c)は図3(a)のIIc−IIc線での矢印方向から見た断面図である。 凸レンズの曲率半径と集光率との関係を示した図である。 本発明の実施の形態3にかかるレンズアレイの概念図であって、図5(a)は平面図、図5(b)は図5(a)のIIIb−IIIb線での矢印方向から見た断面図、図5(c)は図5(a)のIIIc−IIIc線での矢印方向から見た断面図である。 本発明の実施の形態4にかかるレンズアレイの概念図であって、図6(a)は平面図、図6(b)は図6(a)のIVb−IVb線での矢印方向から見た断面図、図6(c)は図6(a)のIVc−IVc線での矢印方向から見た断面図である。 本発明の実施の形態5にかかるレンズアレイの概念図であって、図7(a)は平面図、図7(b)は図7(a)のV−V線での矢印方向から見た断面図である。 本発明の実施の形態6にかかるレンズアレイの概念図であって、図8(a)は平面図、図8(b)は図8(a)のVI−VI線での矢印方向から見た断面図である。 本発明の実施の形態7にかかるレンズアレイの概念図であって、図9(a)は平面図、図9(b)は図9(a)のVII−VII線での矢印方向から見た断面図である。 本発明の実施の形態8にかかるレンズアレイの概念図であって、図10(a)は平面図、図10(b)は図10(a)のVIIIb−VIIIb線での矢印方向から見た断面図、図10(c)は図10(a)のVIIIc−VIIIc線での矢印方向から見た断面図である。 本発明の実施の形態9にかかるレンズアレイの概念図であって、図11(a)は平面図、図11(b)は図11(a)のIX−XI線での矢印方向から見た断面図である。 本発明の実施の形態10にかかるレンズアレイの概念図であって、図12(a)は平面図、図12(b)は図12(a)のX−X線での矢印方向から見た断面図である。 本発明の実施の形態11にかかるレンズアレイの概念図であって、図13(a)は平面図、図13(b)は図13(a)のXI−XI線での矢印方向から見た断面図である。 本発明の実施の形態12にかかるレンズアレイの製造方法の概略を工程順に示した断面図である。 一般的な固体撮像装置の構成の概略を示した断面図である。 従来のレンズアレイの概略を示した図であって、図16(a)は平面図、図16(b)は図16(a)のXII−XII線での矢印方向から見た断面図である。
符号の説明
111 集光レンズ(レンズアレイ)
121 集光レンズ(レンズアレイ)
131 第1のレンズ
132 第2のレンズ
141 第1のレンズ
142 第2のレンズ
143 第2のレンズの内壁
151 フレネルレンズ
161,162,163 フレネルレンズ
171 階段形状(バイナリーレンズ)
172 もとのレンズ形状
181 高屈折率部(集光レンズ部)
182 低屈折率部
183 レンズ材層
191 中心部(高屈折率部)
192 周辺部(低屈折率部)
193 レンズ材層
201 凸レンズ
202 高屈折率部(集光レンズ部)
203 低屈折率部
204 レンズ材層
211 凸レンズ
212 低屈折率部(発散レンズ部)
213 高屈折率部
214 レンズ材層
301 レンズアレイ(オンチップレンズ)
302 中間透明膜
303 カラーフィルター層
304 平坦膜
305 素子表面保護層
306 メタル遮光膜
307 シリコン酸化膜あるいは窒化膜
308 ポリシリコン電極
309 電荷転送部
310 受光部
311 pウェル層
312 n型半導体基板
401 集光レンズ
402 平坦膜
421 合成樹脂層
422 合成樹脂部分
423 紫外光
425 オーバーコート層

Claims (9)

  1. 2次元平面に配列された受光部と、前記受光部上に積層されたレンズアレイとを有する固体撮像素子であって、
    前記レンズアレイは、縦横方向に集光レンズが複数個配列されてなり、
    前記レンズアレイの個々の集光レンズは個々の前記受光部に1対1に対応し、
    前記集光レンズは凸レンズであり、一つの前記受光部に対応する面積のうち前記集光レンズが占める割合が100%であることを特徴とする固体撮像素子。
  2. 前記領域の縦方向及び横方向の長さを順にX,Yとしたとき、前記集光レンズの曲率半径Rが下記式(1)を満足する請求項1に記載の固体撮像素子。
    (1/2)×(X2+Y21/2≦R≦(2/3)×(X2+Y21/2 ・・(1)
  3. 前記領域の縦方向及び横方向の長さを順にX,Y、前記集光レンズの曲率半径をRとしたとき、下記式(2)及び(3)を満足する請求項1に記載の固体撮像素子。
    4μm≦(X2+Y21/2≦5.7μm ・・(2)
    2μm≦R≦4μm ・・(3)
  4. 前記受光部に対応する領域は矩形状である請求項2又は3に記載の固体撮像素子。
  5. 前記集光レンズは、その形状を階段状に近似したバイナリー形状で形成されている請求項1〜4のいずれかに記載の固体撮像素子。
  6. 前記集光レンズの焦点距離が、前記受光部までの距離に略等しい請求項1〜5のいずれかに記載の固体撮像素子。
  7. 前記受光部の上に素子保護絶縁膜と、前記素子保護絶縁膜の上に平坦化膜をさらに備え、
    前記素子保護絶縁膜の屈折率が前記平坦化膜よりも大きいことを特徴とする請求項1〜6のいずれかに記載の固体撮像素子。
  8. 前記素子保護絶縁膜と前記平坦化膜とは接して形成されており、これらの界面が凹凸形状をなす請求項7に記載の固体撮像素子。
  9. 前記集光レンズの可視光透過率が90%以上である請求項1〜8のいずれかに記載の固体撮像素子。
JP2005259741A 2005-09-07 2005-09-07 固体撮像素子 Pending JP2006074055A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259741A JP2006074055A (ja) 2005-09-07 2005-09-07 固体撮像素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259741A JP2006074055A (ja) 2005-09-07 2005-09-07 固体撮像素子

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10205966A Division JP2000039503A (ja) 1998-07-22 1998-07-22 レンズアレイ

Publications (1)

Publication Number Publication Date
JP2006074055A true JP2006074055A (ja) 2006-03-16

Family

ID=36154256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259741A Pending JP2006074055A (ja) 2005-09-07 2005-09-07 固体撮像素子

Country Status (1)

Country Link
JP (1) JP2006074055A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791011B2 (en) 2008-03-26 2010-09-07 Sony Corporation Solid-state imaging device and manufacturing method thereof and electronic apparatus and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791011B2 (en) 2008-03-26 2010-09-07 Sony Corporation Solid-state imaging device and manufacturing method thereof and electronic apparatus and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2000039503A (ja) レンズアレイ
JP2000206310A (ja) レンズアレイ
US7538313B2 (en) Optical encoder having a no track portion of an optical scale being placed at a position symmetrical to a light non-transparent portion within an irradiation region of incident light
JP6292814B2 (ja) 光学素子アレイ、光電変換装置、及び撮像システム
JP2015028960A (ja) 固体撮像装置および電子機器
US9599754B2 (en) Optical element array and solid-state imaging device including the array
WO2013021541A1 (ja) 固体撮像装置
CN108037598A (zh) 液晶盒及拍摄系统
TW202205654A (zh) 攝像裝置及電子機器
JP2006018256A (ja) レンズアレイ
US9349771B2 (en) Microlens forming method and solid-state image sensor manufacturing method
JP2016149417A (ja) 固体撮像装置、固体撮像装置の製造方法及び撮像システム
JPH03175402A (ja) 光伝送板
JP2006074055A (ja) 固体撮像素子
JP2006086537A (ja) 固体撮像装置
JP2005352496A (ja) レンズアレイ
JP2005316508A (ja) レンズアレイ
JP2006011487A (ja) レンズアレイ
JP2006003895A (ja) レンズアレイ
KR100976791B1 (ko) 이미지 센서 및 그 제조 방법
JP6072164B2 (ja) 光学素子アレイ、及び固体撮像装置
US20230296978A1 (en) Photomask, method for manufacturing lens, and method for manufacturing photodetector
WO2022019015A1 (ja) 光検出装置、及びカメラシステム
JP2008109393A (ja) 撮像素子
JP2008078326A (ja) 固体撮像素子

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020