JP2006069238A - Flow rate control valve - Google Patents

Flow rate control valve Download PDF

Info

Publication number
JP2006069238A
JP2006069238A JP2004251446A JP2004251446A JP2006069238A JP 2006069238 A JP2006069238 A JP 2006069238A JP 2004251446 A JP2004251446 A JP 2004251446A JP 2004251446 A JP2004251446 A JP 2004251446A JP 2006069238 A JP2006069238 A JP 2006069238A
Authority
JP
Japan
Prior art keywords
opening
valve
valve member
housing
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004251446A
Other languages
Japanese (ja)
Inventor
Kenichiro Kaneko
健一郎 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2004251446A priority Critical patent/JP2006069238A/en
Publication of JP2006069238A publication Critical patent/JP2006069238A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Self-Closing Valves And Venting Or Aerating Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow rate control valve for stably moving a valve member, excellent in responsiveness to variation in gas pressure. <P>SOLUTION: In the flow rate control valve, a separating means for separating a collar part and an outflow opening is provided on an inner edge of a housing. Since the collar part and the outflow opening are separated by the separating means, troubles such as ride-over of the collar part on the outflow opening is avoided even when a central stem of the valve member deviates, and the valve member is stably moved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料タンクのブリーザ回路などに用いられる流量制御バルブに関する。   The present invention relates to a flow control valve used in a breather circuit of a fuel tank.

自動車の燃料タンク近傍には、エバポ回路と称される気化燃料回収システムが設けられている。このエバポ回路は、気化した燃料を燃料タンクから外部のキャニスタに導き、活性炭などに吸着させて一時蓄えることで、気化燃料が外気へ排出されるのを防ぐものである。キャニスタはエンジンに連結され、エンジンの吸気負圧により活性炭から気化燃料を放出させ混合気中に混合することで、吸着された気化燃料を再び燃料として使用している。   A vaporized fuel recovery system called an evaporation circuit is provided in the vicinity of the fuel tank of the automobile. This evaporation circuit prevents vaporized fuel from being discharged to the outside air by guiding the vaporized fuel from the fuel tank to an external canister and adsorbing the vaporized fuel to activated carbon or the like for temporary storage. The canister is connected to the engine, and the vaporized fuel is discharged from the activated carbon by the intake negative pressure of the engine and mixed in the air-fuel mixture, so that the adsorbed vaporized fuel is used again as fuel.

このエバポ回路には、燃料タンクへの給油時に給油口から新しいエアを巻き込むことを低減する目的で、燃料タンク内の気相部と外気とを連通するブリーザチューブを設けることが一般的である。ブリーザチューブは、一端がインレットパイプの給油口近傍に連結され、他端が燃料タンクの気相に連通するように固定されたブリーザニップルに挿通されている。給油時に燃料タンク内に存在する気化燃料は、ブリーザニップルからブリーザチューブを通りインレットパイプに回収されるので、新規エアの巻き込みが低減され燃料の気化が抑制される。この構造により、キャニスタの吸着量を低減できる。なお、一般には、給油口で巻き込まれるエア量よりもブリーザチューブからインレットパイプに循環されるブリーザガス量が大きくならないように、ブリーザニップル内部にはブリーザガス量を調整するオリフィスが形成されている。   The evaporator circuit is generally provided with a breather tube that communicates the gas phase portion in the fuel tank and the outside air in order to reduce the intake of new air from the fuel filler port when the fuel tank is refueled. One end of the breather tube is connected to the vicinity of the fuel inlet of the inlet pipe, and the other end is inserted through a breather nipple fixed so as to communicate with the gas phase of the fuel tank. The vaporized fuel present in the fuel tank at the time of refueling is collected from the breather nipple through the breather tube to the inlet pipe, so that entrainment of new air is reduced and fuel vaporization is suppressed. With this structure, the adsorption amount of the canister can be reduced. In general, an orifice for adjusting the breather gas amount is formed in the breather nipple so that the amount of breather gas circulated from the breather tube to the inlet pipe is not larger than the amount of air drawn in at the fuel filler opening.

以下、燃料タンク→ブリーザニップル→ブリーザチューブ→インレットパイプ→燃料タンクのガス循環回路をブリーザ回路と称する。   Hereinafter, the gas circulation circuit of the fuel tank → the breather nipple → the breather tube → the inlet pipe → the fuel tank is referred to as a breather circuit.

ここで、燃料タンクに給油する際の給油速度は、給油ガンの仕様と使い方によって、低速度(代表値15L/分)と高速度(代表値38L/分)の2種類に分けられる。そして、高速給油の方がエアの巻き込み量が多いので、ブリーザ回路を循環するブリーザガス量は高速給油時には多く必要となる。   Here, the oil supply speed when supplying fuel to the fuel tank is classified into two types, a low speed (representative value 15 L / min) and a high speed (representative value 38 L / min), depending on the specifications and usage of the fuel gun. And since the amount of air entrained is larger in high-speed oil supply, a larger amount of breather gas is required to circulate in the breather circuit during high-speed oil supply.

高速給油時にブリーザ回路を循環するブリーザガス量を多くするためには、オリフィスの開口を大きくすることが有効である。しかしオリフィスの開口を大きくすると、低速給油時にもブリーザ回路を循環するブリーザガス量が多くなり、給油速度が低い範囲でブリーザガス流量がエア巻き込み量を上回るようになるために給油口からのベーパリークが生じてしまう。   In order to increase the amount of breather gas that circulates in the breather circuit during high-speed fueling, it is effective to increase the orifice opening. However, if the orifice opening is increased, the amount of breather gas that circulates in the breather circuit will increase even during low-speed refueling, and the breather gas flow rate will exceed the air entrainment amount in the range where the refueling speed is low. End up.

また、オリフィスの開口を小さくすれば、低速給油時のベーパリークを防止できる。しかしオリフィスの開口を小さくすると、高速給油時のエア巻き込み量とブリーザガス流量との差が大きくなってしまい、新規エアの巻き込みによってタンク内では燃料の気化が促進され、キャニスタの吸着量が増大してしまう。このような背反した事情により、従来のブリーザ回路では給油速度の増減による必要ブリーザガス流量の増減に対応できない問題があった。   Further, if the orifice opening is made small, vapor leak at the time of low-speed refueling can be prevented. However, if the orifice opening is made smaller, the difference between the amount of air entrained during high-speed refueling and the flow rate of the breather gas will increase, and the entrainment of new air will promote the vaporization of fuel in the tank and increase the amount of adsorption of the canister. End up. Due to such contradictory circumstances, the conventional breather circuit has a problem that it cannot cope with the increase or decrease in the required breather gas flow rate due to the increase or decrease in the oil supply speed.

近年では、この問題を解消する種々の装置が開発されている(例えば、特許文献1、2)。特許文献1には、ブリーザ回路に圧力に応じて燃料蒸発ガス循環量を調整する可変手段を設けた燃料蒸発ガス排出防止装置が提案されている。また特許文献2には、圧力に応じて燃料蒸発ガス循環量を調整するバルブ内蔵コネクタをブリーザ回路に配置することが提案されている。
特開平08−216707号公報 特開2003−028010号公報
In recent years, various apparatuses for solving this problem have been developed (for example, Patent Documents 1 and 2). Patent Document 1 proposes a fuel evaporative emission prevention device in which a breather circuit is provided with variable means for adjusting the amount of fuel evaporative gas circulation according to the pressure. Further, Patent Document 2 proposes that a connector with a built-in valve that adjusts the amount of fuel evaporative gas circulating according to pressure is arranged in a breather circuit.
Japanese Patent Laid-Open No. 08-216707 JP 2003-028010 A

しかしながらこれらの公報に記載の技術では、流路を開閉するバルブを設けているだけであるため、低速給油と高速給油の両方の場合でブリーザガス量を適切に制御することが困難である。これは、従来のバルブが、ガス圧が高まるにつれてバルブが開き、徐々にブリーザガス流量が増大する構造であることに由来する。   However, in the techniques described in these publications, since only a valve for opening and closing the flow path is provided, it is difficult to appropriately control the breather gas amount in both cases of low speed oil supply and high speed oil supply. This is because the conventional valve has a structure in which the valve opens as the gas pressure increases, and the breather gas flow rate gradually increases.

ブリーザ回路を循環するブリーザガスの圧力(以下、単にガス圧と呼ぶ)は、温度にも大きく影響を受け、低速給油時と高速給油時とにおいてガス圧にそれぞれバラツキが生じる。ガス圧のバラツキに対応するためには、低速給油時および高速給油時の両方で比較的広い範囲のガス圧に対して一定流量のブリーザガスが流れるようにし、かつ、比較的狭い範囲のガス圧の変化で低速給油時のブリーザガス流量と高速給油時のブリーザガス流量を切り替える必要がある。すなわち、ブリーザガス流量とガス圧とは、ブリーザガス流量を縦軸に、ガス圧を横軸にとったときに、急勾配のS字曲線を描くことが好ましい。しかし、上述したように、従来のバルブではガス圧が高まるにつれて徐々にブリーザガス流量が増大するために、比較的狭い範囲のガス圧の変化で低速給油時のブリーザガス流量と高速給油時のブリーザガス流量とを切り替える性能(以下、ガス圧変化への応答性と呼ぶ)に劣り、低速給油時あるいは高速給油時に生じるガス圧のバラツキに対応できない問題があった。   The pressure of the breather gas circulating through the breather circuit (hereinafter simply referred to as gas pressure) is also greatly affected by temperature, and the gas pressure varies at low and high speeds. In order to cope with the variation in gas pressure, a breather gas with a constant flow rate should flow with respect to a relatively wide range of gas pressures at both low and high speeds, and a relatively narrow range of gas pressures. It is necessary to switch between the breather gas flow rate at low speed lubrication and the breather gas flow rate at high speed lubrication. That is, it is preferable that the breather gas flow rate and the gas pressure draw a steep S-curve when the breather gas flow rate is on the vertical axis and the gas pressure is on the horizontal axis. However, as described above, since the breather gas flow rate gradually increases as the gas pressure increases in the conventional valve, the breather gas flow rate during low-speed lubrication and the breather gas flow rate during high-speed lubrication due to a relatively narrow range of gas pressure changes. There is a problem that it is inferior in performance (hereinafter referred to as responsiveness to changes in gas pressure) and cannot cope with variations in gas pressure that occur during low-speed or high-speed oil supply.

本願出願人等は、これらの問題を解決するために、給油速度の増減などによる必要ブリーザガス流量の増減に正確に対応できる流量制御バルブを開発した。この流量制御バルブは、ハウジングと、弁部材と、付勢手段とからなり、ハウジングと弁部材との間に形成される第1弁部および第2弁部の開閉のバランスを制御することにより、高速給油と低速給油とに柔軟に対応するものである。この流量制御バルブの一例を模式的に表す断面図を図9〜図11に示し、この流量制御バルブの動作を説明する。   In order to solve these problems, the applicants of the present application have developed a flow control valve that can accurately cope with an increase or decrease in the required breather gas flow rate due to an increase or decrease in the oil supply speed. This flow control valve comprises a housing, a valve member, and an urging means, and controls the balance between opening and closing of the first valve portion and the second valve portion formed between the housing and the valve member, It flexibly supports high-speed and low-speed lubrication. Cross-sectional views schematically showing an example of the flow control valve are shown in FIGS. 9 to 11, and the operation of the flow control valve will be described.

この流量制御バルブにおいて、ハウジング4は、図9に示されるように、流体が流入する流入開口41と、流入開口から流入した流体が外部へ流出する流出開口42とを持つ。弁部材5は、外周方向に突出する鍔部51を持ち、ハウジング4内に移動自在に配置されている。付勢手段6は、弁部材5を流入開口41へ近接する方向へ付勢する。この流量制御バルブでは、弁部材5とハウジング4との間には第1弁部90が設けられ、弁部材の鍔部51とハウジングとの間には第2弁部91が形成されている。   In this flow control valve, the housing 4 has an inflow opening 41 through which a fluid flows and an outflow opening 42 through which the fluid flowing in from the inflow opening flows out, as shown in FIG. The valve member 5 has a flange portion 51 projecting in the outer peripheral direction, and is movably disposed in the housing 4. The urging means 6 urges the valve member 5 in a direction approaching the inflow opening 41. In this flow control valve, a first valve portion 90 is provided between the valve member 5 and the housing 4, and a second valve portion 91 is formed between the flange portion 51 of the valve member and the housing.

図10に示されるように、第1弁部90は、弁部材5に設けられた貫通孔57とハウジング4の一部を構成する凸部33との間に形成され、流入開口41から遠ざかる方向への弁部材5の移動(以下、開方向の移動と呼ぶ)に伴って流入開口41と流出開口42との連通を徐々に閉じる。そして図11に示されるように、第2弁部91は、弁部材5に設けられた鍔部51とハウジング4の一部を構成する筒部材2との間に形成され、弁部材5の開方向の移動に伴って流入開口41と流出開口42との連通を開く。   As shown in FIG. 10, the first valve portion 90 is formed between the through hole 57 provided in the valve member 5 and the convex portion 33 constituting a part of the housing 4, and away from the inflow opening 41. As the valve member 5 moves (hereinafter referred to as movement in the opening direction), the communication between the inflow opening 41 and the outflow opening 42 is gradually closed. As shown in FIG. 11, the second valve portion 91 is formed between the flange portion 51 provided on the valve member 5 and the cylindrical member 2 constituting a part of the housing 4, and the valve member 5 is opened. With the movement of the direction, communication between the inflow opening 41 and the outflow opening 42 is opened.

この流量制御バルブでは、流入開口41側の流体圧が所定値以下のときには、図9に示されるように、第1弁部90が開状態かつ第2弁部91が閉状態となる。また、図10に示されるように、流入開口41側の流体圧の増大によって弁部材5が開方向へ移動すると、この移動に伴って第1弁部90の開口面積が徐々に狭まる。そして、流入開口41と流出開口42との圧力差が所定値を超えると、第2弁部91が流入開口41と流出開口42との連通を一気に開き、図11に示すように、第1弁部90が閉状態かつ第2弁部91が開状態となる。   In this flow control valve, when the fluid pressure on the inflow opening 41 side is equal to or less than a predetermined value, as shown in FIG. 9, the first valve portion 90 is opened and the second valve portion 91 is closed. Also, as shown in FIG. 10, when the valve member 5 moves in the opening direction due to an increase in fluid pressure on the inflow opening 41 side, the opening area of the first valve portion 90 gradually decreases with this movement. When the pressure difference between the inflow opening 41 and the outflow opening 42 exceeds a predetermined value, the second valve portion 91 opens the communication between the inflow opening 41 and the outflow opening 42 all at once, and as shown in FIG. The part 90 is closed and the second valve part 91 is open.

この流量制御バルブによれば、流入開口41側の流体圧が所定値以下、すなわち、第1弁部90が開状態のときには、閉空間内の流体は第1弁部90を通じて流入開口41から流出開口42へ流れる(図9中矢印a方向)。そして流入開口41側の流体圧が高まるにつれて第1弁部90の開口面積が徐々に狭まるので、流体は徐々に流れにくくなる。さらに弁部材5が移動して第1弁部90を閉じ、流入開口41と流出開口42との圧力差が急激に増大して所定値を超えると、弁部材5は流入開口41から遠ざかる方向へ一気に移動して第2弁部91が一気に開く。このとき、ハウジング4内の流体は流入開口41から第2弁部91を経て一気に流出する(図11中矢印b方向)。このため、この流量制御バルブはガス圧変化への応答性に優れ、燃料タンクのブリーザ回路に用いた場合には、高速給油と低速給油とに柔軟に対応することができる。   According to this flow control valve, when the fluid pressure on the inflow opening 41 side is equal to or lower than a predetermined value, that is, when the first valve portion 90 is open, the fluid in the closed space flows out from the inflow opening 41 through the first valve portion 90. It flows to the opening 42 (in the direction of arrow a in FIG. 9). Then, as the fluid pressure on the inflow opening 41 side increases, the opening area of the first valve portion 90 gradually decreases, so that the fluid gradually does not flow easily. Further, when the valve member 5 moves to close the first valve portion 90 and the pressure difference between the inflow opening 41 and the outflow opening 42 suddenly increases and exceeds a predetermined value, the valve member 5 moves away from the inflow opening 41. It moves at a stretch and the 2nd valve part 91 opens at a stretch. At this time, the fluid in the housing 4 flows out from the inflow opening 41 through the second valve portion 91 (in the direction of arrow b in FIG. 11). For this reason, this flow control valve is excellent in responsiveness to changes in gas pressure, and when used in a breather circuit of a fuel tank, can flexibly cope with high-speed and low-speed oil supply.

ところで、図9〜図11に示されるような流量制御バルブでは、弁部材5を滑らかに移動させるために、弁部材5とハウジング4とは僅かに隙間をもって設計されている。このため、弁部材5の一部分に局所的に高い流体圧が作用するような場合には、ハウジング4内で弁部材5が揺動して弁部材5の中心軸がずれてしまう場合がある(図12)。そして弁部材5の中心軸がずれると、弁部材5が軸方向に移動する際に、弁部材5のうち最外方に位置する鍔部51が、流出開口42の内部に乗り上げてしまう可能性がある。この場合には、弁部材5は流出開口42の外縁と係止して安定に移動しなくなる。さらに、弁部材5の中心軸がずれると鍔部51とハウジング4とが接触する部分(図12中点線A部分)の面積が大きくなり、弁部材5が移動する際の鍔部51とハウジング4との接触抵抗が大きく変化する。このため、弁部材5の軸方向への移動が不安定になり、ガス圧変化への応答性が不安定になる。   Incidentally, in the flow control valve as shown in FIGS. 9 to 11, the valve member 5 and the housing 4 are designed with a slight gap in order to move the valve member 5 smoothly. For this reason, when a high fluid pressure locally acts on a part of the valve member 5, the valve member 5 may swing within the housing 4 and the central axis of the valve member 5 may be displaced ( FIG. 12). If the central axis of the valve member 5 is shifted, the flange 51 located on the outermost side of the valve member 5 may ride on the inside of the outflow opening 42 when the valve member 5 moves in the axial direction. There is. In this case, the valve member 5 is locked with the outer edge of the outflow opening 42 and does not move stably. Further, when the central axis of the valve member 5 is shifted, the area of the portion where the flange portion 51 and the housing 4 are in contact (portion A in FIG. 12) increases, and the flange portion 51 and the housing 4 when the valve member 5 moves. The contact resistance changes greatly. For this reason, the movement of the valve member 5 in the axial direction becomes unstable, and the responsiveness to changes in gas pressure becomes unstable.

本発明は上記した事情に鑑みてなされたものであり、弁部材を安定して移動させ、ガス圧変化への応答性に優れた流量制御バルブを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a flow rate control valve that stably moves a valve member and has excellent responsiveness to changes in gas pressure.

上記課題を解決する本発明の流量制御バルブは、 流体が流入する流入開口と流入開口から流入した流体が外部へ流出する流出開口とを有するハウジングと、外周方向に突出する鍔部を持ちハウジング内に移動自在に配置された弁部材と、弁部材を流入開口へ近接する方向へ付勢する付勢手段と、からなり、
弁部材とハウジングとの間に形成され流入開口から遠ざかる方向への弁部材の移動に伴って流入開口と流出開口との連通を徐々に閉じる第1弁部と、鍔部とハウジングとの間に形成され流入開口から遠ざかる方向への弁部材の移動に伴って流入開口と流出開口との連通を開く第2弁部と、を備え、
流入開口側の流体圧が所定値以下のときには第1弁部が開状態かつ第2弁部が閉状態であり、流入開口と流出側開口との圧力差が所定値を超えたときに第2弁部が流入開口と流出開口との連通を一気に開くように構成されてなる流量制御バルブであって、
上記ハウジングの内縁には、上記鍔部と上記流出開口とを離間させる隔離手段が設けられていることを特徴とする。
The flow rate control valve of the present invention that solves the above-described problems includes a housing having an inflow opening through which a fluid flows in and an outflow opening through which the fluid flowing in from the inflow opening flows out to the outside, and a flange that protrudes in the outer circumferential direction And a urging means for urging the valve member in a direction close to the inflow opening,
A first valve portion formed between the valve member and the housing and gradually closing the communication between the inflow opening and the outflow opening as the valve member moves in a direction away from the inflow opening, and between the flange portion and the housing A second valve part that opens and communicates with the inflow opening and the outflow opening as the valve member moves in a direction away from the inflow opening,
When the fluid pressure on the inflow opening side is below a predetermined value, the first valve portion is open and the second valve portion is closed, and when the pressure difference between the inflow opening and the outflow side opening exceeds a predetermined value, the second valve portion is closed. A flow rate control valve configured such that the valve portion opens the communication between the inflow opening and the outflow opening at once,
The inner edge of the housing is provided with a separating means for separating the flange portion and the outflow opening.

本発明の流量制御バルブにおいて、上記隔離手段は、上記流出開口の周縁部から内周方向に突出するリブから構成することができる。   In the flow control valve of the present invention, the isolation means can be constituted by a rib protruding in the inner peripheral direction from the peripheral edge of the outflow opening.

本発明の流量制御バルブにおいて、上記隔離手段は、上記流出開口の外縁に設けられ外縁全周を肉欠きする凹部から構成することができる。   In the flow control valve of the present invention, the isolation means can be constituted by a recess provided on the outer edge of the outflow opening and having a lack of the entire outer edge.

本発明の流量制御バルブにおいて、上記鍔部の周端には、上記弁部材と上記ハウジングとの接触面積を減じる凹凸部が設けられていることが好ましい。   In the flow control valve of the present invention, it is preferable that an uneven portion for reducing a contact area between the valve member and the housing is provided at a peripheral end of the flange portion.

本発明の流量制御バルブでは、ハウジングの内縁に、鍔部と流出開口とを離間させる隔離手段が設けられている。この隔離手段により、鍔部は流出開口から遠ざけられるために、弁部材の中心軸がずれる場合にも、弁部材が流出開口の内部に乗り上げることはなく、弁部材が安定に移動してガス圧変化への優れた応答性が発揮される。隔離手段を流出開口の周縁部から内周方向に突出するリブから構成する場合には、リブの突出端が鍔部の周端と干渉して、鍔部と流出開口とが離間する。また隔離手段を、流出開口の外縁に設けられ外縁全周を肉欠きする凹部から構成する場合には、流出開口の外縁自体が鍔部の周端よりも外周側に配置されるために、鍔部と流出開口とが離間する。何れの場合にも、隔離手段は弁部材の軸方向の移動長さ全長に設けられることが好ましい。   In the flow control valve of the present invention, an isolation means for separating the flange portion and the outflow opening is provided at the inner edge of the housing. Since the flange portion is moved away from the outflow opening by this isolating means, even when the central axis of the valve member is displaced, the valve member does not ride on the inside of the outflow opening, and the valve member moves stably and gas pressure is increased. Excellent response to change. In the case where the separating means is constituted by a rib protruding in the inner circumferential direction from the peripheral edge portion of the outflow opening, the protruding end of the rib interferes with the peripheral end of the flange portion, and the flange portion and the outflow opening are separated from each other. Further, when the separating means is formed of a recess provided on the outer edge of the outflow opening and having a notch on the entire outer edge, the outer edge of the outflow opening itself is disposed on the outer peripheral side with respect to the peripheral edge of the collar portion. The part and the outflow opening are separated from each other. In any case, it is preferable that the separating means is provided over the entire length of the axial movement of the valve member.

また、鍔部の周端に弁部材とハウジングとの接触面積を減じる凹凸部を設ける場合には、弁部材の中心軸がずれて弁部材とハウジングとが接触する場合にも、弁部材とハウジングとの接触抵抗が大きく変化することはなくなる。このため、弁部材が安定して移動し、ガス圧変化への優れた応答性が発揮される。なお、上述した隔離手段によっても弁部材とハウジングとの接触面積が減じられるために、同様に弁部材とハウジングとの接触抵抗が大きく変化することが回避されるが、さらに凹凸部を設けることで、弁部材の移動をより確実に安定させることができる。   Further, in the case where an uneven portion for reducing the contact area between the valve member and the housing is provided at the peripheral end of the flange portion, the valve member and the housing can be used even when the central axis of the valve member is shifted and the valve member and the housing are in contact with each other. The contact resistance with the will not change greatly. For this reason, a valve member moves stably and the outstanding responsiveness to a gas pressure change is exhibited. In addition, since the contact area between the valve member and the housing is also reduced by the isolation means described above, the contact resistance between the valve member and the housing is similarly avoided from being greatly changed. The movement of the valve member can be stabilized more reliably.

なお、本発明の流量制御バルブは、上述した図9〜11に示される流量制御バルブと同様に、第1弁部と第2弁部とを備えるものであり、上述した図9〜11に示される流量制御バルブと同様の機構で優れたガス圧変化への応答性を発揮する。このため、本発明の流量制御バルブを例えば燃料タンクのブリーザ回路に用いた場合には、高速給油と低速給油とに柔軟且つ確実に対応することができる。   The flow control valve of the present invention includes a first valve portion and a second valve portion, similar to the flow control valve shown in FIGS. 9 to 11 described above, and is shown in FIGS. 9 to 11 described above. Excellent response to changes in gas pressure with the same mechanism as the flow control valve. For this reason, when the flow control valve of the present invention is used, for example, in a breather circuit of a fuel tank, it is possible to flexibly and reliably cope with high-speed oil supply and low-speed oil supply.

本発明の流量制御バルブは、例えば、上述したブリーザ回路に代表される循環ライン用の流量制御バルブとして用いることもできるし、循環ライン用以外の流量制御バルブとして用いることもできる。   The flow control valve of the present invention can be used, for example, as a flow control valve for a circulation line represented by the above-described breather circuit, or can be used as a flow control valve other than for the circulation line.

ハウジングは弁部材を移動可能に収納するものであり、流体の流入開口及び流出開口を有する。ハウジングの固定位置は流量制御バルブの使用目的に応じて種々に設定できるが、例えば本発明の流量制御バルブをブリーザニップル部に適用する場合には、ハウジングは燃料タンクの上部に気密に固定される。この場合、流入開口が燃料タンクの気相に連通し、流出開口がブリーザニップルに連通する。このとき、ハウジングは燃料タンクの外部に突出していてもよいし、燃料タンク内部に配置することも可能である。ハウジングを燃料タンクに固定する方法は、機械的に固定する方法、接着あるいは溶着で固定する方法など特に制限されない。   The housing movably accommodates the valve member, and has a fluid inflow opening and an outflow opening. The fixing position of the housing can be variously set according to the purpose of use of the flow control valve. For example, when the flow control valve of the present invention is applied to the breather nipple portion, the housing is airtightly fixed to the upper part of the fuel tank. . In this case, the inflow opening communicates with the gas phase of the fuel tank, and the outflow opening communicates with the breather nipple. At this time, the housing may protrude outside the fuel tank, or can be disposed inside the fuel tank. The method of fixing the housing to the fuel tank is not particularly limited, such as a method of mechanically fixing or a method of fixing by adhesion or welding.

本発明の流量制御バルブをブリーザニップル部に適用する場合には、ハウジングの下部には、燃料タンク内に延びる筒状部を設けることが好ましい。一般に、燃料タンクには満タン検知バルブが設けられ、燃料液面が所定の位置に到達すると満タン検知バルブが作動し、タンク内圧の上昇によって給油ガンのオートストップが働くように構成されている。もし満タン検知時にハウジングの流入開口がタンクの気相に位置していると、ブリーザ回路を通じて給油口からのベーパリークが生じてしまう。したがって燃料液面が所定の位置に到達した時点で、流入開口に連通するハウジング下端は液没している必要がある。そこで燃料タンク内に延びる筒状部を形成し、筒状部の下端開口の位置を満タン時の液面位置より下方にしておくことで、給油口からのベーパリークを防ぐことができる。   When the flow control valve of the present invention is applied to the breather nipple portion, it is preferable to provide a cylindrical portion extending into the fuel tank at the lower portion of the housing. In general, the fuel tank is provided with a full tank detection valve, and when the fuel level reaches a predetermined position, the full tank detection valve is operated, and an automatic stop of the fuel gun is activated by an increase in the tank internal pressure. If the inflow opening of the housing is located in the gas phase of the tank when full tank is detected, a vapor leak from the fuel filler port will occur through the breather circuit. Therefore, when the fuel level reaches a predetermined position, the lower end of the housing communicating with the inflow opening needs to be submerged. Therefore, by forming a cylindrical portion extending into the fuel tank and keeping the position of the lower end opening of the cylindrical portion below the liquid level when full, it is possible to prevent vapor leak from the fuel filler opening.

燃料タンク内に延びる筒状部はハウジングと一体でもよいが、ハウジングとは別に形成された筒部材をハウジングと気密に一体化することが好ましい。このようにすれば、満タン液面位置が異なる各種の燃料タンクにも、筒部材の長さを調整するのみで容易に対応することができ、ハウジング及びブリーザニップルの大部分を複数種の燃料タンクで共用することができる。   The cylindrical portion extending into the fuel tank may be integrated with the housing, but it is preferable that a cylindrical member formed separately from the housing is integrated with the housing in an airtight manner. In this way, it is possible to easily cope with various fuel tanks having different full liquid level positions by simply adjusting the length of the cylindrical member. Most of the housing and the breather nipple are made of a plurality of types of fuel. Can be shared in tanks.

本発明の流量制御バルブを、例えばブリーザニップル部に適用する場合には、付勢手段による付勢力は、低速給油時のタンク内のガス圧によって弁部材が浮き上がらない程度になるように設計すればよい。これにより、低速給油時にタンク内のガス圧がばらついても第1弁部が閉じるのが防止され、キャニスタへの吸着量の増大を抑制できる。そして高速給油時の大きなタンク内のガス圧によって弁部材が浮き上がるように設計しておけば、弁部材が流入開口から遠ざかる方向へ移動するにつれて第1弁部の開口面積が徐々に狭まり、流入開口側の気圧と流出開口側の気圧の差が所定値を超えたときに第2弁部が流入開口と流出開口との連通を一気に開くように構成することができる。したがってガス圧とブリーザガス流量との関係は、急勾配のS字曲線に近くなるために、流量制御バルブは優れた応答性を発揮して、ベーパリークやキャニスタへの吸着量の増大を抑制できる。   When the flow control valve of the present invention is applied to, for example, a breather nipple portion, the urging force by the urging means should be designed so that the valve member does not lift up due to the gas pressure in the tank during low-speed fueling. Good. Thereby, even if the gas pressure in the tank varies during low-speed refueling, the first valve portion is prevented from closing, and an increase in the amount of adsorption to the canister can be suppressed. If the valve member is designed to be lifted by the gas pressure in the large tank during high-speed fueling, the opening area of the first valve portion gradually decreases as the valve member moves away from the inflow opening. The second valve portion can be configured to open the communication between the inflow opening and the outflow opening at once when the difference between the atmospheric pressure on the side and the atmospheric pressure on the outflow opening side exceeds a predetermined value. Therefore, since the relationship between the gas pressure and the breather gas flow rate is close to a steep S-curve, the flow control valve exhibits excellent responsiveness and can suppress an increase in the amount of adsorption to the vapor leak or the canister.

本発明の流量制御バルブでは、弁部材は略有底筒状をなし、ハウジングは流入開口に向かって突出する凸部を有し、凸部と弁部材の間に第1弁部を形成することが好ましい。この場合凸部を筒状とするとともに、弁部材の筒部は凸部の内周又は外周形状に対応した形状とし、筒部の一端に凸部が進入する、あるいは凸部の内部に弁部材が進入することで第1弁部が徐々に閉状態となるようにすることができる。さらにこの場合には、凸部により弁部材の移動方向を案内できる利点もある。   In the flow control valve of the present invention, the valve member has a substantially bottomed cylindrical shape, the housing has a convex portion protruding toward the inflow opening, and the first valve portion is formed between the convex portion and the valve member. Is preferred. In this case, the convex portion has a cylindrical shape, and the cylindrical portion of the valve member has a shape corresponding to the inner periphery or the outer peripheral shape of the convex portion, and the convex portion enters one end of the cylindrical portion, or the valve member enters the convex portion. The first valve portion can be gradually closed by entering. Furthermore, in this case, there is an advantage that the moving direction of the valve member can be guided by the convex portion.

弁部材は凸部に外挿され、弁部材の側壁に設けられた貫通孔と凸部と、あるいは、凸部の側壁に設けられた貫通孔と弁部材と、によって第1弁部を構成し、弁部材の移動に伴って貫通孔が徐々に塞がれるようにすることで第1弁部を形成することが好ましい。このようにすれば、弁部材が移動初期に凸部と干渉することが防止でき、凸部の案内によって弁部材を安定して移動させることができる。   The valve member is extrapolated to the convex part, and the first valve part is constituted by the through hole and the convex part provided on the side wall of the valve member, or the through hole and the valve member provided on the side wall of the convex part. The first valve portion is preferably formed by gradually closing the through hole as the valve member moves. If it does in this way, it can prevent that a valve member interferes with a convex part at the beginning of movement, and can move a valve member stably by guidance of a convex part.

第2弁部は、鍔部とハウジングとの間に形成され、開方向、すなわち軸方向上方への移動に伴って流入開口と流出開口との連通を開く部分である。弁部材はハウジング内を移動自在に配置され、鍔部は弁部材の外周方向に突出していることから、弁部材の配置位置によって、鍔部で流入開口と流出開口とを仕切って第2弁部を閉状態にしたり、仕切を解除して第2弁部を開状態にしたりすることができる。   The second valve portion is formed between the flange portion and the housing, and is a portion that opens the communication between the inflow opening and the outflow opening in accordance with movement in the opening direction, that is, in the axial direction. Since the valve member is movably disposed in the housing and the flange portion protrudes in the outer circumferential direction of the valve member, the second valve portion is partitioned by the flange portion into the inflow opening and the outflow opening depending on the position of the valve member. Can be closed, or the partition can be released to open the second valve portion.

第2弁部は、第1弁部が開いている状態で流入開口と流出開口との連通を閉じ、弁部材が移動し始めた瞬間に流入開口と流出開口との連通を開くように設計してもよいが、弁部材が所定量移動して第1弁部が閉じると同時に第2弁部が開くように設計することが好ましい。本発明の流量制御バルブをブリーザ回路のブリーザニップル部に適用する場合に、上記のように設計すれば、第1弁部が閉じた時に、弁部材より下流側のハウジング内の圧力は大気圧となり、弁部材より上流側のハウジング内の圧力はタンク内のガス圧となる。この場合、ハウジング内における弁部材より下流側の圧力と上流側の圧力との差圧が大きくなるために、弁部材がさらに速やかに移動するようになり、ガス圧とブリーザガス流量との関係は、更に急勾配のS字曲線に近くなり、ベーパリークやキャニスタへの吸着量の増大をより確実に抑制できる。   The second valve part is designed to close the communication between the inflow opening and the outflow opening while the first valve part is open, and to open the communication between the inflow opening and the outflow opening at the moment when the valve member starts to move. However, it is preferable to design the valve member so that the second valve portion is opened at the same time as the valve member is moved by a predetermined amount and the first valve portion is closed. When the flow control valve of the present invention is applied to the breather nipple portion of the breather circuit, if the design is made as described above, the pressure in the housing on the downstream side of the valve member becomes atmospheric pressure when the first valve portion is closed. The pressure in the housing upstream of the valve member is the gas pressure in the tank. In this case, since the differential pressure between the pressure on the downstream side and the pressure on the upstream side of the valve member in the housing increases, the valve member moves more quickly, and the relationship between the gas pressure and the breather gas flow rate is Furthermore, it becomes close to a steep S-shaped curve, and the increase in the amount of adsorption to the vapor leak and the canister can be more reliably suppressed.

本発明の流量制御バルブでは、ハウジングの内縁に、鍔部と流出開口とを離間させる隔離手段が設けられている。隔離手段としては、鍔部と流出開口とを離間させる種々の形状からなるものを用いればよく、例えば流出開口の周縁部から内周方向に突出するリブや、流出開口の外縁に設けられ外縁全周を肉欠きする凹部から構成することができる。リブや凹部からなる隔離手段によると、鍔部の周端と流出開口とを簡単な構造で確実に離間させることができ、鍔部の周端と流出開口の外縁とが係止する等の不具合を回避することができる。   In the flow control valve of the present invention, an isolation means for separating the flange portion and the outflow opening is provided at the inner edge of the housing. Separation means may be made of various shapes that separate the collar portion and the outflow opening. For example, ribs protruding in the inner circumferential direction from the peripheral edge of the outflow opening, or the entire outer edge provided on the outer edge of the outflow opening. It can be comprised from the recessed part which the periphery lacks. According to the separating means composed of ribs and recesses, the peripheral edge of the collar and the outflow opening can be reliably separated with a simple structure, and the peripheral edge of the collar and the outer edge of the outflow opening are locked. Can be avoided.

本発明の流量制御バルブのうち鍔部の周端に凹凸部を設ける場合には、弁部材の中心軸がずれる場合に弁部材とハウジングとが接触する面積がより小さくなり、弁部材がより安定して移動する。このため、ガス圧変化へのより優れた応答性が発揮される。   In the flow control valve according to the present invention, when the uneven portion is provided at the peripheral end of the flange portion, the area where the valve member and the housing come into contact with each other when the central axis of the valve member is shifted is smaller, and the valve member is more stable. Then move. For this reason, more excellent responsiveness to changes in gas pressure is exhibited.

付勢手段は、弁部材自身の自重としてもよいし、スプリングなどを用いることもできる。その付勢力は、目的に応じて種々設定することができる。   The biasing means may be the weight of the valve member itself, or a spring or the like may be used. The biasing force can be variously set according to the purpose.

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be described specifically by way of examples.

(実施例1)
実施例1の流量制御バルブは、リブからなる隔離手段を備えるものである。実施例1の流量制御バルブを模式的に表す断面図を図1〜5に示し、実施例1の流量制御バルブのうち隔離手段を模式的に表す断面図を図6に示す。
Example 1
The flow control valve of Example 1 is provided with the isolation means which consists of ribs. 1 to 5 are cross-sectional views schematically showing the flow control valve of the first embodiment, and FIG. 6 is a cross-sectional view schematically showing the isolating means in the flow control valve of the first embodiment.

実施例1の流量制御バルブは、ブリーザ回路のブリーザニップル部に適用されるものであり、図2に示すように燃料タンク100の上部に溶着固定され、ニップル部11にブリーザチューブ200が挿通されたものである。ブリーザチューブ200はインレットパイプ300の給油口近傍に連結されている。   The flow control valve of the first embodiment is applied to a breather nipple portion of a breather circuit, and is welded and fixed to the upper portion of the fuel tank 100 as shown in FIG. 2, and a breather tube 200 is inserted into the nipple portion 11. Is. The breather tube 200 is connected to the vicinity of the fuel filler opening of the inlet pipe 300.

この流量制御バルブは、図3〜5に拡大図を示すように、二色成形により製造されたカバー1と、カバー1に溶着固定された筒部材2と、筒部材2に係合固定された座板3と、弁部材5と、スプリング6と、から構成されている。   As shown in enlarged views in FIGS. 3 to 5, this flow control valve is engaged and fixed to the cover 1 manufactured by two-color molding, the cylindrical member 2 welded and fixed to the cover 1, and the cylindrical member 2. The seat plate 3, the valve member 5, and the spring 6 are configured.

カバー1は有底円筒状の容器状部10と、容器状部10から径方向外方に突出するニップル部11と、容器状部10の開口周縁部に形成されたリング状の溶着部12とを有している。容器状部10とニップル部11は、変性ポリエチレン製の外層13とポリアミド製の内層15とから形成され、溶着部12は外層13と同一の変性ポリエチレンから形成されている。   The cover 1 includes a bottomed cylindrical container 10, a nipple part 11 projecting radially outward from the container part 10, and a ring-shaped weld part 12 formed on the opening peripheral edge of the container part 10. have. The container-like portion 10 and the nipple portion 11 are formed from a modified polyethylene outer layer 13 and a polyamide inner layer 15, and the welded portion 12 is formed from the same modified polyethylene as the outer layer 13.

ポリアミド製の筒部材2は、中間部に内径が縮小された縮径部20を有し、縮径部20の外周にはフランジ部21が形成されている。この筒部材2は、上部がカバー1の容器状部10に嵌合し、フランジ部21が容器状部10の内層15に溶着されることで、筒部材2はカバー1と一体となっている。筒部材2の縮径部20にはガス流入孔22が貫通している。さらに、筒部材2の側壁には開口23が設けられ、この開口23はニップル部11の内部と連通している。   The tubular member 2 made of polyamide has a reduced diameter portion 20 with an inner diameter reduced at an intermediate portion, and a flange portion 21 is formed on the outer periphery of the reduced diameter portion 20. The upper part of the cylindrical member 2 is fitted into the container-like part 10 of the cover 1, and the flange part 21 is welded to the inner layer 15 of the container-like part 10, so that the cylindrical member 2 is integrated with the cover 1. . A gas inflow hole 22 passes through the reduced diameter portion 20 of the cylindrical member 2. Further, an opening 23 is provided in the side wall of the cylindrical member 2, and the opening 23 communicates with the inside of the nipple portion 11.

座板3は、円板状の基部30と、基部30の周縁部に間隔を隔てて列設された複数の係止爪31と、基部30の中心から軸方向に突出し中央に凹部32をもつ凸部33と、から構成され、ポリアセタール樹脂から形成されている。筒部材2の先端には係止孔35が形成され、係止爪31が係止孔35に係合することで、座板3が筒部材2に固定されている。本実施例の流量制御バルブでは、筒部材2と座板3とによりカバー1の内部にハウジング4が形成されている。本実施例の流量制御バルブでは、ガス流入孔22が流入開口に相当し、ニップル部11に連通する筒部材2の開口23が流出開口に相当する。そして、縮径部20の上面は、流入開口側(ガス流入口22)の気圧が所定値以下の時に弁部材5が着座する座面を構成する。   The seat plate 3 has a disk-shaped base portion 30, a plurality of locking claws 31 arranged at intervals on the peripheral edge portion of the base portion 30, and a recess 32 at the center that protrudes in the axial direction from the center of the base portion 30. Convex part 33, and is formed from polyacetal resin. A locking hole 35 is formed at the tip of the cylindrical member 2, and the seat plate 3 is fixed to the cylindrical member 2 by engaging the locking claw 31 with the locking hole 35. In the flow control valve of the present embodiment, a housing 4 is formed inside the cover 1 by a cylindrical member 2 and a seat plate 3. In the flow control valve of this embodiment, the gas inflow hole 22 corresponds to an inflow opening, and the opening 23 of the cylindrical member 2 communicating with the nipple portion 11 corresponds to an outflow opening. The upper surface of the reduced diameter portion 20 constitutes a seating surface on which the valve member 5 is seated when the pressure on the inlet opening side (gas inlet 22) is equal to or lower than a predetermined value.

筒部材2のうち、開口23の周縁部には、図6に示すように、内周方向に突出する第1リブ80が設けられている。この第1リブ80は、開口23の両端側に設けられ、筒部材の軸方向全長に延びている。また、その他にも同様の形状の第2リブ81が筒部材2の周方向に複数箇所設けられている。この第1リブ80、第2リブ81は、筒部材2の筒内部に後述する弁部材を配した際に、弁部材の鍔部と僅かに離間する程度の大きさで突出している。また、各々の第2リブ81は開口23を避けた位置に各々離間して配置されている。本実施例の流量制御バルブでは、第1リブ80により隔離手段が構成されている。   As shown in FIG. 6, a first rib 80 protruding in the inner circumferential direction is provided in the peripheral portion of the opening 23 in the cylindrical member 2. The first ribs 80 are provided at both ends of the opening 23 and extend the entire axial length of the cylindrical member. In addition, a plurality of second ribs 81 having a similar shape are provided in the circumferential direction of the cylindrical member 2. The first rib 80 and the second rib 81 protrude with a size that is slightly separated from the flange portion of the valve member when a later-described valve member is disposed inside the cylinder of the cylinder member 2. Further, the second ribs 81 are spaced apart from each other at positions avoiding the opening 23. In the flow control valve of this embodiment, the first rib 80 constitutes a separating means.

弁部材5は、有底筒状の筒部50と、筒部50のうち軸方向の中間部に設けられている鍔部51と、鍔部51よりも下方、すなわち流入開口側の位置に設けられている干渉鍔部52と、から構成されている。鍔部51および干渉鍔部52は、弁部材5の外縁から外周方向に突出している。干渉鍔部52には、周方向の複数箇所に第2の貫通孔53が設けられている。筒部50の底部には内側へ突出する筒状の小径凸部55が形成され、小径凸部55の筒内部は筒内外を連通する通気孔56になっている。   The valve member 5 is provided with a bottomed cylindrical tube portion 50, a flange portion 51 provided in an intermediate portion in the axial direction of the tube portion 50, and a position below the flange portion 51, that is, a position on the inflow opening side. The interference flange 52 is formed. The flange 51 and the interference flange 52 protrude from the outer edge of the valve member 5 in the outer circumferential direction. The interference flange 52 is provided with second through holes 53 at a plurality of locations in the circumferential direction. A cylindrical small-diameter convex portion 55 that protrudes inward is formed at the bottom of the cylindrical portion 50, and the inside of the small-diameter convex portion 55 is a vent hole 56 that communicates the inside and outside of the cylinder.

筒部50の外径は筒部材2の縮径部20の内径より大きくなっており、弁部材5は縮径部20によって下方への移動を規制された状態でハウジング4内を上下方向に移動自在となっている。また、鍔部51の外径は、ハウジング4の内径、すなわち、第1リブ80、第2リブ81の突出端面同士から構成される空間よりも僅かに小さくなっており、弁部材5は滑らかに移動できるようになっている。さらに、弁部材5の筒部50の内径は、凸部33の外径より大きく、弁部材5は凸部33に案内されて上下方向に移動自在となっている。筒部50の先端側壁には、筒部50の内外を径方向に貫通する貫通孔57が周方向に間隔を隔てて複数個形成されている。弁部材5はポリアセタール樹脂から形成されている。   The outer diameter of the cylindrical portion 50 is larger than the inner diameter of the reduced diameter portion 20 of the cylindrical member 2, and the valve member 5 moves up and down in the housing 4 in a state where the downward movement is restricted by the reduced diameter portion 20. It is free. Further, the outer diameter of the flange 51 is slightly smaller than the inner diameter of the housing 4, that is, the space formed by the projecting end surfaces of the first rib 80 and the second rib 81, and the valve member 5 is smooth. It can be moved. Further, the inner diameter of the cylindrical portion 50 of the valve member 5 is larger than the outer diameter of the convex portion 33, and the valve member 5 is guided by the convex portion 33 and is movable in the vertical direction. A plurality of through-holes 57 are formed in the distal end side wall of the cylinder portion 50 so as to penetrate the inside and outside of the cylinder portion 50 in the radial direction at intervals in the circumferential direction. The valve member 5 is formed from polyacetal resin.

また、筒部50のうち縮径部20側の部分、すなわち、筒部50の底部側の部分には、スリット状の液抜き部58が筒部50の周方向の4箇所に放射状に設けられている。この液抜き部58は、ハウジング4の内部とガス流入口22とを連通し、ハウジング4内部に溜まった液体を、ガス流入口22を経て燃料タンク100に排出するものである。液抜き部58が設けられていることで、開口23から逆流した液体がハウジング4に溜まって弁部材が動作不良を起こす等の不具合が回避される。また、筒部50の底部側の部分には、筒部50の筒内部とガス流入口22とを連通する第2の液抜き部59が設けられている。この第2の液抜き部59は、筒部50の筒内部に溜まった液体を、ガス流入口22を経て燃料タンク100に排出する。第2の液抜き部59が設けられていることで、筒部50の筒内部に溜まった液体により弁部材5の重量が増大して弁部材5の動作が不安定になる等の不具合が回避される。   In addition, slit-like drainage portions 58 are provided radially at four locations in the circumferential direction of the cylindrical portion 50 at the reduced diameter portion 20 side portion of the cylindrical portion 50, that is, at the bottom portion side portion of the cylindrical portion 50. ing. The liquid draining portion 58 communicates the inside of the housing 4 with the gas inlet 22 and discharges the liquid accumulated in the housing 4 to the fuel tank 100 through the gas inlet 22. By providing the liquid draining portion 58, it is possible to avoid problems such as the liquid flowing backward from the opening 23 collecting in the housing 4 and causing the valve member to malfunction. In addition, a second liquid draining portion 59 that communicates the inside of the cylinder portion 50 and the gas inlet 22 is provided at the bottom side portion of the cylinder portion 50. The second liquid draining part 59 discharges the liquid accumulated in the cylinder of the cylinder part 50 to the fuel tank 100 through the gas inlet 22. The provision of the second liquid draining portion 59 avoids problems such as an increase in the weight of the valve member 5 due to the liquid accumulated in the cylinder of the cylinder portion 50 and the operation of the valve member 5 becoming unstable. Is done.

スプリング6は、小径凸部55と凸部33の間に介装され、弁部材5はガス流入孔22に向かう方向に付勢されている。   The spring 6 is interposed between the small-diameter convex portion 55 and the convex portion 33, and the valve member 5 is biased in the direction toward the gas inflow hole 22.

本実施例の流量制御バルブによれば、低速給油時には、図3に示すように、鍔部51および干渉鍔部52の外周表面はニップル部11に連通する開口23より下方でハウジング4の内周表面に近接して対向している。そして、燃料タンク100内のガスは筒部材2の下端から主にガス流入孔22、通気孔56または第2の液抜き部59、貫通孔57を通過し、ブリーザガスはニップル部11からブリーザチューブ200、インレットパイプ300を循環する。このとき、燃料タンク100内のガス圧が弁部材5に作用しても、スプリング6の付勢力と弁部材5の自重との合計がそのガス圧から受ける力より大きいので、弁部材5は移動しない。図3に示すこの状態では、凸部33の先端は貫通孔57の上端より上方に位置し、貫通孔57を流通するガスの流通が妨げられることはなく、ブリーザ回路が安定して機能する。   According to the flow control valve of the present embodiment, during low-speed refueling, the outer peripheral surfaces of the flange 51 and the interference flange 52 are below the opening 23 communicating with the nipple portion 11 as shown in FIG. Facing close to the surface. The gas in the fuel tank 100 mainly passes from the lower end of the cylindrical member 2 through the gas inflow hole 22, the vent hole 56 or the second drainage part 59, and the through hole 57, and the breather gas passes from the nipple part 11 to the breather tube 200. The inlet pipe 300 is circulated. At this time, even if the gas pressure in the fuel tank 100 acts on the valve member 5, the sum of the urging force of the spring 6 and the weight of the valve member 5 is larger than the force received from the gas pressure. do not do. In this state shown in FIG. 3, the tip of the convex portion 33 is located above the upper end of the through hole 57, and the flow of the gas flowing through the through hole 57 is not hindered, and the breather circuit functions stably.

高速給油時には、燃料タンク100内のガス圧が上昇し、その圧力が弁部材5に作用することで、弁部材5は凸部33に近接する方向へ移動を開始する。すると凸部33の先端が貫通孔57とラップし、図4に示すように、弁部材5の上昇に伴って貫通孔57の開口面積が徐々に狭まる。つまり貫通孔57と凸部33との隙間70が第1弁部として作用し、第1弁部が徐々に閉じられる。それと同時に鍔部51も上昇するが、初期の間は鍔部51が開口23に表出することがない。   During high-speed refueling, the gas pressure in the fuel tank 100 increases, and the pressure acts on the valve member 5, so that the valve member 5 starts moving in the direction approaching the convex portion 33. Then, the tip of the convex portion 33 wraps with the through hole 57, and the opening area of the through hole 57 gradually narrows as the valve member 5 rises as shown in FIG. That is, the gap 70 between the through hole 57 and the convex portion 33 acts as the first valve portion, and the first valve portion is gradually closed. At the same time, the collar 51 rises, but the collar 51 does not appear in the opening 23 during the initial period.

そして燃料タンク100内のガス圧の上昇に伴い弁部材5がさらに凸部33に近接する方向に移動すると、貫通孔57の開口面積がさらに狭まり、ついには貫通孔57が凸部33で閉じられる。このとき鍔部51より下方側(タンク側)のガス圧が急激に上昇し、鍔部51より上方側(給油口側)の大気圧との差が急激に増大する。すると、弁部材5は一気に上昇し、図5に示すように鍔部51が開口23よりも上方に配置されて、ガス流出孔である開口23とガス流入孔22とが連通する。つまり鍔部51とハウジング4との隙間71が第2弁部として作用し、第2弁部が全開状態となる。なお、このとき、ガス流入口72からハウジング4内に流入したガスは、干渉鍔部52の第2の貫通孔53を経て開口23に到達する。   When the valve member 5 further moves in the direction closer to the convex portion 33 as the gas pressure in the fuel tank 100 increases, the opening area of the through hole 57 is further narrowed, and finally the through hole 57 is closed by the convex portion 33. . At this time, the gas pressure on the lower side (tank side) from the flange part 51 rapidly increases, and the difference from the atmospheric pressure on the upper side (fuel supply port side) from the flange part 51 increases rapidly. Then, the valve member 5 rises at a stretch, and as shown in FIG. 5, the flange portion 51 is disposed above the opening 23, and the opening 23 that is a gas outflow hole and the gas inflow hole 22 communicate with each other. That is, the gap 71 between the flange portion 51 and the housing 4 acts as the second valve portion, and the second valve portion is fully opened. At this time, the gas flowing into the housing 4 from the gas inlet 72 reaches the opening 23 via the second through hole 53 of the interference flange 52.

そして低速給油時、あるいは給油が停止された場合には、スプリング6の付勢力によって弁部材3は速やかに移動して図3の状態に戻る。   Then, at the time of low-speed refueling or when refueling is stopped, the valve member 3 quickly moves by the urging force of the spring 6 and returns to the state of FIG.

本実施例の流量制御バルブによれば、上述のように、第2弁部が流入開口と流出開口との連通を一気に開くことにより、ガス圧とブリーザガス流量との関係が急勾配のS字曲線に近くなる。このため、本実施例の流量制御バルブはガス圧変化への応答性に優れ、キャニスタに余分なガスが流入したり、ベーパリークが生じるのを抑制することができる。   According to the flow control valve of the present embodiment, as described above, the second valve portion opens the communication between the inflow opening and the outflow opening at a stretch, so that the relationship between the gas pressure and the breather gas flow rate has a steep S curve. Close to. For this reason, the flow control valve of the present embodiment is excellent in responsiveness to changes in gas pressure, and can suppress excess gas from flowing into the canister or vapor leak.

そして、本実施例の流量制御バルブでは、図6に示されるように、ハウジング4の一部を構成する筒部材2の内縁には、2つの第1リブ80からなる隔離手段が設けられており、この第1リブ80により鍔部51と開口23とが離間している。このため、本実施例の流量制御バルブでは、弁部材5の中心軸がずれる場合にも、鍔部51の周端が開口23に乗り上げ、鍔部51の周端が開口23の外縁と係止する等の不具合が回避される。したがって、弁部材が安定に移動してガス圧変化への優れた応答性が発揮される。   In the flow control valve of this embodiment, as shown in FIG. 6, an isolation means including two first ribs 80 is provided on the inner edge of the cylindrical member 2 constituting a part of the housing 4. The flange 51 and the opening 23 are separated from each other by the first rib 80. For this reason, in the flow control valve of the present embodiment, even when the central axis of the valve member 5 is shifted, the peripheral end of the flange portion 51 rides on the opening 23 and the peripheral end of the flange portion 51 is engaged with the outer edge of the opening 23. Inconveniences such as doing are avoided. Therefore, the valve member moves stably and exhibits excellent responsiveness to changes in gas pressure.

さらに、第1リブ80および第2リブ81によって、鍔部51とハウジング4との接触面積が減じられている。このため、本実施例の流量制御バルブでは、弁部材の中心軸がずれる場合にも、弁部材5とハウジング4とが接触する面積、すなわち、鍔部51と筒部材2とが接触する面積が小さくて済み、弁部材が安定して移動する。このため、ガス圧変化へのより優れた応答性が発揮される。   Further, the contact area between the flange 51 and the housing 4 is reduced by the first rib 80 and the second rib 81. For this reason, in the flow control valve of the present embodiment, even when the central axis of the valve member is shifted, the area where the valve member 5 and the housing 4 are in contact, that is, the area where the flange 51 and the cylindrical member 2 are in contact with each other. It is small and the valve member moves stably. For this reason, more excellent responsiveness to changes in gas pressure is exhibited.

そして、本実施例の流量制御バルブでは、鍔部51よりも流入開口側の位置に干渉鍔部52が設けらていることで、弁部材5に部分的に大きなガス圧が作用して弁部材5が揺動する場合には、弁部材5の傾斜は、筒部50と凸部33とが接触し、干渉鍔部52と筒部材2とが接触する位置で停止する。この干渉鍔部52により、弁部材5が大きく傾斜することが抑制され、弁部材5の移動がより安定するために、本実施例の流量制御バルブはガス圧変化への応答性に更に優れたものとなる。   In the flow control valve of the present embodiment, the interference flange 52 is provided at a position closer to the inflow opening than the flange 51, so that a large gas pressure acts on the valve member 5 partially. When 5 swings, the inclination of the valve member 5 stops at a position where the cylindrical portion 50 and the convex portion 33 are in contact with each other and the interference flange portion 52 and the cylindrical member 2 are in contact with each other. The interference flange 52 suppresses the valve member 5 from being greatly inclined, and the movement of the valve member 5 is more stable. Therefore, the flow control valve of the present embodiment is further excellent in responsiveness to changes in gas pressure. It will be a thing.

さらに、本実施例の流量制御バルブでは、干渉鍔部52に第2の通気孔53が設けられている。そして、高速給油時、すなわち、第1弁部が閉状態になり第2弁部が開状態になる際には、ガス流入孔22から流入したガスは、この第2の通気孔53を介して第2弁部に流れる。本実施例の流量制御バルブでは、ガス流入口22から流入したガスは干渉鍔部52とハウジング4との間からも第2弁部に流れるが、別途第2の通気孔53を設けることで高速給油時により大きなガス流路を確保でき、ガス圧変化への応答性がより向上する。   Furthermore, in the flow control valve of the present embodiment, the second vent hole 53 is provided in the interference flange 52. During high-speed refueling, that is, when the first valve portion is closed and the second valve portion is opened, the gas flowing in from the gas inflow hole 22 passes through the second vent hole 53. It flows to the second valve part. In the flow control valve of the present embodiment, the gas flowing in from the gas inlet 22 also flows to the second valve portion from between the interference flange portion 52 and the housing 4, but it is possible to increase the speed by providing a separate second vent 53. A larger gas flow path can be secured at the time of refueling, and the responsiveness to changes in gas pressure is further improved.

(実施例2)
実施例2の流量制御バルブは、凹部からなる隔離手段を備え、鍔部および干渉鍔部の周端に凹凸部が設けられていること以外は実施例1の流量制御バルブと同じものである。実施例2の流量制御バルブを模式的に表す断面図を図7に示し、実施例2の流量制御バルブのうち隔離手段を模式的に表す断面図を図8に示す。
(Example 2)
The flow control valve according to the second embodiment is the same as the flow control valve according to the first embodiment except that an isolating means including a concave portion is provided and uneven portions are provided at the peripheral ends of the flange portion and the interference flange portion. FIG. 7 shows a cross-sectional view schematically showing the flow control valve of the second embodiment, and FIG. 8 shows a cross-sectional view schematically showing the isolating means in the flow control valve of the second embodiment.

本実施例の流量制御バルブでは、ハウジング4を構成する筒部材2のうち、開口23の外縁には、図8に示すように、外縁全周を肉欠きする凹部85が設けられ、この凹部85から隔離手段が構成されている。そして、凹部85の内周面は、筒部材2のうち凹部85以外の部分の内周面(以下、一般面と呼ぶ)よりも外周側に配置され、開口23の外縁は一般面よりも外周側に配置されている。弁部材5の鍔部51はその周端が筒部材2の一般面と僅かに離間するように配されているため、開口23の外縁は鍔部51の周端よりも更に外周側に配置されて、鍔部51と開口とは離間する。凹部85は筒部材2の軸方向全長に延びている。また、鍔部51の周端には、図8に示すように、周方向に凹凸が列設されてなる凹凸部83が設けられている。さらに、干渉鍔部52の周端にも、凹凸部83と同様の凹凸部84が設けられている。   In the flow rate control valve of the present embodiment, a concave portion 85 that is notched on the entire outer edge is provided on the outer edge of the opening 23 of the cylindrical member 2 constituting the housing 4, as shown in FIG. Isolation means are configured from And the inner peripheral surface of the recessed part 85 is arrange | positioned rather than the inner peripheral surface (henceforth a general surface) of parts other than the recessed part 85 among the cylindrical members 2, and the outer edge of the opening 23 is an outer periphery rather than a general surface. Arranged on the side. Since the flange 51 of the valve member 5 is arranged so that the peripheral end thereof is slightly separated from the general surface of the cylindrical member 2, the outer edge of the opening 23 is disposed further on the outer peripheral side than the peripheral end of the flange 51. Thus, the flange 51 and the opening are separated from each other. The recess 85 extends the entire axial length of the cylindrical member 2. Moreover, as shown in FIG. 8, the uneven | corrugated | grooved part 83 by which an unevenness | corrugation is arranged in the circumferential direction is provided in the peripheral end of the collar part 51. As shown in FIG. Furthermore, a concavo-convex portion 84 similar to the concavo-convex portion 83 is also provided at the peripheral end of the interference flange portion 52.

本実施例の流量制御バルブでは、凹部85から隔離手段が構成されている。そして、この凹部85によって開口23の外縁が鍔部51の周端よりもさらに外周側に配置されて、鍔部51と開口23とが離間している。このため、本実施例の流量制御バルブでも、弁部材5の中心軸がずれる場合にも、鍔部51の周端が開口23に乗り上げ、鍔部51の周端が開口23の外縁と係止する等の不具合が回避される。したがって、本実施例の流量制御バルブでも弁部材が安定に移動してガス圧変化への優れた応答性が発揮される。   In the flow control valve of the present embodiment, an isolating means is configured from the recess 85. Then, the outer edge of the opening 23 is disposed further on the outer peripheral side than the peripheral end of the flange portion 51 by the recess 85, and the flange portion 51 and the opening 23 are separated from each other. Therefore, even in the flow control valve of the present embodiment, even when the central axis of the valve member 5 is shifted, the peripheral end of the flange portion 51 rides on the opening 23 and the peripheral end of the flange portion 51 is engaged with the outer edge of the opening 23. Inconveniences such as doing are avoided. Therefore, even in the flow rate control valve of the present embodiment, the valve member moves stably and excellent responsiveness to gas pressure change is exhibited.

さらに、本実施例の流量制御バルブでは、鍔部51の周端および干渉鍔部52の周端に凹凸部83、84設けられている。このため、弁部材5の中心軸がずれる場合にも、鍔部51や干渉鍔部52と筒部2とが接触する面積が小さくて済み、ガス圧変化へのさらに優れた応答性が発揮される。   Furthermore, in the flow control valve of the present embodiment, uneven portions 83 and 84 are provided at the peripheral end of the flange 51 and the peripheral end of the interference flange 52. For this reason, even when the central axis of the valve member 5 is deviated, the contact area between the flange 51 or the interference flange 52 and the cylindrical portion 2 is small, and further excellent responsiveness to changes in gas pressure is exhibited. The

本発明の実施例1の流量制御バルブの断面図である。It is sectional drawing of the flow control valve | bulb of Example 1 of this invention. 本発明の実施例1の流量制御バルブを備えたブリーザ回路の説明図である。It is explanatory drawing of the breather circuit provided with the flow control valve of Example 1 of this invention. 本発明の実施例1の流量制御バルブの作動を示す説明図である。It is explanatory drawing which shows the action | operation of the flow control valve of Example 1 of this invention. 本発明の実施例1の流量制御バルブの作動を示す説明図である。It is explanatory drawing which shows the action | operation of the flow control valve of Example 1 of this invention. 本発明の実施例1の流量制御バルブの作動を示す説明図である。It is explanatory drawing which shows the action | operation of the flow control valve of Example 1 of this invention. 本発明の実施例1の流量制御バルブの断面図である。It is sectional drawing of the flow control valve | bulb of Example 1 of this invention. 本発明の実施例2の流量制御バルブの作動を示す説明図である。It is explanatory drawing which shows the action | operation of the flow control valve of Example 2 of this invention. 本発明の実施例2の流量制御バルブの断面図である。It is sectional drawing of the flow control valve of Example 2 of this invention. 従来の流量制御バルブの作動を示す説明図である。It is explanatory drawing which shows the action | operation of the conventional flow control valve. 従来の流量制御バルブの作動を示す説明図である。It is explanatory drawing which shows the action | operation of the conventional flow control valve. 従来の流量制御バルブの作動を示す説明図である。It is explanatory drawing which shows the action | operation of the conventional flow control valve. 従来の流量制御バルブの作動を示す説明図である。It is explanatory drawing which shows the action | operation of the conventional flow control valve.

符号の説明Explanation of symbols

1:カバー 2:筒部材 4:ハウジング 5:弁部材 51:鍔部 52:干渉鍔部 80:リブ 83:凹凸部 85:凹部 1: cover 2: cylindrical member 4: housing 5: valve member 51: flange part 52: interference flange part 80: rib 83: uneven part 85: concave part

Claims (4)

流体が流入する流入開口と該流入開口から流入した流体が外部へ流出する流出開口とを有するハウジングと、外周方向に突出する鍔部を持ち該ハウジング内に移動自在に配置された弁部材と、該弁部材を該流入開口へ近接する方向へ付勢する付勢手段と、からなり、
該弁部材と該ハウジングとの間に形成され該流入開口から遠ざかる方向への該弁部材の移動に伴って該流入開口と該流出開口との連通を徐々に閉じる第1弁部と、該鍔部と該ハウジングとの間に形成され該流入開口から遠ざかる方向への該弁部材の移動に伴って該流入開口と該流出開口との連通を開く第2弁部と、を備え、
該流入開口側の流体圧が所定値以下のときには該第1弁部が開状態かつ該第2弁部が閉状態であり、該流入開口と該流出側開口との圧力差が所定値を超えたときに該第2弁部が該流入開口と該流出開口との連通を一気に開くように構成されてなる流量制御バルブであって、
前記ハウジングの内縁には、前記鍔部と前記流出開口とを離間させる隔離手段が設けられていることを特徴とする流量制御バルブ。
A housing having an inflow opening through which the fluid flows in and an outflow opening through which the fluid flowing in from the inflow opening flows out to the outside; a valve member having a flange projecting in the outer circumferential direction and movably disposed in the housing; Biasing means for biasing the valve member in a direction close to the inflow opening,
A first valve portion formed between the valve member and the housing and gradually closing the communication between the inflow opening and the outflow opening as the valve member moves in a direction away from the inflow opening; A second valve portion that is formed between the portion and the housing and opens the communication between the inflow opening and the outflow opening in accordance with the movement of the valve member in a direction away from the inflow opening.
When the fluid pressure on the inflow opening side is less than or equal to a predetermined value, the first valve portion is open and the second valve portion is closed, and the pressure difference between the inflow opening and the outflow side opening exceeds a predetermined value. The second valve portion is configured to open the communication between the inflow opening and the outflow opening at a stroke,
The flow rate control valve according to claim 1, wherein an isolation means for separating the flange portion and the outflow opening is provided at an inner edge of the housing.
前記隔離手段は、前記流出開口の周縁部から内周方向に突出するリブである請求項1記載の流量制御バルブ。   The flow control valve according to claim 1, wherein the isolating means is a rib protruding in an inner circumferential direction from a peripheral edge portion of the outflow opening. 前記隔離手段は、前記流出開口の外縁に設けられ該外縁全周を肉欠きする凹部である請求項1記載の流量制御バルブ。   The flow control valve according to claim 1, wherein the isolating means is a recess provided at an outer edge of the outflow opening and having a notch around the entire outer edge. 前記鍔部の周端には、前記弁部材と前記ハウジングとの接触面積を減じる凹凸部が設けられている請求項1または請求項3記載の流量制御バルブ。
The flow control valve according to claim 1 or 3, wherein an uneven portion that reduces a contact area between the valve member and the housing is provided at a peripheral end of the flange portion.
JP2004251446A 2004-08-31 2004-08-31 Flow rate control valve Withdrawn JP2006069238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004251446A JP2006069238A (en) 2004-08-31 2004-08-31 Flow rate control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004251446A JP2006069238A (en) 2004-08-31 2004-08-31 Flow rate control valve

Publications (1)

Publication Number Publication Date
JP2006069238A true JP2006069238A (en) 2006-03-16

Family

ID=36150326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004251446A Withdrawn JP2006069238A (en) 2004-08-31 2004-08-31 Flow rate control valve

Country Status (1)

Country Link
JP (1) JP2006069238A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168133A (en) * 2008-01-16 2009-07-30 Piolax Inc Check valve integrated cut valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168133A (en) * 2008-01-16 2009-07-30 Piolax Inc Check valve integrated cut valve

Similar Documents

Publication Publication Date Title
JP4831422B2 (en) Variable flow valve
US7428914B2 (en) Flow control valve
JP3931291B2 (en) Fuel tank fuel spill regulating device
JP3284746B2 (en) Float valve for fuel tank
US6591855B2 (en) Fuel cutoff valve
JP5429112B2 (en) Full tank control valve device
JP2006097674A (en) Fuel cut-off valve
US20090211649A1 (en) Fuel cutoff valve
JP3909837B2 (en) Fuel tank fuel spill regulating device
JP2007009906A (en) Vent valve for fuel pump, and fuel pump module
JP3953916B2 (en) Fuel tank fuel spill regulating device
JP2004257264A (en) Full tank control valve structure
US7448364B2 (en) Fuel cutoff valve and breather pipe
JP4482806B2 (en) Flow control valve
JP4379719B2 (en) Flow control valve
JP2006069236A (en) Flow rate control valve
JP4131399B2 (en) Fuel tank fuel spill regulating device
JP2006069238A (en) Flow rate control valve
JP2004353518A (en) Tank fill-up regulation valve
JP5360009B2 (en) Rollover valve
JP4440090B2 (en) Full tank control valve
JP2010105523A (en) Fuel shut-off valve
JP2006069237A (en) Flow rate control valve
JP5123816B2 (en) Float valve device
JP4207875B2 (en) Fuel shut-off valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061122

A977 Report on retrieval

Effective date: 20090630

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090707

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Effective date: 20090721

Free format text: JAPANESE INTERMEDIATE CODE: A761